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ABSTRACT

Estimating the co-expression of cell identity fac-
tors in single-cell is crucial. Due to the low effi-
ciency of scRNA-seq methodologies, sensitive com-
putational approaches are critical to accurately infer
transcription profiles in a cell population. We intro-
duce COTAN, a statistical and computational method,
to analyze the co-expression of gene pairs at sin-
gle cell level, providing the foundation for single-cell
gene interactome analysis. The basic idea is studying
the zero UMI counts’ distribution instead of focusing
on positive counts; this is done with a generalized
contingency tables framework. COTAN can assess
the correlated or anti-correlated expression of gene
pairs, providing a new correlation index with an ap-
proximate p-value for the associated test of indepen-
dence. COTAN can evaluate whether single genes are
differentially expressed, scoring them with a newly
defined global differentiation index. Similarly to cor-
relation network analysis, it provides ways to plot and
cluster genes according to their co-expression pat-
tern with other genes, effectively helping the study
of gene interactions, becoming a new tool to iden-
tify cell-identity markers. We assayed COTAN on two
neural development datasets with very promising re-
sults. COTAN is an R package that complements the
traditional single cell RNA-seq analysis and it is avail-
able at https://github.com/seriph78/COTAN.

INTRODUCTION

Single cell RNA sequencing technology was first imple-
mented in 2009 (1). Since then scRNA-seq provided an un-

precedented insight into tissue cellular heterogeneity (2) and
developmental processes (3–5). Currently, there are several
techniques to isolate and sequence single cells (6–10). Dif-
ferent methods have their own strengths and weaknesses
and exhibit great variability in the number of cells analyzed
and in the length of sequenced RNA. Although the most
appropriate choice depends on the biological question of in-
terest (11), droplet based techniques are the most commonly
used, because of their high-throughput, acceptable sensitiv-
ity, good precision and affordable cost per cell (12,13).

Single cell transcriptomes can describe known cell iden-
tity states and uncover new ones. This is frequently achieved
by clustering cells with consistent gene expression (14,15)
or more recently by cell lineage and pseudotime reconstruc-
tion (16). The typical pipeline requires to log-transform
and normalize raw read counts, yielding ‘expression lev-
els’, and to perform multivariate analysis on the lat-
ter (17,18). Unfortunately, the intrinsic low efficiency of
scRNA-seq (8,9,12) precludes the detection of weakly ex-
pressed genes in many cells, in particular in droplet based
experiments. This has a critical effect on the analysis of
expression levels, causing the appearance of dropout arte-
facts (19,20), and often restricting the analysis to tools
based on zero-inflation and imputation (21–23).

However, the introduction of Unique Molecular Identi-
fiers (24) greatly reduces amplification noise, and the result-
ing UMI counts typically fit simple probabilistic models,
thus allowing approaches not based on normalization (19).

Building on the opportunity given by the presence of
UMIs and improving further the multinomial assumption
verified in (19), we developed COTAN, CO-expression Ta-
bles ANalysis, a statistical framework and method of analy-
sis, which uses UMI count matrices without normalization
and does not depend on zero-inflation. Rather, COTAN fo-
cuses on zeros and their joint distribution to directly infer
gene relations.
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We tested COTAN on two neural development datasets
as benchmarks of two of the main droplet based tech-
niques Drop-seq (8) and 10× Genomics Chromium (9): a
mouse cortex Drop-seq dataset (4) and a mouse hippocam-
pal 10× dataset (25). Indeed, brain embryonic structures
display high cell diversity, with dividing multipotent pro-
genitor cells, newborn neurons differentiating with many
distinct identities and glial cells, all co-existing in a mixed
cell population. This makes them particularly suited for
scRNA-seq studies aiming to depict cell identity states and
relationships between gene expressions.

On these datasets COTAN can effectively assess co-
expression and disjoint expression of gene pairs, also in case
of very low UMI counts, yielding for each pair a correla-
tion test p-value and a signed coefficient of co-expression
(COEX).

Notably, Pearson and Spearman correlation are more
noisy and cannot be used directly for the study of gene ex-
pression relationships, which instead is often carried out in-
directly, through cell clustering and subsequent differential
expression analysis between clusters. In fact, the numerous
available tools show significant differences especially when
poorly expressed genes are not filtered out (26). The two-
step nature of these methods might introduce biases or loss
of information, especially for genes with low expression.
Moreover, the mutual exclusion for the expression of two
genes can be hard to assess in this way.

