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Featured Application: This research work proposes a framework for the evaluation of the ini-
tial adoption phase of new production technologies and its application to the introduction of
a semi-automatic packaging machine in a relevant logistics company. The case study allowed
the assessment of the machine ramp-up phase and provided valuable insights for reducing the
length of this period by achieving a stable target production output. Moreover, it shows how
the framework can be adopted, applied and interpreted for obtaining useful insights. Manufac-
turing systems in digital and interconnected industrial settings where human worker activity is
required represents further potential applications of this paper.

Abstract: The initial adoption phase of new production technologies is the period between the first
production run or technology reconfiguration and the achievement of a stable target output. This
time frame is generally characterized by productivity unsteadiness, quality performance variability,
and unexpected machine failures together with increasing production volumes due to the process
setup and instability, which inevitably affects production output. In this context, human performance
represents an additional source of variability and process instability that is dependent on the workers’
productivity, learning curve and related training activities. Hence, to effectively assess the ramp-up
phase of new production technologies, an appropriate evaluation of human performance is required.
This paper proposes a comprehensive framework and criteria to perform a consistent assessment of
the initial adoption phase of new production technologies by introducing two OEE measurement
methodologies that distinguish between human performance, process configuration and technical
features of the production technology. The proposed framework is then applied to and validated
by a case study concerning the introduction of a semi-automatic packaging machine in a primary
multinational company in the logistics industry. This case study shows the difference between the
two OEE measures, along with the values interpretation and useful insights for achieving a stable
production output.

Keywords: human performance; OEE; production technology; new technology adoption; manufac-
turing systems

1. Introduction

The ramp-up is defined as the period between the end of product development
and full capacity production [1]. Following this definition, the ramp-up phase can be
more precisely defined as the process of bringing a production system up to its required
operational characteristics after it has been designed and built and before it is taken into
full operation [2]. In this phase, the production process is often not fully understood
and subject to errors, requiring adjustments that are costly for the company and which
could lead to delays in introducing the product to the market [2]. Problems encountered
during this phase include disturbances in process and product quality, a lack of reliable
planning, unplanned capacity losses, and poor performance of suppliers [3]. Furthermore,
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the unpredictability of the system behavior generates process instability, since most of the
operating conditions are unknown and are being applied for the first time. In this context,
decisions concerning the planning and organization of the ramp-up become essentially
complicated [4].

The goal of the ramp-up is to increase both the yield and the production rate in
the shortest possible time [1]. However, at any time, there is a trade-off between the
two mentioned parameters given that as production speed increases, the probability of
encountering defects increases as well. Consequently, an increase in the number of reworks
and of the work in process (WIP) is faced. In addition, according to Little’s law, the average
waiting time also increases, as well as the time between the occurrence of the problems
upstream of the process and their detection in the downstream verification stations: as
soon as problems are identified, there is a faultier WIP in circulation to be reworked [1].
Hence, this trade-off should be considered carefully to achieve effective management of the
ramp-up period. Indeed, during the production start-up, several unanticipated problems
may occur, which should be managed carefully so as not to impact either other business
processes or the customer experience. Process errors should be reduced through constant
attention to the learning and observation of the interaction between the elements of the
production system.

The production ramp-up phase can be considered a learning process that could be
reflected in better usage of the equipment, in the continuous improvement of product
quality, and in the reduction of labor requirements [5]. The length of this period can be
measured either as “ramp-up time” or as “time to volume”, and it is characterized by a
gradual increase in the output production rate as well as an improvement in the recorded
quality rate [6]. Moreover, the adoption phase of new production technologies includes
a learning phase for both production managers and operators [7]. However, most of
the complexity is managed by the operators, so the effectiveness of the ramp-up largely
depends on their experience and knowledge [2]. Hence, human performance represents
an additional source of variability that dramatically impacts the ramp-up phase and that
should be properly assessed. Though the key role of the human factor is recognized in the
scientific literature, it seems that there is a lack of contributions including this element in
the ramp-up phase evaluation, often due to the absence of available data for its assessment.

In this context, digitalization and Industry 4.0 can offer support during the adop-
tion phase of new production technologies, since they enable companies to analyze large
amounts of real-time data, improving strategic and operational decision-making activi-
ties [8]. The key element that characterizes this new industrial phase is the profound change
in the connectivity of production systems due to the integration of information and com-
munications technology (ICT), Internet of Things (IoT) and machinery in cyber-physical
systems (CPS). The ramp-up phase can thus benefit from these technological advancements
since they enable a more punctual, immediate and precise performance evaluation, which
can be used to effectively drive operations. Moreover, the production systems interconnec-
tivity and the improved man-machine interaction allow key data to be recorded, collected
and analyzed to distinguish between machine and human performances.

