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Mitschke’s Theorem is sharp

Paolo Lipparini

Abstract. A. Mitschke showed that a variety with an m-ary near-unanimity term
has Jónsson terms t0, . . . , t2m−4 witnessing congruence distributivity. We show that
Mitschke’s result is sharp. We also evaluate the best possible number of Day terms
witnessing congruence modularity. More generally, we characterize exactly the best
bounds for many congruence identities satisfied by varieties with an m-ary near-
unanimity term.

1. Introduction

Recall that a term u is a near-unanimity term (in some algebra or in some

variety) if all the equations of the form

u(x, x, . . . , x, y, x, . . . , x, x) = x

are satisfied, with just one occurrence of y in any possible position.

Near-unanimity terms have been originally studied in connection with gen-

eralizations of the Chinese remainder theorem [2]. More recent research has

shown connections with computational complexity, e. g. [3, 4, 5]. Joins of

varieties with near-unanimity terms have been studied in [6].

A. Mitschke [18] proved that every variety V with a near-unanimity term

is congruence distributive. A more direct proof, credited to E. Fried, can be

found in Kaarli and Pixley [10, Lemma 1.2.12]. Compare also Barto and Kozik

[4, Section 5.3.1] and [14, Section 5].

In particular, any variety with a near-unanimity term is congruence mod-

ular. The distributivity [9] and modularity [7] levels of varieties with a near-

unanimity term have been evaluated.

Theorem 1.1. Let m ≥ 3.

(1) (Mitschke [18]) A variety with an m-ary near-unanimity term is 2m−4-

distributive.
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(2) (Sequeira [19, Theorem 3.19]) A variety with an m-ary near-unanimity

term is 2m−3-modular.

In this note we show that Theorem 1.1 gives the best possible evaluations.

Section 2 presents our main construction, where we build appropriate subal-

gebras of certain products. The construction is then iterated in Section 3 in

order to get counterexamples showing that Theorem 1.1 cannot be improved.

In Section 4 we exemplify our methods by presenting some more concrete ex-

amples. Section 4 is largely self-contained. Further remarks are contained in

Section 5.

We shall assume familiarity with the basic notions of universal algebras, as

presented, e. g., in [16]. The notions we shall use admit equivalent reformula-

tions in terms of congruence identities, as given by the following table.

n-distributive α(β ◦ γ) ⊆ αβ ◦ αγ ◦ n. . .

n-alvin α(β ◦ γ) ⊆ αγ ◦ αβ ◦ n. . .

n-modular α(β ◦ αγ ◦ β) ⊆ αβ ◦ αγ ◦ n. . .

n-reversed-modular α(β ◦ αγ ◦ β) ⊆ αγ ◦ αβ ◦ n. . .

(1.1)

A notion mentioned on the left holds in some variety V if and only if V satisfies

the corresponding congruence identity on the right, that is, the identity holds

for every algebra A in V and all congruences in A. In the above formulae

juxtaposition denotes intersection. For ε and δ binary relations, ε ◦ δ ◦ k. . .

denotes the relation ε ◦ δ ◦ ε ◦ δ ◦ . . . with k factors, that is, k − 1 occurrences

of ◦. If, say, k is even, then we write ε ◦ δ ◦ k. . . ◦ δ when we want to make

clear that δ is the last factor. Sometimes, for readability or convenience, we

might add further factors in the above expressions, as in ε ◦ δ ◦ ε ◦ k. . . ◦ ε ◦ δ.

In any case, the number above the dots represents the number of occurrences

of ◦ minus one.

Usually, the notions introduced in (1.1) are defined in an equivalent way

(throughout a variety) by means of the existence of a certain number of terms,

called after B. Jónsson, for n-distributive, and after A. Day, for m-modular.

The terms for alvin and reversed modularity are obtained from Jónsson and

Day terms, respectively, by exchanging the conditions for even and odd indices.

As in [15], such “reversed” conditions will be the key to the exact evaluation

of the appropriate parameters: dealing only with the more standard notions

we could not succeed in proving the exact results. In any case, here we shall

not need terms for distributivity and modularity; dealing with congruence

identities will prove much simpler. The reasons why in certain cases congru-

ence identities or even relation identities are more convenient than terms are

explained in Tschantz [20].

It is immediate from (1.1) that every n-alvin variety is n+1-distributive,

that every n-distributive variety is n+1-alvin, and corresponding results hold

for modularity and reversed modularity.
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See [15], in particular, Section 2 therein, for a full discussion of the equiv-

alences presented in table (1.1). See [14, 15] for more results related or sim-

ilar to Theorem 1.1 and for further comments. In particular in [15], among

many other examples, we presented, for every even n ≥ 2, the example of a

locally finite n-distributive variety which is neither 2n−2-modular, nor 2n−1-

reversed-modular.

2. The main construction

Definition 2.1. Let m ≥ 3 and 1 ≤ k ≤ m.

If some algebra A has a special element 0, we say that 0 is a k-absorbing

element for a term u if u(a1, . . . , am) = 0, whenever 0 occurs at least k-times

in the arguments of u, more formally, whenever |{i | ai = 0}| ≥ k.

A term u is a k-majority term in some algebraA (in some variety V) if every

element of A (of every algebra in V) is k-absorbing for u. In other words, a k-

majority term is supposed to satisfy the equation u(x1, . . . , xm) = x, whenever

the variable x occurs at least k-times in the arguments of u. Clearly, k > m
2 ,

unless we are in a trivial variety.

An m-ary term u is idempotent if it is an m-majority term, namely, if the

equation u(x, x, . . . , x) = x is satisfied.

An m-ary term is a near-unanimity term if it is an m− 1-majority term.

An m-ary term u is symmetrical in some algebra A (in some variety V) if

all the equations u(x1, . . . , xm) = u(xτ(1), . . . , xτ(m)) hold in A (in V), for all

permutations τ of {1, . . . ,m}.

In principle, when k < m − 1, the notion of a k-majority m-ary term has

little interest, since it implies the existence of a near-unanimity term of arity

< m. However, we shall merge different varieties with a k-majority term, for

distinct values of k, in such a way that the resulting variety V has an m−1-

majority term (namely, a near-unanimity term) and provides all the desired

counterexamples.

The next construction and, more generally, all the arguments in the present

note share many aspects in common with the constructions we have performed

in [15]. However, an important difference should be mentioned. In the con-

structions in [15], at each inductive step, we have taken the product of some

formerly constructed algebra A4 with three further algebras. One of these ad-

ditional algebras, the algebra A3 in [15], is a term-reduct of the two-elements

lattice C2. Thus in [15] at each induction step a reduct of C2 is added as a new

factor. In the present situation, instead, it is necessary to fix the C2-reduct

once and for all at the beginning, hence here the induction steps start with

a subalgebra of A3 ×A4. Let us also mention that, for convenience, here we

shall shift the third and fourth indices, in comparison with [15]. In particular,

the reduct of C2 here will appear at the fourth place.
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We shall frequently consider special elements 0z ∈ Az , for z = 1, 2, 4. When

no confusion is possible, we shall omit the subscripts. The types introduced in

the next lemma have been used also in many constructions from [15]. Since,

as we mentioned, we are shifting the last two coordinates, the correspondence

with [15] is exact only modulo a permutation of the coordinates. This is the

reason why the types here are denoted by, say, IIσ, rather than II.

Throughout the present note objects like A1 × A2 × A3 × A4 and, say,

A1 × A2 × (A3 × A4) shall be always identified, namely, we consider them

modulo isomorphism through the natural correspondence.