As a second feature, COTAN can investigate whether sin-
gle genes are constitutive or differentially expressed in the
population, by scoring them with a global index of differ-
entiation (GDI).

As a third feature, COTAN can help detecting cell-
identity markers and studying gene interactions. In fact
COEX may be used in a way similar to how correlation is
used in gene network analysis (27), but instead of building a
network adjacency matrix, we propose a novel dimension-
ality reduction of the gene space and a related gene cluster
analysis.

MATERIALS AND METHODS

Mathematical framework

To ease the reading, the mathematical theory is only drafted
in the main paper. A more elaborate discussion can be found
in the Supplementary Material. The companion mathe-
matical paper (28) contains further theoretical materials,
including: a detailed explanation of the models for UMI
counts and probability of zero UMI counts; an alternative
estimation framework based on the square root variance-
stabilizing transformation; a proof that the dispersion pa-
rameter can be uniquely determined; a proof that under
null hypothesis, COEX has approximately Gaussian distri-
bution; an extension of GPA to deal with differential ex-
pression.

UMI count model. For each gene g and cell c, let Rg,c de-
note the UMI count. For a uniform population of cells, it
is reasonable to assume that these are negative binomial
random variables, also known as Gamma-Poisson, mean-
ing that R ∼ Poisson(�) with � ∼ gamma(�, �). Our model
is based on the assumption that cells also have a variable

UMI detection efficiency (UDE) �c, which modulates the
UMI count by

Rg,c ∼ Poisson(νc�g,c).

For a uniform population of cells, �g,c and Rg,c should all
be independent, conditional on �c. On the other hand, for a
mixed population of cells, �g,c will be complicate mixtures
of gamma distributions, independent in c but not in g. The
subsequent Poisson samplings yielding Rg,c will still be inde-
pendent. These assumptions correspond to the large num-
bers approximation of the multinomial model proposed
in (19) and are in line with similar models discussed in (29).

There is an arbitrary factor in the definition of � and �,
so we impose that the average of �c is 1. In this way, �g,c
has the same scale as Rg,c for the average cell, and hence it
may be viewed as a sort of normalized virtual expression.
It is considered a positive random variable, with mean �g
not depending on c, with unknown distribution, and inde-
pendent in c. Then E[Rg,c|�g,c] = �c�g,c, and the expected
UMI count is given by μg,c := E(Rg,c) = νcλg, so in partic-
ular higher UDE yields a higher average library size.

We estimate the model’s parameters �c and �g in a sim-
ple linear way (for details see Parameter estimation in Sup-
plementary material). Accuracy and precision of estimators
were evaluated on synthetic datasets with heterogeneous cell
types, for which the true values of � and � were known (see
Supplementary Figure S1 and Synthetic datasets in Supple-
mentary material).

We stress that UDE is not supposed to depend on the
genes, and in fact the workflow includes a step to check this
important assumption on the data (see Software pipeline).

Occurrence of zero UMI counts. The estimate of �g,c =
�g�c is the starting point to approximate the probability that
Rg,c = 0. In general the population of cells is not uniform, so
we cannot fix any specific model for the distribution of Rg,c.
Instead we make the assumption that this probability takes
a simple form, depending on one additional parameter ag,

P(Rg,c = 0) ≈
(

a−1
g

λgνc + a−1
g

)a−1
g

. (1)

This family of functions corresponds to the probability of
zero for a negative binomial distribution with mean �g,c
and dispersion ag (X has dispersion a if Var(X) = E[X] +
aE[X]2). We stress that we are not assuming Rg,c to have
negative binomial distribution, but just that P(Rg,c = 0) de-
pends on c and g as in (1).

In fact the value of ag is not estimated as the dispersion
of Rg,c, but by fitting the observed number of cells with zero
UMI counts (see Estimate for ag in the Supplementary ma-
terial). If the population is uniform, then Rg,c would really
be negative binomial with average �g�c and dispersion ag
(though in that case it would be better to estimate ag as the
dispersion). In all other cases �g and ag encode information
on the occurrence of zero counts for all cell types, encom-
passing types expressing and not expressing g.

Then, given any two genes g1 and g2 and under the null
hypothesis that their expressions �g1,c and �g2,c are in-
dependent, the expected number of cells for which both
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genes have zero UMI counts is simply ε0,0 = ∑
c P(Rg1,c =

0)P(Rg2,c = 0) and can be estimated with Equation (1). This
is used as expected counts in the contingency tables in Gene-
pair analysis section.

