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Abstract: (1) Background: Pelargonium sidoides extracts and lactoferrin are two important natural,
anti-inflammatory, and antiviral agents, which can interfere with the early stages of SARS-CoV-2
infection. Molecular docking and molecular dynamics simulation approaches have been applied
to check for the occurrence of interactions of the Pelargonium sidoides compounds with lactoferrin
and with SARS-CoV-2 components. (2) Methods: Computational methods have been applied to
confirm the hypothesis of a direct interaction between PEL compounds and the lactoferrin protein
and between Pelargonium sidoides compounds and SARS-CoV-2 Spike, 3CLPro, RdRp proteins, and
membrane. Selected high-score complexes were structurally investigated through classical molecular
dynamics simulation, while the interaction energies were evaluated using the molecular mechanics
energies combined with generalized Born and surface area continuum solvation method. (3) Results:
Computational analyses suggested that Pelargonium sidoides extracts can interact with lactoferrin
without altering its structural and dynamical properties. Furthermore, Pelargonium sidoides com-
pounds should have the ability to interfere with the Spike glycoprotein, the 3CLPro, and the lipid
membrane, probably affecting the functional properties of the proteins inserted in the double layer.
(4) Conclusion: Our findings suggest that Pelargonium sidoides may interfere with the mechanism of
infection of SARS-CoV-2, especially in the early stages.

Keywords: molecular docking; molecular dynamics; MM/GBSA; Pelargonium sidoides; lactoferrin;
SARS-CoV-2
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1. Introduction

Due to the emergence of pandemic diffusion of SARS-CoV-2, health care systems
and emergency medical services have become overwhelmed [1]. Some measures, such as
lock-down of communities, social distancing, and quarantine-type for those suspected to
be infected, can, at least in part, slow the COVID-19 (COronaVIrus Disease 19) spread [2]
and therefore enable the health systems to cope. In the worldwide search for a response
to the COVID-19 pandemic, different natural remedies against COVID-19 have been re-
ported [3–5]. Among these, Pelargonium sidoides and lactoferrin showed important anti-
inflammatory, anti-oxidative, and antiviral properties, administered alone or in combina-
tion [3–8].

Pelargonium sidoides (PEL; Geraniaceae) is an African medicinal plant, traditionally
used for curing different diseases, including diarrhea, colic, gastritis, tuberculosis, cough,
hepatic disorders, menstrual complaints, and gonorrhea [9]. The common name, umck-
aloabo, represents the Zulu (“Umkuhlune”—coughing and fever; and “Uhlabo” = pain in the
chest) [10] word describing ‘severe cough’. Indeed, its extracts are successfully employed in
modern phytotherapy in Europe to cure infectious diseases of the respiratory tract [5,8,9].

Pelargonium sidoides is indicated for the common cold [11], cough, and bronchitis [12].
Pelargonium sidoides root extracts preparations are available in some European Countries
with a full marketing authorization (e.g., Bulgaria, Czech Republic, Germany) or registered
as a traditional herbal medicinal product (e.g., Austria, Hungary, Italy, The Netherlands,
Poland, Spain, Sweden), and are widely used for acute bronchitis and other respiratory
infections [11]. Relevant key metabolites assumed to be active are hydrolysable tannins,
catechins, gallic acid, and methyl gallate, including some unusual O-galloyl-C-glucosyl
flavones, scopoletin, 6,8-dihydroxy-5,7-dimethoxycoumarin, 5,6,7-trimethoxycoumarin.
Other coumarins, as well as, quercetin 3-O-b-D-glucoside, myricetin, and other flavonoids,
have been isolated. This herbal medicine has been experimentally proven for anti-viral
activity as reported for Pelargonium sidoides that interfere in vitro with the replication of dif-
ferent respiratory viruses, including human coronaviruses [13], influenza virus (in vitro and
in vivo) [14], and Rhinovirus isolated from patients with severe asthma [15], by stimulating
IFN-b in vitro, while gallic acid enhanced the expression of iNOS and TNF-α [16].

Lactoferrin (Lf) is a glycoprotein of the transferrin family [17,18], synthetized by ex-
ocrine glands and neutrophils and is present in human milk and in all secretions [17,18].
This protein is one of the most important factors of innate immunity, constituting a barrier
against pathogens colonizing both mother and fetal habitats [19], and it was demonstrated
that it could also act as a potential nutraceutical capable of contrasting SARS-CoV-2 infec-
tion [6,7].

Lactoferrin has four essential activities: chelation of two ferric ions per molecule,
interaction with anionic compounds, translocation into the nucleus, and modulation of
inflammation and iron homeostasis [3,17,18]. Lf’s capability to chelate two ferric ions per
molecule influences bacterial and viral replication and hinders reactive oxygen species
formation (ROS) [17,20,21]. The binding of Lf to anionic surface components, thanks to its
cationic features, is associated with the host protection against bacterial and viral adhesion
and entry [17]. Moreover, the entrance of Lf into host cells, and its translocation into the
nucleus [22,23], is related to its anti-inflammatory function [24]. In a recent study, we
demonstrated that bovine Lf (bLf) exerts its antiviral activity either by direct binding to the
SARS-CoV-2 particles or by obscuring their host cell receptors [6]. Moreover, the results
obtained through the computational approaches strongly supported the hypothesis of a
direct recognition between the bLf and the spike glycoprotein [6].

