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Abstract

Background: Due to the highly variable clinical phenotype, Klinefelter Syndrome is

underdiagnosed.

Objective: Assessment of supervised machine learning based prediction models for

identification of Klinefelter Syndrome among azoospermic patients, and comparison

to expert clinical evaluation.

Materials and methods: Retrospective patient data (karyotype, age, height, weight,

testis volume, follicle-stimulating hormone, luteinizing hormone, testosterone, estra-

diol, prolactin, semenpHandsemenvolume) collectedbetweenJanuary2005andJune

2019 were retrieved from a patient data bank of a University Centre. Models were

trained, validated and benchmarked based on different supervised machine learning

algorithms. Models were then tested on an independent, prospectively acquired set of

patient data (between July 2019 and July 2020). Benchmarking against physicianswas

performed in addition.

Results: Based on average performance, support vector machines and CatBoost were

particularly well-suitedmodels, with 100% sensitivity and>93% specificity on the test

dataset. Compared to a group of 18 expert clinicians, themachine learningmodels had

significantly bettermedian sensitivity (100%vs. 87.5%,p=0.0455) and fared compara-

bly with regards to specificity (90% vs. 89.9%, p= 0.4795), thereby possibly improving

diagnosis rate. A Klinefelter Syndrome Score Calculator based on the prediction mod-

els is available on http://klinefelter-score-calculator.uni-muenster.de.

Discussion: Differentiating Klinefelter Syndrome patients from azoospermic patients

withnormal karyotype (46,XY) is a problemthat canbe solvedwith supervisedmachine

learning techniques, improving patient care.

Conclusions: Machine learning could improve the diagnostic rate of Klinefelter Syn-

drome among azoospermic patients, evenmore for less-experienced physicians.
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1 INTRODUCTION

By combining the benefits of statistics, data processing and com-

puter science, supervised machine learning (sML) bears the poten-

tial to offer powerful support systems for medical decision-making.

Common ways sML is currently used in medicine include identi-

fying thyroid or lung nodules in ultrasound or computed tomog-

raphy (CT) images or for developing risk assessment models, such

as the Framingham Risk Score for heart disease.1 Another promis-

ing way sML can be used is for proposing diagnoses to patients

based on clinical data. Overall, sML systems can standardise, sim-

plify and speed up decision processes, thereby especially sup-

porting physicians with limited experience and patients with rare

diseases.

Regardlessof the specific researchquestion, availability of large sets

of patient data is crucial for sML algorithms to detect the underlying

connections between observable input (e.g., CT images) and physician-

concluded output (e.g., annotation of a cluster of pixels as a nodule).

Due to the successful digitalisation of patient data in hospitals and pri-

vate practices, more and more such datasets are becoming accessible,

comprising parameters like hormone levels, image data, genomic vari-

ants and, most importantly, diagnoses physicians made based on this

information.

Recently, efforts to apply sML in the field of reproductive medicine

and male infertility have increased,2,3 which is an important advance-

ment because almost 15% of all couples trying to conceive are

affected by infertility. In approximately half of these cases, male

infertility is the sole or a contributing factor.4 Several authors have

used sML techniques to perform sperm assessments and stream-

line and standardise the results.5–7 Others, for example, Santi et al.,8

Zeadna et al.9 and Akinsal et al.,10 have attempted to classify patients

according to their semen quality, predict the success of testicu-

lar sperm extraction (TESE) and detect chromosomal abnormalities,

respectively. As diagnosing and identifying the causes of infertility

are clinically challenging because of the heterogeneity of underlying

pathologies, such sML-based prediction models could present a valu-

able tool for improving diagnostic precision and, therefore, patient

treatment.