Software pipeline

We developed and tested COTAN on datasets obtained
with droplet based techniques and in particular on
10× datasets and Drop-seq datasets. Figure 1 illustrates the
pipeline, which is detailed in this section. Analysis requires
and starts from a matrix of raw UMI counts, after removing
possible cell doublets or multiplets and low quality or dying
cells (with too high mitochondrial RNA percentage).

Data cleaning. The first step consists in removing genes
that are not significantly expressed (default threshold is to
require one or more reads in at least 0.3% of cells) or un-
wanted (such as the mitochondrial ones).

There is then an iterative procedure to filter out outlier
cells (such as blood cells in a brain cortex dataset). In each
iteration the UDE is estimated for all cells and UMI counts
are simply normalized dividing by its value. Cells are then
clustered by Mahalanobis distance (two clusters, A and B,
complete linkage clustering) and represented on the plane
of the first two principal components. The clustering algo-
rithm detects outlier cells which will fall into the smallest
cluster B (Supplementary Figure S8A). A subsequent plot
displays the most abundant genes expressed in B, to allow
the user to check if they are peculiar in any way (Supplemen-
tary Figure S8C). The user may choose to drop the cells in B
and do another iteration, or to stop the procedure, when the
PCA plot does not show obvious outliers (Supplementary
Figure S8B–D).

After the last iteration two final quality checks are per-
formed on the estimated UDE of cells. Firstly the PCA plot
colored by UDE should not show a clear separation of cells
with high and low UDE (Supplementary Figure S9A). In
fact, COTAN builds on the assumption that UDE is not
gene-dependent (see UMI count model) and if the PCA plot
is polarized by UDE, this assumption might be false. Sec-
ondly, the plot of sorted UDE values will show if the effi-
ciency drops markedly for a small fraction of cells. If this
is the case, we usually want to exclude cells below the el-
bow point (see Supplementary Figure S9B and C; we re-
mark that UDE values are normalized to have average 1,
so there is no absolute threshold for efficiency to be accept-
able). If cells are removed, another estimation iteration is
due.

Tables implementation. Two genome-wide procedures
compute the number of cells (observed and expected)
in each of the conditions needed by gene-pair analysis
(GPA, see Gene-pair analysis below and GPA theory in
Supplementary material).

For each couple of genes, COTAN needs to build the 2
× 2 contingency table of zero/non-zero UMI counts. If n is
the number of genes in the sample, the totality of observed
values of these tables consist in n × n × 2 × 2 integers. In
our implementation, four n × n matrices store the number of

cells in each of the four conditions (expressing both genes,
only the first one, only the second one or none). Constitu-
tive genes that show non-zero UMI count in every cell can-
not be used and are removed in this step (saving a list of
them).

The expected values of the same 2 × 2 contingency ta-
bles are estimated as described in Occurrence of zero UMI
counts and stored again as four n × n matrices correspond-
ing to the same four conditions. In the implementation, the
estimation of the dispersion parameters ag is determined by
simple bisection. In the case of the genes that would require
a negative dispersion, because

∑
c e−μg,c > #{c, Rg,c = 0},

we choose instead to impose a zero dispersion model (Pois-
son distribution) with increased mean (1 + bg)�g, yielding
P(Rg,c = 0) ≈ e−(1+bg )μg,c (see also Estimate for ag in the
Supplementary material). This choice is consistent with the
intended universality of the approach, because no distribu-
tion of �g,c would give a negative dispersion and because
�g is anyway an estimated quantity and therefore noisy. The
positive parameter bg is encoded as −ag so that one single
parameter can account for both cases. The fraction of genes
with negative ag is reported. In the typical dataset, about
30% of all genes fall in this case, with values of bg no larger
than 0.15 and average under 0.02. These genes are typically
constitutive genes with low GDI and UMI count compati-
ble with a negative binomial distribution.

Main output. For each pair of genes, the software com-
putes the GPA test statistics S, the corresponding � 2(1) p-
value, and the COEX index (see Statistical inference on co-
expression in Supplementary material). These are saved in
three n × n matrices, and the primary output of COTAN
analysis consists of the latter two.

Computation time. The time required for the analysis is
approximately proportional to the number of cells in the
dataset. The most demanding step is the estimation of dis-
persion parameters, but since it is very sensible to the num-
ber of cores used, it can become much faster when many
cores are available. As a reference, a dataset with 5000
cells was analyzed in about 3 min on 11 cores of an In-
tel(R) Dual Xeon(R) Silver 4214 at 2.20 GHz with 64GB of
RAM.