As a consequence of the previous considerations, new research works and practi-
cal applications concerning the ramp-up phase should consider opportunities to design
comprehensive methods for its effective evaluation. Indeed, the growing usage of digital
information and communication technologies opens new opportunities for productivity
management in manufacturing companies, with an estimated average increase in produc-
tivity of 32% by 2025 due to digitalization [9]. This increase in productivity can be linked
to the way digitalization changes the handling of data and information by offering new
and extended ways for collecting, transferring, evaluating, and exploiting information, all
of which are opportunities that allow increases in effectiveness and efficiency [10].

In addition, as a result of the exploitation of the Industry 4.0-enabling technologies, an
evolution of tasks to be performed by operators is taking place. Indeed, the operator should
not only perform cooperative work with robots, but also machine-assisted work by means
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of CPS systems and advanced man-machine interaction technologies and adaptive automa-
tion towards human-automation symbiosis work [11–13]. Considering this background,
the contribution of Alharbi (2020) [14] discusses the knowledge and skills that operators
should have in an Industry 4.0 manufacturing context and provides valuable insights for
managing this technological revolution. Following the same path, Fantini et al. (2020) [15]
propose a human-centric model to evaluate several work configurations where human
activities are integrated within cyber-physical systems, along with relevant human-driven
performance indicators. The role of the “Operator 4.0” is also analysed in the paper of
Silvestri et al. (2020) [16], which discusses its required tasks in relation to maintenance
activities. Furthermore, Industry 4.0 provides an improvement in operator training opera-
tions through the usage of virtual reality-based tools by reducing the total time spent for
practical training [17].

In light of the previous considerations, this paper aims to propose a comprehensive
framework to evaluate the initial adoption phase of new production technologies in a
digital and interconnected industrial environment. Two “overall equipment effectiveness”
(OEE) measurement methodologies that distinguish between human performance, process
configuration and technical features of the production technology are here introduced and
discussed. The framework allows for the evaluation and determination of the conditions
under which the transition from the ramp-up phase to the fully operational state is achieved.
Hence, this contribution provides valuable insights for the reduction of the overall time
required by allowing a stable production output to be achieved. In addition, it can also
be adopted to perform an effective and more precise production and workforce capacity
planning ahead of the conclusion of the ramp-up period.

The paper also reports an application of the proposed framework to a case study re-
lated to the introduction of a semi-automatic packaging machine in a primary multinational
company in the logistics industry. This allowed the methodology to be tested and validated.
Furthermore, a wide literature review on research works concerning the ramp-up phase
is provided to determine which relevant criteria can be applied for the assessment of the
initial adoption phase of new production technologies. Thus, the proposed framework
can be adopted to reduce the overall transition period from the ramp-up phase to the
fully operational state of the machine; to perform an effective and precise production
planning before the ramp-up phase is concluded; and to obtain a reference of the different
research works and methodologies that can be applied to the initial adoption phase of new
production technologies.

According to the previous considerations, the novelty of this contribution follows.
To our knowledge no research work has introduced a framework able to distinguish be-
tween human performance, process configuration and technical features of the production
technology. For this reason, the scientific literature is missing a methodology capable
of helping manufacturing organizations, researchers and practitioners achieve effective
management of the ramp-up period following the introduction of new production tech-
nologies. Our paper directly addresses this lack and also provides a case study showing
the framework application.

The rest of the paper is organized as follows. Section 2 provides the scientific back-
ground on the human and technical factors to be considered in the ramp-up phase and
defines the applicable criteria to the initial adoption phase of new production technologies.
Section 3 introduces the proposed framework, and Section 4 describes the case study.
Finally, Section 5 presents the conclusions and further potential developments of this
research work.

2. Literature Review

During the adoption phase of new production technologies, disturbances affecting
both productivity and product quality are encountered more frequently due to system
instability, reconfigurations or process changes. The main challenges to be faced concern
the adaptation of the capacity of the production system, the reliability of the production
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equipment to meet the target production rate, the understanding of the new process
behavior and the increase in product quality [6]. The production process is adjusted until it
becomes sufficiently stable and the output reaches a target level, reducing disturbances to
a minimum. The time required for this phase is highly dependent on the complexity of the
system and the planners’ ability to make good decisions based on their experience. The
ramp-up is a man-machine coordination process that varies in each instance based on the
experience of the staff and the complexity of the system, thus being highly unpredictable [2].