One severe form of male infertility in which no sperm can be identi-

fied in the ejaculate is azoospermia. Themajor contributors to this con-

dition are genetic factors, including gene mutations and chromosomal

abnormalities.11–13 However, genetic causes of male infertility may be

underdiagnosed during routine clinical evaluation. Even for prevalent

syndromes with typical clinical features, such as Klinefelter Syndrome

(KS) (1:400 newborn males), only a minority is diagnosed correctly14

resulting in direct consequences for the affected patients because of

inadequate treatment.15 In fact, it is currently estimated that only 26%

of patients will be diagnosed in life,16 possibly because of the poor

awareness of andrological health or to the lack of any facial distin-

guishing features.17 The presence of a highly variable clinical pheno-

type could also contribute to diagnostic delay: as paucisymptomatic

patients are rarely seeking consultation, the diagnosis often occurs

during assessment of couple infertility.18 Such delay in diagnosing KS

also results in worse clinical outcomes, such as higher prevalence of

metabolic syndrome,19 poorer cardiovascular20 and bone health,21

delays in speech acquisition16 and declining success rates for sperm

retrieval.22

KS patients have an exclusive karyotype of 47,XXY and a typ-

ical but non-exclusive phenotype of being tall, with long legs and

very small, firm testes.14 Testicular atrophy is a hallmark sign of KS,

resulting from degeneration and hyalinisation of tubules: azoosper-

mia is a consequence of this phenomenon, although in some men

focal areas of preserved spermatogenesis can be identified. Follicle-

stimulating hormone (FSH) and luteinizing hormone (LH) levels reach

supraphysiological levels, while testosterone is most often in the

subnormal range. Further, relative hyperestrogenism often occurs

in KS patients23: this is possibly because of increased activity and

expression of the aromatase enzyme, which is boosted by ele-

vated serum LH levels, as well as increased peripheral conversion of

testosterone because of increased visceral adiposity of KS patients,

finally also resulting in gynecomastia. Elevated levels of FSH and

LH, small testis and gynecomastia, distinctive characteristics first

described by Klinefelter et al.,24 occur with a prevalence of 10%–

12% among azoospermic patients,14 making KS a relevant condi-

tion for a proof-of-concept study of using sML in the field of male

infertility.

In order to evaluate the potential of sML prediction models to

automatically differentiate azoospermic KS patients with karyotype

47,XXY from azoospermic patients with a normal 46,XY karyotype

(non-KS),we trained, validated, tested andbenchmarkedmultiplemod-

els based on different sML algorithms. Additionally, to assess whether

the models could contribute to increasing the share of diagnosed KS

patients, we compared their performance to the manual evaluations

performed by 18 physicians from urological practices or specialised

clinics.

2 MATERIAL AND METHODS

2.1 Ethical approval

The study was carried out in accordance with the protocols approved

by the Ethics Committee of the Medical Faculty and the state medical

board (Az. 4 I Nie).
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2.2 Study population

Data were retrieved retrospectively from Androbase, the in-house

developed database of the Centre of Reproductive Medicine and

Andrology (CeRA), University Hospital Münster, Germany.25 Since

its implementation in 2004, CeRA has collected data from its male

infertility patients during systematic diagnostic work-ups. The data

include information on the history of the patients, anthropometric

measurements, laboratory test results, genetic testing and clinical data,

such as ultrasonography of the testis.26 With over 42,000 patients

documented (status as of 01.11.2021), Androbase is likely among

the world’s largest electronic databases for sexual and reproductive

medicine. For patients presenting with azoospermia at the CeRAwith-

out any obvious reason for this condition, for example, previous can-

cer treatment or vasectomy, the karyotype is usually assessed. Thus,

KS diagnoses in Androbase are not solely based on physicians’ assess-

ments but also on the result of an independent test, which is the gold

standard in KS diagnosis.

For the sML project, Androbase was queried retrospectively for all

adult patients with primary azoospermia whose first visit at the CeRA

was between January 2005 and June 2019, and who had no miss-

ing data in any of the selected features and no obvious reason for

azoospermia. This resulted in a set of 345 KS patients and 994 non-

KS patients for developing the prediction models. For all inclusion and

exclusion criteria and number of patients for each filter step, see Fig-

ure 1. Additionally, data from 32 KS and 105 non-KS patients attend-

ing theCeRAduring themodel development phase (between July 2019

and July 2020) was collected prospectively in order to assess the qual-

ity of the finalmodelswith completely newdata. To compare themodel

performance with physicians’ assessments, we used as a benchmark

the manual evaluations for the 137 prospective patients of 18 physi-

cians from both urological practices and specialised clinics. Also, to

evaluate themodels under conditions of noisy data, we used data from

57 patients with cryptozoospermia and karyotype 46,XY aswell as one

azoospermic patient with 46,XX, one with a ring chromosome Y and

four with translocations.