Seurat pipeline

Seurat (3.1.0) workflow was performed on E16.5 hip-
pocampal dataset (25) following the Guided Clustering Tu-
torial www.satijalab.org/seurat/v3.1/pbmc3k tutorial.html
(accessed 20 February 2020), with modifications. Data im-
port (CreateSeuratObject) was done using min.cells 3 and
min.features 200. The selected range for the number of fea-
tures was between 200 and 4000; the maximum allowed
fraction of mitochondrial genes per cell was 7.5%. Normal-
ization was done using the default parameters. The correla-
tion was then calculated on the whole Seurat normalized
data matrix and the heatmap was plotted subsetting this
(Figure 2B). Figure 2D was plotted by calling the func-
tion FindVariableFeatures with selection method
VST.

https://www.satijalab.org/seurat/v3.1/pbmc3k_tutorial.html
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Figure 1. Pipeline diagram.

RESULTS

Overview

High throughput scRNA-seq methods allow the study of
large cell populations, at the cost of suffering low expres-
sion levels. In fact read counts can be so scarce as to in-
hibit the analysis with traditional approaches of many rel-
evant genes (see Supplementary Figure S3). On the other
hand COTAN, after parameter estimation, encodes UMI
counts as zero/non-zero. This choice is a critical feature of
the method, with the aim to increase its sensitivity for genes
with low expression level.

There are a few key concepts in COTAN (see also Mate-
rials and Methods). They are drafted here to build a termi-
nology for the subsequent sections, and then detailed in the
Supplementary Material.

Gene-pair analysis. Gene-pair analysis (GPA) is the core
of COTAN’s computations. It works on couples of genes,
by comparing the proportion of cells with zero UMI counts
for both genes, with the expected number under the hypoth-
esis that the detections of the two genes are independent.
This independence holds in particular whenever one of the
two genes is actually expressed in all cells (whether or not
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Figure 2. GPA and GDI are able to discriminate constitutive genes (CGs) from neural progenitor genes (NPGs) and pan-neuronal genes (PNGs). (A)
COTAN GPA of selected genes. Cell color encodes COEX index: blue indicates genes showing joint expression, red indicates genes showing disjoint
expression. White indicates independence, meaning that one or both genes are constitutive, or that the statistical power is too low to detect co-expression.
Since the co-expression of a gene with itself is irrelevant, the diagonal is made artificially white. (B) Pearson correlation matrix of the same selected genes as
in (A), using Seurat (34) normalized expression levels (obtained following the website vignettes – Guided Clustering Tutorial). (C, D) Comparison between
COTAN global differentiation index (GDI, C) and Seurat highly variable features (D) analysis. Red labels indicate NPGs, orange labels PNGs, green labels
CGs. Dotted blue lines correspond to the median (lowest) and the third quartile (highest). All plots refer to E16.5 mouse hippocampal cells (25) and genes
are selected to be characteristic of NPGs, PNGs and constitutive genes with both high and low typical expression.

it is detected). If instead the expression of both genes cor-
relates with the same cell identity states, then there will be
evidence against independence. See GPA theory in Supple-
mentary material.

GPA outputs the p-value for this test and a co-expression
index (COEX) with values in the [−1, 1] range, which es-
timates the deviation from the proportion which was ex-
pected under independence (positive for co-expression and
negative for disjoint expression). The mathematical deriva-
tion of this p-value is not rigorous, so its properties were
tested on negative datasets where it was found to be more
robust than standard correlation analysis on expression lev-

els (see in Supplementary material Negative dataset analysis
and Supplementary Figure S4).

The full potential of GPA is realized when it is performed
genome-wide, between all pairs of genes, as this allows to
extract very detailed information, as exemplified below.

Differentiation indices. Genome-wide GPA tests can be
used to score single genes according to their propensity
to show either joint or disjoint expression against other
genes.

Fixing a gene g and looking at the distribution of the
p-values of g against all other genes (Supplementary Fig-
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ure S5), one can compute the global differentiation index
(GDI) of g, which is low (typically below 1.5, see Supple-
mentary Figure S2) for constitutive genes and high for dif-
ferentially expressed genes, thus allowing a systematic pro-
cedure for detecting the latter type in the transcriptome.