Lemma 2.2. Suppose that A1, A2, A3 and A4 are algebras with exactly one

m-ary operation u. Suppose that 3 ≤ m, 1 ≤ h ≤ k and h + k ≤ m. Suppose

further that 0z ∈ Az, for z = 1, 2, 4 and

(1) 0z is h-absorbing for u in Az, for z = 1, 2,

(2) u is a k-majority term in A3, and

(3) 04 is 2-absorbing for u in A4.

Suppose that a, d ∈ A3, F is a subalgebra of A3 ×A4 and let B = B(a, d)

be the subset of A1 ×A2 × F consisting of the elements which have one of the

following types

Type Iσ

( , 0, a, )

Type IIσ

(0, 0, , ),

Type IIIσ

(0, , d, )

Type IVσ

( , , , 0),

where dashed places can be filled with arbitrary elements from the corresponding

algebras, and under the provision that each 4-uple actually belongs to A1×A2×

F , namely, that the couple consisting of the last two coordinates belongs to F .

Recall that we are omitting the subscripts relative to the 0’s.

Then B = B(a, d) is the base set for a subalgebra B = B(a, d) of A1×A2×

F, hence also a subalgebra of A1 ×A2 ×A3 ×A4.

Proof. First notice that B is nonempty, since there exists at least an ele-

ment of type IIσ. Suppose that b1, . . . , bm ∈ B. We have to show that

b = u(b1, . . . , bm) ∈ B. Since A1 and A2 are algebras and F is a subalge-

bra of A3 × A4, if each bi belongs to A1 × A2 × F , then b ∈ A1 × A2 × F .

Hence it remains to show that b has one of types Iσ - IVσ.

If at least two bi’s have type IVσ, then b has type IVσ, by (3), hence we

can suppose that at most one bi has type IVσ.

If at least h-many bi’s have type Iσ or IIσ (hence have 0 in the second

position) and at least h-many bi’s have type IIIσ or IIσ (hence have 0 in the

first position), then b has type IIσ, by (1), and we are done in this case, as

well.

Otherwise, there are, say, at most h−1-many bi’s having type either Iσ or

IIσ. Since we have assumed that at most one bi has type IVσ, then there are

at least m− (h− 1)− 1 = m− h ≥ k many bi’s of type IIIσ. Then b has type

IIIσ, by (1), h ≤ k and (2). Symmetrically, if there are at most h − 1-many
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bi’s of type IIIσ or IIσ, then there are at least k-many bi’s of type Iσ, thus b

has type Iσ. �

3. Mitschke’s Theorem is sharp

For fixed m ≥ 3, we now consider lattice terms of the form

u2,m =
∏

i<j<m

(xi + xj), u3,m =
∏

i<j<k<m

(xi + xj + xk)

and so on. We shall combine various lattice reducts defined using the above

terms in order to obtain our counterexamples. As shown by the following

remarks, it is not enough to consider just one of the above term-reducts.

Example 3.1. For m ≥ 3, consider the term-reduct Vd
m of the variety of dis-

tributive lattices with the only m-ary operation corresponding to the term

u2,m defined above. Trivially the operation in Vm is an m-ary near-unanimity

term, since u2,m is an m-ary near-unanimity term in lattices. Moreover, Vd
m

is locally finite, being a term-reduct of a locally finite variety.

It is easy to see that if m ≥ 4, then Vd
m has not an m−1-ary near-unanimity

term, thus, in general, the existence of an m-ary near-unanimity term does

not imply an m−1-ary near-unanimity term, even for locally finite varieties.

See [19, Lemma 3.4] for a slightly more involved example (not locally finite).

To check that Vd
m has not an m−1-ary near-unanimity term, let A be the

u2,m term-reduct of C2 ×C2 × · · · ×C2 with m− 1 factors, where C2 is the

two-elements lattice with universe {0, 1}. Then B = A \ (1, 1, . . . , 1) is the

universe for a subalgebra of A, since, for any m-uple of elements of B, we have

at least two elements with a 0 at the same component, hence we still get 0

at that component when applying u2,m. On the other hand, Vd
m has not an

m−1-ary near-unanimity term, since, were v such a term, then in A

v((0, 1, 1, . . . , 1), (1, 0, 1, . . . , 1), . . . , (1, 1, 1, . . . , 0)) =

(v(0, 1, 1, . . . , 1), v(1, 0, 1, . . . , 1), . . . , v(1, 1, 1, . . . , 0)) = (1, 1, 1, . . . , 1),

contradicting the above-proved fact that B is a subalgebra of A, since (1, 1, 1,

. . . , 1) /∈ B.

If Vm is the corresponding term-reduct of the variety of all lattices, then Vm,

too, has an m-ary near-unanimity term but not an m−1-ary near-unanimity

term. In this case, Vm is not locally finite.

Remark 3.2. In general, we cannot use the above example in order to show

that Theorem 1.1 is the best possible result. Indeed, Baker [1] showed that

any congruence distributive term reduct of lattices is 4-distributive. While V4

is actually not 3-distributive and not 4-modular [14], thus V4 indeed shows

that Theorem 1.1 gives the best possible result for m = 4, Baker’s Theorem

prevents Vm to be a suitable counterexample for larger m.

Henceforth a more involved approach is necessary.
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Notice that Baker’s result can be generalized to the effect that any con-

gruence distributive term reduct of Boolean algebras is 4-distributive. This

statement is immediate from [14, Theorem 6.4(3)]. Hence, for our present

purposes, considering Boolean algebras in place of lattices provides no special

advantage. In this respect, however, see Proposition 5.3.

Definition 3.3. Suppose that m ≥ 3 and 1 ≤ j ≤ m.

Let uj,m be the following m-ary lattice term

uj,m(x1, . . . , xm) =
∏

|J|=j

∑

i∈J

xi (3.1)

where J varies on subsets of {1, . . . ,m}.

Of course, strictly speaking, uj,m, as a term, is uniquely defined only modulo

some fixed arrangement of summands and factors. However, we shall be only

interested on uj,m as an operation, hence the actual syntactical definition of

the term uj,m shall not be relevant in what follows.

Observation 3.4. Notice that, in every lattice with minimum, the minimum

0 is j-absorbing for uj,m. Moreover, in every lattice, uj,m is a p-majority

term for p = max{j,m−j+1}. In particular, if j ≤ m+1
2 , then uj,m is an

m−j+1-majority term.

Definition 3.5. Suppose that m ≥ 3 and 2 ≤ j < m. If L is a lattice, let

Lnu,j,m be the term-reduct of L with uj,m as the only operation (henceforth

always named as u). Let Nj,m = C
nu,j,m
2 , where C2 is the two-elements lattice

with base set {0, 1}.

Let ℓ = m+1
2 if m is odd, and ℓ = m

2 if m is even. Let Nm be the variety

generated by the algebras

N2,m, N3,m, . . . , Nℓ,m.

The definition is well-posed since the second superscript determines the type

of the algebra, in the present case, the arity of the only operation.

Conventionally, we let ε◦δ◦ 1. . . = ε and ε◦δ◦ 0. . . = 0, where 0 is the minimal

congruence in the algebra under consideration. If R is a binary relation, Rk

denotes R ◦R ◦ k. . . ◦R.

Theorem 3.6. Let m ≥ 3. The variety Nm is locally finite and has an m-ary

symmetrical near-unanimity term. Moreover

(1) Nm is not 2m−4-alvin, in particular, not 2m−5-distributive.

(2) More generally, the following congruence identity fails in Nm

α(β ◦ γ) ⊆ (α(γ ◦ β))m−2. (3.2)

(3) Nm is not 2m−3-reversed-modular, in particular, not 2m−4-modular.

(4) Still more generally, the following congruence identity fails in Nm

α(β ◦ (αγ ◦ αβ ◦ q−2. . . ◦ αβ•) ◦ γ•) ⊆ (α(γ ◦ β ◦ q. . . ◦ β•))m−2, (3.3)
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for every q ≥ 2, where β• = β, γ• = γ if q is even and β• = γ, γ• = β

if q is odd.

