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We present a determination of the ratio of kaon and pion leptonic decay constants in isosymmetric
QCD (ISOQCD), fK=fπ , making use of the gauge ensembles produced by the Extended Twisted
Mass Collaboration with Nf ¼ 2þ 1þ 1 flavors of Wilson-clover twisted-mass quarks, including
configurations close to the physical point for all dynamical flavors. The simulations are carried out at
three values of the lattice spacing ranging from ∼0.068 to ∼0.092 fm with linear lattice size up to
L ∼ 5.5 fm. The scale is set by the particle data group (PDG) value of the pion decay constant,

fISOQCDπ ¼ 130.4ð2Þ MeV, at the ISOQCD pion point, MISOQCD
π ¼ 135.0ð2Þ MeV, obtaining for the

gradient-flow scales the values w0 ¼ 0.17383ð63Þ fm,
ffiffiffiffi
t0

p ¼ 0.14436ð61Þ fm and t0=w0 ¼
0.11969ð62Þ fm. The data are analyzed within the framework of SU(2) chiral perturbation theory

without resorting to the use of renormalized quark masses. At the ISOQCD kaon point MISOQCD
K ¼

494.2ð4Þ MeV we get ðfK=fπÞISOQCD ¼ 1.1995ð44Þ, where the error includes both statistical and
systematic uncertainties. Implications for the Cabibbo-Kobayashi-Maskawa matrix element jVusj and
for the first-row Cabibbo-Kobayashi-Maskawa unitarity are discussed.

DOI: 10.1103/PhysRevD.104.074520

I. INTRODUCTION

The leptonic decay constants of charged pseudoscalar
(P) mesons are the crucial hadronic ingredients necessary
for obtaining precise information on the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements describing
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the weak mixings among quark flavors [1]. Within the
Standard Model (SM) the unitarity of the CKM matrix
imposes important constraints on various sums of squares
of matrix elements and, therefore, any violation of such
constraints would imply the presence of physics beyond the
SM. The way the CKM entries can be determined is based
on the knowledge of the experimental leptonic decay rates
and of the corresponding theoretical calculations. In par-
ticular, both the charged kaon and pion leptonic decay
widths into muons are known experimentally with a good
precision [2], obtaining for their ratio the value

ΓðK → μνμ½γ�Þ
Γðπ → μνμ½γ�Þ

¼ 1.3367ð2Þπð29ÞK½29�; ð1Þ

where [γ] stands for the contribution of virtual and real
photons. On the theoretical side, within the SM the above
ratio is given by

ΓðK → μνμ½γ�Þ
Γðπ → μνμ½γ�Þ

¼
����Vus

Vud

fK
fπ

����2 M3
π

M3
K

�
M2

K −m2
μ

M2
π −m2

μ

�
2

ð1þ δRKπÞ;

ð2Þ
where Vud and Vus are the relevant CKM entries, MπðKÞ is
the charged pion(kaon) mass, mμ is the muon mass and
δRKπ represents the isospin breaking (IB) corrections due
both to the mass difference (md −mu) between the light u
and d quarks and to the quark electric charges. Finally, in
Eq. (2) fK=fπ is the ratio of kaon and pion leptonic decay
constants defined in isosymmetric QCD (ISOQCD), i.e.,
with mu ¼ md and zero quark electric charges.
Recently [3,4] the IB correction δRKπ has been deter-

mined using a nonperturbative approach, based on first
principles, through QCDþ QED simulations on the lattice,
obtaining δRKπ ¼ −0.0126ð14Þ. From Eq. (1) one has���� Vus

Vud

���� fKfπ ¼ 0.27683ð29Þexpð20Þth ¼ 0.27683ð35Þ; ð3Þ

which corresponds to an accuracy of ≃0.13%. As is well
known [5], the IB correction δRKπ and the ISOQCD ratio
fK=fπ separately depend on the prescription used to define
what is meant by ISOQCD, while only the product
ðfK=fπÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δRKπ

p
is independent on such prescription.

The hadronic prescription adopted in Refs. [3,4] corre-
sponds to

MISOQCD
π ¼ 135.0ð2Þ MeV; ð4Þ

MISOQCD
K ¼ 494.2ð4Þ MeV; ð5Þ

fISOQCDπ ¼ 130.4ð2Þ MeV; ð6Þ

while the quantity (md −mu) is obtained from the differ-
ence between the experimental charged and neutral kaon

masses. The physical pion and kaon masses (4)–(5) are
consistent with those recommended by FLAG-3 [6], and
the pion decay constant (6), derived according to Ref. [7]
adopting the value of the CKM entry jVudj from Ref. [8], is
used to set the lattice scale.1

In this work we present our determination of the leptonic
decay constant ratio fK=fπ at the physical ISOQCD point
given by Eqs. (4)–(6), evaluated using the Extended
Twisted Mass Collaboration (ETMC) gauge ensembles
produced with Nf ¼ 2þ 1þ 1 flavors of Wilson Clover
twisted-mass quarks, including configurations close to the
physical point for all dynamical flavors [10,11]. The lattice
data will be analyzed within the framework of SU(2) chiral
perturbation theory (ChPT) without making use of renor-
malized quark masses.2 By means of the pion data we
determine the gradient-flow (GF) scales w0 [12],

ffiffiffiffi
t0

p
[13]

and t0=w0 adopting the physical value (6) at the pion point
(4) to set the lattice scale, obtaining

w0 ¼ 0.17383ð63Þ fm; ð7Þ
ffiffiffiffi
t0

p ¼ 0.14436ð61Þ fm; ð8Þ

t0=w0 ¼ 0.11969ð62Þ fm; ð9Þ

where the error includes both statistical and systematic
uncertainties. Our findings (7)–(8) are a little larger
than the MILC results [14] w0 ¼ 0.1714þ15

−12 fm and
ffiffiffiffi
t0

p ¼
0.1416þ8

−5 fm as well as the high precision QCD (HPQCD)
results [15] w0 ¼ 0.1715ð9Þ fm and

ffiffiffiffi
t0

p ¼ 0.10ð8Þ fm,
both obtained using the hadronic value (6) to set the lattice
scale. Within ≃ 1.5 standard deviations our result (7) is
consistent with the recent, precise Budapest-Marseille-
Wuppertal (BMW) determination w0 ¼ 0.17236ð70Þ fm,
obtained in Ref. [16] using the Ω−-baryon mass to set the
lattice scale. Furthermore, the differences with the recent
results w0 ¼ 0.1709ð11Þ fm and

ffiffiffiffi
t0

p ¼ 0.1422ð14Þ fm,
obtained in Ref. [17] using the Ω−-baryon mass to set
the lattice scale, are within ∼2 and ∼1.5 standard devia-
tions, respectively.
As for the ratio fK=fπ we determine its value at the

physical ISOQCD point (4)–(6) and in the continuum and
infinite volume limits, obtaining

1In Ref. [4] it has been shown that within the precision of the
lattice simulations the prescription given by Eqs. (4)–(6) is
equivalent to the Gasser-Rusetsky-Scimemi scheme [9], where
the renormalized quark masses and coupling constant in a given
short-distance scheme (viz. the MS scheme) and at a given scale
(viz. 2 GeV) are equal in the full QCDþ QED and ISOQCD
theories. For completeness we mention that in the charm sector
the Ds-meson mass MISOQCD

DS
was chosen to be equal to its

experimental value MDþ
s
¼ 1969.0ð1.4Þ MeV [2].

2An analysis of the kaon and pion masses and decay constants
in terms of renormalized quark masses is ongoing and will be
presented in a forthcoming ETMC publication.
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�
fK
fπ

�
ISOQCD

¼ 1.1995ð44Þ; ð10Þ

where again the error includes both statistical and system-
atic uncertainties.
The IB correction δRKπ ¼ −0.0126ð14Þ, determined in

Refs. [3,4] and adopted in Eqs. (2)–(3), stems from the sum
of a QED and a strong IB terms, which are both pre-
scription dependent as well as their sum and the ISOQCD
value (10). Within the Gasser-Rusetsky-Scimemi prescrip-
tion (see footnote 1) they are equal, respectively, to
−0.0062ð12Þ and −0.0064ð7Þ. Thus, for the ratio of kaon
and pion leptonic decay constant including strong IB
effects (which is prescription dependent) we get

fKþ

fπþ
¼ 1.1957ð44Þ: ð11Þ

For comparison, the Nf ¼ 2þ 1þ 1 determinations,
entering the FLAG-4 average [18], yield the value
ðfþK=fþπ Þ ¼ 1.1932ð19Þ [15,19,20], which is well consis-
tent with our result (11). Once corrected for the strong IB
effects obtained in Refs. [15,19,20], the FLAG-4 average
becomes ðfK=fπÞISOQCD ¼ 1.1966ð18Þ, which agrees with
our finding (10).
Taking the updated value jVudj ¼ 0.97370ð14Þ from

superallowed nuclear beta decays [2,21], Eqs. (3) and
(10) yield the following value for the CKM element jVusj:

jVusj ¼ 0.22472ð24Þexpð84Þth ¼ 0.22472ð87Þ; ð12Þ

which is nicely consistent with the latest estimate jVusj ¼
0.2252ð5Þ from leptonic modes provided by the PDG [2].
Correspondingly, using jVubj ¼ 0.00382ð24Þ [2] the first-
row CKM unitarity becomes

jVudj2 þ jVusj2 þ jVubj2 ¼ 0.99861ð48Þ; ð13Þ

which would imply a ≃3σ tension with unitarity from
leptonic modes.
The plan of the paper is as follows.
In Sec. II some details of the ETMC gauge ensembles

and of the simulations are illustrated, while a more
complete description is provided in Appendix A. For each
gauge ensemble the pion mass and decay constant are
extracted from the relevant two-point correlation functions
using a single exponential fit in the appropriate regions of
large time distances. Alternatively, in Appendix B the
extraction of the ground-state properties is performed
through the multiple exponential procedure of Ref. [22].
For one gauge ensemble (cA211.12.48), because of a small
deviation from maximal twist, the mass and the decay
constant are corrected as described in Appendix C. In
Sec. III the SU(2) ChPT predictions at next-to-leading
order (NLO) for the pion decay constant fπ , including finite

volume effects (FVEs), are presented. For the ensembles
cB211.25.XX, sharing the same light-quark mass and
lattice spacing and differing only for the lattice size L,
the FVEs are investigated using both the NLO and the
resummed NNLO formulas of Ref. [23]. In Sec. IV,
adopting the physical value (6) at the pion point (4), we
perform two determinations of the GF scale w0 using the
data for either fπ or the quantity Xπ ≡ ðfπM4

πÞ1=5, which is
found to be less affected by statistical and systematic errors.
The two determinations of w0 agree very nicely, but the one
based on the quantity Xπ turns out to be more precise by a
factor of ≈2.5. In the sameway the other two GF scales

ffiffiffiffi
t0

p
and t0=w0 are determined in Appendix D, where our
calculations of the relative GF scales w0=a,

ffiffiffiffi
t0

p
=a and

t0=ðw0aÞ at the physical pion point are also described. In
Sec. V we analyze the data for the decay constant ratio
fK=fπ using SU(2) ChPT. In Sec. VI the implications for
Vus and the first-row CKM unitarity are discussed. Finally,
our conclusions are collected in Sec. VII.

II. ETMC ENSEMBLES

In this work we make use of the gauge ensembles
produced recently by ETMC in ISOQCD with Nf ¼ 2þ
1þ 1 flavors of Wilson-clover twisted-mass quarks and
described in Refs. [10,11]. The gluon action is the
improved Iwasaki one [24], while the fermionic action
includes a Clover term [25] with a coefficient fixed by its
estimate in one-loop tadpole boosted perturbation theory
[26]. Its inclusion turns out to be very beneficial for
reducing cutoff effects, in particular on the neutral pion
mass, thereby making numerically stable simulations close
to the physical pion point [10].
The Wilson mass counterterms of the two degenerate

light quarks as well as of the strange and charm quarks are
chosen in order to guarantee automatic OðaÞ improvement
[27,28]. The masses of the strange and charm sea quarks
are tuned to their physical values for each ensemble
[10,11]. For the valence strange and charm sectors, a
mixed action setup employing Osterwalder-Seiler fermions
[29], with the same critical mass as determined in the
unitary setup, has been adopted in order to avoid any
undesired strange-charm quark mixing (through cutoff
effects) and to preserve the automatic OðaÞ improvement
of physical observables [30].
Some properties of the ETMC ensembles, which are

relevant for this work, are collected in Table I, while the
simulation setup is described in detail in Appendix A. With
respect to Ref. [11] two other dedicated gauge ensembles,
cB211.25.24 and cB211.25.32, have been produced for the
investigation of FVEs.
Note that in the case of the ensembles cB211.072.64 and

cC211.06.80, corresponding, respectively, to a lattice
spacing equal to a ≈ 0.082 fm and a ≈ 0.069 fm, the pion
mass is simulated quite close to the physical ISOQCD
value (4).
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For each ensemble we compute the pion correlator
given by

CπðtÞ ¼
1

L3

X
x;z

h0jP5ðxÞP†
5ðzÞj0iδt;ðtx−tzÞ; ð14Þ

where P5ðxÞ ¼ q̄lðxÞγ5qlðxÞ is a local interpolating pion
field. The Wilson parameters of the two mass-degenerate
valence quarks are always chosen to have opposite values.
In this way the squared pion mass differs from its
continuum counterpart only by terms of Oða2μlÞ [27,28].
At large time distances one has

CπðtÞ
t ≫ a; ðT − tÞ ≫ a
������������! Zπ

2Mπ
½e−Mπt þ e−MπðT−tÞ�; ð15Þ

so that the pion mass Mπ and the matrix element Zπ ¼
jhπjq̄lγ5qlj0ij2 can be extracted from the exponential fit
given in the rhs of Eq. (15).

For maximally twisted fermions the value of Zπ deter-
mines the pion decay constant fπ without the need of the
knowledge of any renormalization constant [27,31],
namely

afπ ¼ 2aμl

ffiffiffiffiffiffiffiffiffiffiffi
a4Zπ

p
aMπ sinhðaMπÞ

: ð16Þ

The time intervals ½tmin; tmax� adopted for the fit (15) of
the pion correlation function (14) as well as the extracted
values of the pion mass and decay constant in lattice units
are collected in Table II. As anticipated in the Introduction,
in this work we will make also use of the data for the
quantity Xπ defined as

Xπ ≡ ðfπM4
πÞ1=5; ð17Þ

which turns out to be less affected by lattice artifacts (see
below Fig. 1 and later Sec. III C). The values of Xπ in lattice

TABLE II. The time intervals ½tmin; tmax� adopted in the fit (15) of the pion correlation function (14) together with the extracted values
of the pion mass Mπ , the decay constant fπ and the quantity Xπ, given by Eq. (17), in lattice units. Errors are statistical only.

Ensemble β V=a4 ½tmin=a; tmax=a� aMπ afπ aXπ

cA211.53.24 1.726 243 × 48 [13, 22] 0.16626(51) 0.07106(36) 0.14027(41)
cA211.40.24 243 × 48 [13, 22] 0.14477(70) 0.06809(30) 0.12450(44)
cA211.30.32 323 × 64 [13, 28] 0.12530(16) 0.06674(15) 0.11047(12)
cA211.12.48 483 × 96 [13, 40] 0.08022(18) 0.06133(33) 0.07621(10)

cB211.25.24 1.778 243 × 48 [14, 22] 0.10720(118) 0.05355(42) 0.09331(79)
cB211.25.32 323 × 64 [14, 28] 0.10475(45) 0.05652(38) 0.09259(26)
cB211.25.48 483 × 96 [14, 42] 0.10465(14) 0.05726(12) 0.09276(10)
cB211.14.64 643 × 128 [14, 56] 0.07848(10) 0.05477(12) 0.07303(6)
cB211.072.64 643 × 128 [14, 56] 0.05659(8) 0.05267(14) 0.05578(5)

cC211.06.80 1.836 803 × 160 [15, 70] 0.04720(7) 0.04504(10) 0.04676(5)

TABLE I. Summary of the simulated light-quark bare mass, aμl ¼ aμu ¼ aμd, of the pion mass Mπ , of the lattice size L and of the
product MπL for the various ETMC gauge ensembles used in this work. The values of the lattice spacing a in the fourth column,
estimated in Appendix D 2 using the relative GF scale w0=a of Table X, and the values of Mπ and L in the sixth and seventh columns
correspond to the absolute scale w0 ¼ 0.17383ð63Þ fm [see Eq. (7)]. In the last column the number of gauge configurations analyzed for
each ensemble is presented.

