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ABSTRACT

Structural characterization of RNAs is a dynamic
field, offering many modelling possibilities. RNA sec-
ondary structure models are usually characterized
by an encoding that depicts structural information
of the molecule through string representations or
graphs. In this work, we provide a generalization of
the BEAR encoding (a context-aware structural en-
coding we previously developed) by expanding the
set of alignments used for the construction of sub-
stitution matrices and then applying it to secondary
structure encodings ranging from fine-grained to
more coarse-grained representations. We also intro-
duce a re-interpretation of the Shannon Information
applied on RNA alignments, proposing a new scoring
metric, the Relative Information Gain (RIG). The RIG
score is available for any position in an alignment,
showing how different levels of detail encoded in
the RNA representation can contribute differently to
convey structural information. The approaches pre-
sented in this study can be used alongside state-of-
the-art tools to synergistically gain insights into the
structural elements that RNAs and RNA families are
composed of. This additional information could po-
tentially contribute to their improvement or increase
the degree of confidence in the secondary structure
of families and any set of aligned RNAs.

INTRODUCTION

Graphical representation of the secondary structure of
RNA molecules is a field in continuous evolution. For
decades, RNA secondary structure was encoded with the
dot-bracket notation, in which dots and brackets represent,
respectively, unpaired and paired bases. This 3-character
string encoding model has been fundamental for the de-
sign of core algorithms predicting RNA secondary struc-
ture (1–3). Other commonly used representations include
(but are not limited to) circle plots, graph representations
(4,5) or context free grammars (6), whose applicability and
usefulness depend on the task specifically addressed. How-
ever, to our knowledge, there are no frameworks to compare
the performance on specific tasks of different encodings
for RNA secondary structure. To give an example, graph
representation performs well in secondary structure motif
search when dealing with small datasets (7), yet it remains
a computationally expensive representation to address the
same task using RNA-binding protein datasets such as
high-throughput sequencing of RNA isolated by crosslink-
ing immunoprecipitation (HITS-CLIP) or photoactivatable
ribonucleoside-enhanced crosslinking and immunoprecipi-
tation (PAR-CLIP). For these tasks, string representations
(8) or mixed models (9–11) perform better.

RNA secondary structure representation models not
only allow for a simple, intuitive illustration of a complex
2D geometry of the RNA (9,10,12), but can also be ex-
ploited to extract information from the data (7,8,13). These
representations are important for two main reasons. First,
they ensure data visualization, thus improving communica-
tion. Second, they can be used as a means to do ‘feature
engineering’. However, RNA structure representations are
usually unbalanced towards data visualization or feature
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engineering, which can be a limitation as these two tasks
cover aspects that are not mutually exclusive. As an exam-
ple, the dot-bracket encoding is commonly used for struc-
ture visualization but does not excel in feature engineering.
This is due to the fact that algorithms require to look at
the whole string before understanding if a dot is a hairpin
loop or an internal loop (14,15). Along similar lines, graph
modelling of the RNA secondary structure (16,17) is almost
exclusively used for feature encoding, but is not suitable for
data visualization as it lacks an immediate communication
(18), and is computationally too expensive to be used for
large datasets (19–21).

Alternative representation models developed in recent
years depict RNA secondary structure as multiple alpha-
betic character strings. Among them, the Brand nEw Al-
phabet for RNA (BEAR) efficiently encodes the 2D RNA
structure into a linear string, thus lowering algorithm com-
plexity, which is crucial for large-scale data (22–24). More-
over, secondary structures (and pseudoknots) can be suc-
cessfully represented by graphs. Of relevance, beyond de-
scribing secondary structures, enhanced alphabets were also
applied to tasks such as in vitro short motif discovery (25,26)
and post-transcriptional regulation characterization (27).
Nonetheless, these models have some limitations. Although
performing well in terms of usability and performance
(28), the standard BEAR encoding lacks communication of
other string-based structural representations (24,26,29–31)
because the high number of different characters does not al-
low researchers to immediately grasp the represented struc-
tures. Instead, other string representations developed so far
lack usability and are mostly used for visualization.