Proof. The variety Nm has an m-ary near-unanimity term, actually, an m-

ary near-unanimity operation, since in each algebra Nj,m, for 2 ≤ j ≤ ℓ, the

only operation is a near-unanimity operation. Indeed, by Observation 3.4,

the operation of Nj,m is a p-majority term for p = max{j,m−j+1}. Since

2 ≤ j ≤ ℓ ≤ m+1
2 and m ≥ 3, we have p ≤ m − 1, for every j in the interval

under consideration. Now notice that if p ≤ p′, then a p-majority term is a p′-

majority term. Hence in each algebra Nj,m the operation is an m−1-majority

term, that is, a near-unanimity term. The operation is symmetrical, since it

is symmetrical on each generating algebra.

Since the variety of distributive lattices is locally finite, each algebra Nj,m

generates a locally finite variety, hence Nm is locally finite, being the join of a

finite number of locally finite varieties.

We now show that (1) - (3) all follow from (4). Of course, the reader inter-

ested only in (1) - (3) might work out the details of the following arguments

in the corresponding simplified setting. Cf. also Section 4 below.

To show that (2) follows from (4) observe that (3.2) is the special case q = 2

of (3.3). Moreover, (1) is immediate from (2), since αβ ◦αγ ⊆ α(β ◦γ). Recall

the conditions given by (1.1). To show that (4) implies (3), we first establish

a condition of independent interest and which, for q odd, is equivalent to (3.3)

in every algebra.

Lemma 3.7. If m, q ≥ 3 and q is odd then identity (3.3) is equivalent to

α(β ◦(αγ ◦αβ ◦ q−2. . . ◦αγ)◦β) ⊆ αγ ◦
(

α(β ◦αγ ◦β ◦ q−2. . . ◦αγ ◦β)◦αγ
)m−2

(3.4)

in every algebra.

Indeed, by taking αγ in place of γ in (3.3) and since q is odd, we get

α(β ◦ (αγ ◦ αβ ◦ q−2. . . ◦ αγ) ◦ β) ⊆
(

α(αγ ◦ β ◦ αγ ◦ q. . . ◦ β ◦ αγ)
)m−2

=

αγ ◦ α(β ◦ αγ ◦ q−2. . . ◦ β) ◦ αγ ◦ αγ ◦ α(β ◦ αγ ◦ q−2. . . ◦ β) ◦ αγ . . .

. . . αγ ◦ α(β ◦ αγ ◦ q−2. . . ◦ β) ◦ αγ ◦ αγ ◦ α(β ◦ αγ ◦ q−2. . . ◦ β) ◦ αγ =

αγ ◦
(

α(β ◦ αγ ◦ q−2. . . ◦ β) ◦ αγ
)m−2

since α(αγ◦β◦αγ◦ q. . .◦β◦αγ) = αγ◦α(β◦αγ◦q−2. . . ◦β)◦αγ and αγ◦αγ = αγ,

both α and αγ being equivalence relations. Hence (3.3) implies (3.4).

On the other hand, for all congruences α, β and γ,

αγ ◦ α(β ◦ αγ ◦ β ◦ q−2. . . ◦ αγ ◦ β) ◦ αγ ⊆ α(γ ◦ β ◦ γ ◦ β ◦ q. . . ◦ γ ◦ β ◦ γ),

thus (3.4) implies (3.3), for q odd. We have proved Lemma 3.7.

If q = 3, then q − 2 = 1, hence in this case (3.4) becomes exactly the

condition (1.1) for 2m−3-reversed modularity, thus, by Lemma 3.7, the special

case q = 3 of clause (4) in Theorem 3.6 implies clause (3).
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Since we have showed that clause (4) implies all the other clauses in 3.6,

it remains to prove (4). The proof shall involve further definitions, notation,

claims and shall go through a finite induction divided in three steps, using

Lemma 2.2.

Fix m ≥ 3, q ≥ 2 and let ℓ be as in Definition 3.5. For every j with

2 ≤ j ≤ ℓ, let N j
m be the variety generated by the algebras

Nj,m, Nj+1,m, . . . , Nℓ,m.

In particular, N 2
m is Nm.

Clause (4) of the theorem is immediate from the special case j = 2 of the

following claim, since N2,m belongs to N 2
m = Nm, and since each N j

m is a

subvariety of Nm.

Claim. For every j such that 2 ≤ j ≤ ℓ, there are an algebra A
j
3 ∈ N j

m and a

subalgebra Fj of Aj
3 ×N2,m such that the congruence identity

α(β ◦ (αγ ◦ αβ ◦ q−2. . . ◦ αβ•) ◦ γ•) ⊆ (α(γ ◦ β ◦ q. . . ◦ β•))m−2j+2 (3.5)

fails in Fj.

In order to prove the claim we need to establish some notation.

Notation 3.8. Let Cq+1 be the chain with q + 1 elements {0, 1, . . . , q} and

the standard lattice operations. Let N
j,m
q+1 denote C

nu,j,m
q+1 , that is, recalling

Definition 3.5, Nj,m
q+1 is the term-reduct of Cq+1 with the only operation given

by the term uj,m from Definition 3.3. In particular, Nj,m is Nj,m
2 .

For every q ≥ 2, let β∗
q+1 be the congruence on Cq+1 determined by the

partition {{q, q − 1}, {q − 2, q − 3}, . . . }, where {0} is a block of β∗
q+1 if q

is even. Let γ∗
q+1 be the congruence on Cq+1 determined by the partition

{{q}, {q− 1, q− 2}, {q− 3, q− 4}, . . .}, where {0} is a block of γ∗
q+1 if q is odd.

Notice that β∗
q+1 and γ∗

q+1 are congruences on every term-reduct of Cq+1.

IfA is an algebra, we let 0A denote the smallest congruence onA. Similarly,

1A denotes the largest congruence on A. When there is no risk of ambiguity

we shall omit subscripts.

The claim is proved in three steps by induction on decreasing ℓ. During

the inductive proof of the claim we shall need some further properties of the

constructions witnessing the claim itself. Recall that N2,m is a reduct of

the two-elements lattice with base set {0, 1}. We shall need the additional

properties stated in the following subclaim.

Subclaim. (*) For every j, the failure of identity (3.5) in Fj can be witnessed

by elements of the form (aj , 1) and (dj , 1). By the above statement we mean

that we can choose aj and dj in A
j
3 and congruences α, β and γ of Fj in

such a way that (aj , 1), (dj , 1) ∈ F j and the pair ((aj , 1), (dj , 1)) belongs to the

left-hand side of (3.5), but not to the right-hand side of (3.5).

(**) We shall also require that the assumption in (*) above that the pair

((aj , 1), (dj , 1)) belongs to β ◦ (αγ ◦ αβ ◦ q−2. . . ◦ αβ•) ◦ γ• can be witnessed by
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elements of the form (cji , 0), namely, that there are elements cj1, . . . , c
j
q−1 in Aj

3

such that (aj , 1) β (cj1, 0) αγ (cj2, 0) αβ (cj3, 0) αγ . . . αβ• (cjq−1, 0) γ• (dj , 1)

and (cj1, 0), (c
j
2, 0), . . . ∈ F j.

(***) Finally, we shall prove that we can make (3.5) fail by taking α to be

the congruence induced on Fj by the congruence 1×0 on A
j
3×N2,m. Actually,

we shall only need that the second component is 0, but the proof shall give the

additional result on the first component.

We now proceed with the proof of the claim, at the same time checking

that we can handle the proof in such a way that (*) - (***) in the subclaim

are verified.

First step. Consider the case when m is odd and j = ℓ, thus m−2j+2 = 1.