Colledani et al. (2018) [6] and Terwiesch and Bohn (2001) [1] offer a description of
the types of production ramp-up: launch of new products, start of a new process, and
reconfiguration of an existing process. The differences between the various types can be
retrieved in the complexity of the studied variables and in the variation of the life cycle of
new products or new technologies. Considering the product launch, the production start-up
begins with the approval of pre-series production, which is described as the development
of a large number of prototypes mainly used to teach workers about new processes and
to identify and resolve errors [6]. Differently, when dealing with new processes, such as
the introduction of new equipment, the system assembly is required before the production
start, following the approval and correction of the functions and parts of the system, where
necessary [18].

For the measurement of the production rate, the production throughput (TH) is
considered one of the most important parameters of a production system [19]. The three
main factors that directly impact TH are: availability affected by downtime events, low
performance due to slow operations, and product quality affected by defects [19]. Colledani
et al. (2018) [6] discuss the methodology to evaluate the actual lost TH during the ramp-up
phase following a system reconfiguration, where the actual TH is given by the production
of compliant products. In their contributions, the authors define the ramp-up of a process
as the time interval between the production of the first article after a system reconfiguration
and the stable production of articles at a target TH. The loss of TH occurs and is accentuated
with each reconfiguration of the system because the actual production rate during the
reconfiguration period is equal to zero, and a new ramp-up period is observed each time
the production is restarted. The authors also classify the causes of TH loss into two
categories: internal, which originates within the studied system and includes both human
and technological factors; and external, which originates outside the system and may have
an indirect effect on the behavior of the system [6].

From this consideration, a literature background on the human factors and technologi-
cal factors impacting the initial adoption phase of new production technologies is provided,
as well as an assessment of the relevant criteria for its evaluation. Indeed, after discussing
the human and technological factors, the applicability of each criterion to the ramp-up
phase is assessed and described.

2.1. Human Factors in the Initial Adoption Phase of New Production Technologies

The goal of ramp-up phase management is to reduce or control uncertainty and insta-
bility of the start-up. In this context, the process knowledge and the learning of employees
become key points to reach this objective. Learning leads to a better understanding of
production processes and improves performance in terms of quality, time and cost [20].

Argote and Miron-Spektor (2011) [20] highlight the importance of favoring the phe-
nomenon of spillover between consecutive ramp-ups and between individuals to improve
the performance of the system and to accelerate learning. In the knowledge transfer be-
tween consecutive ramp-ups, the authors make a distinction between explicit knowledge,
given by precise and codified explanations, and tacit knowledge, given by subtle knowl-
edge that is related to a person and is based on experiences and insights. Companies can
choose different ways for knowledge transfer to occur in order to equip workers with the
required skills during the ramp-up phase of production: the transfer of explicit knowl-
edge is simple and easy—given that this type of information is generally written—while,
on the contrary, the transfer of tacit knowledge is more difficult because it is individual
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and difficult to code [21]. Usually, the transfer of tacit knowledge can occur through
observation and imitation of others—therefore, social interaction—when a new activity is
performed [21]. This phenomenon is even more relevant since human operators involved
in the ramp-up process may experience a slower learning curve than planned, causing
an extension of the processing time, excessive corrective maintenance time, or inaccurate
inspection operations [6].

Schmitt et al. (2018) [18] focus the attention on the role played by the organizational
structure for learning and for production start-up management. Indeed, the authors observe
that several departments are involved in this phase whose influence and importance vary
in relation to its progress. Generally, a ramp-up manager is identified who has the purpose
of guaranteeing continuous process management and participating during the various
phases. Moreover, the authors identified two main organizational types:

1. Non-dedicated operators: the knowledge and skills of the staff can be shared between
the functional departments, and the employees are involved in the phase of ramp-up
in addition to regular work. The benefit deriving from this structure is the consistently
high staff utilization rate, but problems could be generated if conflicts occur between
the regular organization and the one dedicated to the project;

2. Dedicated operators: employees belong to the regular departments, though they are
released from the job routine and are completely dedicated to the ramp-up phase
during the project lifespan. This leads to a better direct focus on the implementation
of the project and a greater effect of learning. However, as a disadvantage, there is a
rate of use of human resources which is lower than the first approach.