Ensemble β V=a4 aðfmÞ aμl Mπ ðMeVÞ LðfmÞ MπL Confs

cA211.53.24 1.726 243 × 48 0.0947(4) 0.00530 346.4(1.6) 2.27 3.99 628
cA211.40.24 243 × 48 0.00400 301.6(2.1) 2.27 3.47 662
cA211.30.32 323 × 64 0.00300 261.1(1.1) 3.03 4.01 1237
cA211.12.48 483 × 96 0.00120 167.1(0.8) 4.55 3.85 322

cB211.25.24 1.778 243 × 48 0.0816(3) 0.00250 259.2(3.0) 1.96 2.57 500
cB211.25.32 323 × 64 0.00250 253.3(1.4) 2.61 3.35 400
cB211.25.48 483 × 96 0.00250 253.0(1.0) 3.92 5.02 314
cB211.14.64 643 × 128 0.00140 189.8(0.7) 5.22 5.02 437
cB211.072.64 643 × 128 0.00072 136.8(0.6) 5.22 3.62 374

cC211.06.80 1.836 803 × 160 0.0694(3) 0.00060 134.2(0.5) 5.55 3.78 401
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units are shown in the last column of Table II. The statistical
errors of the lattice data lie in the range 0.1 ÷ 1.1% for the
pion mass, in the range 0.2 ÷ 0.8% for the pion decay
constant and in the range 0.1 ÷ 0.9% for the quantity Xπ.
We stress that in the case of the four ensembles cA211.12.48,
cB211.14.64, cB211.072.64 and cC211.06.80 (which cor-
respond toMπ ≲ 190 MeV) the statistical errors of aXπ turn
out to be less than half of those of afπ .
An alternative way to extract the pion mass and decay

constant is the ordinary differential equation (ODE) pro-
cedure of Ref. [22]. The results obtained by applying this
method to the pion correlation function (14) are collected in
Appendix B and found to be totally consistent with the
findings of the single exponential fit (15) of Table II.
In the case of the ensemble cA211.12.48 due to a small

deviation from maximal twist a correction needs to be
applied. According to Appendix C the squared pion mass is
left uncorrected, while for the pion decay constant fπ we
use the following formula

fπjcorrected ¼ fπKl; ð18Þ

where

Kl ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðZAmPCAC=μlÞ2

q
; ð19Þ

mPCAC is the bare untwisted partially conserved axial
current (PCAC) mass, ZA is the renormalization constant
of the axial current and μl is the bare twisted mass of the
light valence quarks. For the ensemble cA211.12.48 one
has ZA ≈ 0.75 and mPCAC=μl ≃ −0.21ð5Þ [11].
The statistical accuracy of the correlator (14) is signifi-

cantly improved by using the so-called one-end stochastic
method [32], which includes spatial stochastic sources at a

single time slice randomly chosen. Statistical errors are
evaluated using the jackknife procedure.
The results obtained for the pion decay constant w0fπ

and for the quantity w0Xπ [see Eq. (17)], are shown in
Fig. 1 for all the gauge ensembles. By comparing the results
corresponding to the ensembles cB211.25.XX the FVEs
are clearly visible in the case of fπ , while they are almost
absent in the case of Xπ . Moreover, also discretization
effects in Xπ turn out to be smaller than those present in fπ .

III. THE PION DECAY CONSTANT f π
WITHIN SU(2) CHPT

Within SU(2) ChPT [33] the pion decay constant fπ is
given at NLO by

fπ ¼ f½1 − 2ξl logðξlÞ þ 2A1ξl�; ð20Þ

where

ξl ≡ 2Bml

ð4πfÞ2 ð21Þ

with ml ¼ mu ¼ md being the renormalized light-quark
mass. In Eqs. (20)–(21) B and f are the LO SU(2) ChPT
low-energy constants (LECs), while the coefficient A1 is
related to the NLO LEC l̄phys

4 by

l̄phys
4 ¼ A1 þ 2 log

�
4πf

MISOQCD
π

�
: ð22Þ

For the squared pion mass one has at NLO

M2
π ¼ 2Bml½1þ ξl logðξlÞ þ C1ξl�; ð23Þ

FIG. 1. Values of the pion decay constant w0fπ (left panel) and of the quantity w0Xπ ¼ w0ðfπM4
πÞ1=5 (right panel) versus the squared

pion mass ðw0MπÞ2 in units of the GF scale w0. For the ensemble cA211.12.48 the corrected value of fπ given by Eq. (18) is considered.
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where the coefficient C1 is related to the NLO LEC l̄phys
3 by

l̄phys
3 ¼ −C1 þ 2 log

�
4πf

MISOQCD
π

�
: ð24Þ

A. Finite volume effects within NLO SU(2) ChPT

The structure of FVEs on the pion decay constant can be
studied using SU(2) ChPT [33]. At NLO FVEs come
entirely from the discretized sum over periodic momenta of
the loop contributions. For a finite spatial volume V ¼ L3

one has

fπðLÞ ¼ fπðL → ∞Þ½1þ Δπ
FVEðLÞ�; ð25Þ

where fπðL → ∞Þ is given by Eq. (20). The correction
term Δπ

FVEðLÞ can be obtained from the chiral log in
Eq. (20) via the following replacement

ξl logðξlÞ → ξlg̃1ðλÞ; ð26Þ

where λ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
2Bml

p
L ¼ ffiffiffiffiffi

ξl
p

4πfL and

g̃1ðλÞ ¼ 4
X∞
n¼1

mðnÞffiffiffi
n

p
λ
K1ð

ffiffiffi
n

p
λÞ; ð27Þ

with K1 being a Bessel function of the second kind and
mðnÞ the multiplicities of a three-dimensional vector n⃗
having integer norm n [i.e., mðnÞ ¼ f6; 12; 8; 6;…g]. At

sufficiently large values of λ the Bessel function can be
replaced by its asymptotic expansion, which leads to

g̃1ðλÞ ≃ 4

ffiffiffi
π

2

r X∞
n¼1

mðnÞ
ð ffiffiffi

n
p

λÞ3=2 e
−

ffiffi
n

p
λ: ð28Þ

Thus, within NLO SU(2) ChPT the quantity Δπ
FVEðLÞ is

given by

Δπ
FVEðLÞ ¼ −2ξlg̃1ðλÞ: ð29Þ

In the case of the squared pion mass one gets

M2
πðLÞ ¼ M2

πðL → ∞Þ
�
1 −

1

4
Δπ

FVEðLÞ
�
2

; ð30Þ

where M2
πðL → ∞Þ is given by Eq. (23).

B. FVEs for the ensembles cB211.25.XX

In this section we study the FVEs on the pion mass and
decay constant corresponding to the three ensembles
cB211.25.XX of Table I, which share the same light-quark
mass and lattice spacing but differ only for the lattice
size L. We consider SU(2) ChPT both at NLO, i.e., the
Gasser-Leutwyler (GL) formulas (25) and (30), and at
NNLOþ resummation, i.e., the Colangelo-Dürr-Haefeli
(CDH) formulas [23]. The latter ones read as

fπðLÞ ¼ fπð∞Þf1 − 2ξπ g̃1ðMπLÞ þ 2ξ2π½Cð1Þ
fπ
g̃1ðMπLÞ þ Cð2Þ

fπ
g̃2ðMπLÞ þ Sð4Þfπ

�g; ð31Þ

MπðLÞ ¼ Mπð∞Þ
	
1þ 1

2
ξπ g̃1ðMπLÞ − ξ2π½Cð1Þ

Mπ
g̃1ðMπLÞ þ Cð2Þ

Mπ
g̃2ðMπLÞ þ Sð4ÞMπ

�


; ð32Þ

where g̃1 is defined in Eq. (27), while

g̃2ðλÞ≡ 4
X∞
n¼1

mðnÞffiffiffi
n

p
λ

K2ð
ffiffiffi
n

p
λÞffiffiffi

n
p

λ
ð33Þ

and

Cð1Þ
fπ

¼ −
7

9
þ 2l̄1 þ

4

3
l̄2 − 3l̄4; ð34Þ

Cð2Þ
fπ

¼ 112

9
−
8

3
l̄1 −

32

3
l̄2; ð35Þ

Cð1Þ
Mπ

¼ −
55

18
þ 4l̄1 þ

8

3
l̄2 −

5

2
l̄3 − 2l̄4; ð36Þ

Cð2Þ
Mπ

¼ Cð2Þ
fπ

¼ 112

9
−
8

3
l̄1 −

32

3
l̄2; ð37Þ

with l̄i being NLO LECs that have a logarithmic pion mass
dependence

l̄i ¼ l̄phys
i þ 2 log

�
MISOQCD

π

Mπ

�
: ð38Þ

Finally, in Eqs. (31)–(32) the NNLO terms Sð4Þfπ
and Sð4ÞMπ

are
defined in the Appendix A of Ref. [23], but useful
approximate analytic formulas are given by [23]

Sð4Þfπ
¼

�
4

3
s0 −

13

6
s1

�
g̃1ðMπLÞ

−
�
40

3
s0 − 4s1 −

8

3
s2 −

13

3
s3

�
g̃2ðMπLÞ; ð39Þ

Sð4ÞMπ
¼ 13

3
s0g̃1ðMπLÞ −

�
40

3
s0 þ

32

3
s1 þ

26

3
s2

�
g̃2ðMπLÞ;

ð40Þ
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with

s0¼2−
π

2
; s1¼

π

4
−
1

2
; s2¼

1

2
−
π

8
; s3¼

3π

16
−
1

2
: ð41Þ

The expansion variable ξπ is defined as [23]

ξπ ≡ M2
π

ð4πfπÞ2
: ð42Þ

Different choices of the expansion variable are possible:
one can replace fπ with the LO LEC f and/or replace M2

π

with 2Bml (and correspondingly MπL with
ffiffiffiffiffiffiffiffiffiffiffiffi
2Bml

p
L in

the arguments of the functions g̃1 and g̃2). At NLO (i.e., for
the GL formula) the above changes are equivalent, since
any difference represents a NNLO effect. Instead, in the
CDH formula additional terms appear at NNLO, which can
be found in Ref. [34]. Here we consider only the alternative
definition

ξπ →
M2

π

ð4πfÞ2 ; ð43Þ

which requires the addition to the rhs of Eq. (31) of the term
fπð∞Þf8ξ2πl̄4g̃1ðMπLÞg and to the rhs of Eq. (31) of the
term Mπð∞Þf−2ξ2πl̄4g̃1ðMπLÞg.
The GL formula corresponds to Eqs. (31)–(32) with all

Cs and Ss set equal to zero. The CDH formula requires the
knowledge of the values of the four NLO LECs l̄phys

i
with i ¼ 1;…4.
In Figs. 2 and 3 we compare the FVEs on the pion mass

and decay constant for the three ensembles cB211.25.XX
of Table I, evaluated using the GL and CDH formulas and

assuming, respectively, the two definitions (42) and (43) for
the expansion variable ξπ .
In the case of the CDH formula we adopt the following

values of the NLO LECs: l̄phys
1 ¼ −0.4, l̄phys

2 ¼ 4.3,
l̄phys
3 ¼ 3.2 and l̄phys

4 ¼ 4.4 (see Ref. [34]). The CDH
results depend on such a choice and the sensitivity to the
specific value of l̄phys

2 is illustrated in both figures by the
green triangles.
It can be seen that the GL formula applied to both the

pion mass and decay constant works quite well for
MπL≳ 3, particularly in the case of the definition (43)
of the expansion variable ξπ . The above condition is
satisfied by all ETMC ensembles of Table I except the
ensemble cB211.25.24.

C. FVEs for the quantity Xπ

The interesting feature of the quantity Xπ, given by
Eq. (17), is the absence of NLO chiral logs in its SU(2)
ChPTexpansion [see Eqs. (20) and (23)] when expressed in
terms of quark masses. This implies the absence of FVEs at
NLO, which in turn is also the origin of the small FVEs
observed in the right panel of Fig. 1. This point is better
elucidated in Fig. 4, where the results corresponding to the
three ensembles cB211.25.XX differing only in the lattice
size L are shown.

IV. DETERMINATION OF THE GF SCALE w0
FROM THE PION DATA

Let us now apply the SU(2) ChPT predictions for
interpolating the pion data to the physical pion mass and
for extrapolating them to the continuum and infinite

FIG. 2. Values of the pion mass (left panel) and pion decay constant (right panel) in lattice units for the three ensembles cB211.25.XX
of Table I. The red circles represent the data versusMπL. The expansion variable ξπ is given by Eq. (42). The blue squares correspond to
the data corrected by the GL formula, while black diamonds represent the data corrected by the CDH formula, adopting for the NLO
LECs the values l̄phys

1 ¼ −0.4, l̄phys
2 ¼ 4.3, l̄phys

3 ¼ 3.2 and l̄phys
4 ¼ 4.4. The green triangles correspond to the CDH correction

assuming l̄phys
2 ¼ 3.3. The horizontal dotted lines are the values of the pion mass and decay constant in the infinite volume limit.
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volume limits. The goal is to determine the GF scale w0

adopting the physical value (6) at the pion point (4) without
resorting to the use of the renormalized light-quark mass. In
the next two subsections we separately analyze the pion
decay constant fπ and the quantity Xπ, respectively.

A. Determination of w0 using the data for f π
Using the simulated values aMπ and afπ in lattice units

we evaluate the expansion variable ξπ , defined (from now
on) as

ξπ ≡ ðaMπÞ2
ð4πafπÞ2

¼ M2
π

ð4πfπÞ2
; ð44Þ

which depends on neitherw0 norw0=a. Then, for each gauge
ensemble we calculate the FVE correction Δπ

FVEðLÞ as

Δπ
FVEðLÞ ¼ −2ξπ g̃1ðMπLÞ ð45Þ

and we reexpress the quantity ξl [see Eq. (21)] in terms of
the pion mass in the infinite volume limit [see Eq. (30)]

ξl→ ξ≡M2
πðL→∞Þ
ð4πfÞ2 ¼ ðw0MπÞ2

ð4πw0fÞ2
1

½1− 1
4
Δπ

FVEðLÞ�2
; ð46Þ

where only the knowledge of w0=a is required to calculate
the pion mass in units of w0 and the free parameter
becomes w0f.
We correct the data of the pion decay constant w0fπðLÞ

for FVEs [see Eq. (25)], namely

w0fπðL → ∞Þ ¼ w0fπðLÞ
1þ Δπ

FVEðLÞ
: ð47Þ

Analogously, for the pion mass w0MπðLÞ one has

w0MπðL → ∞Þ ¼ w0MπðLÞ
1 − 1

4
Δπ

FVEðLÞ
: ð48Þ

The data for w0fπðL → ∞Þ are fitted in terms of the
variable ξ [see Eq. (46)] using the following functional form

w0fπðL → ∞Þ ¼ w0f

�
1 − 2ξ logðξÞ þ 2A1ξþ A2ξ

2

þ a2

w2
0

ðD0 þD1ξÞ
�
; ð49Þ

where with respect to a pure NLO ansatz we have added a
possible higher-order term quadratic in ξ as well as dis-
cretization effects proportional to a2 and a2M2

π .
The free parameters appearing in Eq. (49) are w0f, A1,

A2,D0,D1, and their values are obtained from a standard χ2

minimization. From the value of w0f the GF scale w0 can
be determined as follows. Let us consider the physical
value of the variable (44), namely

FIG. 3. The same as in Fig. 2, but adopting the alternative definition (43) for the expansion variable ξπ and assuming f ¼ 122.5 MeV
and a ¼ 0.080 fm.