These considerations and limitations call for the design
of a well-balanced representation of the RNA secondary
structure. Driven by this aim, in this study, we established
a framework that can be used by researchers to move in
this direction. In particular, we considered three different
RNA secondary structure encodings and tested their effi-
cacy using specifically built structural substitution matrices
to solve the problems of pairwise structural alignments and
structural conservation retrieval. Moreover, we introduced
a new measure of structural conservation that can be com-
puted on any RNA alignment for all its positions, and used
it to assess structural conservation also in condition of in-
sufficient base pair covariance.

MATERIALS AND METHODS

All the encodings described in this work represent the
RNA secondary structure as a string with length equal
to its underlying sequence, that is, one character per nu-
cleotide. In more detail, the original BEAR encoding de-
scribes the structural context of a single nucleotide along
with its length, and it is made up of 83 characters (28).
The quickBEAR (qBEAR) encoding was previously devel-
oped as a means to represent the logo of a secondary struc-
ture motif (23). This encoding divides the structural con-
texts in three groups each based on the distribution of con-
text lengths (see Supplementary Data––Encodings), result-
ing in an 18-character alphabet. The zipBEAR (zBEAR)
encoding, which is introduced in this work, is inspired by
the few-characters alphabets used in previous works (24,29).

In such simpler encoding only the high-level structural con-
texts (e.g. hairpin loops, stems, but not their length) are con-
sidered, resulting in an alphabet composed of eight charac-
ters.

To derive the secondary structures, we applied the
method devised in (28). In particular, Rfam seed members
were each folded using hard constraints derived from the
corresponding ‘consensus’ primary and secondary struc-
ture (32). In this way, an enhanced structure prediction was
obtained as described in the original paper.

RNA Blocks

To build a framework from which derive different sub-
stitution matrices, we followed the classical formulation
of BLOcks SUbstitution Matrix (BLOSUM) Blocks, with
some relaxations (33,34). In more detail, for each Rfam seed
alignment, we removed redundant primary sequences up to
90% of identity and considered the underlying alignments
of secondary structures. First, we converted the RNA sec-
ondary structures using the BEAR, qBEAR or zBEAR en-
codings. Then, we selected each column of the alignments
as a part of an RNA Block of that family on conditions that
(i) no gaps were present and (ii) a structural consensus, de-
pendent on the chosen alphabet, existed (i.e. there must be
a character with a relative frequency >50%). The relaxation
with respect to the classical formulation is the non-necessity
to have contiguous columns to form an RNA Block. Fi-
nally, for each encoding, we derived the substitution matrix
from a set of RNA Blocks, as described in (28,35) (Figure
1). Using all the RNA Blocks together, we build the substi-
tution matrix as:

MBRencoding (i, j ) = log2

(
fi j + ε

( fi + ε)
(

f j + ε
)
)

where MBR stands for Matrix of Bear encoded RNA, ε is
a pseudocount (in this work ε = 1), and fi , fi j are, re-
spectively, the relative frequency of the encoded character
i among all RNA Blocks and co-occurrences of characters
i and j in any possible pair of RNA Blocks.

Rfam PSSMs as family models

A given encoding can be used to build a model from any
RNA multiple alignment. We started off with Position Spe-
cific Scoring Matrices (PSSMs) as defined in the original
formulation of Eisenberg (36). In particular, given an RNA
Multiple Sequence Alignment (MSA), a mirroring Multiple
Secondary Structure Alignment (MSSA) can be created by
using available structures and by applying one possible en-
coding. In this way, for each encoding we obtained a C × W
matrix, where C is the size of the alphabet and W is the
length of the alignment. As this matrix encodes structural
information, we call it structural PSSM (sPSSM).

s PSSM(i, c) =
∑

c′
PF M

(
i, c′) SU BS

(
c, c′)

In the formula i is the position index, c and c′ run
over all the alphabet’s characters of the selected encoding,
PF M(i, c′) is the frequency of character c′ in position i , and
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Figure 1. RNA Block generation in zBEAR. From a given seed alignment, the secondary structure alignment is retrieved upon filtering from sequence
redundancy, gaps and non-conserved positions to form a block (columns with the red circle on the top are filtered out). All the RNA Blocks are then used
to compute the substitution matrix. RNA Block generation in zBEAR. From a given seed alignment, the secondary structure alignment is retrieved upon
filtering from sequence redundancy, gaps and non-conserved positions to form a block (columns with the crossed circle on the top are filtered out). All the
RNA Blocks are then used to compute the substitution matrix.