2.3 Statistical analysis and machine learning
methods and algorithms

The sML approach evaluated in this study focused on developing pre-

diction models that assign specific labels to entities based on a set of

observable or measurable input features.27 For an overview on how

sML prediction models are created and evaluated, see the extended

methods in Supporting Information. Here, the labels to be assigned are

the karyotypes 46,XY and 47,XXY, and the entities to be evaluated are

azoospermic patients.

For this task, we selected five characteristic parameters in andro-

logical diagnostics as input features: height (cm), FSH (mIU/ml), LH

(mIU/ml), total testosterone (nmol/L) and total testis volume (ml). Six

additional input features were chosen that might be relevant for dif-

ferentiating between patient groups and that were available for most

patients in Androbase25: (i) age (years), (ii) body mass index (BMI)

(kg/m2), (iii) semen pH, as a surrogate marker of obstructive azoosper-

mia, (iv) estradiol (pmol/L) accounting for relative hyperestrogenism in

KS patients,23 (v) prolactin (mIU/L), which has an inhibitory effect on

FSH and LH and possible direct detrimental effects on spermatogene-

sis and (vi) ejaculate volume (ml).28

The computational part of this project was conducted with Python

(version 3.8.8). The script is accessible on Github (https://github.com/

Klinefelter-Score/DataAnalysis). Additionally, the main steps of the

workflow are described in the following. More details are presented in

Figures S1 and S2.

Seven different sML algorithms were optimised and benchmarked

with regard to their performance in separating KS and non-KS patients

using various Python modules. From scikit-learn (1.0.0)29 we used

adaptive boosting (AdaBoost),30 gaussian process (GP),31 k-nearest

neighbours (kNN), multilayer perceptron (MLP—SKLearn) and sup-

port vector machine (SVM).32 Additionally we used gradient boost-

ing on decision trees (CatBoost)33 andMLP implemented with tensor-

flow (MLP—Tensorflow).34 All estimatorswere evaluatedwith anested

crossvalidationon the retrospective azoospermic (AP) dataset (seeFig-

ure S2). The inner crossvalidation was used to optimise the estima-

tor’s hyperparameters. The outer crossvalidation was used for testing

the model. The best performing models were refit on the whole ret-

rospective dataset and then tested on the prospective dataset of non-

obstructive azoospermia patients and the prospective cryptozoosper-

mia dataset.

First, the general capability of the features to differentiate KS and

non-KS patients was checked by creating a descriptive statistic for

the retrospective data. It comprises the computation of (i) median and

ranges for each feature, (ii) significance of featurewise difference in

distribution of values for KS and non-KS patients based on Mann–

Whitney U-test and two-sample Kolmogorov–Smirnov test, (iii) effect

size of the aforementioned difference in distribution, (iv) pairwise

Spearman’s correlation coefficient of features and (v) first two compo-

nents of the uniform manifold approximation and projection (UMAP)

embedding, in order to visualise the distances between KS and non-KS

patients in the two-dimensional space.

Afterwards, the features that were identified as significant were

used to evaluate the predictive capabilities of the sML algorithms. A

nested crossvalidation with five stratified folds each was used to first

optimise the hyperparameters of the estimator and afterwards deter-

mine themetrics of the best performingmodel. Themetrics were aver-

aged over the folds and the variance was included. For a full hyperpa-

rameter list for each estimator see Table S1. For a 1:1 distribution of KS

and non-KS patients in the training sets, KS patientswere oversampled

using the Pythonmodule imbalanced-learn (version 0.8.0).