If the same approach is restricted to the p-values of g
against genes in a subset V (i.e. of genes related to some
function), we get instead the local differentiation index rela-
tive to V (LDI), which is more specialized and sensitive than
GDI for most applications (Supplementary Figure S6).

See also Filtering differentially expressed genes in the Sup-
plementary material.

Co-expression space. The genome-wide COEX matrix can
be used to embed genes in what we call co-expression space:
a multidimensional representation of genes which is partic-
ularly powerful for investigating relations between differen-
tially expressed genes. This is reminiscent of correlation net-
work analysis (30), in that a nonlinear transformation is ap-
plied to a correlation matrix (COEX in our case) to recover
a notion of distance between genes.

The geometry of this space is based on co-expression pat-
terns: genes are close to each other when their activation
is synchronized through different cell types and far apart
otherwise. This allows genes to be effectively clustered by
co-expression and represented in plots, after dimensionality
reduction. See also Filtering differentially expressed genes in
the Supplementary material.

Workflow

We implemented COTAN as an R package available on
GitHub.

The tool should be applied on post-quality-control UMI
counts (after doublets and dying cells have been removed).
There are two required steps to get the main output matri-
ces, and then several options are available depending on the
question to be investigated (see Figure 1).

The first step is the model parameters estimation. In par-
ticular, the parameters needed by the model are the UDE
for the cells and the mean and dispersion for the expression
of genes (denoted by �c, �g and ag, see Mathematical frame-
work). The estimation of UDE allows to make cell expres-
sion roughly comparable and hence the user has the choice
to filter out cells with uncommon expression, with an it-
erative estimating-cleaning-estimating procedure (see Data
cleaning).

At the end a plot is displayed to assess the most important
assumption of the model, namely that UDE is not corre-
lated with cell differentiation in the sample (see UMI count
model and Software pipeline).

The second step, tables creation, begins by computing the
probability of zero UMI counts for each cell–gene combi-
nation, given the estimated parameters. These probabilities
allow to devise the GPA test, which is based on generalized
2 × 2 contingency tables (also indicated as co-expression
tables) which collect the joint occurrence of zero UMI
counts for two genes (see GPA theory, in Supplementary
material).

Operatively, for each gene pair, COTAN constructs the
observed and expected co-expression tables and then per-
forms the GPA, computing p-value and COEX. See also
Tables implementation and Main output.

The two genome-wide matrices of COEX and p-values
are COTAN’s main output. Both are n × n, symmetric ma-
trices, where n is the number of genes.

Starting from there, several possibilities are available.
COEX can be directly plotted as a heatmap, for all genes
or for a selection. One can compute the differentiation in-
dices (GDI and LDI) of genes to restrict attention to those
whose expression manifestly depends on cell identity states.
Finally, by restricting the COEX matrix to a rectangular
submatrix and through a suitable nonlinear transformation,
one can embed the genes in the co-expression space and
then perform cluster analysis and dimensionality reduction.

GPA and GDI of mouse hippocampus

We assayed COTAN on a scRNA-seq dataset of embry-
onic hippocampus (25), focusing on a collection of selected
Constitutive Genes (CGs) (31), Neural Progenitor Genes
(NPGs) (32,33) and Pan-Neuronal Genes (PNGs) (32,33).
COTAN’s GPA effectively discriminated between CGs,
showing COEX near zero against all genes, and NPGs
or PNGs, having positive or negative COEX when tested
against one another (Figure 2A). Notably, each NPG pos-
itively correlated with other NPGs and negatively with
PNGs, and vice-versa, indicating COTAN capability to cor-
rectly infer joint or disjoint expression of two genes at single
cell level.

We compared COEX to correlations coefficients com-
puted on gene expression levels, obtained by Seurat (34).
Figure 2A and B compare heatmaps of COEX and Pearson
correlation (Spearman correlation being slightly worse).
COEX proved more accurate in discriminating between
CGs, NPGs and PNGs, indicating COTAN as better suited
in analyzing the co-expression of couples of genes at sin-
gle cell level. To make the comparison more quantitative,
we computed the average of the absolute value of these in-
dices for the two cases of no correlation and correlation. For
pairs of genes with at least one CG, the average of absolute
values of COEX was 0.0136, while it was 0.0488 and 0.0526
for Pearson and Spearman correlation indices. For the pairs
with no CG gene, it was respectively 0.213, 0.236 and 0.223.
This is confirmed by correlation p-values (obtained from
GPA over 2252 cells for COTAN and from Fisher infor-
mation over 2080 cells for correlations), with false positive
rates (p-value < 10−4, out of 391 cases) of 1.8%, 29.2% and
31.51% respectively for COTAN, Pearson and Spearman.
False negative were 13, 12 and 15 out of 105 cases respec-
tively (see also Supplementary Figure S4 for comparison on
negative datasets).