SU BS(c, c′) is the substitution matrix score of characters c
and c′. The values of an sPSSM are based on the structural
context scores of the underlying substitution matrix, high-
lighting relations between different structural elements.

RESULTS

Here, we provided a generalization of our previous work
(28), showing how distinct levels of detail encoded in RNA
secondary structure representations contribute differently
to depict useful information. In particular, by introducing a
re-interpretation of the classical Shannon Information ap-
plied on sPSSMs, we showed how to extract information
from the comparison of different encodings, revealing that
detailed structural encoding can bring out information hid-
den by more a generic one and vice versa.

Substitution matrices for secondary structure elements

Using the described framework, we built a BEAR MBR (83
× 83), a qBEAR MBR (18 × 18) and a zBEAR MBR (8 ×
8), with 90% primary sequence identity removal, and tested
the ability of those encodings to communicate structural
characteristics and information that can be used to derive
quantitative measures. A color-coded representation of the
MBRs is shown in Figure 2. In particular, we expected to see
a trade-off between visual interpretability of the encoding
used and the amount of structural information that can be
retrieved using different models. A rich encoding like BEAR
is expected to work better in fine-grained tasks, such as the
alignment of two sequences. Indeed, this task involves sum-
mation of many terms and the differences can be defined
by a single character. So, we expected a complex encoding
to be more functional. Simpler encodings like qBEAR and
zBEAR, instead, should be able to catch general properties
of the data, such as distribution-dependent measures (e.g.
Information Content and Structural neighbouring), while
at the same time being easily interpretable in a visual con-
text.

To test the performances of the newly created matrices
on a pairwise alignment task, we compared these data with
the results presented in our previous work (28). To this aim,
BEar Alignment Global and Local (Beagle) algorithm (22)

was used to compute pairwise alignments of benchmarks
and between RNA secondary structure consensus (see Sup-
plementary Materials––BEar Alignment Global and Lo-
cal algorithm). We observed that the structural alignments
performed using these new versions of the BEAR matrices
have comparable performances with respect to the original
MBRs in terms of sequence Sum of Pairs Scores (SPS) (Sup-
plementary Figure S1).

Relative information gain

Each sPSSM contains information about the conservation
of certain structural contexts, but this information is not di-
rectly available. To extract this feature, we used the Shannon
entropy, defined as:

I
(

p
−
, C

)
= −

C∑
i=1

pi log2 (pi )

where p
−

is a probability distribution and C is the number of

available characters that is dependent on the chosen encod-
ing in the current structural context. The Shannon entropy
can be seen as the number of extra-bits needed to describe
the distribution of a given sPSSM column. This measure is 0
when the distribution is completely unimodal (i.e. if a single
character is present in the column, then no extra-bits are
needed to completely understand the distribution), and is
equal to log2(C) (its maximum value) when the distribution
is uniform (i.e. we need to specify every single character with
log2(C) bits each). However, an sPSSM column distribution
is not normalized as a probability distribution, therefore we
applied a transformation which first linearizes the quanti-
ties by applying the exponential function (an sPSSM cell is
proportional to a log-odd), and then renormalized the val-
ues such that the sum of the values in a given position were
1:

s PSSM′ (i, c) = es PSSM(i,c)/
∑

c′
es PSSM(i,c′)

In this way, the ordering between values is preserved and
the added value of an sPSSM, which is the information con-
tained in the substitution matrix, is brought forth in the
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Figure 2. Graphical representation of the MBRs. The MBR matrices are built applying different encodings (from left to right, BEAR, qBEAR and
zBEAR), and with 90% sequence identity removal. Rows and columns represent RNA secondary structure elements (83 for BEAR, 18 for qBEAR and 8
for zBEAR), and each cell stores the log2-odds score for the substitution of one element with another element, from lower (blue) to higher (red) values. Each
graphic element on the left represents one structural context (in order: stems, loops, internal loops, branching stems, branching internal loops, bulges and
the generic unpaired branching). The lines connecting the matrices show the mapping between the secondary structure elements in the different encodings
(see Supplementary Table S2 for the detailed mapping).

probability distribution. High values for a character c in
position i can be due to structural context conservation, to
contexts’ high substitution values in the matrix, or both.