In order to assess the fit of the sML algorithms to the problem

structure, mean receiver operating characteristics (ROC) curves and

area under curve (AUC) were calculated for the models based on

their respective validation sets as well as mean sensitivity, specificity

and balanced accuracy. AUC is a combined measure of sensitivity

and specificity that is (i) independent of case/control ratio and (ii)

independent of (arbitrarily chosen) thresholds.35 Therefore, the best

https://github.com/Klinefelter-Score/DataAnalysis
https://github.com/Klinefelter-Score/DataAnalysis
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F IGURE 1 Inclusion and exclusion criteria for study population. All adult patients with azoospermia that had their first visit between January
2005 and June 2019were included into the study population. From these, patients withmissing data in either anthropomorphic data, testicular
ultrasound, hormone levels, semen pH or karyogram as well as patients with any karyotype other than 46,XY and 47,XXY and patients with
obvious reasons for azoospermia were excluded

fit sML algorithm was chosen by comparing mean AUC values, and its

best model was identified as the final model also by the best AUC. An

appropriate decision threshold for each sML algorithm was set such

that, on average, 95% of KS patients were correctly identified in the

inner validation sets.

Chosen model and threshold were then evaluated based on ret-

rospective test data of the outer crossvalidation as well as on an

external validation set consisting of prospective data of KS and non-KS

patients, prospective data of 57 cryptozoospermic patients with

karyotype 46,XY and six azoospermic patients with chromosomal

abnormalities other than KS. Additionally, the performance on the

prospective external validation set was compared with the manual

assessments of 18 physicians. For their assessments, the physicians

were provided with the exact same information as the models, that is,

10 feature values per patient. The results of the patients’ karyogram

was not shown to the physicians. Comparison of the models’ and

physicians’ median sensitivity and specificity was performed using the

McNemar’s test. Statistical significance was set at p< 0.05.

For a more comprehensive analysis of the best fit sML algorithm, a

feature importance analysis was conducted, revealing the relevance of

features for decision-making. The feature importance was quantified

by the mean SHAP36 (SHapley Additive exPlanations) values of each
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TABLE 1 Descriptive statistics and statistical analysis of parameters in azoospermic patients with Klinefelter Syndrome (KS) andwithout KS
(non-KS) in the retrospective dataset (n= 1339)

Feature

All patients

(n= 1339)

Non-KS patients

(n= 994)

KS patients

(n= 345)

Mann–

Whitney

U-test
Two samples

KS test Cohen’s d

Point-biserial

correlation

coefficient

Agea 33 (18–62) 34 (18–62) 30 (18–60) <0.0001 <0.0001 −0.6496 −0.2495

BMI 26.5 (15.2–59.1) 26.6 (15.2–59.1) 25.7 (15.2–53.8) 0.0006 0.0006 −0.2177 −0.0860

Heighta 182 (141–209) 180 (141–206) 185 (160–209) <0.0001 <0.0001 0.5230 0.2031

Weight 90.4 (46–216) 90.2 (46–194) 91.3 (46–216) 0.7069 0.0774 0.0627 0.0248

Total testis

volumea
16 (0.3–95) 21 (0.3–95) 3.8 (1.5–16) <0.0001 <0.0001 −1.4687 −0.5059

Ejaculate

volumea
3.1 (0.1–20) 3.3 (0.1–20) 2.3 (0.1–10.5) <0.0001 <0.0001 −0.5800 −0.2250

pH 7.9 (6–10) 7.9 (6–10) 7.9 (6.5–9.5) 0.0021 0.0807 0.2393 0.0948

LHa 7 (0.1–48.4) 5.5 (0.1–33.9) 14.1 (0.1–48.4) <0.0001 <0.0001 1.4104 0.4884

FSHa 18.6 (0.1–115) 15.35 (0.1–115) 28.1 (0.1–95.2) <0.0001 <0.0001 0.8803 0.3298

Prolactin 167 (22–1640) 165 (22–1580) 171 (56–1640) 0.7886 0.8529 −0.0729 −0.0289

Total

testosterone

13.5 (0.5–145.6) 14.4 (0.6–55.3) 11.4 (0.5–145.6) <0.0001 <0.0001 −0.3043 −0.1199

Estradiol 80 (0.1–355) 79 (0.1–355) 81 (0.1–333) 0.2067 0.3530 0.1092 0.0433

Note: Values are median (range). Mann–WhitneyU-test and two-sample Kolmogorov–Smirnov test were used to determine significant differences of means.