FIG. 4. Values of w0Xπ versus MπL for the three
ensembles cB211.25.XX differing only for the lattice size L.
The dashed line indicates the simple exponential fit of the form
A½1þ Be−MπL=ðMπLÞ3=2�.
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ξISOQCDπ ≡
�
MISOQCD

π

4πfISOQCDπ

�2
¼ 0.006785ð29Þ: ð50Þ Using Eq. (49) in the continuum limit the physical value of

the variable (46), namely ξISOQCD ¼ ðMISOQCD
π =4πfÞ2, can

be obtained by solving the relation

ξISOQCDπ ¼ ξISOQCD

½1 − 2ξISOQCD logðξISOQCDÞ þ 2A1ξ
ISOQCD þ A2ðξISOQCDÞ2�2

:

ð51Þ

In this way the value of the LEC f in physical units is given
by f ¼ MISOQCD

π =ð4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξISOQCD

p
Þ and, therefore, w0 can be

determined using the value of w0f.
We start by considering a pure NLO fit, i.e., A2 ¼ 0,

including only the discretization effect proportional to a2,
i.e., D1 ¼ 0 in Eq. (49), and we apply it to all pion data up
to Mπ ≃ 350 MeV. The discretization coefficient D0 turns
out to be quite small, D0 ¼ −0.05ð4Þ, and the correspond-
ing χ2=ðd:o:f:Þ is equal to χ2=ðd:o:f:Þ ≃ 1.5 for ten data
points and three parameters. For the GF scale w0 we get
w0 ¼ 0.1712ð14Þ fm, which exhibits a ≃0.8% accuracy.
However, a drastic improvement in the quality of the fit is
obtained by including the discretization term proportional
to a2M2

π , i.e., D1 ≠ 0. This leads to χ2=ðd:o:f:Þ ≃ 0.2,
obtaining for w0 the value

w0 ¼ 0.1740ð15Þ fm; ð52Þ

with f ¼ 124.4ð6Þ MeV and l̄phys
4 ¼ 3.24ð29Þ [see

Eq. (22)]. The quality of the above fit is illustrated in
Fig. 5. The result (52) is confirmed by a NLO fit without
the discretization effects proportional to a2M2

π (i.e.,

D1 ¼ 0), but limited to pion masses below ≃190 MeV
(four data points and three parameters). In this case one
gets w0 ¼ 0.1736ð15Þ fm, f ¼ 122.8ð4Þ MeV, l̄phys

4 ¼
4.06ð18Þ and χ2=ðd:o:f:Þ ≃ 0.1.
In order to investigate systematic effects we include

the quadratic term proportional to A2, obtaining w0 ¼
0.1737ð16Þ fm, f ¼ 124.3ð7Þ MeV, l̄phys

4 ¼ 3.26ð30Þ
and χ2=ðd:o:f:Þ ≃ 0.2, and we check also the impact of
FVEs by multiplying the correction Δπ

FVEðLÞ of Eq. (45) by
a factor κFVE used as a further free parameter in the NLO fit.
The factor κFVE turns out to be consistent with unity,
κFVE ¼ 1.20ð18Þ, and we get w0 ¼ 0.1743ð16Þ fm, f ¼
124.5ð6Þ MeV, l̄phys

4 ¼ 3.18ð30Þ, and χ2=ðd:o:f:Þ ≃ 0.1.
After averaging the above results our determinations of

w0, f and l̄phys
4 based on the analysis of fπ are

w0 ¼ 0.17390ð157Þstatþfitð30Þsyst½160� fm; ð53Þ

f ¼ 124.0ð6Þstatþfitð7Þsyst½9� MeV; ð54Þ

l̄phys
4 ¼ 3.44ð27Þstatþfitð36Þsyst½45�; ð55Þ

FIG. 5. Values of the pion decay constant w0fπ corrected for FVEs according to Eq. (47) (open markers) and compared to the results of
the NLO ChPT fit corresponding to A2 ¼ 0 in Eq. (49) applied to all data points (Mπ ≲ 350 MeV). The solid line represents the results
of the fit in the continuum limit, while the dashed lines correspond to the fit evaluated at each value of β. The cross represents the result at
the physical pion point (4) corresponding to the value w0 ¼ 0.1740ð15Þ fm, obtained as described in the text.
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where ðÞstatþfit incorporates the uncertainties induced by
both the statistical errors and the fitting procedure itself,
ðÞsyst corresponds to the uncertainty related to chiral
interpolation, discretization and finite-volume effects,
while the last error is their sum in quadrature. More
precisely, the various systematic uncertainties are estimated
by considering the results obtained with A2 ¼ 0 or A2 ≠ 0
in the case of the chiral extrapolation, with D1 ≠ 0 or

D1 ¼ 0 (but limited to Mπ < 190 MeV) for the discretiza-
tion effects and with κFVE ¼ 1 or κFVE ≠ 1 for the FVEs.

B. Determination of the GF scale w0 using
the data for Xπ

In this section we illustrate the results of the analysis of
the lattice data for the quantityw0Xπ adopting the following
fitting function

w0Xπ ¼ ðw0fÞfð4πÞ4ξ2½1 − 2ξ logðξÞ þ 2A1ξþ A0
2ξ

2 þ a2ðD0
0 þD0

1ξÞ�g1=5
· ð1þ FFVEξ

2e−MπL=ðMπLÞ3=2Þ; ð56Þ

where the variable ξ is defined by Eq. (46), given in terms of
the pion mass corrected for the FVEs using the GL
formula (45), and the coefficient A1 is related to the LEC
l̄phys
4 by Eq. (22). In Eq. (56) we have taken into account that

the FVEs on Xπ start only at NNLO, i.e., at order Oðξ2Þ.
Their impact is obtained by including (FFVE ≠ 0) or by
excluding (FFVE ¼ 0) the higher order FVEs.Moreover, the
NLO chiral log is present only because we employ meson
masses and it would disappear if the light-quarkmass would
be instead considered (in this case the linear coefficient A1

provides directly the difference l̄phys
4 − l̄phys

3 ).
We have performed several fits similar to those adopted

in Sec. IVA and the corresponding results are collected in
Table III. The quality of the NLO fit with D0

1 ≠ 0 is
illustrated in Fig. 6, where it is also clearly visible the
presence of discretization effects proportional to a2M2

π , as
already observed in the case of w0fπ (see Fig. 5). We stress
that for both quantities, w0fπ and w0Xπ , the inclusion of a
discretization term proportional to a2M2

π leads to higher
values of w0. This result is reassuringly confirmed also by a
NLO fit without such a discretization term (i.e., D0

1 ¼ 0),
but limited to pion masses below≃190 MeV (see the fourth
row of Table III).
By averaging the last four results of Table III one has

w0 ¼ 0.17383ð57Þstatþfitð26Þsyst½63� fm; ð57Þ

f ¼ 124.0ð1.2Þstatþfitð0.7Þsyst½1.4� MeV; ð58Þ

l̄phys
4 ¼ 3.43ð28Þstatþfitð36Þsyst½46�; ð59Þ

which nicely agree with the corresponding results obtained
by the analysis of fπ given by Eqs. (53)–(55). Note that the
determination of w0 obtained using Xπ is more precise than
the one from fπ by a factor equal to ≈2.5.
Our result (57) is slightly larger than both theMILC result

w0 ¼ 0.1714þ15
−12 fm from Ref. [14] and the HPQCD result

w0 ¼ 0.1715ð9Þ fm fromRef. [15], obtained using the value
(6) to set the lattice scale.Within ≃ 1.5 standard deviations it
is consistent with the recent, precise BMW determination
w0 ¼ 0.17236ð70Þ, obtained in Ref. [16] using the Ω−-
baryon mass to set the lattice scale. Furthermore, the differ-
encewith the recent result w0 ¼ 0.1709ð11Þ fm, obtained in
Ref. [17] using theΩ−-baryon mass to set the lattice scale, is
within ∼2 standard deviations.
In Appendix D 2 the procedure used in this section to

determine the GF scale w0 is repeated in the case of the
scales

ffiffiffiffi
t0

p
and t0=w0, obtaining

ffiffiffiffi
t0

p ¼ 0.14436ð54Þstatþfitð30Þsyst½61� fm; ð60Þ

f ¼ 124.1ð1.2Þstatþfitð0.7Þsyst½1.4� MeV; ð61Þ

l̄phys
4 ¼ 3.37ð27Þstatþfitð38Þsyst½47�; ð62Þ

and

TABLE III. Results for w0 obtained by fitting the lattice data for w0Xπ using Eq. (56) and adopting the ISOQCD values (4) and (6) for
fixing the lattice scale at the physical pion point.

A0
2 ≠ 0 D0

1 ≠ 0 FFVE ≠ 0 Range of Mπ w0 (fm) f (MeV) l̄phys
4 χ2=ðd:o:f:Þ

No No No <350 MeV 0.17213 (47) 122.4 (0.7) 4.23 (9) 0.26
No Yes No <350 MeV 0.17394 (58) 124.4 (1.2) 3.24 (29) 0.03
No No No <190 MeV 0.17343 (53) 122.8 (1.0) 4.04 (16) 0.05
Yes Yes No <350 MeV 0.17378 (56) 124.3 (1.3) 3.27 (30) 0.04
No Yes Yes <350 MeV 0.17415 (61) 124.6 (1.3) 3.15 (35) 0.02
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t0=w0 ¼ 0.11969ð52Þstatþfitð33Þsyst½62� fm; ð63Þ

f ¼ 124.2ð1.4Þstatþfitð0.8Þsyst½1.6� MeV; ð64Þ

l̄phys
4 ¼ 3.31ð27Þstatþfitð40Þsyst½48�: ð65Þ

Our finding (60) is larger than the MILC result
ffiffiffiffi
t0

p ¼
0.1416þ8

−5 fm from Ref. [14] and the HPQCD result
ffiffiffiffi
t0

p ¼
0.1420ð8Þ fm from Ref. [15], while within ≃1.5 standard
deviations it is consistent with the recent result

ffiffiffiffi
t0

p ¼
0.1422ð14Þ fm from Ref. [17].
The values of the lattice spacing corresponding to the

three GF scales are collected in Table XII of Appendix D 2.

V. SU(2) CHPT ANALYSIS OF f K=f π

The kaon correlator

CKðtÞ ¼
1

L3

X
x;z

h0jq̄sðxÞγ5qlðxÞq̄lðzÞγ5qsðzÞj0iδt;ðtx−tzÞ

ð66Þ

has been evaluated for three values of the (valence) strange
bare quark mass aμs at each value of β, namely: aμs ¼
f0.0176; 0.0200; 0.0264g for the ensembles cA211,
aμs ¼ f0.0148; 0.0185; 0.0222g for the ensembles cB211
and aμs ¼ f0.0128; 0.0161; 0.0193g for the ensemble
cC211.06.80.

FIG. 6. Top panel: values of the quantity w0Xπ (open markers) compared to the results of the NLO fit corresponding to A0
2 ¼ FFVE ¼ 0

in Eq. (56) applied to all data points (Mπ ≲ 350 MeV). The solid line represents the results of the fit in the continuum limit, while the
dashed lines correspond to the fit evaluated at each value of β. The cross represents the result at the physical pion point (4) corresponding
to the value w0 ¼ 0.17394ð58Þ fm. Bottom panel: the quantity w0Xπ after subtraction of its extrapolation to the continuum limit. The
discretization terms proportional both to a2 and to a2ξ present in Eq. (56) are clearly visible.
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At large time distances one has

CKðtÞ
t ≫ a; ðT − tÞ ≫ a
������������! ZK

2MK
½e−MKt þ e−MKðT−tÞ�; ð67Þ

which allows the extraction of the kaon mass MK and the
matrix elementZK ¼ jhKjq̄sγ5qlj0ij2 from the exponential
fit given in the rhs of Eq. (67). The kaon decay constant fK
is given by

afK ¼ ðaμl þ aμsÞ
ffiffiffiffiffiffiffiffiffiffiffi
a4ZK

p
aMK sinhðaMKÞ

ð68Þ

and, using the pion data (16) for fπ, the ratio fK=fπ is
evaluated at each simulated strange bare quark mass. The
time intervals ½tmin; tmax� adopted for the fit (67) of the kaon
correlation function (66) are the same as those used for the
case of the pion correlator, collected in Table II.
As in the case of the pion data (see Sec. II), due to a small

deviation from maximal twist, a correction should be
applied to observables of the ensemble cA211.12.48. We
use the following formula (see Appendix B)

fKjcorrected ≃ fK · Kf; ð69Þ
with

Kf ¼
1

cos½ðθs þ θlÞ=2�
; ð70Þ

where, we remind,

1

cosðθiÞ
≡ Ki ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðZAmPCAC=μiÞ2

q
; ð71Þ

mPCAC is the bare untwisted PCAC mass, ZA is the
renormalization constant of the axial current and μi is
the bare twisted mass of the valence quarks. In the
degenerate case ms ¼ ml one gets Kf ¼ Kl, i.e.,
Eq. (19), while for ms ≫ ml one has Kf ≃ 1= cosðθl=2Þ.
Since the LECs of the SU(2) ChPT depend on the value

of the (renormalized) strange quark mass ms, we need to
interpolate the ratio fK=fπ at an approximately fixed value
of ms. To this end we take advantage of the fact that the
meson mass combination 2M2

K −M2
π is proportional to ms

at LO in ChPT. Thus, for each gauge ensemble, adopting a
simple quadratic spline, the lattice data for fK=fπ are
interpolated at a reference kaon mass given by

Mref
K ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMISOQCD

K Þ2 þM2
π − ðMISOQCD

π Þ2
2

s
; ð72Þ

with MISOQCD
π and MISOQCD

K chosen as in Eqs. (4) and (5),
respectively. The physical units for Mπ (and consequently
for Mref

K ) are obtained by using the results for the lattice
spacing given in Table XII of Appendix D 2 for each choice
of the GF scale. In what follows we make use of our
determination (57) of the GF scale w0. In this way the
renormalized strange quark mass mref

s corresponding to
Mref

K is kept close to its physical value.
The results obtained for the ratio fK=fπ interpolated at

the kaon reference mass (72) are shown in Fig. 7 for all the
ETMC gauge ensembles. The statistical errors of the data
lie in the range 0.1 ÷ 0.6%.
We now apply the correction for FVEs using the GL

formula and the expansion variable ξ̄π defined as

FIG. 7. Values of the ratio fK=fπ interpolated at the kaon reference mass (72) versus the squared pion mass. The vertical dotted line
indicates the location of the physical ISOQCD point (4). For the ensemble cA211.12.48 the corrected value of the ratio fK=fπ , obtained
using Eqs. (18) and (69), is considered.
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ξ̄π ≡M2
πðLÞ

ð4πfÞ2 ; ð73Þ

where f is fixed at the value given by Eq. (58). For the pion
and kaon decay constants the NLO FVE corrections are
respectively given by [23]

Δπ
FVEðLÞ ¼ −2ξ̄π g̃1ðMπLÞ; ð74Þ

ΔK
FVEðLÞ ¼ −

3

4
ξ̄π g̃1ðMπLÞ; ð75Þ

so that the overall FVE correction for fK=fπ is given by

fK
fπ

ðL → ∞Þ ¼ fK
fπ

ðLÞ
�
1 −

5

4
ξ̄π g̃1ðMπLÞ

�
: ð76Þ

Finally, in terms of the variable ξ, defined in Eq. (46), the
data for ðfK=fπÞðL → ∞Þ are fitted using the following
ansatz

fK
fπ

ðL → ∞Þ ¼ R0

�
1þ 5

4
ξ logðξÞ þ R1ξþ R2ξ

2

þ a2

w2
0

ðD̃0 þ D̃1ξÞ
�

ð77Þ

where with respect to the well-known SU(2) ChPT pre-
diction at NLO a quadratic term in ξ as well as discretization
effects proportional to a2 and a2M2

π have been added.
The free parameters appearing in Eq. (77) are R0, R1, R2,

D̃0, D̃1 and their values are obtained by a straightforward
χ2-minimization procedure. We have performed several fits
based on Eq. (77) and the results for the ratio
ðfK=fπÞISOQCD at the physical pion point (4) are collected
in Table IV.
The quality of the NLO fit with R2 ¼ D̃1 ¼ 0 is

illustrated in Fig. 8. It can be seen that FVEs are properly
taken care of and that discretization effects are quite small.
As a check of the impact of FVEs we multiply the GL
correction in Eq. (76) by a factor κFVE, which is treated as a
further free parameter in the NLO fit. The factor κFVE turns
out to be consistent with unity, κFVE ¼ 1.19ð24Þ, and the
NLO result ðfK=fπÞISOQCD ¼ 1.1995ð35Þ is reassuringly
confirmed.
Putting together all the various results we obtain�

fK
fπ

�
ICQD

¼ 1.1995ð44Þstatþfitð7Þsyst½44�; ð78Þ

where we remind that ðÞstatþfit incorporates the uncertainties
induced by both the statistical errors and the fitting
procedure itself. Adopting the results of the ODE procedure
(see Appendix B) for the extraction of the pion and kaon
masses and decay constants the analysis of the ratio fK=fπ
yields �

fK
fπ

�
ICQD

¼ 1.1994ð43Þstatþfitð7Þsyst½43�; ð79Þ

which compares very well with the finding (78).