To build a framework able to generalize between different
encodings, we developed a measure of the relative structural
conservation of an alignment position that is applicable to
any encoding without changing its formulation. The pro-
posed score is the Relative Information Gain (RIG):

RIG (p, C) =
max

p′
I (p′, C) − I (p, C)

max
p′

I (p′, C)
ε [0, 1]

where max
p′

I(p′, C) is log2(C).

This formula ensures that (i) the measure is normalized
between 0 and 1 for every possible encoding, and (ii) the
measure is 1 when the structure is conserved in the col-
umn in each of the alignment members and 0 when the
structure is not conserved at all. This means that the RIG
score highlights strongly conserved structural motifs in mul-
tiple alignments, such as Rfam families’ seeds, but taking
into consideration the structural variability given by the
substitution matrix. In particular, thanks to this matrix,
it is possible to enhance the difference in structural con-
texts present at a certain position when the substitution
is unfavourable, while similar structural elements will yield
higher RIG scores. RIG scores can be used to estimate the
relative contribution of the structure to the conservation
of an alignment. By analysing all Rfam 14.1 families, 810
out of 3016 resulted in stretches of higher structure con-
tribution by applying the BEAR encoding; the structure
contexts represented are evenly distributed between major
structural categories (stems, hairpin loops, bulge/internal
loops, pseudoknots and unpaired bases, see Supplementary
Materials––Secondary Structure Dominance). Notably, the
distribution of contiguous stretches of higher structural
contribution is biased towards short stretches, as expected
by the fact that the primary sequence carries stronger in-
formation in Rfam alignments (i.e. covariance models rely
strongly on primary sequence conservation).

In general, higher RIG scores mean higher structural
conservation of the alignment, but, depending on the under-
lying encoding, different conclusions can be drawn. A high
RIG score in a coarse-grained encoding (like zBEAR) in-
dicates a conservation of structural contexts (e.g. a hairpin
loop), disregarding the length of those structures (e.g. the
aligned hairpin loops may be of different lengths). A high
RIG score in a fine-grained encoding (like BEAR) indi-
cates a less strict structural conservation, allowing different
structural contexts, or same contexts with different lengths,
with favourable substitution rates to emerge as ‘conserved’.
Moreover, by comparing different RIG scores obtained on
the same alignments, other information can be deduced.
For example, if an alignment position has a high zBEAR
RIG score and a low BEAR RIG score, this discrepancy
indicates a conserved structural element in that position,
but with different and unfavourable lengths (in terms of the
substitution matrices) in the alignment. With this in mind,
we explored several Rfam alignments taken as examples to
show how to interpret the RIG scores and how to gain use-
ful information not directly available using a single encod-
ing. The next paragraphs will explore some of the insights
that can be extracted using RIG by taking some families as
examples.

The family RF02021, which is the pre-miRNA family
mir-3179, has a highly conserved structure with a central
hairpin loop that is more variable in size. The small inter-
nal loop is similarly variable, but we can infer that is usually
substituted with more favourable structural contexts with
respect to the substitution scores (Figure 3). There are mul-
tiple possible cases: when a more coarse grained encoding
(like zBEAR) has higher RIG scores compared to a more
detailed alphabet, the underlying alignment has a set of po-
sitions that are conserved in the simplest level of abstrac-
tion (e.g. those positions are occupied by nucleotides in a
stem context) but the finer-level details are not favourable
in terms of substitution (e.g. there are multiple stem lengths
aligned but the lengths of the stems involved are not fre-
quently found together). In the opposite situation (low RIG
scores with coarse-grained encodings and high RIG scores
with fine-grained encodings), the structural contexts are not
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Figure 3. z/q/BEAR90 RIG of RF02021. The color on the background represents the structural elements from the structural consensus reported in the
covariance model, which simplifies the interpretation. The less conserved hairpin loop is shown as a depression in the RIG plot for BEAR and qBEAR.
This should be interpreted as a conservation in the structural context (hairpin loop, high RIG scores for zBEAR), where the individual RNAs have different
hairpin loop lengths (lower RIG scores for BEAR and qBEAR).

conserved because there are multiple different contexts in-
volved in those positions (e.g. internal loops, stems and hair-
pin loops), yet their substitution score at a finer level of de-
tail is favourable (e.g., it can be the case for the 5′ of hairpin
loops, which can be aligned with the 3′ of the corresponding
5′ stem when different hairpin lengths are involved).