In this case the claim is almost obvious since if the exponent on the right is

1, then identity (3.5) implies congruence q-permutability (just take α = 1,

the largest congruence). Lattices are not q-permutable, hence, a fortiori, the

term-reduct N ℓ
m is not q-permutable. It is then enough to take some witness

Aℓ
3 ∈ N ℓ

m of the failure of q-permutability and take Fℓ = Aℓ
3 ×N2,m.

In detail, recall Notation 3.8, takeAℓ
3 = N

ℓ,m
q+1, F

ℓ = Aℓ
3×N2,m and consider

the elements (q, 1), (q − 1, 0), (q − 2, 0), . . . , (1, 0), (0, 1) and the congruences

β = β∗
q+1×1, γ = γ∗

q+1×1 and α = 1×0 on Fℓ in order to get the failure of (3.5)

and at the same time to have (*) - (***) satisfied. Indeed, the pair ((q, 1), (0, 1))

does belong to α(β ◦ (αγ ◦ αβ ◦ q−2. . . ◦ αβ•) ◦ γ•), as witnessed by the other

elements in the above sequence. On the other hand, suppose by contradiction

that ((q, 1), (0, 1)) belongs to α(γ◦β◦ q. . .◦β•). Then (q, 1) γ (e1, f1) β (e2, f2) γ

. . . γ• (eq−1, fq−1) β• (0, 1), for certain elements (e1, f1), (e2, f2), . . . ∈ Aℓ
3 ×

N2,m. By γ-equivalence, e1 = q; then, by β-equivalence, e2 ≥ q− 1 and, again

by γ-equivalence, e3 ≥ q − 2. Going on, eq−1 ≥ 2, hence (eq−1, fq−1) is not

β•-equivalent to (0, 1).

Notice that Nℓ,m
q+1 belongs to the variety generated by Nℓ,m = N

ℓ,m
2 , since

Cq+1 belongs to the variety generated by C2. In particular, Aℓ
3 = N

ℓ,m
q+1

belongs to N ℓ
m.

Second step. Next, we consider the case j = ℓ and m even in the claim. In

this case m− 2j + 2 = 2. Apply Lemma 2.2 taking A1 = A2 = N
ℓ,m
q+1 and A3

a one-element algebra with an m-ary operation, say, A3 = {a}, with a = d.

Finally, let A4 = N2,m = N
2,m
2 and let F be the whole of A3 ×A4.

Take h = k = ℓ in Lemma 2.2. By Observation 3.4, the element 0 is ℓ-

absorbing in A1 and in A2 and 04 is 2-absorbing in A4. The operation of

A3 is trivially an ℓ-majority term. By Lemma 2.2 we get a subalgebra B of

A1 ×A2 ×A3 ×A4.

The proof that (3.5) fails in B for j = ℓ presents no significant difference

with respect to [14, 15]. We recall the details. Consider the following elements

of B.
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c0 = (q, 0, a, 1), cq = (0, q, a, 1), and

ci = (q − i, i, a, 0), for i = 1, . . . , q − 1.
(3.6)

The above elements are indeed in B, since c0 has type I
σ, cq has type III

σ (since

a = d) and the remaining ci’s have type IVσ. Recall that in this special case

we have taken F equal to A3 × A4, hence the above elements automatically

belong to A1 ×A2 × F .

If q is even, let β and γ be, respectively, the congruences on B induced

by β∗
q+1 × γ∗

q+1 × 1 × 1 and γ∗
q+1 × β∗

q+1 × 1 × 1. If q is odd, let β and γ

be, respectively, the congruences on B induced by β∗
q+1 × β∗

q+1 × 1 × 1 and

γ∗
q+1 × γ∗

q+1 × 1 × 1. Both in case q even and q odd, let α be the congruence

induced by 1× 1× 1× 0.

We have c0 α cq and c0 β c1 αγ c2 αβ c3 . . . , hence (c0, cq) ∈ α(β◦(αγ◦αβ◦
q−2. . . ◦αβ•)◦γ•). We shall show that (c0, cq) /∈ α(γ◦β◦ q. . .◦β•)◦α(γ◦β◦ q. . .◦β•) in

B. Towards a contradiction, suppose the contrary. Then there is some element

f ∈ B such that (c0, f) ∈ α(γ ◦ β ◦ q. . . ◦ β•) and (f, cq) ∈ α(γ ◦ β ◦ q. . . ◦ β•).

Thus c0 α f and there are elements f0 = c0, f1, . . . , fq = f such that f0 γ

f1 β f2 . . . Recall that f0 = c0 = (q, 0, a, 1). By γ-equivalence of f0 and

f1, the first component of f1 is q. By β-equivalence of f1 and f2, the first

component of f2 is ≥ q− 1. Going on, the first component of fq = f is ≥ 1, in

particular, it is not 0. Thus f has neither type IIσ nor IIIσ. Moreover, f has

not type IVσ, either, since its fourth component is 1, by α-equivalence of f0
and f . Since f ∈ B, then f has necessarily type Iσ, thus its second component

is 0. However, by performing a symmetric argument, using the assumption

(f, cq) ∈ α(γ ◦ β ◦ q. . . ◦ β•), we get that the second component of f is ≥ 1, a

contradiction. We have showed that (3.5) fails in B for j = ℓ.

We are almost done. It is now enough to declare whoAℓ
3 andFℓ actually are.

Take Aℓ
3 to be A1×A2×A3. As in the first step, A1 = A2 = N

ℓ,m
q+1 belong to

the variety N ℓ
m, hence Aℓ

3 belongs to N ℓ
m, too. Finally, let Fℓ = B, thus (3.5)

fails in Fℓ. The additional conditions (*) - (***) are verified by construction.

Indeed, here we take aj = (q, 0, a) and dj = (0, q, a), thus c0 = (aj , 1) and

cq = (dj , 1), modulo a standard identification of nested components. Similarly

for the other ci’s.

Let us observe that in the present step we could have worked with just three

coordinates. However, it is easier to add a dummy third coordinate, rather

than state and prove also a three-coordinate (and essentially less general)

version of Lemma 2.2. The full four-coordinate version of Lemma 2.2 will be

necessary in the proof of the next step.

Third step. Finally, we suppose that we have proved the claim and the

subclaim for some j with 2 < j ≤ ℓ and we shall prove the claim for j − 1.

Since we have proved the claim when j = ℓ, an easy finite induction establishes

the claim and the subclaim for all j’s, hence the theorem.

The proof of the third step is not really different from the proof of the

second step. However, here we shall use a nontrivial A3 which is given by
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the inductive hypothesis. Taking into account a nontrivial A3 involves a bit

of further details and, as we mentioned, the full power of Lemma 2.2 will be

necessary.

So let Aj
3 and Fj ⊆ A

j
3 ×N2,m be given by the case j of the claim and let

the failure of (3.5) in Fj be witnessed by congruences α̃, β̃ and γ̃. We can in-

ductively assume that properties (*) - (***) hold, so, by (*), let ((aj , 1), (dj , 1))

belong to the left-hand side of (3.5), but not to the right-hand side, for certain

aj , dj ∈ A
j
3 and where α, β and γ in (3.5) are replaced by α̃, β̃ and γ̃.

Apply Lemma 2.2 taking h = j − 1, k = m−j+1, A1 = A2 = N
j−1,m
q+1 ,

A3 = A
j
3, A4 = N2,m, a = aj , b = bj and F = Fj . Again, the algebra

N
j−1,m
q+1 = C

nu,j−1,m
q+1 belongs to the variety generated by Nj−1,m = C

nu,j−1,m
2 ,

since Cq+1 belongs to the variety generated by C2. In particular, A1 = A2 =

N
j−1,m
q+1 belong to N j−1

m .