We then compared GDI to the highly variable feature
analysis of Seurat (34). GDI efficiently discriminates be-
tween CGs, which lay below the median (with two excep-
tions, Golph3 and Zfr), and NPGs and PNGs, located above
the third quartile (Figure 2C). While, highly variable fea-
tures analysis of Seurat (Figure 2D) was much less precise
in discriminating between CGs and cell identity genes (com-
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pare Figure 2D to C) with, for example, the two neuronal
markers Dcx and Map2 close to Gadph and Sub1.

Gene clustering of mouse cortex

Correlation analysis approaches are commonly used to
identify cell clusters with consistent global gene expres-
sion. Conversely, gene network analysis tools (27) such as
WGCNA (30) use correlation to build co-expression net-
works and from them infer gene clusters. COTAN does
something similar, using COEX as a correlation matrix
and building on it to determine clusters of genes. It does
not construct a co-expression network as an intermedi-
ate step and instead directly groups together genes with
similar co-expression patterns against selected genes in the
sample.

We used COTAN to investigate a dataset of mouse em-
bryonic cortex (4), because the molecular identity of its
many cell types is well described (32). We firstly selected
from literature (32) robust primary markers for layer I
(Reln), layers II/III (Satb2), layer IV (Sox5) and layers
V/VI (Bcl11b), see Figure 3A. Then, for each marker we se-
lected its most correlated genes. We used COEX > 0 for all
genes and GPA p-value <0.0001 for Satb2, Reln and Sox5,
and GPA p-value <0.001 for Bcl11b. This allowed determin-
ing a total of 170 secondary layer markers, after removing
seven overlapping genes. For all these genes, we plotted an
ordered symmetric heatmap of GPA COEX values, group-
ing the secondary marker genes by the primary marker used
to select them (Figure 3B).

COTAN showed to be well suited to evaluate the co-
expression of gene pairs genome-wide. The comparison be-
tween groups highlighted an impressive consistency of co-
expression inside each group and robust disjoint expression
between different groups, with the only exception of Sox5
and Bcl11b groups, which resulted as co-expressed. We be-
lieve that the Reln, Satb2 and Sox5/Bcl11b groups repre-
sent genuine gene signatures of distinct cortical cell identity
and that similar signatures can be found by unbiased ap-
proaches.

To refine these results and further investigate gene rela-
tions, we considered the co-expression space. In accordance
with the recommendations of the method, we restricted the
genes for the pattern comparison to a comprehensive set V
of layer-associated markers (see Supplementary Figure S7).
In analogy to other methods (35) the analysis was guided
by few key genes: to build V we selected a shortlist of ten
known primary markers of cortical layer identity (32) (Reln
and Lhx5 for layer I, Satb2 and Cux1 for layers II/III, Rorb
and Sox5 for layer IV, Bcl11b and Fexf2 for layers V/VI
and Vim and Hes1 for progenitor cells), together with the
top 25 genes most correlated with each of them, for a to-
tal of 181 secondary markers, after removing overlapping
genes.

For all genes in the dataset, we computed the LDI relative
to the genes in V and used it to filter the 10% genes with the
highest values, in order to get a meaningful graphical rep-
resentation and better input data for the subsequent cluster
analysis (Supplementary Figure S7).

These differentially expressed genes were embedded in-
side the co-expression space, where cluster analysis (by
Ward’s hierarchical method) and dimensionality reduction

were performed (Figure 3C–E). For these plots, genes were
colored according to the cluster analysis results (detailed be-
low).

Notably, each gene cluster shows univocal correspon-
dence with all the primary markers of one of the major cor-
tical cell identities at the developmental stage of analysis,
proving COTAN ability to gather genes with similar nature
regarding cell identity.

Investigating marker genes with cluster analysis

The cluster analysis of the previous section used Ward’s
minimum variance hierarchical method (36), based on the
distance matrix of the co-expression space. The resulting
tree presents a natural cutting gap at seven clusters (possible
alternatives being at 2, 4 or 5 clusters––see Figure 4).