TABLE IV. Results for the decay constant ratio ðfK=fπÞISOQCD
at the physical ISOQCD point, given by Eqs. (4) and (5), obtained
using the fitting function (77).

R2 ≠ 0 D̃1 ≠ 0 Range of Mπ ðfK=fπÞISOQCD χ2=ðd:o:f:Þ
No No <350 MeV 1.1995 (35) 0.53
No Yes <350 MeV 1.1984 (54) 0.58
No No <190 MeV 1.2005 (48) 1.40
Yes No <350 MeV 1.1998 (32) 0.37

FIG. 8. Values of the ratio fK=fπ corrected for FVEs according to Eq. (76) (open markers) compared to the results of the NLO fit
corresponding toR2 ¼ D̃1 ¼ 0 in Eq. (77) applied to all pion masses (Mπ ≲ 350 MeV). The solid line represents the results of the fit in the
continuum limit, while the dashed lines correspond to the fit evaluated at each value of β. The cross represents the result at the physical pion
point (4).
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The present result (78) improves drastically the precision
of the previous Nf ¼ 2þ 1þ 1 ETMC determination
ðfK=fπÞISOQCD ¼ 1.188ð15Þ [19] by a factor of ≃3.5
reaching the level of ≃0.4%. For comparison, the Nf¼
2þ1þ1 determinations, entering the FLAG-4 average [18]
and corrected for strong IB effects, yield a consistent
value within the uncertainties, namely ðfK=fπÞISOQCD ¼
1.1966ð18Þ [15,19,20]. Our finding (78) is also in good
agreement with the recent determination ðfK=fπÞISOQCD ¼
1.1964ð44Þ obtained in Ref. [35] adopting the same
ISOQCD prescription in a mixed-action approach
(domain-wall valence quarks with staggered sea quarks).

VI. IMPLICATIONS FOR Vus AND THE
FIRST-ROW CKM UNITARITY

Inserting our ISOQCD result (78) into Eq. (3) the ratio of
the CKM entries Vus and Vud is given by���� Vus

Vud

���� ¼ 0.23079ð24Þexpð87Þth ¼ 0.23079ð90Þ: ð80Þ

Using the value jVudj ¼ 0.97370ð14Þ from superallowed
nuclear beta decays [2,21], which updates the old result
Vud ¼ 0.97420ð21Þ from Ref. [8], Eq. (3) yields the
following value for the CKM element jVusj:

jVusj ¼ 0.22472ð24Þexpð84Þth ¼ 0.22472ð87Þ; ð81Þ

which is in good agreement with the latest estimate jVusj ¼
0.2252ð5Þ from leptonic modes provided by the PDG [2].
Using the values jVubj ¼ 0.00382ð24Þ [2] and jVudj ¼

0.97370ð14Þ [2,21] our result (81) implies for the unitarity
of the first-row of the CKM matrix the value

jVudj2 þ jVusj2 þ jVubj2 ¼ 0.99861ð48Þ; ð82Þ

which in turn would imply a ≃3σ tension with unitarity
from leptonic modes. Had we used the result Vud ¼
0.97420ð21Þ from Ref. [8] the first-row CKM unitarity
would be fulfilled within one standard deviation, i.e.,
within a precision of ≃0.5 permil.
Another source of information on Vus is represented by

the semileptonic Kl3 decay. In this case the relevant
hadronic quantity is the vector form factor at zero momen-
tum transfer fþð0Þ. From the high-precision experimental
data on Kl3 decays one has Vusfþð0Þ ¼ 0.2165ð4Þ [36].
Using the ETMC determination fþð0Þ ¼ 0.9709ð46Þ

obtained with Wilson twisted-mass quarks in Ref. [37],
one gets the semileptonic result Vus ¼ 0.2230ð11Þ to be
compared with the leptonic one given in Eq. (81).
The above finding is combined with Eq. (80) to obtain
the red ellipse in Fig. 9, which represents a 68% likelihood
contour. For comparison the blue ellipse corresponds to
the FLAG-4 contour for Nf ¼ 2þ 1þ 1 [18], defined
by the bands corresponding to Vus ¼ 0.2231ð7Þ and
Vus=Vud ¼ 0.2313ð5Þ. The two determinations of Vud
obtained in Refs. [8] and [21] are also shown. Finally,
the dotted line represents the correlation between Vus and
Vud when the CKM matrix is taken to be unitary.

VII. CONCLUSIONS

We have presented a determination of the ratio of kaon
and pion leptonic decay constants in ISOQCD, fK=fπ ,
adopting the gauge ensembles produced by ETMC with
Nf ¼ 2þ 1þ 1 flavors of Wilson-clover twisted-mass
quarks, including configurations close to the physical point
for all dynamical flavors.

FIG. 9. The plot compares the information for Vud and Vus obtained in the FLAG-4 review forNf ¼ 2þ 1þ 1 [18] and in this work by
using Eq. (80) and the semileptonic result of Ref. [37]. The determinations of Vud obtained from superallowed nuclear β transitions
obtained in Refs. [8] and [21] are also shown as green and orange bands, labeled, respectively,HT and SGPR. The dotted line indicates the
correlation between Vud and Vus that follows assuming the unitarity of the CKMmatrix. The ellipses represent 68% likelihood contours.
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The simulations are carried out at three values of the
lattice spacing ranging from ∼0.068 to ∼0.092 fm with
linear lattice size up to L ∼ 5.5 fm. The scale is set using
the value the pion decay constant fISOQCDπ ¼
130.4ð2Þ MeV taken from Ref. [7]. Two observables, fπ
and ðfπM4

πÞ1=5, have been analyzed within the framework
of SU(2) ChPT without making use of renormalized quark
masses. The latter quantity is found to be marginally
affected by lattice artifacts and provides a precise deter-
mination of the GF scales, namely w0 ¼ 0.17383ð63Þ fm,ffiffiffiffi
t0

p ¼ 0.14436ð61Þ fm and t0=w0 ¼ 0.11969ð62Þ fm.
As for the decay constant ratio fK=fπ we get at the

physical ISOQCD point, defined by Eqs. (4)–(6), the result�
fK
fπ

�
ISOQCD

¼ 1.1995ð44Þ; ð83Þ

where the error includes both statistical and systematic
uncertainties in quadrature. Our result (83) agrees nicely
with the recent Nf ¼ 2þ 1þ 1 determinations, entering
the FLAG-4 average [18] and corrected for strong IB
effects, namely ðfK=fπÞISOQCD ¼ 1.1966ð18Þ [15,19,20].
Taking the updated value jVudj ¼ 0.97370ð14Þ from

superallowed nuclear beta decays [2,21], Eqs. (3) and
(83) yield the following value for the CKM element jVusj:

jVusj ¼ 0.22472ð24Þexpð84Þth ¼ 0.22472ð87Þ; ð84Þ

which is nicely consistent with the latest estimate jVusj ¼
0.2252ð5Þ from leptonic modes provided by the PDG [2].
Correspondingly, using jVubj ¼ 0.00382ð24Þ [2] the first-
row CKM unitarity becomes

jVudj2 þ jVusj2 þ jVubj2 ¼ 0.99861ð48Þ; ð85Þ

which would imply a ≃ 3σ tension with unitarity from
leptonic modes.
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APPENDIX A: ALGORITHMIC DETAILS
AND PARAMETERS FOR THE ETMC

GAUGE ENSEMBLES

In Appendix A 1, we present the algorithmic setup
employed for the generation of our ensembles of gauge
configurations, while the simulation parameters are given
in Table V.

1. Integrator setups

In the generation of gauge ensembles via the hybrid
Monte Carlo algorithm, the effective lattice action can be
represented by a sum over monomials corresponding to
different contributions to the partition function as defined
below. In the integration of the equations of motion, the
forces contributed by the different monomials differ by
orders of magnitude, allowing them to be integrated on
different time scales accordingly, as detailed in Table VI
below.
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a. Monomial types

We define below the different types of monomials that we employ in our effective lattice action to simulate QCD using
Nf ¼ 2þ 1þ 1 twisted mass clover fermions.

Gauge [gauðβ; c1Þ]

β

3

X
x

�
c0

X4
μ;ν¼1
1≤μ<ν

f1 − ReTrðU1×1
x;μ;νÞg þ c1

X4
μ;ν¼1
μ≠ν

f1 − ReTrðU1×2
x;μ;νÞg

�
; ðA1Þ

with c0 ¼ ð1 − 8c1Þ, for the Iwasaki action used here [24], c1 ¼ −0.331.
Degenerate determinant [detðρÞ] The action contribution of a degenerate doublet of clover-improved twisted mass
quarks is given by

S½χ; χ̄; U� ¼
X
x

	
χ̄ðxÞ½1þ 2κcSWT þ 2iκμγ5τ3�χðxÞ − κχ̄ðxÞ

X4
μ¼1

½UμðxÞðr − γμÞχðxþ aμ̂Þ

þU†
μðx − aμ̂Þðrþ γμÞχðx − aμ̂Þ�



≡X

x;y

χ̄ðxÞMxyχðyÞ; ðA2Þ

in the twisted basis and in the hopping parameter
normalization, where T is the clover term. In our
simulations we use the conventional value r ¼ 1.
For convenience, we define μ̃≡ 2κμ and absorb

2κcSW into T, defining the two-flavor operator

Q≡ γ5M ¼
�
Qþ

Q−

�
; ðA3Þ

and the Hermitian operator Qsw ¼ γ5Dsw, where in
turn Dsw is the clover-improved Wilson Dirac oper-
ator. We then have Q� ¼ Qsw � iμ̃, such that
Q†

þ ¼ Q− and QþQ− ¼ Q2
sw þ μ̃2. The contribution

to the partition function of the mass-degenerate (light)
twisted mass quark doublet is thus given by
detðQþQ−Þ ¼ detðQ2

sw þ μ̃2Þ.

An even-odd Schur decomposition of the subma-
trices Q� then gives

Q�¼ γ5

�
1þTee� iμ̃γ5 Meo

Moe 1þToo� iμ̃γ5

�

¼ γ5

�
M�

ee Meo

Moe M�
oo

�

¼
�
γ5M�

ee 0

γ5Moe 1

��
1 ðM�

eeÞ−1Meo

0 γ5ðM�
oo−MoeðM�

eeÞ−1MeoÞ

�
;

ðA4Þ

from which we obtain Q̂� defined only on the odd
sites of the lattice

TABLE V. Simulation parameters for the ensembles used for this study. Please refer to Appendix A 1 for details on the integrator
setup.

Ensemble β cSW κ V=a4 aμl aμσ aμδ λmin λmax

cA211.53.24 1.726 1.74 0.1400645 243 × 48 0.00530 0.1408 0.1521 0.0000376 4.7
cA211.40.24 243 × 48 0.00400
cA211.30.32 323 × 64 0.00300
cA211.12.48 0.1400650 483 × 96 0.00120

cB211.25.24 1.778 1.69 0.1394267 243 × 48 0.00250 0.1246864 0.131052 0.0000344 4.3
cB211.25.32 323 × 64 0.00250
cB211.25.48 483 × 96 0.00250
cB211.14.64 643 × 128 0.00140
cB211.072.64 0.1394265 643 × 128 0.00072 0.00005 4.7

cC211.06.80 1.836 1.6452 0.13875285 803 × 160 0.00060 0.106586 0.107146 0.0000376 4.7
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TABLE VI. Integrators setup used for the ensembles analyzed in this study. The number of timescales and trajectory length, τ, used for
each ensemble are indicated in the respective headers.