As reported in literature [5], the combination Pelargonium sidoides + Lf (PELIRGOSTIM),
can reduce in vitro the release of proinflammatory cytokines, oxidants, and bacteria growth,
most likely preventing leukocyte chemiotaxis with a reduced inflammatory pattern. PEL
and Lf used alone were able to reduce LPS-induced proinflammatory IL-1β, as well as
reduce ROS, nitrite, and bacteria growth. It can be hypothesized that this synergistic effect
may counteract SARS-CoV-2 infection.
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In view of this context, it is important to understand if the compounds contained in
PEL extracts can interfere with the lactoferrin structure and function and what types of
interactions can be established with the key components of SARS-CoV-2.

To this aim, in this study we applied computational methods to verify the hypothesis
of a direct interaction between PEL compounds and the Lf protein and with SARS-CoV-2
Spike, 3CLPro, RdRp proteins, and membrane. Selected high-score complexes obtained
with molecular docking were structurally investigated through classical molecular dy-
namics (MD) simulations, rescoring their interaction energies using the molecular me-
chanics energies combined with generalized Born and surface area continuum solvation
(MM/GBSA) method [25]. The results obtained from the computational analyses suggest
that PEL compounds and Lf could synergistically interfere with the mechanism of infection
of SARS-CoV-2, especially in the early stages.

2. Materials and Methods
2.1. Molecular Docking of the PEL Compounds

The structure of the most relevant compounds present in the PEL root extracts
(Figure S1), including 6-7-8-trihydroxycoumarin, 5-6-7-trimethoxycoumarin, 6-8-dihydroxy-7-
methoxycoumarin, apocynin, 7-acetoxy-5-6-dimethoxycoumarin, artelin, dihydroxybenzoic-
acid, caffeic acid, ferulic acid, epigallocatechin-3-gallate, dimethoxycoumarin, gallic acid,
fraxetin, isofraxoside, homovanillic acid, gallocatechin, magnolioside, isovitexin, isoori-
entin, pentagalloyl-glucose, taxifolin-3-glucoside, scopoletin, quercetin, vanillic acid, umck-
alin, and vitexin have been downloaded from the PubChem database in the SDF format
and converted in MOL2 using the openBabel routines [26]. The structures of the bovine
lactoferrin (ID: 1BLF) [27], spike glycoprotein [28], 3CL protease (ID: 6LU7) [29] and cat-
alytic subunit of the RdRp polymerase (ID: 7BV2) [30] have been downloaded from the PDB
database. Protein and drug structure files have been converted into pdbqt format using
the prepare_receptor4.py and the prepare_ligand4.py tools of the AutoDockTools4 soft-
ware [31]. The molecular docking simulations have been performed using the AutoDock
Vina 1.2.0 program [32]. AutoDock Vina is one of the fastest and most widely used open-
source programs for molecular docking, which has been recently updated introducing new
docking methods and an expanded force field [32]. One docking simulation, including
ten docking runs, has been carried out for each drug. For each docking simulation, the
AutoDock Vina program selects 10 binding poses representing the cluster centroids of all
the different conformations, generated in each run using a Lamarckian Genetic Algorithm
coupled to a gradient optimization algorithm. For the lactoferrin, the simulation box has
been placed to include the whole protein structure. A box of size x = 23.25 Å, y = 24.38 Å,
z = 25.88 Å has been placed over the HR1 internal region of the spike glycoprotein A
monomer. A box of size x = 22.75 Å, y = 23.75 Å, z = 24.78 Å has been placed over the
3CLpro binding site for located between domains I and II of the protein. Finally, after the
removal of the RNA molecule, a box has been set to include the whole RdRp polymerase
structure.

2.2. Molecular Dynamics of the Best Docking Complexes

The topology and coordinate files of the best docking complexes (7, 12, 7, and 1 for
the lactoferrin, Spike, 3CLpro, and RdRp polymerase, respectively) were generated using
the tLeap module of the AmberTools program [33], parametrizing the structures through
the AMBER ff19SB force field [34]. The structures were placed into a rectangular box,
solvated with TIP3P water molecules [35], and neutralized by adding the correct amount
of neutralizing counterions, forcing a minimum distance between the structure and the box
sides of 12 Å. For each structure, a minimization run of 500 steps using the steepest descent
algorithm followed by 1500 steps of a conjugate gradient was performed to remove any
unfavorable interactions. The systems were gradually heated from 0 to 300 K in the NVT
ensemble over a period of 500 ps using the Langevin thermostat, applying a restraint of
0.5 kcal·mol−1·Å−2 on each protein and ligand atom to relax the solvent. Through 1.0 ns
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long equilibration runs, the restraint forces were gradually decreased to 0.1 kcal·mol−1·Å−2.
The systems were simulated using an isobaric-isothermal (NPT) ensemble for 1.0 ns, setting
the temperature to 300 K and the pressure to 1.0 atm using the Langevin barostat [36]. The
SHAKE algorithm [37,38] was used to constrain the covalent bonds involving hydrogen
atoms. The systems were then subjected to a 100.0 ns equilibration production run, with a
timestep of 2.0 fs, using the PME method [39] for long-range interactions and a cut-off of
9.0 Å for the short-range interactions. These simulations have been performed using the
GPU-enabled version of AMBER 16.0 pmemd module on, saving systems coordinates every
1000 steps.