By Observation 3.4, 0 is j − 1-absorbing in A1 and in A2. Moreover, the

operation of A3 is an m−j+1-majority term, since A3 = A
j
3 ∈ N j

m and each

operation on the generators of N j
m is an m−j+1-majority term, again by

Observation 3.4.

Hence we can apply Lemma 2.2 with h = j − 1 and k = m−j+1 (notice

that h ≤ k, since j ≤ ℓ), getting a subalgebra B of A1 × A2 × F, which is

itself a subalgebra of A1 ×A2 ×A3 ×A4.

Recall the definitions of β∗
q+1 and γ∗

q+1 from Notation 3.8. If q is even, let

β and γ be, respectively, the congruences on B induced by β∗
q+1 × γ∗

q+1 × β̃

and γ∗
q+1 × β∗

q+1 × γ̃. If q is odd, let β and γ be, respectively, the congruences

on B induced by β∗
q+1 ×β∗

q+1 × β̃ and γ∗
q+1 × γ∗

q+1 × γ̃. In both cases, let α be

the congruence induced by 1× 1× α̃. By (**), there are elements cj1, . . . , c
j
q−1

in Aj
3 such that (aj , 1) β̃ (cj1, 0) α̃γ̃ (cj2, 0) α̃β̃ (cj3, 0) . . . Consider the following

elements of B.

c0 = (q, 0, aj, 1), cq = (0, q, dj , 1), and

ci = (q − i, i, cji , 0), for i = 1, . . . , q − 1.

Notice that c0 belongs to A1 × A2 × F , since (aj , 1) ∈ F , by (*). Moreover,

c0 has type Iσ, hence c0 is indeed in B. Recall that we are taking a = aj .

Similarly, cq belongs to A1 × A2 × F and has type IIIσ , hence cq ∈ B. The

remaining ci’s belong to A1 × A2 × F , since (cji , 0) ∈ F , by (**). Moreover,

each ci has type IVσ, hence ci ∈ B.

One easily checks that (c0, cq) ∈ α(β ◦ (αγ ◦ αβ ◦ q−2. . . ◦ αβ•) ◦ γ•). We

shall show that (c0, cq) /∈ (α(γ ◦ β ◦ q. . . ◦ β•))m−2j+4, thus identity (3.5) fails

in B for j − 1. Suppose the contrary. Then there are elements f, g ∈ B

such that (c0, f) ∈ α(γ ◦ β ◦ q. . . ◦ β•), (f, g) ∈ (α(γ ◦ β ◦ q. . . ◦ β•))m−2j+2 and

(g, cq) ∈ α(γ◦β◦ q. . .◦β•). Notice thatm−2j+2 ≥ 1, since j ≤ ℓ. From the first

relation we get that c0 α f and that there are elements c0 = f0, f1, . . . , fq = cq
in B such that f0 γ f1 β f2 γ f3 . . . Since c0 = f0 = (q, 0, aj, 1), then,

by γ-equivalence, the first component of f1 is q. By β-equivalence, the first
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component of f2 is ≥ q−1. Going on, the first component of fq = f is ≥ 1, thus

f has neither type IIσ nor type IIIσ. Since c0 α f , then, by (***), the fourth

component of f is 1, hence f has not type IVσ, either. Since f ∈ B, then f

has type Iσ, thus the third component of f is aj. Symmetrically, the fourth

component of g is 1, g has type IIIσ, hence the third component of g is dj .

From (f, g) ∈ (α(γ ◦β ◦ q. . .◦β•))m−2j+2, restricting to the third component of

A1×A2×F, we get ((a,j , 1), (dj , 1)) ∈ (α̃(γ̃◦β̃◦ q. . .◦β̃•))m−2j+2, contradicting

our assumption that the pair ((aj , 1), (dj , 1)) witnesses the failure of (3.5) for

α̃, β̃ and γ̃.

We have showed that (c0, cq) ∈ α(β ◦(αγ ◦αβ ◦q−2. . . ◦αβ•)◦γ•) and (c0, cq) /∈

(α(γ ◦ β ◦ q. . . ◦ β•))m−2j+4. Now it is enough to take A
j−1
3 = A1 ×A2 ×A

j
3

and Fj−1 = B ⊆ A
j−1
3 ×N2,m (the inclusion is considered modulo the usual

identifications), to get that (3.5) fails in Fj−1 for j−1. Notice that Aj
3 belongs

to N j
m, by the inductive assumption. As we mentioned, A1 and A2 belong to

N j−1
m , hence A

j−1
3 belongs to N j−1

m , too, since N j
m ⊆ N j−1

m . As in the second

step, (*) - (***) are verified by construction. �

Theorem 3.6 is optimal. It is immediate from Theorem 1.1 that clauses (1)

and (3) in 3.6 are optimal. Clause (4), too, is the best possible result, as shown

in the next remark.

Remark 3.9. In [14, Proposition 5.1] we have showed that if m ≥ 3 and some

variety V has an m-ary near-unanimity term, then, for every q ≥ 2, V satisfies

α(β ◦ γ ◦ q. . . ◦ γ) ⊆ αβ ◦ αγ ◦ (m−2)q. . . ◦ αγ, if q is even, (3.7)

α(β ◦ γ ◦ q. . . ◦ β) ⊆ αβ ◦ αγ ◦ 1+(m−2)(q−1). . . . . . ◦ αβ, if q is odd. (3.8)

Clause (4) in Theorem 3.6 shows that the above result is best possible.

Indeed, Nm has an m-ary near-unanimity term. If q is even and, by con-

tradiction, (3.7) can be improved by considering (m − 2)q − 1 factors on the

right-hand side, then

α(β ◦ (αγ ◦ αβ ◦ q−2. . . ◦ αβ) ◦ γ) ⊆ α(β ◦ γ ◦ β ◦ q. . . ◦ β ◦ γ)

⊆ αβ ◦ αγ ◦ (m−2)q−1. . . ◦ αβ ⊆ αγ ◦ αβ ◦ αγ ◦ (m−2)q. . . ◦ αβ

⊆ (α(γ ◦ β ◦ q. . . ◦ β))m−2,

contradicting clause (4) in Theorem 3.6.

The case q odd is similar, using Lemma 3.7 and identity (3.4). In fact, the

arguments show that if m ≥ 3, then Nm is a variety with a symmetric m-ary

near-unanimity term for which the following identities fail.

α(β ◦ γ ◦ q. . . ◦ γ) ⊆ αγ ◦ αβ ◦ (m−2)q. . . ◦ αβ, if q is even,

α(β ◦ γ ◦ q. . . ◦ β) ⊆ αγ ◦ αβ ◦ 1+(m−2)(q−1). . . . . . ◦ αγ, if q is odd.

Notice that here αβ and αγ are exchanged on the right-hand side, in compar-

ison with (3.7).
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4. An explicit example

Following the proof of Theorem 3.6 we shall present explicit examples of

algebras in Nm for which identity (3.2) fails. Then we hint to the details for

a full counterexample to (3.3). In particular, such counterexamples show in a

more direct way that Theorem 1.1 cannot be improved.

Recall that Cq+1 is the chain with q + 1 elements {0, 1, . . . , q}, considered

as a lattice. Moreover, Nj,m
q+1 is the term-reduct of Cq+1 endowed with the m-

ary operation induced by the lattice term uj,m(x1, . . . , xm) =
∏

|J|=j

∑

i∈J xi,

where J varies on subsets of {1, . . . ,m}. We have set Nj,m = N
j,m
2 . Compare

Definitions 3.3, 3.5 and Notation 3.8.

Fix some q ≥ 2, m ≥ 3 and let ℓ = m
2 if m is even and ℓ = m+1

2 if m is odd.