Cohen’s d and point-biserial correlation coefficient were used to determine the effect size.

Abbreviations: BMI, bodymass index; FSH, follicle-stimulating hormone; LH, luteinizing hormone.
aFeatures with an absolute effect size greater than 0.4 and 0.2 for both tests, respectively, were considered for the supervised machine learning (sML) algo-

rithms.

feature after applying a repeated stratified k-fold on the best perform-

ing model parameters. The absolute SHAP values were averaged and

normalised in order to be interpreted as a percentage of information

gain.

3 RESULTS

3.1 Differences between KS and non-KS patients
in the study data

For differentiating between the two groups, sML algorithms detect

structural differences between feature values. In the data of this study,

six out of 12 features differed significantly between KS and non-

KS patients in the retrospective dataset (Mann–Whitney U-test p-

values < 0.001; see Table 1), indicating a well-chosen feature set and,

thus, good applicability of sML algorithms. These features are age,

height, LH, FSH, total testis volume and ejaculate volume (Figure 2).

Medians and ranges of all features are presented in Table 1 and vio-

lin plots for both populations in Figure 2 for the retrospective dataset.

Table S2 shows the medians and ranges for the prospective datasets.

Additionally, the two groups can be differentiated visually in a plot of

the first twocomponentsof theUMAPembedding37: anapproximation

of distances between retrospective patients in the two-dimensional

space based on all feature values is shown in Figure 3. The two groups

of patients overlap but are clearly shifted. Approximately 86% of KS

patients (8% of non-KS patients) have a first component of at most (at

least) two.

Three of the features have mutual correlations in the retrospective

data: FSHand LHare positively correlated (Spearman correlation coef-

ficient of 0.78). FSHand total testis volumeaswell as LHand total testis

volume are negatively correlated (Spearman correlation coefficient -

0.54 and -0.62, respectively). Also, there is aweak correlation between

total testosterone and estradiol (Spearman correlation coefficient of

0.28). The presence of correlated features in the data is relevant for

feature importance analyses, because correlated features can partially

compensate for each other. Also, information that is present inmultiple

features increases the overall weight of that information for the whole

model.

3.2 Identification of best fit sML algorithm

In terms of AUC most sML algorithms performed comparably well

on the retrospective AP dataset. On the retrospective dataset all

estimators achieved an average AUC on all outer folds of at least 0.95.

The best performing models even scored >0.97 with a variance of less

than 0.01. The corresponding ROC curves of all outer folds combined

are depicted in Figure S3.

Since all chosen classifiers worked comparably well on the retro-

spective dataset, theywere refit on thewhole dataset and further eval-

uated on the two separate test sets.
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F IGURE 2 Violin plots for the six selected features. The distribution is presented for Klinefelter (orange) and non-Klinefelter (blue)
azoospermic patients from the retrospective dataset

F IGURE 3 Approximated distances between patients from the retrospective data in the two-dimensional space. Dimension reduction based
on uniformmanifold approximation and projection (UMAP). Klinefelter: azoospermic patients with Klinefelter Syndrome (KS). Non-KS control
patients: azoospermic patients with karyotype 46,XY

3.3 Feature importance analyses

Feature importance analyses were conducted on the three different

classifiers. CatBoost, MLP and SVM were chosen because of their

high performance and high dissimilarity of the underlying algorithms.