2.3. Molecular Dynamics of the SARS-CoV-2 Membrane–PEL Compounds Interaction

Topology and coordinate files for a 230 × 230 Å membrane and the PEL compounds
have been generated using the Membrane Builder tool of the CHARMM-GUI interface [40].
The CHARMM36m force field for lipids [41] was used to parametrize the membrane system.
Membrane composition mimics that of a SARS-CoV-2 viral envelope, including choles-
terol (30%), 3-palmitoyl-2-oleoyl-d-glycero-1-phosphatidylcholine (6%), 2,3 dipalmitoyl-d-
glycero-1-phosphatidylcholine (4%), 3-palmitoyl-2-oleoyl-d-glycero-1-phosphatidylethano
lamine (18%), 2,3 dipalmitoyl-d-glycero-1-phosphatidylethanolamine (12%), 3-palmitoyl-2-
oleoyl-d-glycero-1-phosphatidylserine (6%), 2,3 dipalmitoyl-d-glycero-1-phosphatidylserine
(4%) and sphingomyelin d18;1/16;0 (20%) [42]. Parameters for the compounds have been
generated using the CGenFF program (https://cgenff.umaryland.edu (accessed on 17
April 2022)) and the CHARMM general force field. The compounds-membrane system was
inserted in a rectangular box filled with TIP3P water molecules [35] and neutralized with
0.15 M of NaCl ions. The final system included 395,855 atoms. To remove unfavorable inter-
actions, the system has been minimized in ten runs, each including 2000 steps. A constraint
of 20.0 kcal/mol was initially applied on each atom, sequentially halved in the subsequent
runs, and finally removed in the last run. Minimized systems have been thermalized in a
canonical ensemble (NVT) using a timestep of 1.0 fs, gradually increasing the temperature
from 0 to 310 K every 30 ps using Langevin dynamics [43] and applying a constraint of
5.0 kcal/mol on protein and membrane atoms. The system was then equilibrated in an
anisotropic NPT (NPT-A) ensemble using the Nosè-Hoover Langevin piston method [36,44]
and a constant pressure of 1.0 atm, gradually releasing the constraints applied on protein
and membrane every 250 ps during a 2250 ps run. Then, the timestep was increased to 2.0 fs
and the system was simulated for 150 ns. + Electrostatic interactions have been calculated
using the PME method [39], while the cut-off for non-bonded interactions was set to 12.0 Å.
This simulation has been performed using the NAMD 2.13 program [45], saving system
coordinates every 1000 steps.

2.4. Trajectory Analysis

Membrane thickness has been evaluated using the VMD Membrane Analysis Tool [46].
2D thickness maps have been realized using an in-house Python script. Distance analyses
were performed using an in-house VMD Tcl script. The most representative structure of
the simulated proteins (clusters centroid) has been extracted through a cluster analysis of
the trajectories using the g_cluster tool of Gromacs [47], using a cut-off of 0.16 nm and the
gromos clustering algorithm [48]. Generalized Born and surface area continuum solvation
(MM/GBSA) analysis [25] have been performed over the last 30 ns of all the simulations
(excluding the membrane system), using the MMPBSA.py.MPI program implemented in
the AMBER16 software [49]. Images have been generated using the VMD [50] Humphrey
or Chimera software [51].

3. Results
3.1. Prediction of PEL Compounds Toxicity

The oral acute toxicity, organ toxicity, immunotoxicity, genetic toxicity endpoints,
nuclear receptor signalling, and stress response pathways of PEL compounds have been

https://cgenff.umaryland.edu
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evaluated using the ProTox-II webserver [52]. Table S1 indicates the oral acute toxicity
(LD50) as mg/kg, predicted toxicity classes (I–VI), and the predicted toxicity model for
PEL compounds. Among the 26 molecules, only quercetin, isovitexin, and isoorientin are
predicted as class III compounds, specified as toxic after swallowing (50 < LD50 ≤ 300).
However, in the literature, there is no evidence of toxicity for isovitexin and isoorientin,
and for quercetin when administered at up to 5 g daily [53]. The compounds identified as
class IV and V could be harmful after swallowing (300 < LD50 ≤ 2000 and 2000 < LD50 ≤
5000, respectively). Additionally, in this case, from the analysis of the literature, we found
no evidence of toxicity for most of them, with only a minor cytotoxic effect of coumarins
when administered at doses higher than 5 g [54]. Gallocatechin and epigallocatechin-3-
gallate (identified as class VI compounds) toxicity is debated in the scientific community
since hepatic failure has been associated with the intake of epigallocatechin-3-gallate [54].
However, the intake of these substances up to 0.9 g per day should be safe, and promoted
some decrease in LDL cholesterol [55]. The currently used clinical dose of EPs 7630, the
main proprietary Pelargonium sidoides root extract used for curing common respiratory
diseases, is ~60 mg [8]. Given the recommended low dosage, the use of this extract should
be safe, as toxic concentrations of the compounds would never be reached.

3.2. Interaction of PEL Compounds with the Bovine Lactoferrin

The interaction energies from the molecular docking simulations of the PEL com-
pounds and the bLf are shown in Table 1. As already reported for molecules like flavonoids
and other small polyphenols, the compounds bind in proximity of His91, Leu687, and
Thr688 [56], which define the margins of a cavity (Figure 1) with a size sufficient to accom-
modate even the largest compound, the pentagalloyl glucose. Notably, this cavity is located
far away from the SARS-CoV-2 spike glycoprotein putative binding site that we identified
in a previous work [6], suggesting that the binding of the compounds do not interfere with
the recognition of the viral protein.