Each of the five pairs of primary markers was found un-
divided in a different cluster. From them we assigned the
identity of the five clusters and in particular: cluster 1, con-
taining Vim and Hes1, was identified as a set of genes re-
lated to progenitors identity; cluster 2, containing Sox5 and
Rorb, was identified as genes related to layer IV identity;
cluster 3, containing Reln and Lhx5, was identified as genes
related to layer I identity; cluster 5, containing Bcl11b and
Fezf2, was identified as genes related to layer V/VI identity;
finally, cluster 6, containing Cux1 and Satb2, was identified
as genes related to layer II/III identity.

The last two clusters did not contain any primary
marker. To assess their identity we performed a gene
enrichment analysis on the Enrichr web site (37,38).
We found that cluster 4 is enriched in septofimbrial
nucleus genes, and cluster 7 is enriched in nucleus ac-
cumbens genes (in the Allen Brain Atlas up-regulated
genes dataset––data tables attached as supplemen-
tary files––ABA up table cl4 enrichr.csv and
ABA up table cl7 enrichr.csv).

To test the ability of COTAN gene clustering to detect
new markers, we compared the five identified clusters with
data reported in the literature (5). Results are summarized
in Table 1, where we also included the output of the modules
identification performed by WGCNA (30), to get a compar-
ison with a common method for gene network analysis and
clustering. Of the 48 markers used or identified in (5), 5 are
not expressed in the dataset, 10 fell outside the 10% genes
selected by LDI and the other 33 entered clustering. We
further excluded 6 genes that belonged to the ten primary
markers (and are hence clustered correctly by construction).
The agreement in the layer assignment was remarkable, with
only 5 out of 27 genes assigned to different clusters. In par-
ticular two (Htra1 and Plxna4) were assigned to layers dif-
ferent from those identified in (5), and three were assigned
to the clusters not associated to layers.

It must be noted that the dataset (4) that we analyzed and
that of Loo et al. (5) refer to different developmental stages
(E17.5 and E14.5 respectively) and this might be a reason
for some discrepancies. Consider for example Plxna4, which
is a known marker for layers V/VI, and that our analysis
assigned instead to layers II/III. A comparison with ISH
Allen Brain Atlas in Supplementary Figure S10 shows that
Plaxna4 transcript is localized principally in layers V/VI at
early stages, but it actually co-localizes with layers II/III at
later stages. (Plxna4 was the only one among the five in-
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Figure 3. Gene clustering in scRNA-seq analysis. (A) The six layers of differentiated neurons and progenitor cells of late embryonic cortex are depicted in
different colors, together with known markers of cell identity (32,40). (B) GPA heatmap of the 170 genes showing strong joint expression with the genes
indicated in labels: Reln, Satb2, Sox5 and Bcl11b respectively markers of layers I, II/III, IV and V/VI. The heatmap shows the reciprocal relationship
between all genes pairs; significant joint expression is indicated with blue (positive COEX values) while significant disjoint expression is indicated in
red (negative COEX values). (C, D) and (E) Different dimensionality reduction plots (Principal Component Analysis, t-distributed Stochastic Neighbour
Embedding and Multidimensional Scaling, respectively) of 1235 genes (10% highest LDI). t-SNE plot was performed using initial dimensions 20, maximum
iterations 3000, perplexity 30, eta = 200 and theta = 0.4. Colors identify clusters as specified in Investigating marker genes with cluster analysis. Labels
correspond to the ten primary markers, together with four other known layer identity markers (Tbr1, Mef2c, Nes and Sox2) as additional landmarks. All
plots refer to E17.5 mouse cortex cells (4).

coherently labelled genes, with known cortical expression
pattern in the Allen Brain Atlas database.)

COTAN identified a much higher number of layer mark-
ers compared to the conventional methods applied in (5)
(see supplementary file STable1.csv). Among all possi-
ble new layer markers detected by COTAN, we analyzed
the ones presenting nucleic acid binding gene ontology
(GO:0003676). Complete tables are attached as supplemen-
tary files (STable1.csv and STable2.csv). Supple-
mentary Figure S11 shows the E18.5 ISH collection of the
genes available from Allen Brain Atlas website. Most of the
genes show ISH pattern consistent with layer identity as
identified by COTAN, with few exceptions.

In conclusion, gene co-expression space can extract spe-
cific information from the dataset serving as a suitable
base for gene clustering and novel cell identity marker
identification.

DISCUSSION

We introduced COTAN, a novel method for the analysis of
scRNA-seq data with UMI counts. COTAN is based on a
flexible model for the probability of zero UMI counts and a
generalized contingency table framework for zero/non-zero
UMI counts for couples of genes.