The feature importance is estimated using the mean absolute SHAP

values for all samples in the current test set. The value is unity based

normalised in order to provide a percentage of impact on the model’s

decision and averaged on all outer folds. For all three resulting models,

the total testis volume has the highest importance (49.1%). LH has the

second highest importance (18.7%). Although both, LH and FSH, have a

significant difference of median and a high effect size, FSH has only an
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TABLE 2 Quality measures for final models on retrospective test data of azoospermic patients (AP) and prospective external validation data of
AP and of cryptozoospermic patients (CP)

Dataset Classifier Threshold AUC Sensitivity Specificity Balanced accuracy

Retrospective AP AdaBoost 0.467 (0.017) 0.968 (0.008) 0.963 (0.026) 0.855 (0.042) 0.909 (0.015)

CatBoost 0.277 (0.011) 0.975 (0.006) 0.931 (0.036) 0.919 (0.028) 0.925 (0.017)

Gaussian process 0.430 (0.017) 0.975 (0.008) 0.971 (0.015) 0.883 (0.028) 0.927 (0.015)

k-Nearest neighbours 0.336 (0.032) 0.957 (0.008) 0.952 (0.014) 0.879 (0.027) 0.916 (0.013)

MLP—SKLearn 0.376 (0.015) 0.977 (0.006) 0.952 (0.027) 0.908 (0.030) 0.930 (0.014)

MLP—Tensorflow 0.382 (0.017) 0.977 (0.006) 0.958 (0.030) 0.908 (0.033) 0.933 (0.011)

SVM (RBF) 0.365 (0.014) 0.976 (0.007) 0.958 (0.023) 0.914 (0.03) 0.936 (0.009)

For the following datasets the classifiers have a fixed classification threshold thatwas determined on the retrospective AP dataset

Prospective AP AdaBoost 0.467 0.989 1.000 0.899 0.950

CatBoost 0.277 0.994 1.000 0.962 0.981

Gaussian process 0.430 0.990 1.000 0.881 0.940

k-Nearest neighbours 0.336 0.984 1.000 0.908 0.954

MLP—SKLearn 0.376 0.987 1.000 0.899 0.950

MLP—Tensorflow 0.382 0.988 1.000 0.890 0.945

SVM (RBF) 0.365 0.996 1.000 0.936 0.968

Prospective CP AdaBoost 0.467 – – 0.947 –

CatBoost 0.277 – – 0.982 –

Gaussian process 0.430 – – 0.965 –

k-Nearest neighbours 0.336 – – 0.982 –

MLP—SKLearn 0.376 – – 0.982 –

MLP—Tensorflow 0.382 – – 0.965 –

SVM (RBF) 0.365 – – 1.000 –

Note: Values rounded to third decimal place. Thresholds are calculated on the validation set of the inner fold. Performances are calculated on the test set of

the outer fold. Variances between the outer folds are shown in brackets.

Abbreviations: AUC, area under curve;MLP, multilayer perceptron; RBF, radial basis function; SVM, support vector machine.

importance of 5.3%. For more details on the feature importance, see

Table S3 and S4. As FSH and LH were closely correlated, as expected

from physiopathology, we considered exclusion of FSH from the

models for the sake of simplicity; however, as the models were not

affected by this, and FSH and LH are routinely measured in cases of

male infertility, we decided to leave both FSH and LH values included

in the final models.

3.4 Evaluation of final models

The performance of the final models on the retrospective and prospec-

tive data is shown in Table 2. All models performed better on the

prospective AP data than on the retrospective data. For the retrospec-

tive test set, a sensitivity of >93% (range: 93.1%–97.1%), specificity of

>85% (range: 85.5%–91.9%) and balanced accuracy of 90.9%–93.6%

were reached. In case of the prospective AP data, all models classified

all KSpatients correctly (sensitivity=100%),while thenon-KSpatients

were classified with a specificity of at least 88.1% (range: 88.1%–

96.2%). The balanced accuracy was between 94% and 98.1%. For the

prospective data of cryptozoospermic patients, sensitivity could not

be calculated because there were no KS patients in the set. However,

specificitywas>94% (range: 94.7%–100%) for allmodels; thebalanced

accuracy equals the specificity because the dataset consists of only

non-KS patients. For predicting the patients that had neither a 47,XXY

nor a 46,XY karyotype, all models behaved the same: patients with ring

Y or translocation on the Y chromosomewere classified as non-KS, and

the XX patient was classified as KS.