The seven compounds (Table 1, grey) showing energies higher than −7.5 kcal/mol
have been investigated performing 100 ns long classical molecular dynamics simulation.
This procedure allowed us to validate the binding affinities and to verify their effect on the
bovine lactoferrin structural properties.
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Table 1. Bovine lactoferrin molecular docking results. The average interaction energy calculated from
three independent docking runs, including standard deviation, is reported for each compound.

Compound Interaction Energy (kcal/mol ± SD)

Epigallocatechin-3-gallate −8.1 (0.3)
Taxifolin-3-glucoside −7.9 (0.2)

Gallocatechin −7.7 (0.2)
Artelin −7.7 (0.2)

Pentagalloylglucose −7.6 (0.4)
Vitexin −7.6 (0.3)

Isoorientin −7.5 (0.2)
Isovitexin −7.3 (0.2)
Orientin −7.2 (0.3)

Magnolioside −7.2 (0.3)
Quercetin −7.1 (0.2)

6-8-dihydroxy-7-methoxycoumarin −7.0 (0.3)
7-acetoxy-5-6-dimethoxycoumarin −6.8 (0.2)

Dimethoxycoumarin −6.4 (0.3)
Fraxetin −6.4 (0.2)

6-7-8-trihydroxycoumarin −6.2 (0.4)
Isofraxoside −6.2 (0.2)

Umckalin −6.2 (0.2)
Scopoletin −6.0 (0.2)

5-6-7-trimethoxycoumarin −6.0 (0.2)
Caffeic acid −5.7 (0.3)
Ferulic acid −5.7 (0.2)
Vanillic acid −5.4 (0.3)
Gallic acid −5.3 (0.2)
Apocynin −5.3 (0.2)

Homovanillic acid −5.3 (0.1)
Dihydroxybenzoic acid −4.7 (0.2)

Figure 2A–G shows the results from the RMSD analysis of the seven trajectories. As
can be observed, the RMSD values reported as a function of the simulation time indicate
that the lactoferrin structure is stable and does not deviate from the reference one. The
analysis of the secondary structure elements during the simulation time confirms that
the presence of the compounds into the cavity does not alter the lactoferrin structural
properties (Figure S2A–G). Finally, the MM-GBSA method allowed us to re-evaluate the
interaction energies between the lactoferrin and the seven compounds. In general, the
analysis partially overturns the docking results, highlighting marked differences between
the various compounds (Table 2), with taxifolin-3-glucoside, isoorientin, gallocatechin, and
artelin showing higher interaction energies than pentagalloyl-glucose, epigallocatechin-3-
gallate, and vitexin. As a matter of fact, it is reasonable to assume that these compounds
can take advantage of the lactoferrin structure as a molecular carrier, without altering its
structural and dynamical properties.

Table 2. Results of MM-GBSA analysis of the bovine Lf-PEL compounds complexes. For each
compound, we reported the average interaction energy calculated over the last 30 ns of the trajectory.

Compound Interaction Energy (kcal/mol ± SD)

Taxifolin-3-glucoside −39.1 (4.5)
Isoorientin −33.7 (3.6)

Gallocatechin −30.8 (2.8)
Artelin −30.0 (3.4)
Vitexin −24.6 (4.8)

Epigallocatechin-3-gallate −21.3 (2.5)
Pentagalloyl glucose −16.6 (4.2)
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Pentagalloyl glucose, (F) Vitexin, (G) Isoorientin.

3.3. Interaction of PEL Compounds with the SARS-CoV-2 Protease (3CLpro)

To check the interaction of PEL compounds with the viral protease, we first optimized
the protein structure through a 100-ns long classical molecular dynamics simulation, as
described in the methods section. After a clustering procedure, we extracted a reference
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structure to be used as receptor for the molecular docking experiments, selecting as the
research area the binding site identified through the X-ray diffraction experiments [29].
As reported in Table 3, the subset of compounds (Figure 3A–G) showing an interaction
energy higher than 7.5 kcal/mol was investigated through MD simulations to evaluate if
the identified interactions lead to the formation of stable complexes.

Besides, the analyses show that all seven compounds interact with the catalytic dyad of
the protease, namely His41 and Cys145 (Figure 4). Finally, the MM-GBSA method allowed
us to re-evaluate the interaction energies between the protease and the seven compounds.
In general, the analysis confirms the docking results but highlights more marked differences
between the various compounds (Table 4), with vitexin, pentagalloylglucose, magnolioside,
and isoorientine showing interaction energies higher than those of artelin, quercetin, and
isovitexin. Therefore, it is reasonable to assume that of these seven compounds, at least the
first four could have an inhibitory activity against the virus protease.

Table 3. 3CLpro molecular docking results. The average interaction energy calculated from three
independent docking runs, including standard deviation, is reported for each compound.