Consider the following product P = P(m, q) in the cases, respectively, m even

and m odd.

(N2,m
q+1×N

2,m
q+1)×(N3,m

q+1×N
3,m
q+1)× . . .×(Nℓ,m

q+1×N
ℓ,m
q+1)×N2,m,

(N2,m
q+1×N

2,m
q+1)×(N3,m

q+1×N
3,m
q+1)×. . .×(Nℓ−1,m

q+1 ×N
ℓ−1,m
q+1 )×N

ℓ,m
q+1×N2,m,

(P)

where the grouping of the factors is only for notational convenience. In any

case, P(m, q) has m−1 factors; for example, P(3, q) = N
2,3
q+1×N2,3, P(4, q) =

(N2,4
q+1 × N

2,4
q+1) × N2,4 and P(5, q) = (N2,5

q+1 × N
2,5
q+1) × N

3,5
q+1 × N2,5. By

Observation 3.4, the operation of P is an m-ary near-unanimity term.

A member p of P is good if either (a) its last component is 0, or (b) its last

component is 1 and, disregarding the last component,

(b1) p begins with a (possibly empty, possibly covering all pairs) sequence

of null pairs (0, 0),

(b2) the first (if any) pair of p which is not null has either the form ( , 0),

or the form (0, ), and

(b3) all the subsequent pairs, if any, have, correspondingly, the form (q, 0)

or (0, q).

If m is odd, we follow the same rules, considering the penultimate compo-

nent as a “half pair” and applying the above rules only to the first component

of the pair. Typical good elements are given by the sequences

( , ) ( , ) . . . ( , ) ( , ) ( , ) . . . ( , ) 0

( , 0) (q, 0) . . . (q, 0) (q, 0) (q, 0) . . . (q, 0) q 1

(0, 0) (0, 0) . . . (0, 0) ( , 0) (q, 0) . . . (q, 0) q 1

(0, 0) (0, 0) . . . (0, 0) (0, 0) (0, 0) . . . ( , 0) q 1

(0, 0) (0, 0) . . . (0, 0) (0, 0) (0, 0) . . . (0, 0) 1

(0, ) (0, q) . . . (0, q) (0, q) (0, q) . . . (0, q) 0 1

(0, 0) (0, 0) . . . (0, 0) (0, ) (0, q) . . . (0, q) 0 1

(0, 0) (0, 0) . . . (0, 0) (0, 0) (0, 0) . . . (0, ) 0 1

in the case m odd, while we get typical elements in the case m even simply

discarding the penultimate column in the above table.
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The set of good elements of P is the universe for a subalgebra B = B(m, q)

of P. This can be checked directly using arguments similar to those used

in the proof of Lemma 2.2. Roughly, suppose that b1, . . . , bm ∈ B and b =

u(b1, . . . , bm). If at least two bi’s have 0 as the last component, then this

applies to b, as well, hence b ∈ B, by (a). Otherwise, there are enough 0’s

in the components of the bi’s in order to make 0 at least one element of each

pair of b, using Observation 3.4. Then the rules describing the elements of B,

together with Observation 3.4 again, show that b has a sufficient number of

0’s and q’s in the appropriate places. Alternatively, in order to show that B is

the universe for a subalgebra of P, work out the proof of Theorem 3.6, going

in the backward direction.

Now suppose, say, that q is even and consider the congruences β, γ and α

on B induced, respectively, by the congruences

β∗ = (β∗
q+1 × γ∗

q+1)× (β∗
q+1 × γ∗

q+1)× · · · × (β∗
q+1 × γ∗

q+1)× β∗
q+1 × 1,

γ∗ = (γ∗
q+1 × β∗

q+1)× (γ∗
q+1 × β∗

q+1)× · · · × (γ∗
q+1 × β∗

q+1)× γ∗
q+1 × 1,

α∗ = (1× 1)× (1× 1)× · · · × (1× 1)× 1× 0,

(4.1)

where, as usual by now, in each line the penultimate congruence appears

only if m is odd. Recall that β∗
q+1 and γ∗

q+1 are the congruences deter-

mined, respectively, by the partitions {{q, q − 1}, {q − 2, q − 3}, . . . } and

{{q}, {q − 1, q − 2}, {q− 3, q − 4}, . . . }.

For simplicity, let q = 2. Indeed, this is the case showing that Theorem

1.1(1) cannot be improved. Consider the following elements of P

a = (2, 0) (2, 0) . . . (2, 0) (2, 0) (2, 0) . . . (2, 0) 2 1

c = (1, 1) (1, 1) . . . (1, 1) (1, 1) (1, 1) . . . (1, 1) 1 0

d = (0, 2) (0, 2) . . . (0, 2) (0, 2) (0, 2) . . . (0, 2) 0 1

The element c witnesses that (a, d) ∈ β ◦ γ. Moreover, a α d, hence (a, d) ∈

α(β ◦ γ). On the other hand, the only other element αβ-connected to a is

f1 = (1, 0) (2, 0) . . . (2, 0) (2, 0) (2, 0) . . . (2, 0) 2 1

due to the rule (b3) in the formation of P . Due to the definition of γ, the only

other element γ-connected to f1 and with last component 1 is

f2 = (0, 0) (2, 0) . . . (2, 0) (2, 0) (2, 0) . . . (2, 0) 2 1

Continuing this way, the only possibility to go from a to d through an

αβ-or-αγ-chain is to consider all the elements
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a = (2, 0) (2, 0) . . . (2, 0) (2, 0) (2, 0) . . . (2, 0) 2 1

f1 = (1, 0) (2, 0) . . . (2, 0) (2, 0) (2, 0) . . . (2, 0) 2 1

f2 = (0, 0) (2, 0) . . . (2, 0) (2, 0) (2, 0) . . . (2, 0) 2 1

f3 = (0, 0) (1, 0) . . . (2, 0) (2, 0) (2, 0) . . . (2, 0) 2 1

. . .

fm−4 = (0, 0) (0, 0) . . . (0, 0) (0, 0) (0, 0) . . . (1, 0) 2 1

fm−3 = (0, 0) (0, 0) . . . (0, 0) (0, 0) (0, 0) . . . (0, 0) 2 1

fm−2 = (0, 0) (0, 0) . . . (0, 0) (0, 0) (0, 0) . . . (0, 0) 1 1

fm−1 = (0, 0) (0, 0) . . . (0, 0) (0, 0) (0, 0) . . . (0, 0) 0 1

fm = (0, 0) (0, 0) . . . (0, 0) (0, 0) (0, 0) . . . (0, 1) 0 1

. . .

f2m−7 = (0, 0) (0, 1) . . . (0, 2) (0, 2) (0, 2) . . . (0, 2) 0 1

f2m−6 = (0, 0) (0, 2) . . . (0, 2) (0, 2) (0, 2) . . . (0, 2) 0 1

f2m−5 = (0, 1) (0, 2) . . . (0, 2) (0, 2) (0, 2) . . . (0, 2) 0 1

d = (0, 2) (0, 2) . . . (0, 2) (0, 2) (0, 2) . . . (0, 2) 0 1

in the case m odd, while in the case m even the penultimate column should

be deleted and the above “middle” block is replaced by

. . .

fm−3 = (0, 0) (0, 0) . . . (0, 0) (0, 0) (0, 0) . . . (1, 0) 1

fm−2 = (0, 0) (0, 0) . . . (0, 0) (0, 0) (0, 0) . . . (0, 0) 1

fm−1 = (0, 0) (0, 0) . . . (0, 0) (0, 0) (0, 0) . . . (0, 1) 1

. . .