Overall, the seven models all performed well on the different

datasets. The CatBoost and the SVM models performed consistently

better on all three datasetswith highestAUCor highest balanced accu-

racy. Therefore,wemade these twomodels accessible as aKS Score Cal-

culator via a web application: https://klinefelter-score-calculator.uni-

muenster.de. For research purposes, researchers and clinicians can

enter values of the six features for their patients into a web form and

calculate their KS scores.

3.5 Comparing final models and manual
evaluations by physicians

In addition to comparing each of the model performances on the

prospective test data with each other, their performances were

also compared with manual evaluations made by 18 physicians

https://klinefelter-score-calculator.uni-muenster.de
https://klinefelter-score-calculator.uni-muenster.de
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F IGURE 4 Comparison of predictionmodel performances andmanual evaluation by physicians. Boxplots for sensitivity, specificity and
classification errors of best fit predictionmodels and physicians (experts, n= 14 and non-experts, n= 4)

(andrologists or urologists). Some of these physicians regularly diag-

nose and treat KS patients, while others only rarely have contact

with this condition. Accordingly, their answers were grouped as

“KS-experts” (n= 14) and “non-KS-experts” (n= 4).

In this dataset, the models recognised all KS patients correctly, but

on median they also assigned the KS label to ∼10.1% of the non-KS

patients. By comparison, the KS-expert group recognised fewer KS

patients correctly (median 87.5%) and equally many non-KS patients

(median∼89.52%), suggesting that themodels were significantly more

reliable in terms of median sensitivity (p = 0.0455) while performing

comparably in regards to specificity (p = 0.4795). The non-KS-expert

group labelled almost all non-KS patients correctly (median ∼96.19%)

butmissed approximately half of theKSpatients (median∼53.13), with

a significantly higher classification error. In addition, physicians’ results

had a wider variability than the models (see Figure 4). Figure S4 also

shows the ROC curve of the three best models and the physicians’

predictions as a voting ensemble divided into KS-experts and non-KS-

experts.

Further analysis of the patients thatweremisclassified by any of the

models revealed that all final models mostly failed for the same indi-

viduals. Out of 156 patients from the retrospective data thatweremis-

classified by any of themodels, 136weremisclassified by two different

models, and 97 were misclassified by at least three different models.

Similarly, five of 11misclassified patients from the prospective AP data

were misclassified by at least three models. All five patients from the

prospectivedatawere recognised correctly by at least twoof thephysi-

cians and, on median, by 12 physicians. Misclassified non-KS patients

(falsepositives) hada significantly lower testis volume, higherFSH level

and higher LH level than other non-KS patients (Mann–WhitneyU-test

p-values < 0.00005), while misclassified KS patients (false negatives)

had a slightly higher age, lower FSH level and lower LH level than other

KS patients (Mann–WhitneyU-test p-values< 0.05) (see Table S5).

4 DISCUSSION

The presented results show that differentiating KS patients from

azoospermic patients with normal karyotype (46,XY) is a problem that

can be addressed by sML techniques. In our study three sML algo-

rithms performed equallywell on all three datasets, and their decisions

were mainly based on the parameters LH and total testis volume. This

is unsurprising, because the nearly complete absence of germ cells and

hypergonadotropic hypogonadism are hallmark clinical features of KS.

Though both values are correlated with FSH, the feature importance

of FSH drops to 5% on average. Indeed, elevated FSH levels are

commonly found in all forms of non-obstructive azoospermia, whereas

LH levels are usually different betweenKS and non-KS patients, as also

occurring in our study population. While in clinical practice it would

make little sense to measure only one of the two gonadotropins given

a suspicion of KS, the machine learning (ML) models suggest that in

fact LH and testicular volume would be more “important” than FSH to

predict KS in an azoospermic patient.