In each RFAM family, the RIG score can be compared to
the (normalized) sequence entropy, in order to assess which
element (primary or secondary structure) contributes the
most to the conservation of a section of the family. The se-
quence entropy E(p) used in this work is rescaled in a way
similar to RIG in order to compare them in a more intuitive
way:

I (p) =
4∑

i=1

pi log2 (pi )

E (p) =
max

p′
I (p′) − I (p)

max
p′

I (p′)
ε [0, 1]

where the maximum of I(p) in the case of the primary se-
quence is log2(4).

The representation in Figure 4 maps the ‘consensus’
structure elements (on the bottom) along with the difference
between the RIG score and the sequence entropy (on the
top). The resulting measure can take values in the range [-1,
1]: 1 represents a case where the structure has a full conser-
vation and the primary sequence is more random, while -1 is
for the opposite case. In the reported example, the RF02230
family shows a stem towards the 3′ end that is more con-
served in structural elements than its underlying primary
sequence.

In addition, the RIG score can be also used alongside
well-established tools like R-scape (37) to gain insights in
the structural elements that RNA families are composed of.
R-scape is the state-of-the-art method to evaluate the statis-
tical significance of covariation support for conserved RNA
base pairs. For paired bases, R-scape reports the estimation
of the statistical power (i.e. the expected sensitivity of de-
tecting significant covariation) but it does not give informa-
tion on unpaired sections. By supporting the R-scape power
with the RIG scores, we can gain more insight in the nature
of a certain alignment, as shown for the U5 spliceosomal
RNA (RF00020) family (Figure 5). Indeed, besides inform-
ing on stem structures, R-scape gives information on base-
pair covariation, with RIG reflecting in a minor way simi-
lar aspects. As a main difference, RIG highlights structural
conservation based on the substitution matrix instead of co-
variation. For example, positions from 8 to 16 have a high
R-scape power; these positions are in fact part of a highly
conserved stem with covariation support (bases paired with
positions 59–67; the structural context can be derived from
the RIG plot of the same family, see Availability). RIG
scores are low in those regions and this reflects a low sub-
stitution score for stems of that size. Instead, positions 35–
45 are unpaired, and represent a hairpin loop where termi-
nal positions (35–37,43–45) yield a higher RIG score. This
is a strong signal, indicating higher substitution scores be-
tween the terminal bases, and is due to the fact that the local
structure favours a longer stem with a bulge of size 1 in po-
sition 36 (and 44), ending in position 37 (and 43). This can
be seen by looking at the structural alignments (made avail-
able in the GitHub repository, see Availability): considering
the gaps, position 77 in the alignment (which corresponds
to position 36 in Figure 5) is predicted to be a bulge in the
majority of the RNAs of that family. The same can be found
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Figure 4. Difference between qBEAR90 RIG and sequence entropy in RF02230 (Xanthomonas sRNA sX11). In the upper part of the figure, a graphical
representation of the difference between the RIG score and the sequence entropy is reported, with cells storing the difference for each position of the
alignment, from lower (blue) to higher (red) values. In the lower part of the figure, a colour mapping representing the consensus structure of the family is
shown. In this case, the stem towards the 3′ end is more conserved in structure than in sequence throughout the family members.

Figure 5. Comparative analyses of RIG scores alongside R-scape values in RF00020 (U5 spliceosomal RNA). For R-scape, the ‘power’ is reported. Both
metrics can take values in range [0, 1]. Green bands represent areas where R-scape has no value because they contain unpaired elements. High RIG scores
represent structural conservation, independently of base-pair covariation.

in position 87 in the alignment (position 44 in Figure 5). In-
terestingly, the current version of Rfam (version 14.3) shows
two different structures that emphasize this aspect, even if
not showing the bulges.