Since we need to consider all the above elements, we get (a, d) /∈ αβ ◦

αγ ◦ 2m−5. . . , hence α(β ◦ γ) 6⊆ αβ ◦ αγ ◦ 2m−5. . . , that is, B does not belong to

a 2m−5-distributive variety. Recall that αβ ◦ αγ ◦ k. . . denotes the relation

αβ ◦ αγ ◦ αβ ◦ . . . with k − 1 occurrences of ◦ and that Rk is R ◦R ◦ k. . .

As implicit in the proof of 3.6, we see that a is αγ-connected only to itself,

hence we also get α(β ◦ γ) 6⊆ αγ ◦ αβ ◦ 2m−4. . . , that is, B does not belong to a

2m−4-alvin variety.

In the above arguments we have considered identities involving αγ ◦αβ ◦ . . .

on the right only for simplicity. While a is β-connected to further elements of

B, since we can consider elements with 0 as the last coordinate, on the other

hand, f1 is the only other element such that (a, f1) ∈ α(γ ◦β). Continuing the

same way, the only elements h such that (f1, h) ∈ α(γ ◦ β) are a, f2 and f3.

Of course, it is no use to turn back to a, and the “fastest way to d” uses f3.

Going on, we see that (a, d) /∈ (α(γ ◦ β))m−2, hence α(β ◦ γ) 6⊆ (α(γ ◦ β))m−2,

that is, clause (4) in Theorem 3.6.

Dealing with larger even q presents no significant difference, while if q is odd

it is enough to modify the definitions displayed in (4.1): all the pairs in the

definitions of β and γ should be, respectively, (β∗
q+1×β∗

q+1) and (γ∗
q+1×γ∗

q+1).

Then it is more convenient to deal with identity (3.4) in Lemma 3.7. For

example, the first elements in the shortest chain from a to d in the case q = 3

are
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a = (3, 0) (3, 0) . . . (3, 0) (3, 0) (3, 0) . . . (3, 0) 3 1

f1 = (2, 0) (3, 0) . . . (3, 0) (3, 0) (3, 0) . . . (3, 0) 3 1

f2 = (1, 0) (3, 0) . . . (3, 0) (3, 0) (3, 0) . . . (3, 0) 3 1

f3 = (0, 0) (2, 0) . . . (3, 0) (3, 0) (3, 0) . . . (3, 0) 3 1

. . .

Notice that, as in the case q even, a β f1, but there is no other element

αγ-connected to a. On the other hand, in the case q odd we are sometimes

able to move two components at a time, as is the case for f2 and f3 above.

In conclusion, the above arguments show that the following proposition

holds. Recall that the definitions of P = P(m, q) and B = B(m, q) depend on

m and q, though sometimes we have not explicitly indicated the dependence

in the above arguments.

Proposition 4.1. For every m ≥ 3 and q ≥ 2, the algebra B(m, q), as con-

structed above, has an m-ary near-unanimity term. Identity (3.3) fails in

B(m, q).

5. Further remarks

It is well-known that, for everym ≥ 4, there is a variety with anm-ary near-

unanimity term and without an m−1-ary near-unanimity term. See, e. g., [19,

Lemma 3.4] or Example 3.1 here. The variety Nm introduced in Definition 3.5

furnishes another counterexample, as we shall show in the next corollary. In

addition, the counterexamples presented here have a symmetric m-ary near-

unanimity term and are locally finite. Notice that the variety denoted by Nm

in [19] is distinct from the variety denoted by Nm here. Also, the indices are

shifted by 1 in most definitions, with respect to [19].

For every n ≥ 2 there are known examples of n-distributive not n−1-

distributive varieties, e. g. [8, 15] and further references there. For n even,

the variety Nm provides another example (with m = n+4
2 ). Corresponding

examples appear in [15] regarding n-modularity; again, Nm provides further

counterexamples.

Corollary 5.1. If m ≥ 4, then Nm has a symmetric m-ary near-unanimity

term but no m−1-ary near-unanimity term (symmetric or not).

The variety Nm is 2m−4-distributive but not 2m−5-distributive, 2m−3-

modular but not 2m−4-modular.

Proof. We have proved in Theorem 3.6 that Nm has an m-ary symmetric

near-unanimity term. The arguments in Example 3.1 show that the variety

generated by the algebra N2,m from Definition 3.5 has not an m−1-ary near-

unanimity term. Since N2,m is one among the generators of Nm, then Nm has

not an m−1-ary near-unanimity term.

The second statement is immediate from Theorems 1.1 and 3.6(1)(3).
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From Theorems 1.1 and 3.6(1)(3) we can also obtain another proof that

Nm has not an m−1-ary near-unanimity term. If, by contradiction, such a

term exists, then Nm is 2m−6-distributive. However, Nm is not even 2m−5-

distributive, absurd. A similar proof is obtained by dealing with the modular-

ity levels. Remark 3.9 could be used to get still another proof. �

Remark 5.2. Recall the definition of Lnu,j,m from Definition 3.5.

For any given m ≥ 3, let ℓ = m+1
2 if m is odd, ℓ = m

2 if m is even and

let N ′
m be the variety generated by all the lattice reducts Lnu,j,m, with L an

arbitrary lattice, 2 ≤ j ≤ ℓ.

Theorem 3.6 and Corollary 5.1 hold for N ′
m, as well, with the only exception

that N ′
m is not locally finite.

In another classical paper Mitschke [17] showed that the variety I of impli-

cation algebras is congruence 3-distributive, 3-permutable, not 2-distributive

and not permutable. Then in [18] she proved that for no m the variety I has

an m-ary near-unanimity term. Another proof can be found in [14, Remarks

2.2(a)(b)].

In [13, Section 5] we expanded I by adding a 4-ary near-unanimity term

in such a way that the distributive and permutable levels remain unchanged.

Combining the arguments from [17, 18, 13] and from Example 3.1, we get a

variety sharing the same levels of I, with an m + 1-ary near-unanimity term

but without an m-ary near-unanimity term. See the next proposition.

This shows that 3-permutability has no effect on the integers m for which

an m-ary near-unanimity can exist. Notice that, on the other hand, it is imme-

diate from the characterizations in (1.1) that a congruence distributive (mod-

ular) n-permutable variety is n-distributive (n-modular). Notice also that a

congruence permutable variety with a near-unanimity term is congruence dis-

tributive, hence, by permutability, 2-distributive, and this means the existence

of a majority term, namely, a 3-ary near-unanimity term. Thus, in contrast

with 3-permutability, the stronger notion of permutability does trivialize the

sets of integers m for which an m-ary near-unanimity exists.

The operations of a Boolean algebra shall be denoted by +, · and ′. The

variety I of (dual) implication algebras is the variety generated by term-reducts

of Boolean algebras in which i(x, y) = xy′ is the only basic operation. Let

f(x, y, z) be the Boolean term x(y′+z). The variety I− is the variety generated

by reducts of Boolean algebras having f as the only basic operation. If m ≥ 3,

we let Im, resp. I−
m, be the varieties generated by reducts of Boolean algebra

with two basic operations corresponding to i and u2,m, resp., f and u2,m.

Recall the definition of u2,m from Definition 3.3.

Proposition 5.3. If m ≥ 4, then both Im and I−
m are 3-distributive, con-

gruence 3-permutable, not congruence permutable, not 2-distributive, have an

m-ary near-unanimity term but not an m−1-ary near-unanimity term.
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Proof. Since I and I− are 3-distributive and congruence 3-permutable [17],

then so are their expansions Im and I−
m. To show that 2-distributivity and

permutability fail, consider the reduct A of 23, where 2 is the two-elements

Boolean algebra. Since m ≥ 4, then 23 \ (1, 1, 1) is closed under u2,m, compare

an argument in Example 3.1. Moreover, 23 \ (1, 1, 1) is closed also under i (or

f), thus it is the universe for a subalgebra of A. The original argument in

[17] (credited in that form to the referee) now shows that 2-distributivity fails,

hence also permutability fails. The argument is recalled also in the proof of

[13, Proposition 5.1].