Id Type Ns λ Monomials

cA211.53.24, 5 timescales, τ ¼ 1.0
0 2MN 1 0.193 gauðβ; c1Þ
1 2MN 1 0.195 det(0.1)
2 2MN 1 0.197 detrat(0.02,0.1), rat(0,5)
3 2MN 1 0.200 detrat(0.003,0.02), rat(6,7)
4 2MN 9 0.205 detrat(0,0.003), rat(8,9)

cA211.40.24, 5 timescales, τ ¼ 1.0
0 2MN 1 0.193 gauðβ; c1Þ
1 2MN 1 0.195 det(0.1)
2 2MN 1 0.197 detrat(0.02,0.1), rat(0,5)
3 2MN 1 0.200 detrat(0.003,0.02), rat(6,7)
4 2MN 9 0.205 detrat(0,0.003), rat(8,9)

cA211.30.32, 5 timescales, τ ¼ 1.0
0 2MN 1 0.193 gauðβ; c1Þ
1 2MN 1 0.195 det(0.1)
2 2MN 1 0.197 detrat(0.02,0.1), rat(0,5)
3 2MN 1 0.200 detrat(0.003,0.02), rat(6,7)
4 2MN 12 0.205 detrat(0,0.003), rat(8,9)

cA211.12.48, 6 timescales, τ ¼ 1.0
0 2MN 1 0.185 gauðβ; c1Þ
1 2MN 1 0.190 det(0.16)
2 2MN 1 0.195 detrat(0.03,0.16), rat(0,2)
3 2MN 1 0.200 detrat(0.006,0.03), rat(3,4)
4 2MN 1 0.205 detrat(0.001,0.006), rat(5,6)
5 2MN 17 0.210 detrat(0,0.001), rat(7,9)

Id Type Ns λ Monomials

cB211.25.24/32, 4 timescales, τ ¼ 1.5
0 2MNFG 1 0.167 gauðβ; c1Þ
1 2MNFG 1 0.167 det(0.3), rat(0,3)
2 2MNFG 1 0.167 detrat(0.045,0.3), detrat(0.0045,0.045), rat(4,5)
3 2MN 13 0.193 detrat(0,0.045), rat(6,9)

cB211.25.48, 5 timescales, τ ¼ 1.0
0 2MN 1 0.193 gauðβ; c1Þ
1 2MN 1 0.195 det(0.24)
2 2MN 1 0.197 detrat(0.033,0.24), rat(0,5)
3 2MN 1 0.200 detrat(0.004,0.033), rat(6,7)
4 2MN 15 0.205 detrat(0,0.004), rat(8,9)

cB211.14.64, 4 timescales, τ ¼ 1.5
0 2MNFG 1 0.167 gauðβ; c1Þ
1 2MNFG 1 0.167 det(0.2), rat(0,3)
2 2MNFG 1 0.167 detrat(0.02,0.2), detrat(0.002,0.02), rat(4,5)
3 2MN 23 0.193 detrat(0,0.002), rat(6,9)

cB211.072.64, 6 timescales, τ ¼ 1.0
0 2MN 1 0.185 gauðβ; c1Þ
1 2MN 1 0.190 det(0.1)
2 2MN 1 0.195 detrat(0.01,0.1), rat(0,2)
3 2MN 1 0.200 detrat(0.0012,0.01), rat(3,5)
4 2MN 1 0.205 detrat(0.0003,0.0012), rat(6,7)
5 2MN 12 0.205 detrat(0,0.0003), rat(8,9)

cC211.06.80, 4 timescales, τ ¼ 1.0
0 2MNFG 1 0.167 gauðβ; c1Þ
1 2MNFG 1 0.167 det(0.12), rat(0,3)
2 2MNFG 1 0.167 detrat(0.012,0.12), detrat(0.0012,0.012), rat(4,6)
3 2MN 14 0.193 detrat(0,0.0012), rat(7,9)
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Q̂� ¼ γ5ðM�
oo −MoeðM�

eeÞ−1MeoÞ: ðA5Þ

The light quark determinant can then be reexpressed as

detðQþQ−Þ ¼ detðMþ
eeM−

eeÞ · detðQ̂þQ̂−Þ: ðA6Þ

In order to implement mass preconditioning, the
Q̂� can be shifted by a constant through the addition
of a further twisted mass: Ŵ�ðρÞ ¼ Q̂� � iρ, such
that ŴþŴ− ¼ Q̂þQ̂− þ ρ2. It should be noted that
this shift is applied to the even-odd-preconditioned
operator, such that the factorM�

ee remains independent
of ρ since its inverse is nontrivial.
In terms of pseudofermion fields, one thus obtains a

contribution to the partition functionZ
Dϕ†

1Dϕ1 expf−ϕ†
1ðŴþŴ−Þ−1ϕ1g; ðA7Þ

which we refer to as the degenerate determinant and a
corresponding contributionZ

Dϕ†
2Dϕ2 exp

	
−ϕ†

2Ŵ−
1

Q̂þQ̂−
Ŵþϕ2



; ðA8Þ

which we refer to as a determinant ratio.
Determinant ratio [detratðρb; ρtÞ] Equation (A8)
generalizes to the introduction of multiple shifts
ρ1; ρ2;…; ρn to contributions of the form:Z

Dϕ†
iDϕi

× exp

	
−ϕ†

i Ŵ−ðρtÞ
1

ŴþðρbÞŴ−ðρbÞ
ŴþðρtÞϕi



:

ðA9Þ

The pseudofermion fields ϕi are defined only on the
odd sites of the lattice and are generated from a
random spinor field Ri, sampled from a normalized
Gaussian distribution at the beginning of each molecu-
lar dynamics trajectory. In the case of the determinant,
we have ϕi ¼ Q̂þRi, while in the case of the deter-
minant ratio we have ϕj ¼ ðŴþðρtÞÞ−1ŴþðρbÞRj.
The complete mass-preconditioned contribution

with n shifts is thus given by

detðρnÞ · detratðρn−1; ρnÞ · detratðρn−2; ρn−1Þ ·…
· detratð0; ρ1Þ; ðA10Þ

where the last factor has the form of Eq. (A8) with the
target twisted quark mass in Q̂�. In general, the

different contributions are integrated on multiple
timescales because their contributions to the force
differ by orders of magnitude.

Rational approximation partial fraction [ratðnl; nkÞ]
The Dirac operator for the nondegenerate flavor
doublet employed in the strange-charm sector reads

Dhðμ̄; ϵ̄Þ ¼ Dsw · 1f þ iμ̄γ5τ3f − ϵ̄τ1f; ðA11Þ

with the property

D†
h ¼ τ1fγ5Dhγ5τ

1
f: ðA12Þ

Equivalently, as used (without the clover term) in
Ref. [42], one may write

D0
hðμσ; μδÞ ¼ Dsw · 1f þ iμσγ5τ1f þ μδτ

3
f; ðA13Þ

which is related to Dh by D0
h¼ð1þiτ2fÞDhð1−iτ2fÞ=2

and ðμσ; μδÞ → ðμ̄;−ϵ̄Þ.
As before, we define Qh ¼ γ5Dh and the imple-

mentation of even-odd preconditioning translates
straightforwardly from the mass-degenerate case,
although the construction of Mh

ee has to take into
account the additional (off-diagonal) flavor structure.
The operator Q̂h, defined only on the odd sites, has

the property Q̂†
h ¼ τ1fQ̂hτ

1
f and the nondegenerate

quark doublet contributes a factor

detðQhÞ ∝ detðQ̂hÞ ðA14Þ

to the partition function, which we simulate via

½detðQ̂2
hÞ�1=2 ≈ detðR−1Þ; ðA15Þ

where we made use of the shorthand notation
Q̂2

h ¼ Q̂hτ
1
fQ̂hτ

1
f.

We use a rational approximation of order N (see
Refs. [43–45])

RðQ̂2
hÞ ¼ A

YN
i¼1

Q̂2
h þ a2i

Q̂2 þ a2i−1
≈

1ffiffiffiffiffiffi
Q̂2

h

q : ðA16Þ

For this, we employ the Zolotarev solution [46] for the
optimal approximation to 1=

ffiffiffi
y

p
, where the coeffi-

cients ai satisfy the property

a1 > a2 > … > a2N > 0: ðA17Þ

The amplitude A, the coefficients ai and the maxi-
mal deviation of the rational approximation δ ¼
maxyj1 − ffiffiffi

y
p

RðyÞj are computed analytically at given
order N and lower bound ϵ < y < 1. These are
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ai ¼ cs2ði ·v;
ffiffiffiffiffiffiffiffiffiffi
1− ϵ

p
Þ with v¼Kð ffiffiffiffiffiffiffiffiffiffi

1− ϵ
p Þ
2Nþ1

; ðA18Þ

A¼ 2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1−d2

p
YN
j¼1

s2j−1
s2j

with si¼ sn2ði ·v;
ffiffiffiffiffiffiffiffiffi
1−ϵ

p
Þ;

ðA19Þ

δ ¼ d2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d2

p with d ¼ ð1 − ϵÞ2Nþ1
2

YN
j¼1

s2ð2j−1Þ;

ðA20Þ
where snðu; kÞ and csðu; kÞ ¼ cnðu; kÞ=snðu; kÞ are
Jacobi elliptic functions and KðkÞ is the complete
elliptic integral. In all our simulations we use N ¼ 10
and ϵ ¼ λmin=λmax where λmin and λmax are, respec-
tively, the lower and upper bound of the eigenvalues of
Q̂2

h. In order to have all the eigenvalues λ in the range
ϵ < λ < 1, we rescale Q̂2

h with λmax. The values of λmin
and λmax per ensemble are given in Table V. In the
simulation, we explicitly check that the eigenvalues of
Q̂2

h remain within these bounds.
The factors in the approximation can be grouped

RðQ̂2
hÞ ¼ Arl1ðQ̂2

hÞ · rklðQ̂2
hÞ ·…; ðA21Þ

where

rnknlðQ̂2
hÞ ¼

Ynk
i¼nl

Q̂2
h þ a2i−1
Q̂2

h þ a2i
¼ ratðnl; nkÞ: ðA22Þ

We perform partial fraction expansions of the terms

rnknlðQ̂2
hÞ ¼ 1þ

Xnk
i¼nl

qi
Q̂2

h þ μ2i
; ðA23Þ

such that the necessary matrix inverse can be calcu-
lated efficiently using a multishift solver. The coef-
ficients qi are given by

qi¼ða2i−1−a2iÞ
Ynk

m¼nl;m≠i

a2m−1−a2i
a2m−a2i

; i¼nl;…;nk:

ðA24Þ
We can further define μi ¼ ffiffiffiffiffiffi

a2i
p

and νi ¼ ffiffiffiffiffiffiffiffiffiffi
a2i−1

p
and

express qi as

qi ¼ ðν2i − μ2i Þ
Ynk

m¼nl;m≠i

ν2m − μ2i
μ2m − μ2i

; i ¼ nl;…; nk:

ðA25Þ
At the beginning of each trajectory, pseudofermion
fields are generated as follows: again a random spinor

field R is sampled from a Gaussian distribution. Now,
we need to compute pseudofermion fields ϕ from

R†R ¼ ϕ†Rϕ

and, therefore, we need operators C† and C with the
property

R−1 ¼ C† · C; ⇒ ϕ ¼ C · R:

C is given by (inspired by twisted mass)

C ¼
YN
i¼1

Q̂h þ iμi
Q̂h þ iνi

;

which can again be written as a partial fraction

C ¼ 1þ i
XN
i¼1

ri
Q̂h þ iνi

;

with

ri ¼ ðμi − νiÞ
YN

m¼1;m≠i

μm − νi
νm − νi

; i ¼ 1;…; N:

The rational approximation R can be applied to
a vector using a multimass solver and the partial
fraction representation. The same works for C: after
solving N equations simultaneously for ðQ̂2

h þ ν2i Þ−1,
i ¼ 1;…; N, we have to multiply every term with
ðQ̂h − iνiÞ. The Hermitian conjugate of C is given by

C† ¼ 1 − i
XN
i¼1

ri
Q̂h − iνi

;

using Q̂†
h ¼ Q̂h. For the acceptance step only the

application of R is needed.
Rational approximation correction factor [ratcorðnÞ]
The rational approximation R only has a finite
precision. This finite precision can be accounted for
during the acceptance step in the hybrid Monte Carlo
(HMC) by estimating [45] 1 − jQ̂hjR, if the rational
approximation is precise enough. This can be
achieved by including a monomial detðjQ̂hjRÞ in
the simulation, for which one needs an operator B

B · B† ¼ jQ̂hjR:

Following Ref. [45], B can be written as

B ¼ ð1þ ZÞ1=4 ¼
Xm
i¼0

ciZi

¼ 1þ 1

4
Z −

3

32
Z2 þ 7

128
Z3 þ…;

RATIO OF KAON AND PION LEPTONIC DECAY CONSTANTS … PHYS. REV. D 104, 074520 (2021)

074520-19



with Z ¼ Q̂2
hR

2 − 1. The series converges rapidly and
can, thus, be truncated after a few terms, mþ 1. The
convergence can actually be controlled during the sim-
ulation and the truncation does not need to be fixed.
We choose to sum the series until the contribution
of the given term to the acceptance Hamiltonian is
below the residual precision squared, r2, that we
employ for the solution of the linear systems involved
in the approximation ofR in the acceptance step, such
that jcmZmϕj2 < r2, which we typically choose to be
at the limit of double precision arithmetic.
For this monomial the pseudofermion field is

computed from

ϕ ¼ B · R;

where R is again a Gaussian random vector, see above.

b. Simulation parameters

In Table VI we list monomials and parameters used per
ensemble. The monomials are grouped in various time-
scales where the one with the highest id is the outermost
timescale (with the fewest integration steps) into which the
other time scales are nested. For the various timescales two
integrator types are used, either the second order minimal
norm (2MN) integrator or its extension with a force
gradient (2MNFG), making the latter a fourth-order inte-
grator [47]. The number of steps per timescale is indicated
with Ns.
The time evolution operator exp½ðδτÞHMD� for a given

MD Hamiltonian can be decomposed into “kinetic” and
“potential” parts, exp ½ðδτÞðT þ VÞ�. To a given order n in
the time step δτ, this can be factorized

exp ½ðδτÞðT þ VÞ� ¼
Yn
i¼1

exp½ciðδτÞT� exp½diðδτÞV�

þO½ðδτÞnþ1�: ðA26Þ

By expanding the left-hand side of Eq. (A26) (being
mindful of the noncommutativity of T and V) and matching
the coefficients ci and di of terms of equal order in δτ,
explicit factorizations can be constructed. In practice, the
expansion of the left-hand side is only formal and one
attempts instead to formulate order equations in the
coefficients ci and di to eliminate terms which are
expensive to compute (stemming from commutators of T
and V) to satisfy the equality to some approximation. For
2MN and 2MNFG, these equations can be reformulated in
terms of a coefficient λ.
The 2MNFG scheme is now given by setting λ ¼ 1=6,

which cancels out one of the second order commutators
½T; ½V; T��. Now, the remaining term ½V; ½V; T�� can be
canceled using the force gradient term. It turns out that for

the 2MN integrator an optimal value for λ is larger than
1=6. Namely assuming unity of the second order commu-
tators and neglecting any correlations leads to the optimal
value of λ ≈ 0.1931833275. In the usage of the 2MN
integrator with multiple timescales, experience suggests
that further deviations from this optimal value improve the
acceptance rate, such that we often use schemes with
increasing values of λ from the innermost to the outermost
time scale, as shown in Table VI.

2. Software details

The simulations presented in this study have been
generated using the tmLQCD [48–50] software suite,
which provides all the necessary components to perform
Nf ¼ 2þ 1þ 1 simulations of twisted mass clover fer-
mions, including implementations of the polynomial and
rational HMC algorithms for the nondegenerate determi-
nant. To enable multigrid solvers to be used in simulations
[51], tmLQCD provides an interface to DDαAMG [52], a
multigrid solver library optimized for twisted mass (clover)
fermions [53]. The force calculation of some monomials in
the light quark sector is accelerated by a 3-level multigrid
approach. Moreover, we extended the DDαAMG method
for the mass nondegenerate twisted mass operator. The
multigrid solver used in the rational approximation [54] is
particularly helpful for the lowest terms of the rational
approximation, as well as for the rational approximation
corrections in the acceptance step, where it yields a speed
up of two over the standard multimass shifted conjugate
gradient solver on traditional distributed-memory
machines based on Intel Skylake or AMD EPYC
architectures.
On the other hand, especially on machines based on

Intel’s Knight’s Landing (KNL) architecture, only the most
poorly conditioned monomials benefit from the usage of
DDαAMG, to the point where (on KNL) the inversion of
the nondegenerate operator does not benefit at all. To
improve efficiency, tmLQCD also provides an interface to
the QPhiX [55] lattice QCD library, which we have
refactored and extended [56] to support twisted mass
clover fermions, including the nondegenerate doublet.
For solves related to the degenerate determinant and
determinant ratios, this allows us to efficiently and flexibly
combine mixed-precision CG and SIMD vector lengths of
8 or 16 as required by AVX512. On KNL, single-precision
QPhiX kernels are up to a factor of 5 more efficient than
their tmLQCD-native equivalents. Also in the multimass
shifted conjugate gradient solves in the nondegenerate
sector, the double-precision kernels in QPhiX are up to
a factor of 2 more efficient than the tmLQCD-native
equivalents on KNL. Combined, these efficiency improve-
ments lead to overall speedup factors of 2–3 in the HMC on
this architecture with smaller overall gains on Skylake
and EPYC.
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APPENDIX B: EXTRACTION OF aMπ AND af π
USING THE ODE PROCEDURE

The spectral decomposition of the pion correlation
function (14) can be investigated adopting the ODE
procedure of Ref. [22]. This method is able to extract
exponential signals from the temporal dependence of a
lattice correlator without any a priori knowledge of the
multiplicity of each signal and it does not require any
starting input for the masses and the amplitudes of the
signals.
The ODE approach is sensitive to the noise of the

correlator, so that pure oscillating signals (conjugate pairs
of imaginary masses) may typically appear in the ODE
spectral decomposition. Therefore, we adopt an improved
version of the ODE procedure, in which a subsequent χ2-
minimization procedure is applied to the non-noisy part of
the ODE spectral decomposition [22]. In this way the
accuracy of the physical (i.e., non-noisy) part of the ODE
spectral decomposition is improved.
The time intervals ½tmin; tmax� adopted for the analysis

and the extracted values of the pion mass and decay
constant in lattice units are collected in Table VII.
Within the ODE procedure we searched for eight

exponential signals in the time intervals of Table VII
and in all cases at least two physical (non-noisy) expo-
nential signals were found. Then, a χ2-minimization
procedure was applied using the physical ODE solution
as the starting point. The minimized values of the χ2

variable turned out to be always less than 1.
The extracted values as well as their statistical errors of

the ground-state mass and decay constant, collected in
Table VII, are nicely consistent with the corresponding
ones obtained by the direct single exponential fit (15)
shown in Table II.
Using the above pion data for fπ the NLO analysis of

Sec. IVA, including the discretization term proportional to
a2M2

π , yields for the GF scale w0 the value

w0 ¼ 0.1740ð16Þ fm ðB1Þ

in agreement with the result (52). Analogously, the use of
the data for Xπ and of the NLO fit (56) with A0

2 ¼ FFVE ¼ 0

(see Sec. IV B) leads to

w0 ¼ 0.17389ð61Þ fm ðB2Þ

in agreement with the corresponding result shown in the
second row of Table III.