Compound Interaction Energy (kcal/mol ± SD)

Vitexin −8.7 (0.3)
Pentagalloylglucose −8.3 (0.4)

Quercetin −8.1 (0.2)
Magnolioside −8.0 (0.3)

Isovitexin −8.0 (0.2)
Artelin −8.0 (0.2)

Isoorientin −8.0 (0.2)
Orientin −7.4 (0.3)

Taxifolin-3-glucoside −7.4 (0.1)
Epigallocatechin-3-gallate −7.3 (0.3)

Gallocatechin −7.3 (0.2)
Isofraxoside −7.2 (0.2)

Fraxetin −6.9 (0.2)
7-acetoxy-5-6-dimethoxycoumarin −6.7 (0.2)

Dimethoxycoumarin −6.4 (0.3)
6-8-dihydroxy-7-methoxycoumarin −6.2 (0.3)

Dihydroxybenzoic acid −6.2 (0.2)
Scopoletin −5.9 (0.2)

6-7-8-trihydroxycoumarin −5.7 (0.4)
Caffeic acid −5.7 (0.3)

5-6-7-trimethoxycoumarin −5.7 (0.2)
Umckalin −5.7 (0.2)

Ferulic acid −5.6 (0.2)
Gallic acid −5.6 (0.2)

Vanillic acid −5.3 (0.3)
Apocynin −5.3 (0.2)

Homovanillic acid −4.6 (0.1)

Table 4. Results of MM-GBSA analysis of the 3CLpro-PEL compounds complexes. For each com-
pound, we reported the average interaction energy calculated over the last 30 ns of the trajectory.

Compound Interaction Energy (kcal/mol ± SD)

Vitexin −29.87 (3.40)
Pentagalloyl-glucose −25.74 (5.99)

Magnolioside −25.44 (4.05)
Isoorientin −23.14 (3.95)

Artelin −21.76 (5.59)
Quercetin −15.21 (2.69)
Isovitexin −15.08 (3.59)
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Figure 4. Distance as a function of simulation time between the active site of the protease and the
compounds identified through docking experiments. (A) Complex between the protease and vitexin.
(B) Complex between the protease and pentagalloyl-glucose. (C) Complex between protease and
quercetin. (D) Complex between protease and magniolioside. (E) Complex between protease and
isovitexin. (F) Complex between the protease and artelin. (G) Complex between the protease and
the isoorientine.

3.4. Interaction of PEL Compounds with the SARS-CoV-2 Spike Glycoprotein

The reference structure for docking simulations on the Spike glycoprotein arises from
the calculations carried out in our previous work [28]. The molecular docking experiments
were carried out on the trimeric structure of the Spike, shown in Figure 5A–G, selecting as
the research area the binding site identified in our work and in the literature, namely the
HR1 domains, which are responsible for the conformational change that allows the entry
of the virus inside cells [28]. Interfering with these domains using compound as fusion
inhibitors, it should be possible to block the glycoprotein in its prefusion state before it can
enter the cells by recognizing the ACE2 receptor. As reported in Table 5, a large number of
compounds, higher than that observed for the protease (highlighted in grey), show energies
higher than −7.5 kcal/mol and have been investigated performing 100 ns long classical
molecular dynamics simulation.
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Figure 5. Molecular representation of the thirteen best complexes identified by docking. α-helices
are represented as orange spirals, β-strands through violet arrows, while the compounds are shown
as red spheres. (A) Complex between spike glycoprotein and Pentagalloyl glucose. (B) Complex
between spike glycoprotein and Vitexin. (C) Complex between spike glycoprotein and 6-8-dihydroxy-
7-methoxycoumarin. (D) Complex between spike glycoprotein and Quercetin. (E) Complex between
spike glycoprotein and Taxifolin-3-glucoside. (F) Complex between spike glycoprotein and Isofraxo-
side. (G) Complex between spike glycoprotein and Isovitexin. (H) Complex between spike glyco-
protein and Gallocatechin. (I) Complex between spike glycoprotein and Isoorientina. (J) Complex
between spike glycoprotein and Epigallocatechin-3-gallate. (K) Complex between spike glycoprotein
and Artelin. (L) Complex between the spike glycoprotein and the Magnolioside.

Figure S3A–K shows the data related to the distance calculated as a function of the
simulation time, for eleven out of twelve simulated systems, between the HR1 domains of
the Spike glycoprotein and each compound. The lack of artelin in the results is due to the
instability of the complex: in fact, this molecule moves away from the pocket already in the
equilibration phases of the system. Several equilibration attempts all led to the unbinding
of the compound, so it was excluded from the subsequent analyses. As can be observed, the
compounds identified by molecular docking remain stably located in the original positions
or relocate to it during the simulation time due to a reorganization of the interactions
occurred during the equilibration phases. In all cases, except for isovitexin, the compounds
interact exclusively with the HR1 domain. Isovitexin, on the other hand, tends to occupy
a region between the HR1 domain and the lower part of the cavity generated by the cou-
pling of the three Spike monomers. The MM-GBSA method allowed us to re-evaluate the
interaction energies between the Spike glycoprotein and these compounds. In general,
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the analysis overturns the docking results highlighting marked differences between the
various compounds (Table 6), with taxifolin-3-glucoside, pentagalloyl-glucose, magnolio-
side, isovitexin, epigallocatechin-3-gallate, gallocatechin, and isofraxoside showing higher
interaction energies (especially the first three).

Table 5. Spike glycoprotein molecular docking results. The average interaction energy calculated
from three independent docking runs, including standard deviation, is reported for each compound.