These results show that the RIG is unrelated to the clas-
sical measures of sequence conservation and base-pair co-
variation that can be found within Rfam. Especially in
the context of sequence conservation, it is true that it is
closely tied to structural conservation, but base pair co-
variance and mid-to-long-range interactions with other nu-
cleotides (causing different folding although with the same
central sequence (38)) can lead to a detachment of the two
aspects.

The same type of plot as Figure 4 can have more or less
pronounced peaks, depending on the level of complexity of
the encoding used (see Supplementary Materials––RIG ver-
sus RIG). A region of high RIG scores in a zBEAR RIG
plot indicates a conserved context, but should the region

have lower RIG scores in the standard BEAR RIG plot,
the structural context would be less conserved as the sin-
gle elements of the family have no dominant length for that
structure. On the other hand, a conserved area in a BEAR
RIG plot would indicate a conserved context with a con-
stant length, or with a highly favourable substitution, de-
pending on the matrix used.

In general, we see a higher mean RIG score for more com-
pact encodings. This was expected, since it is easier to find
accordance in structure mappings when a single character
encodes for more secondary structure elements (SSE), yet a
more accurate scenario is described by more rich alphabets
(e.g. it becomes clear, by comparing the RIG plots of differ-
ent encodings, when a certain structure is fully conserved
in its elements’ length or only contextually conserved). By
comparing RIG data with sequence entropy, regions of
structural importance may be derived (see Supplementary
Materials––secondary structure dominance).
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DISCUSSION

The RNA secondary structure representation is more than
a simple means of visualization as it can be used to enrich
features applicable to study those molecules. In this con-
text, the encodings described in this work move towards
a balanced representation, where both communication and
usability are at good levels. In particular, we developed a
pipeline for a custom construction of secondary structure
elements similarity matrices, inspired by classical formula-
tions of BLOSUM Blocks. This pipeline is suitable for large-
scale applications, allowing also an easy integration with
other existing pipelines and tools. We also demonstrated
that the substitution matrices we can obtain with such ap-
proach are more than just a means to improve alignments
where structural information is present, since the informa-
tion value they bring can emerge by exploiting other mea-
sures. At this regard, we introduced the scoring metric RIG,
a Shannon-based measure to exploit the structural infor-
mation embedded in such matrices and highlight conserved
structural motifs in multiple alignments. Importantly, we
showed that RIG is unrelated to other well-established mea-
sures (sequence entropy and base-pair covariation), and so
it can add useful information that could potentially con-
tribute to improve the degree of confidence in the secondary
structure elements that RNAs and RNA families are com-
posed of. Here, we used the RIG metric on Rfam alignments
as a use case, but the same idea can be applied to explore any
set of aligned RNAs for which a hypothesis of conserved
structure can be made as a means to gain insight into the
nature of locally conserved structural elements.

DATA AVAILABILITY

Precalculated RNA Blocks, MBRs, sPSSMs, RIG scores
and plots calculated for 3016 Rfam 14.1 families are made
available via Zenodo at http://doi.org/10.5281/zenodo.
4299601. All the scripts to build the data present in this
work are available at https://github.com/helmercitterich-
lab/RIG.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.

ACKNOWLEDGEMENTS

We acknowledge ELIXIR-IIB (elixir-italy.org), the Italian
Node of the European ELIXIR infrastructure (elixir- eu-
rope.org), and CINECA for supporting the development of
this work through the ELIXIR-IIB HPC@CINECA call.

FUNDING

AIRC [project [to MHC] (grant number IG 23539).
Conflict of interest statement. None declared.

REFERENCES
1. Reuter,J.S. and Mathews,D.H. (2010) RNAstructure: software for

RNA secondary structure prediction and analysis. BMC
Bioinformatics, 11, 129.

2. Mathews,D.H. (2014) RNA secondary structure analysis using
RNAstructure. Curr. Protoc. Bioinforma., 46,
doi:10.1002/0471250953.bi1206s46.

3. Gruber,A.R., Lorenz,R., Bernhart,S.H., Neuböck,R. and
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