APPENDIX C: MAXIMAL TWIST CORRECTIONS
FOR MASSES AND DECAY CONSTANTS

We follow the general approach of Ref. [30] to the mixed
action formulation of twisted mass lattice QCD, which
ensures an unitary continuum limit (provided sea and
valence renormalized quark masses are matched). Here
however we allow for small deviations (due e.g., to
numerical errors) from the maximal twist case, i.e.,
for m0 ≠ mcr.

1. Nf = 2 + 1 + 1 isosymmetric QCD with twisted
clover Wilson quarks

The lattice action can be conveniently written in terms of
gauge, sea quark and valence quark plus valence ghost
fields. If the sea quarks are arranged in two-flavor fields χl
and χh and the valence quarks are described by one-flavor
fields χf, with f ¼ u; d;…, then we have

S ¼ Sg½U� þ Sltm½χl; χ̄l; U; μl; 0;m0�
þ Shtm½χh; χ̄h; U; μσ; μδ;m0�
þ Sval½fχf; χ̄fg; U; fμfg; m0�; ðC1Þ

with the valence sector given by

TABLE VII. The time intervals ½tmin; tmax� adopted for the extraction of the pion mass and decay constant in lattice
units obtained by applying the ODE method to the pion correlation function (14).

Ensemble β V=a4 ½tmin=a; tmax=a� aMπ afπ

cA211.53.24 1.726 243 × 48 [5, 24] 0.16621(40) 0.07106(36)
cA211.40.24 243 × 48 [5, 24] 0.14473(76) 0.06809(30)
cA211.30.32 323 × 64 [6, 32] 0.12523(18) 0.06675(15)
cA211.12.48 483 × 96 [6, 48] 0.08000(28) 0.06139(34)

cB211.25.24 1.778 243 × 48 [6, 24] 0.10750(189) 0.05351(48)
cB211.25.32 323 × 64 [6, 32] 0.10454(43) 0.05656(37)
cB211.25.48 483 × 96 [6, 48] 0.10454(13) 0.05727(11)
cB211.14.64 643 × 128 [7, 64] 0.07845(8) 0.05476(12)
cB211.072.64 643 × 128 [7, 64] 0.05659(8) 0.05266(15)

cC211.06.80 1.836 803 × 160 [7, 80] 0.04721(7) 0.04504(10)
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Sval ¼ χ̄u½DWclov þm0 þ iμlγ5�χu
þ χ̄d½DWclov þm0 − iμlγ5�χd
þ χ̄s½DWclov þm0 − iμsγ5�χs
þ χ̄c½DWclov þm0 þ iμcγ5�χc
þ � � � þ ghost terms; ðC2Þ

where ellipses stand for possible replica (χ0f) of the valence
quarks with μ0f ¼ −μf and the ghost terms exactly cancel
the valence fermion contributions to the effective action.
Here we find it convenient to express all fermion fields in
the canonical quark basis for untwisted Wilson fermions
and denote by DWclov the well-known clover improved
(gauge covariant) Dirac matrix: DWclov ¼ DWclov½U� ¼
γ · ˜∇½U� − ða=2Þ½∇� · ∇�½U� þ iðc=4Þσ · Fclover½U�.
We start by discussing the light valence quark sector, the

extension to heavier flavors is straight orward. Following
Refs. [27,31], we define (as customary) the twist angle ωl
in terms of the bare mass parameters of the light valence
quark ðu; dÞ doublet Xl ¼ ðχu; χdÞT , viz.

sinωl ¼ μlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
Am

2
PCAC þ μ2l

q ;

cosωl ¼ ZAmPCACffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2
Am

2
PCAC þ μ2l

q ; ðC3Þ

with ZA the renormalization constant of
X̄lγμγ5ðτ1;2;3=2ÞXl, which, being independent of quark
mass parameters, is defined in the chiral limit μf → 0,
m0 → mcr. Maximal twist corresponds to jωlj ¼ π=2, i.e.,
to angle θl ≡ π=2 − ωl equal to zero or π. We thus have

cos θl ¼ sinωl ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðZ2

Am
2
PCACÞ=μ2l

q ;

sin θl ¼ cosωl ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ2l=ðZ2

Am
2
PCACÞ

q : ðC4Þ

Here μl is the bare twisted mass parameters for the ðu; dÞ
doublet and mPCAC denotes the untwisted bare quark
mass of the ðu; dÞ doublet as obtained from the nonsinglet
Ward-Takahashi Identity (WTIs)—hence a function of m0

plus the other bare parameters. We recall that
mPCAC ∝ m0 −mcr. The renormalized twisted and
untwisted quark mass parameters that appear in the chiral
WTIs read (up to discretization effects)

μRl ¼ μl
1

ZP
; mR¼ZAmPCAC

1

ZP
¼ðm0−mcrÞ

1

ZS0
; ðC5Þ

where ZP and ZS0 are the renormalization constants of the
pseudoscalar nonsinglet and the scalar singlet densities (in
the canonical basis for untwisted Wilson quarks).
Defining the twist angle and hence formulating the

maximal twist condition in terms of mPCAC, as measured
on the ensembles with 2þ 1þ 1 dynamical flavors, effec-
tively takes care of (compensates for) all the UV cutoff
effects related to the breaking of chiral symmetry, including
those coming from the 2þ 1þ 1 sea quark flavors.

2. Pion mass and decay constant

We argue here that in the case of small enough numerical
deviations from maximal twist the lattice charged pion
quantities

MπjL; ½2μlhπ1ð0ÞjP1j0i=ðM2
π cos θlÞ�jL; ðC6Þ

with P1 ¼ X̄lγ5ðτ1=2ÞXl and Xl ¼ ðχu; χdÞT , approach
Mπ and fπ as a → 0 with lattice artifacts having numeri-
cally small, and (we shall see) within errors immaterial,
differences as compared to the Oða2Þ cutoff effects occur-
ring at maximal twist. Of course these values ofMπ and fπ
correspond to the light quark renormalized mass MR

l ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmRÞ2 þ ðμRlÞ2

q
.

The numerical information onMπ and fπ comes from the
simple correlator C11

PPðx0Þ ¼ a3
P

xhP1ðxÞP1ð0Þi (and
C22
PPðx0Þ). The large-x0 behavior of C11

PPðx0Þ determines
Mπ and an exact lattice WTI relates the operator P1 to the
four-divergence of a conserved lattice (backward one-point
split) current, which we denote by V̂2

χ;μ, viz.

∂μV̂
2
χ;μðxÞ ¼ 2μlP1ðxÞ ¼ 2μRlP

1
RðxÞ; ðC7Þ

implying that the pion-to-vacuum matrix element of V̂2
χ;μ

gives information on fπ (barring the case of cos θl ¼ 0). In
Eq. (C7) P1

R ¼ ZPP1 and the equalities hold at operator
level for finite lattice spacing (a > 0). Hence the lhs of
Eq. (C7) is a renormalized operator and information on the
approach of its matrix elements to the continuum limit can
be obtained by studying the behavior as a → 0 of the
corresponding matrix elements of 2μRlP

1
R.

Taking the matrix element of Eq. (C7) between the
vacuum and a one-π1 state of zero three-momentum and
noting that in the continuum limit

V̂2
χ;μ →

a→0 ðX̄lγμðτ2=2ÞXlÞR

¼ sinθl

�
ψ̄γμ

τ2

2
ψ

�
R

þ cosθl

�
ψ̄γμγ5

τ1

2
ψ

�
R

; ðC8Þ

where ψ ¼ ðu; dÞT obeys the (continuum) equation of
motion (e.o.m.) ðγ ·DþMR

lÞψ ¼ 0, for a > 0 one obtains
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2½μlhπ1ð0ÞjP1j0i�jL
¼

�
cos θlM2

πfπ þ sin θl
D
π1ð0Þj∂0

�
ψ̄γ0

τ2

2
ψ

�
R
j0
E�����

L
;

¼ ½cos θlM2
πfπ�jL þ OðaÞ: ðC9Þ

This relation implies that as a → 0 the ratio

½2μlhπ1ð0ÞjP1j0i=ðM2
π cos θlÞ�jL → fπ; ðC10Þ

at generic θl ≠ �π=2. Hence at a > 0 the ratio (C10)
represents a bona fide lattice estimator of fπ , while its
discretization errors depend on the lattice artifacts inM2

π , θl
(or equivalently mR, μRl ) and the renormalized quantity
2μlGπ1 ¼ 2μlhπ1ð0ÞjP1j0i.
We are interested here in situations where

ZAmPCAC=μl < 1 but not negligibly small, say slightly
above 0.1. This situation indeed occurs in our gauge
configuration ensemble cA211.12.48, at a ∼ 0.095 fm
and aμl ¼ 0.0012, where we find ZAmPCAC=μl ∼ −0.15.
In this case an analysis à la Symanzik of M2

π , mR
l and

2μlGπ1 shows (see below) that the change in the lattice
artifacts of our lattice estimator of fπ , with respect to those
purely Oða2nÞ (with n integer) that occur at maximal twist,
is smaller than 0.001fπ , therefore numerically immaterial
within statistical errors that are typically of order 0.005fπ.

a. The change in the lattice artifacts for M2
π and f π

If jamPCACj is nonzero, though definitely smaller than
jaμlj, then the same holds for jaðm0 −mcrÞj and one
expects that the appropriate lattice estimators ofMπ , fπ and
any other physical quantity will be altered already at OðaÞ
as compared to their counterparts at maximal twist.
Correcting analytically the lattice estimators for the
deviation from maximal twist at order a0 is hence not
enough and one must also check that the out-of-maximal-
twist modifications in order a and order a2 lattice artifacts
are numerically negligible within statistical errors.
Otherwise, analyzing data corrected for deviations from
maximal twist on some gauge ensembles together with data
evaluated at maximal twist on other gauge ensembles might
lead to a systematic bias in the continuum extrapolation,
where one typically assumes uniform Oða2Þ artifacts—as
expected if all data are obtained at maximal twist.

b. Structure of the Symanzik effective Lagrangian

Let us analyze à la Symanzik the Nf ¼ 2þ 1þ 1 lattice
QCD theory (C1) out-of-maximal-twist and focus here on
the light valence sector. We assume the reader is familiar
with the basic literature on this topic such as [27,57,58]
and references therein. The Symanzik local effective
Lagrangian to be used in our analysis of OðaÞ artifacts
then reads

LSyma ¼ L4 þ aL5 þ a2L6 þOða3Þ;

L4 ¼
1

4
ðF · FÞ þ χ̄lðγ ·DþmR þ iγ5τ3μRlÞχl

þ χ̄hðγ ·DþmR þ iγ5τ3μh þ τ1ϵhÞχh
þ X̄val

l ðγ ·DþmR þ iγ5τ3μRlÞXval
l þ…; ðC11Þ

where Xval
l ¼ ðχu; χdÞT describes the valence light quarks in

the same basis as in Eq. (C2) while ellipses stands for d ≤ 4
terms involving heavier valence quarks and ghost terms.
Upon taking the continuum limit in isosymmetric QCD
with 2þ 1þ 1 dynamical flavors, we must have coinciding
sea and valence renormalized masses for each flavor and
keep constant as a → 0 the renormalized parameters g2R, μ

R
l ,

μRh , ϵ
R
h .

The local effective Lagrangian terms Ln are suitable
linear combinations of the d ¼ n > 4 operator terms
allowed by the symmetries of the lattice theory (C1). In
particular it turns out that

L5 ¼ …þ ðc − cSWÞ
i
4
X̄val
l σ · FXval

l − bgm
1

4
F · F

− ðbmm2 þ b̃mμ2lÞX̄val
l Xval

l

− bμmμlX̄val
l iγ5τ3Xval

l þ…; ðC12Þ

where m≡ ZAmPCAC ∝ m0 −mcr, while ellipses stand
here for terms involving only heavier valence quark
operators as well as sea quark and ghost terms (all of
them are omitted since they are immaterial for this section).
With c − cSW we indicate the difference between the 1-loop
tadpole improved estimate (c) employed in our simulation
and the exact value (cSW) of the coefficient of the
clover term.3

Concerning L6, it will be enough to focus on its
m-dependent sector and to note the structure

L6ðm; μl; μh; ϵh; μs;…Þ ¼ L6ð0; μl; μh; ϵh; μs;…Þ
þmO5 þm2O4; ðC13Þ

where O5 (O4) is a linear combination of the m-indepen-
dent terms allowed in L5 (L4). Among the latter, since we
employ in our correlators flavor diagonal OS valence quark
fields χvalf with twisted mass μf > 0, or χ0valf fields with
twisted mass μ0f ¼ −μf, for the purposes of this section
only the terms bilinear in the Xval

l and X̄val
l , or X0val

l and

3From our experience in simulations with two dynamical
flavors in a lattice setup where cSW is known, we expect that
jc − cSWj < 0.15, which suppresses OðaÞ lattice artifact by
nearly one order of magnitude and, provided jam=aμlj < 1 is
small enough, makes undesired OðaÞ numerically negligible in
most observables.
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X̄0val
l , fields are relevant, which we may call mOval

5;l and
m2Oval

4;l.
We note that exact or spurionic lattice symmetries rule

out4 the L5 terms of the form

μfiF̃ ·F; μfX̄fτ
0;1;2;3iγ5γ ·DXf; μfX̄fτ

0;1;2;3γ ·DXf;

as well as the analogous L6 terms of the form

mμfiF̃ ·F; mμfX̄fτ
0;1;2;3iγ5γ ·DXf; mμfX̄fτ

0;1;2;3γ ·DXf:

c. The discretization effects on MπjL
In the case of jamj ∼ 0.0002 < jaμlj ¼ 0.0012, for the

quantity M2
πjL the OðaÞ deviation from its continuum limit

value M2
π ¼ 2BR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmRÞ2 þ ðμRlÞ2

q
þOððmRÞ2 þ ðμRlÞ2Þ ∼

2BRμRl is given by

δ1M2
π ¼ δ1AM2

π þ δ1BM2
π; ðC14Þ

where, writing operators in terms of the physical basis
fermion doublet fields

ψl ¼ eiωlγ5τ
3=2Xl; ψ̄l ¼ X̄leiωlγ5τ

3=2

and exploiting parity and isospin symmetries of continuum
Nf ¼ 2þ 1þ 1 QCD, one has

δ1AM2
π ¼ a sin θlhπ1;2ð0Þjðc − cSWÞψ̄val

l
i
4
σ · Fψval

l

− ðbmm2 þ b̃mμ2lÞψ̄val
l ψval

l jπ1;2ð0Þi;

≲ 0.003
αsðΛQCDÞ

4π
Λ2
QCD ∼ 0.001M2

π ðC15Þ

and (approximating cos θl with 1, since sin θl ≃ 0.2)

δ1BM2
π ¼ am

D
π1;2ð0Þ

����bμμlψ̄val
l ψval

l þbg
1

4
F ·F

����π1;2ð0ÞE;
≲2BRμRl0.0005: ðC16Þ

The numerical estimate in Eq. (C15) results from
jc − cSWj≲ 0.15, αsðΛQCDÞ ∼ 1, aΛQCD ≃ 0.1 and
ΛQCD=Mπ ≃ 2, while bm ¼ −1=2þ Oðg20Þ and (making
the choice advocated in Ref. [58]) b̃μ ¼ −1=2.
The numerical estimate in Eq. (C16) follows

from jhπ1;2ð0Þjμlψ̄val
l ψval

l jπ1;2ð0Þij ∼ j2BRμRl j and jbμj ¼
Oðg20Þ < 1. In fact soft pion theorems (i.e.,

spontaneously broken continuum chiral symmetry) imply
that the contribution of jbghπ1;2ð0Þj 14F · FÞjπ1;2ð0Þij, with
bg ¼ Oðg20NfÞ, is OðμlÞ and thus of the same order of
magnitude as jbμhπ1;2ð0Þjμlψ̄val

l ψval
l jπ1;2ð0Þij.