We described the application of COTAN to datasets of
mouse embryonic hippocampus and cerebral cortex, that
show high and documented cell identity diversity.

We found that COTAN is well suited to identify gene
pairs which are jointly or disjointly expressed in the sam-
ple. This is graphically summarized through heatmap plots
(as in Figures 2A and 3B) or numerically with two quanti-
ties: an approximate p-value (for a test on independence)
and the COEX index, which is a signed measurement of
co-expression (positive and blue in the heatmaps for joint
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Figure 4. Hierarchical clustering of genes. The dotted line denotes the height of the tree cut forming seven clusters. Branches and leaves colors indicate
cluster identity: cluster 1, in light blue, indicates progenitor identity, cluster 2, in aquamarine, indicates layer IV identity, cluster 3, in red, indicates layer I
identity, cluster 5, in dark blue, indicates layers V/VI identity and cluster 6, in pink, denotes layers II/III identity. The two clusters in gray (4 and 7) do not
contain primary markers and are likely inconsistent with projection neuron identity. The gene names reported are the ones identified as secondary markers
(see Gene clustering of mouse cortex).

expression; negative and red, when the expression of one
gene tends to exclude the expression of the other).

COTAN can quantitatively and directly extricate gene re-
lationships, also for lowly expressed genes.

Building on the p-values, COTAN can compute for each
gene new scores (GDI and LDI) to assess which genes are
differentially expressed. The GDI is a useful tool to detect
differentially expressed genes, similarly to Seurat’s variable

features, but with constitutive genes and not-constitutive
genes more separated (as shown in Figure 2). In addition,
with the LDI it is possible to focus this analysis on spe-
cific biological features, uncovering information that may
be hidden or confounded by whole genome approaches.

Finally, exploiting all the information in the matrix of
COEX for many genes (through the co-expression space),
COTAN can cluster genes with consistent differential
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Table 1. Number of layer markers found by Loo et al. (5) with their respective layer according to the original paper (columns) and according to COTAN
and WGCNA (rows). Bold text denotes consistent identification by the two methods. Plxna4 in purple, see text. The second table has the same data as
the first one, but excluding all genes belonging to the set V of secondary markers, as these were selected by co-expression with the primary markers and
hence their assignment to the correct clusters might be favored by the method. The third table shows the four modules identified by WGCNA. Two of them
included the primary markers of layer I and progenitor cells and were so identified. The third one contained no primary marker and five markers by Loo
et al. (5). The fourth one included no marker. Several marker genes were outside all four modules

Markers from Loo et al. (5)

Layer I Layers II/III Layers V/VI Progenitor

Markers detected by COTAN Layer I 4
Layers II/III 3 1
Layer IV 1
Layers V/VI 7
Progenitor 8
Other cluster 1 2

Markers outside V detected by COTAN Layer I
Layers II/III 2 1
Layer IV 1
Layers V/VI 5
Progenitor 5
Other cluster 1 2

Markers detected by WGCNA Layer I 2
Progenitor 7
Other module 1 5
Other module 2
Not in a module 1 4 9 2

expression at single cell level, allowing to confirm previously
known cell-identity markers and enabling the discovery of
new ones.

It should be noted that COTAN is most useful when the
population of cells is not too heterogeneous, because if there
are too many cell types then most genes will be differentially
expressed. In those cases the interpretation of results might
become difficult.

In conclusion, COTAN is a novel approach that lays the
groundwork to directly infer single-cell gene interactome
and relationship, and represents an alternative to indirect
approaches (30,39) in the panorama of single cell data anal-
ysis methods.

DATA AVAILABILITY

Data analysis in this paper was based on two public
datasets, as described below. For GPA and GDI of mouse
hippocampus we analyzed the cells from time point E16.5
of the mouse dentate gyrus dataset with GEO number
GSE104323 (25). Cells removed during cleaning were 33 out
of 2285. For Gene clustering of mouse cortex we analyzed the
cells from time point E17.5 of the mouse embryonic cortex
dataset with GEO number GSM2861514 (4). Cells removed
during cleaning were 17 out of 880.

The COTAN package is publicly available on GitHub at
https://github.com/seriph78/COTAN. All data and analysis
described in this manuscript are available as a repository at
https://github.com/seriph78/Cotan paper or as a web site at
https://seriph78.github.io/Cotan paper/.
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