Compound Interaction Energy (kcal/mol ± SD)

Pentagalloylglucose −10.4 (0.3)
Vitexin −9.5 (0.2)

6-8-Dihydroxy-7-methoxycoumarin −9.3 (0.3)
Quercetin −9.3 (0.2)

Taxifolin-3-glucoside −9.1 (0.1)
Isofraxoside −8.7 (0.2)

Isovitexin −8.6 (0.2)
Gallocatechin −8.6 (0.2)

Isoorientin −8.5 (0.2)
Epigallocatechin-3-gallate −8.3 (0.3)

Artelin −8.2 (0.2)
Magnolioside −8.0 (0.1)

Orientin −7.4 (0.3)
Fraxetin −7.4 (0.2)

Scopoletin −7.0 (0.2)
7-acetoxy-5-6-dimethoxycoumarin −6.8 (0.2)

Umckalin −6.8 (0.2)
Caffeic acid −6.6 (0.3)

5-6-7-trimethoxycoumarin −6.6 (0.2)
Ferulic acid −6.4(0.2)

Dimethoxycoumarin −6.4 (0.3)
Homovanillic acid −6.1 (0.1)

Gallic acid −5.7(0.2)
6-7-8-trihydroxycoumarin −5.7 (0.4)

Vanillic acid −5.6 (0.3)
Apocynin −5.3 (0.2)

Dihydroxybenzoic acid −5.2 (0.2)

Table 6. Results of MM-GBSA analysis of the Spike-PEL compounds complexes. For each compound,
we reported the average interaction energy calculated over the last 30 ns of the trajectory.

Compound Interaction Energy (kcal/mol ± SD)

Taxifolin-3-glucoside −43.2 (5.8)
Pentagalloylglucose −38.7 (5.5)

Magnolioside −32.2 (4.2)
Isovitexin −26.3 (4.7)

Epigallocatechin-3-gallate −25.8 (3.4)
Gallocatechin −24.7 (3.9)
Isofraxoside −23.3 (4.7)
Isoorientin −20.9 (6.8)

6-8-dihydroxy-7-methoxycoumarin −19.4 (4.5)
Quercetin −19.3 (4.5)

Vitexin −18.9 (6.1)
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3.5. Interaction of PEL Compounds with the SARS-CoV-2 RdRp Polymerase

The molecular docking experiments have been carried out, using the catalytic subunit
of the RNA-dependent polymerase as a receptor, deposited on the PDB database with code
7BV2 [29]. The RdRp structure has been optimized through a 100-ns long classical molecular
dynamics simulation, removing the RNA molecule from the crystal to make all the putative
binding sites accessible. After a clustering procedure, we extracted a reference structure
that we used as receptor for the molecular docking experiments, selecting the entire subunit
as the research area. As can be observed in Table 7, only the pentagalloylglucose showed an
interaction energy higher than 7.5 kcal/mol, which we considered the minimum threshold
to consider that the observed interactions are not due to chance. This is a predictable result
given the difficulty of targeting viral polymerases. This compound binds in proximity
of the RNA binding site of the polymerase (Figure 6). However, to better analyze the
interaction between pentagalloylglucose and the polymerase, we have performed a 100 ns
long molecular dynamics simulation of the complex.

Figure S4 shows the distance between the pentagalloyl glucose, and the binding site
identified on the viral polymerase as a function of the simulation time. From the point of
view of geometric stability, pentagalloylglucose was able to establish molecular interactions
sufficient to maintain the original pose in the binding site. However, an evaluation of the
interaction energy through the MMGBSA method returned a value of −10.0 kcal/mol,
which we do not consider sufficient to validate this interaction, as this compound could
easily be displaced by the RNA binding.

Table 7. RdRp polymersase molecular docking results. The average interaction energy calculated
from three independent docking runs, including standard deviation, is reported for each compound.

Compound Interaction Energy (kcal/mol ± SD)

Pentagalloyl glucose −9.0 (0.5)
Vitexin −7.4 (0.1)

Taxifolin-3-glucoside −7.4 (0.1)
Magnolioside −7.3 (0.2)

Isovitexin −7.3 (0.2)
Isoorientin −7.3 (0.3)
Quercetin −7.2 (0.2)

Isofraxoside −7.2 (0.2)
Epigallocatechin-3-gallate −6.9 (0.3)

Gallocatechin −6.9 (0.2)
Orientin −6.8 (0.1)
Artelin −6.4 (0.2)

6-8-dihydroxy-7-methoxycoumarin −6.2 (0.3)
Fraxetin −6.0 (0.1)

7-acetoxy-5-6-dimethoxycoumarin −5.9 (0.2)
Gallic acid −5.9 (0.2)
Caffeic acid −5.8 (0.4)
Scopoletin −5.8 (0.1)

6-7-8-trihydroxycoumarin −5.7 (0.3)
Vanillic acid −5.7 (0.3)

Umckalin −5.7 (0.2)
Ferulic acid −5.6 (0.2)

Dimethoxycoumarin −5.5 (0.3)
Apocynin −5.5 (0.2)

Dihydroxybenzoic acid −5.4 (0.3)
5-6-7-trimethoxycoumarin −5.4 (0.1)

Homovanillic acid −5.4 (0.1)
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compound is shown as red spheres.

3.6. Interaction of PEL Compounds with the SARS-CoV-2 Membrane

It is of fundamental importance to verify whether the PEL compounds could interact
with the membrane of the SARS-CoV-2 virus. In fact, being rich in phenolic acids, PEL
extracts could interfere with the lipid membrane dynamical properties, therefore affecting
the properties of the proteins inserted in the double layer. A model of the membrane,
including the solvent and the 27 main molecules present in the extracts of PEL, has been
created using the Packmol software [57], which allows us to insert a predefined number of
molecules within a simulation box in a semi-automatic way (Figure S5). The system has
been simulated for 150 ns through accelerated molecular dynamics and has been compared
with the same membrane simulated in the absence of the compounds. In Figure 7 it
is possible to observe the entry of dihydrobenzoic acid (in cyan), of vanillic (gray) and
homovanillic acid (violet), of scopoletin (orange), vitexin (green), isofraxoside (red), and
gallocatechin (lilac).