The undesired OðaÞ modification in M2
π is estimated to

be smaller than 0.001M2
π , hence immaterial within our

statistical errors of a few permil. The Oða2Þ change in M2
π

due to the nonzero value of am is also of order 0.001M2
π or

smaller, because of the form (C13) of L6, with jamj ≃
0.0002 and a2Λ2

QCD sin θl ≃ 0.001.

d. The discretization effects on f πjL
Based on Eq. (C10) the lattice artifacts on fπ can be

estimated in terms of the cutoff effects in
ðμl= cos θlÞhπ1ð0ÞjP1j0ijL and in M2

πjL. We discussed
above the lattice artifacts of M2

πjL. Concerning
ðμl= cos θlÞhπ1ð0ÞjP1j0ijL, we can see it as the product
of the renormalized quantities Z−1

P ðμl= cos θlÞ ¼ MR
l and

ZPhπ1ð0ÞjP1j0i�jL ¼ GR
π1
, and then discuss separately the

lattice artifacts in each of these two factors.5

As for Z−1
P ðμl= cos θlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmRÞ2 þ ðμRlÞ2

q
, the form of

the m-dependent terms in L5, i.e., those with coefficients
bm and bμ (which are all in modulus ≲1), implies that the
OðaÞ corrections tomR and μRl , and hence toM

R
l are only of

relative size < jamj ≃ 0.0002. Even smaller are the correc-
tions to MR

l of order a2m.
Let us then consider the out-of-maximal-twist induced

cutoff artifacts in the matrix element ZPhπ1ð0ÞjP1j0i�jL ¼
GR

π1
. They clearly arise from the lattice two-point correla-

tor C11
P ðx0Þ. At order a, since for the operator P1 ¼

ψ̄lγ5ðτ1=2Þψl it is known that cP ¼ 0, b̃P ¼ 0 and
bP ¼ 1þ Oðg20Þ, implying jbPamj ∼ 0.0002, the numeri-
cally dominant lattice artifacts stem from the term
a
R
d4yhP1ðxÞP1ð0ÞL5ðyÞijcont in the Symanzik description

of C11ðx0Þ. Inserting intermediate states and considering
the possible y0 orderings one checks that, owing to the
structure of L5 and jamj ≃ 0.0002, the numerically leading
cutoff effects in Gπ1 are proportional to

ðc − cSWÞ sin θla
�
hπ1jψ̄val

l
i
4
σ · Fψval

l jπ1iGπ1

þ
X
n

h0jψ̄val
l

i
4
σ · Fψval

l jnihnjP1jπ1i
�

and are hence of relative order j sin θlðc − cSWÞj×
aΛQCDαs=ð4πÞ, which, if jamj ≃ 0.0002 and jc − cSWj <
0.15, noting that aΛQCDαs=ð4πÞ < 0.1, turns out to be

4To this goal it is enough to consider charge combination,
P̃ × ðμf;l;h → −μf;l;hÞ and ðXf → iτ2XfÞ × ðX̄f → −iX̄fτ

2Þ ×
ðμf;l;h → −μf;l;hÞ invariances, with P̃ meaning parity trans-
formation on gauge fields combined with ðXfðxÞ → γ0XfðxPÞÞ ×
ðX̄fðxÞ → X̄fðxPÞγ0Þ and xP ¼ ðx0;−x⃗Þ.

5Of course we do not worry about possible cutoff effects on
ZP, which cancel in the product.
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≲0.0002. Compared to this the Oða2mÞ artifacts in Gπ1 are
expected to be smaller by at least one order of magnitude.
Hence our lattice estimator of fπ is estimated to be

affected by the small deviation from maximal twist
observed on the ensemble cA211.A12.48, where
jamj ∼ 0.0002, only at a level of ≲0.0004fπ , which is
negligible as compared to current statistical errors.

e. Analysis of M2
π and f π in terms of the

renormalized light quark mass

The discussion above is valid also in case the observables
M2

π and fπ are analyzed as functions of the renormalized
light quark mass

MR
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmRÞ2 þ ðμRlÞ2

q
¼ Z−1

P ðμl= cos θlÞ: ðC17Þ

As already noted in Sec. C 2 d, for the ensemble
cA211.12.48 the observed small deviation from maximal
twist leads to an undesired OðamÞ relative change in MR

l
that is only of order jamj ≃ 0.0002 and thus fully negligible
in comparison to other errors.
A rather obvious but practically important and general

caveat follows in the case one insists in analyzing the lattice
data, e.g., for Mπ or fπ, obtained on gauge ensembles with
nonzero am values in terms of μRl rather thanMR

l . Since for
am ≠ 0 a generic observable Qobs actually refers to
MR

l > μRl , one should, besides possibly applying an ana-
lytic correction to the datum for Qobs (as requested e.g., for
fπ , but not for Mπ), also shift the value of the observable
itself according to

QobsðμRlÞ ¼ QobsðMR
lÞ þ

∂Qobs

∂MR
l

����
MR

l

ðμRl −MR
lÞ

þ OððμRl −MR
lÞ2Þ; ðC18Þ

where in practice, since typically jamj < 0.001, only the
terms linear in μRl −MR

l are numerically important.

3. Mass and decay constant of the kaon
and heavier PS mesons

Generalizing the arguments of Sec. C 2 for the mass and
decay constant of the pion to the case of the kaon or heavier
pseudoscalar (PS) mesons is rather straightforward. Indeed,
within the Nf ¼ 2þ 1þ 1 lattice QCD framework of
Sec. C 1, as far as the control of the effects of a small
but nonzero value of am ¼ aZAmPCAC is concerned, there
is not much difference between a PS meson made out of
two light valence quarks (pion, with jμuj ¼ jμdj) and a PS
meson made out of a light (mass μl) and a heavier (mass
μx) valence quark. This is a consequence of the fact that the
extraction of the PS meson mass and decay constant relies
on general positivity properties of two-point correlation
functions (close enough to the continuum limit) and on

exact chiral WTIs, which hold valid irrespectively of the
value of valence quark masses. One might thus deal in a
fully analogous way with PS mesons made out of two
nonlight valence quarks. For definiteness, however, we
shall here focus on the case of the kaon, i.e., μx ¼ μs ≫ μl
and μd ¼ μl > 0.
It turns out that in the case of small enough numerical

deviations from maximal twist, say 0.1aμl < jamj ≪
aμl ≪ aμs, the lattice charged kaon quantities

MKjL; ½ðμlþμsÞhKð0ÞjPs;dj0i=ðM2
K cosððθlþθsÞ=2Þ�jL;

ðC19Þ

with Ps;d ¼ X̄s;dγ5ðτ1=2ÞXs;d and Xs;d ¼ ðχs; χdÞT ,
approach MK and fK as a → 0 with lattice artifacts having
numerically small, and within errors immaterial,
differences as compared to the Oða2Þ cutoff effects occur-
ring at maximal twist. These values of MK and fK

correspond to the light (d) quark renormalized mass MR
l ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmRÞ2 þ ðμRlÞ2
q

and to the strange (s) quark renormalized

mass MR
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmRÞ2 þ ðμRs Þ2

p
.

In full analogy to the definitions adopted for light
valence quarks (see Sec. C 1) we define μRs ¼ μs=ZP,
where ZP is (can be conveniently taken as) the same
mass-independent renormalization constant of the PS non-
singlet quark bilinear operator as above, and

cos θs ¼ sinωs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðZ2
Am

2
PCACÞ=μ2s

p ;

sin θs ¼ cosωs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ μ2s=ðZ2
Am

2
PCACÞ

p : ðC20Þ

a. On the lattice estimators (C19)
of MK and f K at Oða0Þ

The numerical information on MK and fK comes
in fact from the simple correlator Cs;d

KKðx0Þ ¼
a3

P
xhPs;dðxÞPd;sð0Þi. The large-x0 behavior of

Cs;d
KKðx0Þ determines MK as the kaon mass that, owing to

renormalizability (and unitarity in the continuum limit) of
the lattice theory of Sec. C 1, corresponds to the light and
strange quark masses MR

l and MR
s . An exact lattice WTI

relates the operator Ps;d to the four-divergence of a
conserved lattice (backward one-point split) current, which
we denote by V̂s;d

χ;μ, viz.

∂μV̂
s;d
χ;μðxÞ ¼ ðμlþ μsÞPs;dðxÞ ¼ ðμRl þ μRs ÞPs;d

R ðxÞ; ðC21Þ

implying that the kaon-to-vacuum matrix element
of V̂s;d

χ;μ gives information on fK , barring the case of
cosððθl þ θsÞ=2Þ ¼ 0. In Eq. (C21) Ps;d

R ¼ ZPPs;d and
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the equalities hold at operator level for a > 0. Hence the lhs
of Eq. (C21) is a renormalized operator and information on
the approach of its matrix elements to the continuum limit
can be obtained by studying the behavior as a → 0 of the
corresponding matrix elements of ðμRl þ μRs ÞPS;d

R .
Taking the matrix element of Eq. (C21) between the

vacuum and a one-K state of zero three-momentum and
noting that in the continuum limit

V̂s;d
χ;μ →

a→0 ðX̄s;dγμðτ2=2ÞXs;dÞR

¼ sin
θl þ θs

2

�
ψ̄ s;dγμ

τ2

2
ψ s;d

�
R

þ cos
θl þ θs

2

�
ψ̄γμγ5

τ1

2
ψ

�
R

; ðC22Þ

where ψ s;d ¼ ðs; dÞT obeys the (continuum) e.o.m.

ðγ ·Dþ MR
s þMR

l
2

þ MR
s −MR

l
2

τ3Þψ s;d ¼ 0, for a > 0 one
obtains

½ðμl þ μsÞhKð0ÞjPs;dj0i�jL ¼ ½cosððθl þ θsÞ=2ÞM2
KfK�jL

þ OðaÞ: ðC23Þ

This relation implies that as a → 0 the ratio

½ðμl þ μsÞhKð0ÞjPs;dj0i=ðM2
K cosððθl þ θsÞ=2ÞÞ�jL → fK;

ðC24Þ

for generic θl þ θs ≠ �π. Hence at a > 0 the ratio (C24)
represents a bona fide lattice estimator of fK , while its
discretization errors depend on the lattice artifacts in M2

K ,
θl, θs (or equivalently mR, μRl , μ

R
s ) and the renormalized

quantity ðμl þ μsÞGK ¼ ðμl þ μsÞhKð0ÞjPs;dj0i.

b. Theoretical control and numerical size
of OðaÞ and Oða2Þ artifacts

Concerning the impact of a nonzero am value on the
lattice artifact in the kaon sector it is important to note that,
as phenomenology dictates μl ≃ 0.037μs, we have in
general

θs ≪ θl;

cosððθl þ θsÞ=2Þ ≃ cosðθl=2Þ½1 − Oðθ2sÞ� − OðθsθlÞ;
≃ cosðθl=2Þ − OðθsθlÞ: ðC25Þ

In particular, for the gauge ensemble cA211.12.48, where
am ¼ ZAmPCAC=μl ≃ −0.15, we find

θl ≃ −0.15; θs ≃ −0.006;

cosððθl þ θsÞ=2Þ ≃ cosðθl=2Þ − Oð0.0009Þ: ðC26Þ

For the discussion of OðaÞ lattice artifacts inMK and fK
one should consider of course the occurrence of flavor
diagonal terms involving the valence quark fields χs, χ̄s
both in L5 [see Eq. (C12)], where they take the form

L5 ⊃ ðc − cSWÞ
i
4
χ̄vals σ · Fχvals − ðbmm2 þ b̃mμ2sÞχ̄vals χvals

− bμmμsχ̄
val
s iγ5χvals ; ðC27Þ

and in L6, for which the structure in Eq. (C13) remains
valid. Looking back to Eq. (C12) for the light valence quark
and gluonic terms in L5, one finds that the discussion for
the kaon case closely follows the one for the pion (see
Sec. C 2 a), provided one replaces the valence quark field
pair Xval

l ¼ ðχu; χdÞT, used for the latter, with the valence
quark field pair Xval

s;d ¼ ðχs; χdÞT relevant for the kaon, as
well as θl with ðθs þ θlÞ=2. This implies that for M2

K and
fK the numerically dominant changes in the lattice artifacts
as compared to the maximal twist case, which for M2

π and
fπ were proportional to sin θl, turn out to be proportional to

sinððθl þ θsÞ=2Þ ≃ sinðθl=2Þ − Oð0.006Þ
≃ 0.5 sin θl; ðC28Þ

thereby getting reduced by a factor of about two with
respect to the pion case.
In conclusion, if jamj ∼ 0.0002 (as it happens for our

ensemble cA211.12.48), we estimate a lattice artifact
modification, with respect to the case of maximal twist,
that does not exceed 0.0005M2

K for M2
K and 0.0002fK for

fK and is hence safely negligible as compared to our
current statistical errors.
From the arguments above it should also be clear that the

same quantitative estimates hold also for the lattice artifact
changes induced by am ≠ 0 in the mass and the decay
constant of heavy-light PS mesons with a charm or even
heavier nonlight valence quark having a mass μx ≫ μs. In
fact the heavier the valence quark, the smaller jθxj ≃ jm=μxj
and the more numerically irrelevant the effect of a small
nonzero value of am.

APPENDIX D: DETERMINATION OF THE GF
SCALES

ffiffiffiffi
t0

p
AND t0=w0

In this appendix we describe the calculations of the
relative GF scales w0=a,

ffiffiffiffi
t0

p
=a and t0=ðw0aÞ at the

physical pion point and we summarize the determination
of the absolute scales

ffiffiffiffi
t0

p
and t0=w0 using the SU(2) ChPT

analysis of the data for Xπ, carried out in Sec. IV B in the
case of the GF scale w0.