To show that neither Im nor I−
m have an m − 1-ary near-unanimity term

argue as in Example 3.1, considering the reduct of 2m−1 \ (1, 1, . . . , 1). �

Remark 5.4. For m ≥ 3, an m-ary near-unanimity term implies the existence

of a sequence t1, . . . , tm−2 of directed Jónsson terms, i. e., terms satisfying

x = t1(x, x, z), tm−2(x, z, z) = z,

ti(x, z, z) = ti+1(x, x, z), for 1 ≤ i < m− 2, and

x = ti(x, y, x), for 1 ≤ i ≤ m− 2.

See Barto and Kozik [4, Section 5.3.1]. Directed Jónsson terms provide another

characterization of congruence distributivity [11].

The mentioned observation from [4, Section 5.3.1] is optimal: the vari-

ety Nm fails to have t1, . . . , tm−3 directed Jónsson terms, since otherwise Nm

would be 2m−6-distributive, by [11, Observation 1.2], thus contradicting The-

orem 3.6(1). Notice that the counting conventions in [4, 11] are sometimes

different from the conventions adopted in the present note.

Remark 5.5. Theorem 1.1 suggests that, for everym ≥ 3, there should be some

condition Cm strictly between the strength of an m-ary and of an m+1-ary

near-unanimity term and such that Cm implies 2m−3-distributivity but does

not imply 2m−4-distributivity. Of course,

(♦m) there is an m+1-ary near-unanimity term + 2m−3-distributivity

is possibly such a condition, but it looks quite artificial. One should check that

(♦m) does not imply 2m−4-distributivity, a fact which can be probably ob-

tained by combining the present methods with [15]. Form = 3, a 3-distributive

not 2-distributive variety with a 4-ary near-unanimity term does indeed exist,

see [13, Proposition 5.1] or Proposition 5.3 above in the case m = 4.

A possibly more natural condition is presented in the next definition.

Definition 5.6. If m ≥ 3, an m 1
2 -near-unanimity term is an m+2-ary term

u such that the following equations hold.

u(z, z, x, x, . . . , x) = x, (5.1)

u(x, . . . , x, z
i
, x, . . . , x) = x, for 2 ≤ i ≤ m+ 2, (5.2)

u(x, x, x, z, z, . . . , z) = u(x, z, z, z, z, . . . , z). (5.3)
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The terminology comes from the fact that if u is an m 1
2 -near-unanimity

term, then the m+1-ary term v defined by

v(x1, x2, x3, . . . , xm+1) = u(x1, x1, x2, x3, . . . , xm+1)

is a near-unanimity term, by (5.1) and (5.2). On the other hand, if w is an

m-ary near-unanimity term, then by adding two initial dummy varables, w

becomes an m 1
2 -near-unanimity term.

Proposition 5.7. Let m ≥ 3.

(1) If some variety V has an m 1
2 -near-unanimity term, then V is 2m−3-

distributive.

(2) There is a variety V with an m+1-ary near-unanimity term but without

an m 1
2 -near-unanimity term.

(3) There is a variety V with an m 1
2 -near-unanimity term but without an

m-ary near-unanimity term.

Details for the proof of Proposition 5.7 shall be presented elsewhere. We just

notice that, granted clause (1) in Proposition 5.7, then, by Theorem 3.6(1),

the variety Nm+1 furnishes an example for 5.7(2).

Problem 5.8. Study “dissent” terms in the following sense. A term u of arity

≥ 3 is a lone-dissent term if all the equations of the form

u(x, x, . . . , x, y, x, . . . , x, x) = y

are satisfied, with just one occurrence of y in any possible position.

A ternary lone-dissent term is a minority term, see [12] for a detailed study

of minority terms. It is easy to see that a variety of abelian groups has an

m+1-ary lone-dissent term if and only if its exponent divides m. In particular,

contrary to the case of near-unanimity terms, the existence of an m-ary lone-

dissent term does not imply an m+1-ary lone-dissent term. However, there

are some positive results. Some simple facts are stated in the next proposition.

It is probably also interesting to study dissent-unanimity terms in the fol-

lowing sense. If m ≥ 3, a 2m-ary term u is a dissent-unanimity term if all the

equations of the form

u(x, x, . . . , x, y
i

, x, . . . , x, x; y, y, . . . , y, z
m+i

, y, . . . , y, y) = y

are satisfied for all i, 1 ≤ i ≤ m, where the semicolon separates the first m

arguments of u with the last m arguments. The case m = 3 has been dealt

with in [12].

Proposition 5.9. Let m,n ≥ 2.

(1) If some variety V has an m+1-ary lone-dissent term, then, for all

k ≥ 1, V has a km+1-ary lone-dissent term.

(2) More generally, if some variety V has both an m+1-ary and an n+1-

ary lone-dissent term, then V has an m+n+1-ary lone-dissent term.
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(3) If some variety V has an m+1-ary lone-dissent term, then V has a

Maltsev term, hence V is congruence permutable.

(4) If some variety V has both an m+1-ary and an m+2-ary lone-dissent

term, then V is an arithmetical variety.

Proof. (1) If d is an m+1-ary lone-dissent term, then d(d( , , . . . ), , . . . ) is

a 2m+1-ary lone-dissent term, d(d(d( , , . . . ), , . . . ), , . . . ) is a 3m+1-ary

lone-dissent term and so on.

(2) If d, e are, respectively, an m+1-ary and an n+1-ary lone-dissent term,

then d(e( , , . . . ), , . . . ) is an m+n+1-ary lone-dissent term.

(3) If d is an m+1-ary lone-dissent term, then t(x, y, z) = d(x, y, y, . . . , y, z)

is a Maltsev term.

(4) If d, e are an m+1-ary and an m+2-ary lone-dissent term, then

t(x1, . . . , xm+2) =

e(d(x1, x2, . . . , xm, xm+1), d(x1, x2, . . . , xm, xm+2),

d(x1, x2, . . . , xm−1, xm+1, xm+2), . . . , d(x1, x2, x4, . . . , xm+1, xm+2),

d(x1, x3, . . . , xm+1, xm+2), d(x2, x3, . . . , xm+1, xm+2))

is an m+1-ary near-unanimity term, hence V is congruence distributive. By

(3) V is congruence permutable, hence V is arithmetical. �

Corollary 5.10. If m,n ≥ 2, m and n are coprime and some variety V has

both an m+1-ary and an n+1-ary lone-dissent term, then V is arithmetical.

Proof. Since m and n are coprime, then the Diophantine equation km+hn = 1

has a solution with k, h ∈ Z. Changing a sign, we have either km = hn + 1

or hn = km + 1 with k, h ∈ N \ {0}. Applying 5.9(1) twice, V has both a

km+1- and a hn+1-lone-dissent term. Since hn and km differ by 1, then V is

arithmetical by 5.9(4). �

As a final remark, we notice that, for m ≥ 3, the existence of an m-ary

lone-dissent term implies the existence of a sequence t1, . . . , tm−2 of directed

minority terms, i. e., terms satisfying

y = t1(x, x, y), tm−2(x, y, y) = x,

ti(x, y, y) = ti+1(x, x, y), for 1 ≤ i < m− 2, and

y = ti(x, y, x), for 1 ≤ i ≤ m− 2.

The proof presents no variation with respect to [4, Section 5.3.1]. It is probably

interesting to study this and similar conditions. See also [15, Remark 8.19] for

further comments.

The author considers highly inappropriate and strongly discourages the use of indicators ex-
tracted from the following list (even in aggregate forms in combination with similar lists) in
decisions about individuals, attributions of funds, selections or evaluations of research projects.
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