Furthermore, almost all the other compounds tend to contact the surface of the mem-
brane, and while not penetrating inside it, their positions suggest that they can alter its
external electrostatic potential and induce a curvature of the lipid bilayer. Specific anal-
yses have been then carried out on the structural parameters of the membrane aimed
at demonstrating the differences between the two systems and the effect exerted by the
PEL molecules. To this aim, we used VMD’s MEMBPLUGIN plugin [46], which allows
us to analyze all the types of lipid bilayers. Figure 8 shows the membrane thickness as
a function of the simulation time for the system simulated in the absence (black) and in
the presence of molecules (red). It is evident how the entry of the molecules can alter the
average thickness of the membrane, which increases from about 41 to 43.5–44 Å in the
presence of the compounds.
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tion time. The different colors of the spheres indicate different compounds. From the transparent
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homovanillic acid (purple), of scopoletin (orange), of vitexin (green), of isofraxoside (red), and
gallocatechin (lilac).

These effects become more evident by projecting the thickness of the membrane on a
plane, as shown in Figure 9. In this representation, the average thickness of the membrane,
indicated by the color scale that goes from white to dark green, has been plotted as a
function of the transverse plane of the membrane itself for the simulated system in the
presence (A) and absence of the compounds (B). Through this representation, it can be
observed that the increase in thickness is more marked in proximity of the entry sites or
surface contact of the compounds, identified by the red circles. However, the effect seems
extended to the entire membrane, suggesting that the compounds can deeply interfere with
the dynamics of the lipid bilayer, suggesting a possible modulatory effect on the dynamics
of the proteins inserted in the membrane.
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Finally, an additional analysis was carried out aimed at definitively confirming the
effect of the entry of compounds into the membrane, using the VMD Density Profile
Tool, an analysis plugin which calculates 1-D projections of various atomic densities [58].
Figure S6A,B show, respectively, the density profiles of the two layers of the membrane
simulated in the absence and presence of the phytocomplex compounds. Under normal
conditions, the density of the two layers of the membrane is almost perfectly comparable,
as can be observed in Figure S6. On the other hand, when PEL compounds are present,
a shift in the density profile occurs with an increase in density in the outer layer, i.e., the
one in contact with the compounds. This shift is directly correlated to an increase in the
local curvature of the membrane induced by the contact with the molecules, which is in
turn correlated with the modulation of protein functionality [59]. In fact, it has been shown
that the increase in curvature facilitates the entry of molecules inside the membranes [60],
favoring their biological effect.
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4. Discussion

In this study, we applied computational methods to check for the occurrence of
interactions of the PEL compounds with Lf and SARS-CoV-2 components.

Pelargonium sidoides preparations have been trialed clinically for cough, even if the
clinical evidence is high only for bronchitis and the common cold. [61–63]. Umckaloabo
preparations are generally considered to be safe, although gastrointestinal discomfort
(stomach pain, heartburn, nausea, or diarrhea) might occur [8]. PEL extracts are commonly
employed in modern phytotherapy in Europe to cure infectious diseases of the respiratory
tract [4,5].

On the other hand, lactoferrin has been proven to act as a scavenger against iron over-
load and inflammation in lung epithelium of mice infected by Pseudomonas aeruginosa [64,65]
and was found to rebalance lung iron-handling proteins and to decrease broncho-alveolar
iron overload, one of the main actors in infection progression and exacerbation [3]. More-
over, several studies described Lf’s antiviral activity towards enveloped and naked viruses,
related to different virus families, such as Retroviridae (human immunodeficiency viruses),
Papillomaviridae (human papillomavirus), Herpersviridae (Cytomegalovirus, Herpes simplex
virus), Caliciviridae (feline calicivirus), Flaviviridae (hepatitis C virus, Japanese encephalitis
virus), Reoviridae (rotavirus), Adenoviridae (adenovirus), Pneumoviridae (respiratory syn-
cytial virus), Paramixoviridae (parainfluenza virus), Orthomixoviridae (influenza A virus),
and other viruses [3]. bLf has been found to hinder viral entry into host cells through its
competitive binding to the cell surface receptors, mainly negatively charged compounds
such as glycosaminoglycans (GAGs) [66–71]. In addition, Lf was found to prevent viral
infections by binding to dendritic cell-specific intercellular adhesion. Overall, the antiviral
effect of Lf occurs in the early phase of infection, preventing the entry of viral particles
into the host cells, either by blocking cellular receptors and/or by directly binding to the
viral particles. Further, Lf is also able to exert an antiviral activity when it is added in the
post-infection phase, as demonstrated in Rotavirus infection by Superti et al., [72] and in
HIV infection by Puddu et al. [73].

In a previous study, Terlizzi et al. demonstrated that the combination of PEL and Lf
could exert additive/synergistic pharmacological activities as anti-inflammatory, antioxi-
dant, and antimicrobial agents compared with the single components [5]. They found that
PEL and Lf used alone were able to reduce LPS-induced proinflammatory IL-1β, as well as
reduce ROS, nitrite, and bacteria growth. More importantly, the combination of PEL with
Lf showed an additive pharmacological activity in terms of antioxidant and antimicrobial
activities. Data demonstrated that the combination of PEL + Lf significantly reduced the
levels of IL-1β after LPS stimulation. This effect was an innovative and hitherto unknown
combination, able to attenuate inflammation-related pathways [3,5–7].