C. ALEXANDROU et al. PHYS. REV. D 104, 074520 (2021)

074520-26



1. Determination of the relative GF scales

In this section we provide the details of the determi-
nations of the GF scales at the physical point. Our analysis
is based on the values of the gradient flow scales in
Table VIII as obtained on the ensembles in Table I. We
calculate the scales following the definitions in [12,13,59]
using the standard Wilson action for the gradient flow
evolution and the symmetrized discretization of the action
density as described in [13]. Apart from the usual scales
s0=a≡ ffiffiffiffi

t0
p

=a and w0=a, we also consider the derived scale
ðt0=w0Þ=a as well as the dimensionless ratio ðs0=w0Þ. The
former is interesting, because it exhibits very mild quark-
mass dependence and reduced autocorrelations, while the
dimensionless ratio ðs0=w0Þ can be used for assessing
lattice artifacts and cross-checking the consistency of the
various analysis procedures and determinations of the
scales in physical units.
The errors are calculated by taking into account the

autocorrelations of the various quantities, which are also
listed in Table VIII. It is well known that the autocorre-
lations can be sizable for the GF scales. In particular on
coarse lattices it is known that they can be larger than the
ones for the topological charge [60]. More importantly,
they are also expected to grow towards the chiral limit. The
data shown in Table VIII confirms this behavior in terms of
the lattice spacing and the pion mass. The large autocorre-
lations observed on the ensemble cA211.12.48, corre-
sponding to the coarsest lattice spacing and the smallest
pion mass, could be also related to metastability effects
known for this ensemble. Nonetheless, the data in
Table VIII also indicates that for our simulations the
autocorrelations are well under control even at the physical
point. One interesting point to note is the fact that the
autocorrelations of the scale ðt0=w0Þ=a are reduced by
roughly a factor of 3 with respect to the ones of the usual
GF scales

ffiffiffiffi
t0

p
=a andw0=a. This is also reflected in the very

small statistical error for ðt0=w0Þ=a, roughly a factor 2–3
smaller than for

ffiffiffiffi
t0

p
=a and w0=a at the physical point.

In order to use the scales in the analysis of the light
meson sector, we need the values at the physical pion-mass
point. To achieve this, we perform an extrapolation for the
two sets of ensembles cA211 and cB2116 to the physical
point in terms of Δ2 ≡ ðMπ=fπÞ2 − ðMπ=fπÞ2phys, such that
the physical point is reached when this quantity is zero,
while for the ensemble cC211.06.80 we directly use the
value at the physical point as given in Table VIII. We note
that for this ensemble Δ2 ¼ 0.025 such that the potential
corrections would be tiny and in fact smaller than the
statistical errors. The details of the extrapolations are
summarized in Table IX. In order to illustrate the extrap-
olations and compare them at different lattice spacings, in
Fig. 10 we show the scales normalized by their values at the
physical point as a function of Δ2.
From the plots and the data in the table it is obvious that

the quark-mass dependence of the scale ðt0=w0Þ=a is very
small, i.e., the corrections are less than 0.5% at our largest
pion mass ensemble cA211.53.24, to be compared to 2.5%
for

ffiffiffiffi
t0

p
=a and 4.5% for w0=a. We note that the quark-mass

dependence exhibits clearly visible lattice artifacts, but the
dependence seems to become weaker towards the con-
tinuum limit. One peculiar feature is the fact that for the
scale ðt0=w0Þ=a the slope of the quark-mass dependence
changes sign when going from the coarser to the finer
lattice spacing. This certainly warrants further investiga-
tion, once more data is available, however, one should keep
in mind that for this quantity the slope is consistent with
zero within less than 3σ.
In order to examine the lattice artifacts of the GF scales

further, we now turn to the dimensionless ratio s0=w0. In
Fig. 11we show the ratio at the physical point as a function of

TABLE VIII. GF scales and corresponding integrated autocorrelation times in units of trajectories of length τ ¼ 1.0 from the
symmetrized action density. The Nmeas measurements on different ensembles were performed using different separations and the
autocorrelation times were scaled appropriately. Similarly, for the cB211.25.24, cB211.25.32 and cB211.14.64 ensembles, the
autocorrelation times were scaled to take into account the τ ¼ 1.5 trajectory lengths used there.

Ensemble Nmeas s0=a w0=a ðt0=w0Þ=a s0=w0 τs0int τw0

int τt0=w0

int τs0=w0

int

cA211.53.24 1122 1.5306(21) 1.7597(43) 1.33139(89) 0.86982(100) 23(6) 25(7) 7(1) 18(4)
cA211.40.24 1219 1.5384(18) 1.7766(33) 1.33213(96) 0.86592(64) 20(5) 18(4) 7(1) 9(2)
cA211.30.32 2559 1.5460(9) 1.7928(17) 1.33314(47) 0.86233(32) 22(5) 21(4) 9(1) 10(2)
cA211.12.48 326 1.5614(22) 1.8249(33) 1.33590(155) 0.85559(29) 69(30) 63(27) 59(25) 16(5)
cB211.25.24 1145 1.7937(22) 2.0992(46) 1.53260(108) 0.85445(77) 21(5) 25(6) 5(1) 12(2)
cB211.25.32 990 1.7922(19) 2.0991(47) 1.53018(72) 0.85380(91) 35(10) 45(14) 6(1) 28(7)
cB211.25.48 1175 1.7915(8) 2.0982(19) 1.52966(41) 0.85384(38) 28(8) 31(9) 9(2) 20(5)
cB211.14.64 619 1.7992(5) 2.1175(11) 1.52875(23) 0.84968(23) 30(8) 32(9) 8(1) 23(6)
cB211.072.64 191 1.8028(8) 2.1272(19) 1.52784(42) 0.84750(41) 45(18) 52(22) 16(5) 41(16)
cC211.06.80 785 2.1094(8) 2.5045(17) 1.77670(37) 0.84226(27) 46(17) 42(16) 14(3) 26(8)

6The results for the ensembles cB211.25.24 and cB211.25.32
shown in Table VIII are not used for the determination of the
relative GF scales at the physical pion point, since finite-volume
effects are found to be negligible with respect to the other
uncertainties for MπL≳ 3.5 (see also Table I).
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the lattice spacing expressed in units of the three GF scales
sphys0 ,wphys

0 and tphys0 =wphys
0 at the physical point. Note that for

the lattice spacing cC211 this corresponds to the value
obtained on the ensemble cC211.06.680. The data show a
precise Oða2Þ scaling towards the continuum and allow
continuum extrapolations in terms of a2. The continuum
extrapolations using in turn a2=ðt0=w0Þ2, a2=t0 and a2=w2

0

yield ðs0=w0Þphys ¼ 0.8285ð13Þ; 0.8291ð13Þ and 0.8298

(12), respectively, with χ2=d:o:f: ¼ 0.20, 0.12 and 0.06.
The values in the continuum are perfectly consistent with
each other and averaging them in the usual way gives
ðs0=w0Þphys ¼ 0.8291ð13Þð5Þ½14�, where the second error
reflects the spread of the results while the error in the square
bracket is the combined one. These results provide a non-
trivial check of the expected scaling behavior with quantities
determined with an accuracy of between 1–2 permille for the
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FIG. 10. Light quark-mass dependence and extrapolations to the physical point of the GF scales s0 ≡ ffiffiffiffi
t0

p
, w0, t0=w0, normalized by

their values at the physical point for ease of comparing the results at different lattice spacings.

TABLE IX. Results for the extrapolations of the GF scales to the physical point in terms of
Δ2 ¼ ðMπ=fπÞ2 − ðMπ=fπÞ2phys, i.e., XðMπÞ=a ¼ ðX=aÞphys þ c · Δ2. Note that for the ensembles cA211 we have
Nd:o:f: ¼ 2, while for cB211 Nd:o:f: ¼ 1.

ðs0=aÞphys c χ2=d:o:f: ðw0=aÞphys c χ2=d:o:f:

cA211 1.5660(22) −0.0082ð8Þ 0.02 1.8352(35) −0.0174ð13Þ 0.00
cB211 1.80396(68) −0.0053ð5Þ 2.14 2.1299(16) −0.0136ð12Þ 1.84

ððt0=w0Þ=aÞphys c χ2=d:o:f: ðs0=w0Þphys c χ2=d:o:f:

cA211 1.3359(12) −0.0011ð4Þ 0.15 0.8531(10) 0.0038(4) 0.05
cB211 1.52789(33) 0.0008(3) 0.18 0.84697(37) 0.0030(3) 1.26
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scales and subpermille for the ratio, and they nicely confirm
the automatic OðaÞ improvement in place for TM Wilson
fermions at maximal twist.
Given the fact that the ratio at the physical point shows a

very nice Oða2Þ scaling, we may attempt a global fit in
order to extrapolate simultaneously to the physical pion
mass and to the continuum limit, using

s0
w0

�
MPS

fPS
;
�
a
w0

�
2
�

¼
�
s0
w0

�
phys

cont
þ A1 ·

�
a
w0

�
2

þ
�
B0 þ B1 ·

a2

w2
0

��
M2

PS

f2PS
−
M2

π

f2π

�
;

ðD1Þ

which includes a light quark-mass dependence proportional
to Δ2 described by B0 and lattice artifacts proportional to
a2=w2

0 described by A1 and B1. The latter coefficient
describes the lattice artifacts on the quark-mass depend-
ence. The global fit suggests that B0, describing the quark-
mass dependence in the continuum, is well consistent with
zero, i.e., B0 ¼ 0.001ð7Þ. That is, in the continuum the ratioffiffiffiffi
t0

p
=w0 appears to have no dependence on the pion mass at

all and the observed pion-mass dependence at finite lattice
spacings is apparently just a lattice artifact. However, given
the fact that we do not have data for the ratio at the lattice
spacing cC211 away from the physical point, and hence no
information on the quark-mass dependence at the finest
lattice spacing, it is not clear how solid this conclusion is.
Nevertheless, we may attempt to fit our data with B0 ¼ 0
fixed, and in Fig. 12 we show the results for this global fit.
The colored lines with error bands show the light quark-
mass dependence of the ratio and the extrapolations to the
physical point for each lattice spacing, while the black line
with the error band at the bottom shows the fit result in the

continuum. The data points on this line represent our data
corrected by the lattice artifacts as described by the
global fit.
For the ratio at the physical point and in the continuum

the fit yields

�
s0
w0

�
phys

cont
¼ 0.82930ð65Þ; ðD2Þ

with χ2=d:o:f: ¼ 0.42, Nd:o:f: ¼ 5 and A1 ¼ 0.0806ð30Þ,
B1 ¼ 0.0129ð5Þ.
We note that the ratio is determined with a precision in

the subpermille region, i.e., better than 0.8 permille. As
such, it provides an interesting consistency crosscheck on
any other, independent determination of the scales, e.g.,
through hadronic quantities.

2. Determination of the GF scales
ffiffiffiffi
t0

p
and t0=w0

The SU(2) ChPTanalysis of the data forXπ, carried out in
Sec. IV B adopting the GF scale w0, can be repeated in the
case of the scales

ffiffiffiffi
t0

p
and t0=w0. The values of the relative

GF scales w0=a,
ffiffiffiffi
t0

p
=a and t0=ðw0aÞ have been calculated

at the physical pion point in the previous Sec. D 1 and, for
sake of clarity, we recollect them in Table X.
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a
2
/(scale)
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0.85
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0/w
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.
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s0
phys.

(t0/w0)
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FIG. 11. Continuum extrapolations of the dimensionless ratio
of GF scales s0=w0 at the physical point in terms of the lattice
spacing in units of the GF scales sphys0 , wphys

0 and tphys0 =wphys
0 at the

physical point.

0 1 2 3 4 5

(MPS/fPS)
2
 - (M /f )

2

0.82

0.83

0.84

0.85

0.86

0.87

0.88

s 0/w
0

A: =1.726
B: =1.778
C: =1.836

2
/dof=0.42

s0/w0=0.82930(65)

FIG. 12. Global fit of the lattice spacing and light quark-mass
dependence of the dimensionless ratio s0=w0 ≡ ffiffiffiffi

t0
p

=w0. The
black line with the error band at the bottom shows the fit result in
the continuum, while the data points on this line represent the
data corrected by the lattice artifacts as described by the global fit.

TABLE X. Values of the relative GF scales w0=a,
ffiffiffiffi
t0

p
=a and

w0=ðw0aÞ obtained at the physical pion point in Sec. D 1.

β w0=a
ffiffiffiffi
t0

p
=a t0=ðw0aÞ

1.726 1.8352 (35) 1.5660 (22) 1.3359 (12)
1.778 2.1299 (16) 1.80396 (68) 1.52789 (33)
1.836 2.5045 (17) 2.1094 (8) 1.77670 (37)
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Adopting fitting functions similar to the ones given by
Eq. (56) used in the case of the scale w0, we obtain

w0 ¼ 0.17383ð57Þstatþfitð26Þsyst½63� fm; ðD3Þ

ffiffiffiffi
t0

p ¼ 0.14436ð54Þstatþfitð30Þsyst½61� fm; ðD4Þ

t0
w0

¼ 0.11969ð52Þstatþfitð33Þsyst½62� fm: ðD5Þ

The quality of the fitting procedure in the case of the GF
scales

ffiffiffiffi
t0

p
and t0=w0 is illustrated in Fig. 13 and it should

be compared with the one shown in Fig. 6 in the case of the
GF scale w0.
Some values obtained for the continuum-limit fitting

parameters f and l̄phys
4 and for the discretization parameters

D0
0 and D0

1 are collected in Table XI. It can clearly be seen
that the pion mass dependence of Xπ in the continuum limit
is stable against the choice of the specific GF scale, while
the values of the discretization parameters D0

0 and D0
1

depend on the above choice. The discretization effects on
Xπ appear to be smaller in the case of the GF scale t0=w0.
Finally, the values of the lattice spacinga corresponding to

the threeGF scales (D3)–(D5) and to the relative scales given
in Table X are shown in Table XII. The three determinations
of a differ by Oða2Þ effects, as shown in Fig. 14. In
particular, we get að ffiffiffiffi

t0
p Þ=aðw0Þ ≃ 1 − 0.09ð2Þa2ðw0Þ=w2

0

and aðt0=w0Þ=aðw0Þ ≃ 1 − 0.18ð2Þa2ðw0Þ=w2
0.

TABLE XI. Values of the fitting parameters f and l̄phys
4 and of

the discretization parameters D0
0 and D0

1 obtained in the case of
the three GF scales w0,

ffiffiffiffi
t0

p
and t0=w0 using the data on Xπ and

adopting fitting functions similar to Eq. (56) with
A0
2 ¼ FFVE ¼ 0.

GF scale f (MeV) l̄phys
4 D0

0 D0
1

w0 124.4 (1.2) 3.24 (29) −0.167 (52) 8.0 (2.3)ffiffiffiffi
t0

p
124.5 (1.2) 3.16 (27) −0.065 (40) 6.3 (1.6)

t0=w0 124.7 (1.3) 3.08 (27) −0.003 (32) 4.9 (1.2)

TABLE XII. Values of the lattice spacing a corresponding to
the three GF scales w0,

ffiffiffiffi
t0

p
, t0=w0 and to the corresponding

relative scales given in Table X.

GF scaleaðβ ¼ 1.726Þ (fm)aðβ ¼ 1.778Þ (fm)aðβ ¼ 1.836Þ (fm)

w0 0.09471 (39) 0.08161 (30) 0.06941 (26)ffiffiffiffi
t0

p
0.09217 (41) 0.08002 (34) 0.06844 (29)

t0=w0 0.08960 (47) 0.07834 (41) 0.06737 (35)

FIG. 13. The same as in Fig. 6, but in the case of the GF scales
ffiffiffiffi
t0

p
(left panel) and t0=w0 (right panel).

FIG. 14. Ratio of the lattice spacing a obtained from the GF
scales

ffiffiffiffi
t0

p
(red circles) and t0=w0 (blue squares) with the one

determined from the GF scale w0 (see Table XII). The solid and
dashed lines are linear fits.
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