4.1 Clinical relevance of the findings

Despite its prevalence, KS is vastly underdiagnosed with the conse-

quence that only about one out of four KS men seem to be detected

throughout their lifetime.38 Albeit the condition is frequent, respec-

tive experience in diagnosis and treatment is clustered in expert cen-

tres and could be improved elsewhere. Thus, an increment of general

knowledge as well as establishment of standard diagnostic tools in

multidisciplinary networks is mandatory. In agreement with a current

guideline on KS,15 physicians should be given a tool to facilitate detec-

tionofKSpatients. Ahigherdetection rateofKS is likely topromote the

patients’ self-esteem, assure quality of life and improve social adaption

by early access to professional care. Finally, preservation of the fertility

potential will be optimised and early detection of the onset of hypog-

onadism will lead to improved treatment options. Non-invasive pre-

dictors for TESE outcome for KS patients are lacking,39 and given the

lower chances (approximately 40%–50%) for sperm retrieval among

KS patients,40 automated tools to promote earlier access to treatment

would improve thepatients’ chancesof fatherhood. Thus, preventionof

the medical complications/comorbidities associated with KS should be

standardised as far as possible andearly diagnosis is important because

it is associated with better outcomes in terms of fertility as well as for
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quality of life, and improved diagnosis rates may in turn influence life-

time morbidity and mortality rates.15,22 The ML tool can contribute to

such a standardisation.

Even if experienced physicians with specialised training in androl-

ogy or urology can likely identify most patients with KS based on clini-

cal expertise, less-experienced physiciansmay havemore difficulties in

recognising the signs and symptomsofKS. This hypothesis is supported

by the results of our physicians’ assessments of azoospermic patients.

In real-world settings, fewer KS patients would likely have been identi-

fied because physicians would not have been biased towards suspect-

ing it in each patient. Yet, formulating a diagnosis based only on clinical

values is, of course, muchmore difficult than doing so in a consultation.

Interestingly, although physicians had a much higher variance in their

answers than the models and did not reach an equal sensitivity level,

they correctly recognised patients for which themodels failed, indicat-

ing that sML algorithms can complement but not replace physicians for

this type of decision.

4.2 Strengths and limitations

The present study is among the first to use sML in the context of

male reproductive health. Its main strengths are the good quality of

the data and comparably large amount of data. Further, essential for

this study is the fact that a KS diagnosis is available as the result of

an independent test (karyogram), as this enables the models to learn

the real relation between the features and KS rather than learning

to replicate the (biased) assessments of physicians. The models were

tested with three different sets of test data, indicating good generaliz-

ability. However, training and validation of the models were restricted

to azoospermic patients, possibly limiting their power for, for exam-

ple, oligozoospermic patients. The main limitation of the study is that

all the data originated from the same clinic; thus, truly independent

test data has not been evaluated. To address this issue, the CatBoost,

MLP and SVMmodels are accessible through a public webpage (https:

//klinefelter-score-calculator.uni-muenster.de), such that researchers

can enter feature values and karyotypes of patients and checkwhether

the labels are correctly predicted. This tool is currently intended for

researchuse only. Additionally,while the age rangeof patients included

in the different sets was broad, including men from 18 to 62 years of

age (Tables 1 and S2), the ML models used in the present study were

not devised for patients below 18 years of age, and, therefore, we can-

not draw any conclusions regarding reliability of the testedmodels in a

paediatric population.

5 CONCLUSION

This first proof-of-concept study on azoospermic patients indicates

that supervised machine learning methods can be used to increase

the diagnostic rate of Klinefelter Syndrome among azoospermic

patients. If used as part of an automated tool in an electronic medi-

cal record or domain-specific database, the supervised machine learn-

ing methods will likely lead to earlier diagnoses, which, in conse-

quence, should improve overall patient care and possibly even result

in better chances of sperm retrieval by testicular sperm extraction

and, thus, potentially fatherhood.22 This highlights the importance

of integrating novel technologies such as machine learning into the

field of reproductive health as a way to further improve patient

care.
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