Molecular docking and molecular dynamics simulation approaches strongly sup-
ported the hypothesis of a direct recognition between the bLf and the SARS-CoV-2 spike
glycoprotein [6,28]. The affinity between their molecular surfaces, the large number of
atomistic interactions detected, and their persistence during the simulation suggested that
this recognition is very likely to occur and that bLf may hinder the spike binding to the
ACE2 receptor, thus blocking virus entry into host cells [6].

In this scenario, we have carried out a series of molecular docking and molecular
dynamics simulations to identify possible interactions between PEL and Lf and between
PEL and some of the SARS-CoV-2 components.

First, we analyzed by molecular docking if the interaction between PEL compounds
and Lf could alter its functional properties, hampering the interaction with other macro-
molecules as Spike. Our results are fully in agreement with literature since it has been
demonstrated that the structure and activity of lactoferrin is not altered by the presence
of organic molecules or metal ions different from iron [17,18]. Based on these results, the
combined use of PEL and Lf in a dietary supplement has been acknowledged.

Subsequently, computational studies have been carried out to evaluate a possible
interaction between PEL compounds and the SARS-CoV-2 3CLpro protein. In a recent work
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it has been shown that compounds capable of interacting with both residues of the 3CLpro
catalytic dyad can inhibit the activity of this enzyme between 50 and 88% [74]. Moreover,
other flavonoids have shown inhibitory activity against this protein [75]. In general, the
results confirms that several PEL compounds can stably interact with the active site of the
protease in proximity of the catalytic dyad, suggesting an inhibitory activity against the
virus protease.

The interaction of PEL compounds with the SARS-CoV-2 Spike glycoprotein has been
also investigated. The molecular docking experiments were carried out on the trimeric
structure of the Spike, selecting as research area the HR1 domains, which are responsible
for the conformational change that allows the entry of the virus inside cells [28]. Interfering
with these domains should block the glycoprotein in its prefusion state, before it can enter
the cells by recognizing the ACE2 receptor. Based on these results, we could assume that
several analyzed compounds could interfere with the conformational changes of the Spike
glycoprotein.

The interaction of PEL compounds with the SARS-CoV-2 RdRp polymerase has also
been checked, but from the results no molecules of the PEL extracts may have the ability to
interfere with the viral polymerase.

Finally, we verified whether the PEL compounds could interact with the membrane of
the SARS-CoV-2 virus. In fact, being rich in phenolic acids, PEL extracts could interfere
with the lipid membrane dynamical properties, consequently affecting the motions of the
proteins inserted in the double layer. The MD simulation analyses suggest that the inter-
action of PEL compounds with the membrane can alter its external electrostatic potential,
inducing a curvature of the bilayer. However, this effect extends to the entire membrane,
suggesting that PEL compounds can penetrate the viral lipid bilayer, alter its physical
properties, and also interact with viral proteins in infected cells.

5. Conclusions

In conclusion, our results suggest that PEL and Lf could synergistically act, interfering
against SARS-CoV-2 in silico in different ways. This represents an important and necessary
first evidence, useful to setting subsequent in vitro and in vivo studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijerph19095254/s1, Figure S1: Schematic representation of chemical
structure of the PEL compounds used for molecular docking and molecular dynamics simulations;
Figure S2: Secondary structure time evolution calculated for the bovine lactoferrin in complex with
epigallocatechin-3-gallate (A), Taxifolin-3-glucoside (B), Gallocatechin (C), Artelin (D), Pentagalloyl
glucose (E), Vitexin (F) and Isoorientin (G). Color legend identifying the secondary structure elements
is shown below. Figure S3: Distance as a function of simulation time calculated between the HR1
site of the spike glycoprotein and the compounds identified through docking. (A) Complex between
spike glycoprotein and Pentagalloyl glucose. (B) Complex between spike glycoprotein and Vitexin.
(C) Complex between spike glycoprotein and 6-8-dihydroxy-7-methoxycoumarin. (D) Complex
between spike glycoprotein and Quercetin. (E) Complex between spike glycoprotein and Taxifolin-
3-glucoside. (F) Complex between spike glycoprotein and Isofraxoside. (G) Complex between
spike glycoprotein and Isovitexin. (H) Complex between spike glycoprotein and Gallocatechin. (I)
Complex between spike glycoprotein and Isoorientina. (J) Complex between spike glycoprotein
and epigallocatechin-3-gallate. (K) Complex between the spike glycoprotein and the Magnolioside.
Figure S4: Distance as a function of simulation time calculated between the docking-identified
site on the RdRp polymerase protein and the pentagalloyl glucose. Figure S5: Molecular space-fill
representation of the membrane-PEL compounds system. The different colors of the spheres highlight
the 27 different compounds. Figure S6: Density profiles of the two membrane layers as a function
of the z axis for the system simulated in the absence (A) and presence (B) of the PEL compounds.
Table S1: Prediction of oral acute toxicity, class, and toxicity model of PEL compounds. Class I: death
after swallowing (LD50 ≤ 5); Class II: death after swallowing (5 < LD50 ≤ 50); Class III: toxic after
swallowing (50 < LD50 ≤ 300); Class IV: harmful after swallowing (300 < LD50 ≤ 2000); Class V: may
be harmful after swallowing (2000 < LD50 ≤ 5000) and Class VI: non-toxic (LD50 > 5000).
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