In the same context, Scholz-Reiter et al. (2007) [22] propose to use dedicated teams
for the launch of new products; these teams are to be used during the modification of
the technical characteristics of the product. This would avoid criticalities due to late
implementation of different types of changes, which can cause problems in terms of target
values imposed for timing, quality and cost. To counteract possible inefficiencies, the
authors proposed the presence of two dedicated teams: one short-term team created to
solve specific technical problems, and one long-term team dedicated to preventive actions
related to the new process. With this approach, knowledge would be preserved between
consequent ramp-ups.

Another important aspect during production start-up management is the training
and learning of operators. While switching from low volume to high volume production,
workers are assumed to have improved their knowledge about the production process that
was not initially well understood [1], leading to increased productivity over time due to
repetitive execution of activities by employees, familiarization with the production process
and organizational-technological changes [3]. Terwiesch and Bohn (2001) [1] model the
learning process in the form of experiments performed on the system during the ramp-up
phase, collecting specific information on resource behavior and highlighting the criticality
of learning.

Moreover, Industry 4.0 provides help for training operations using virtual reality
(VR) [17]. By using virtual simulation and training (VISTRA), representing a system that
simulates the manufacturing environment, it was observed that operators can speed up the
ramp-up period by reducing the time spent in practical training in the real environment
and showing the most critical operations in the learning phase. Hoedt et al. (2017) [23]
show that the effect of virtual training during a virtual assembly experiment guarantees,
on average, 72% of the learning effect by performing all activities for the first time in the
real context. The effect of the actual training was a reduction in assembly time by 27%,
while virtual training induces a 20% improvement.

Several scientific contributions have also described and modeled the training progress
of workers using learning curves. In the production and operations management field,
the learning curves describe the improvement in worker performance due to repetition
of activities or experience, and, therefore, they are of fundamental importance in the
managerial decision-making process. The phenomenon of human training is relevant in
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labor-intensive manufacturing companies, especially where the labor cost is expensive [5].
Learning curves can be applied to define more accurate job standards, track realistic
production goals, forecast the available working time of a process, and forecast production
output and compliant units.

Learning by doing is a natural phenomenon that improves human performance, and
it leads to a reduction in the time required to perform an activity for each repetition [24]. In
1936, Wright noted that when doubling the produced volumes, the unit production time
was reduced by a constant percentage [25]. Based on this consideration, he defined the
learning curve that can be used in operations management as a supporting function in the
planning of the volumes to be processed. The curve can be used to derive the time spent
by employees to learn a new activity and, consequently, plan the workforce during full
production. In the same context, Ball et al. (2011) [24] affirm that the opposite phenomenon
to learning, namely the tendency to forget, must also be considered in formation. In the
field of industrial engineering, the common assumption is that if the worker interrupts the
execution of activities for a certain period, then the performance of the worker deteriorates
up to when a new production session begins [24]. The time elapsed between the training
of the operators and their insertion in the process must be minimal to avoid reducing the
performance of the employee. Neglecting this key factor in human resource planning could
lead to under sizing the required staff to produce a certain target volume.

In addition, some scientific contributions have attempted to determine performance
indicators for the assessment of industrial operators. For instance, Manca et al. (2012) [26]
assess human factor performances during the operator training period through the “Ana-
lytic Hierarchy Process” (AHP) methodology. Other research works discuss the evolution
of operations roles with the impact of Industry 4.0 by focusing on the interconnection
between new technologies and humans, and on the increase in compatibility, effectiveness,
safety, human well-being and quality of life [27,28]. However, there is no performance
assessment methodology that integrates inefficiencies due to human factors in the main
“Key Performance Indicators” (KPIs) adopted for the process evaluation. Therefore, it
seems that the scientific literature is missing the opportunity to integrate the digitalization
and Industry 4.0 data collection capability with relevant performance assessment method-
ologies, with the result being an inability to distinguish between the human factor and
equipment performances.

2.2. Technical Factors in the Initial Adoption Phase of New Production Technologies

The ramp-up phase is characterized by extreme instability resulting from various
changes that are implemented in the process, products or equipment, which can be both
intentional and unintentional. Consequently, the complexity of this period can increase
significantly, leading to unpredictability and uncontrollability of the entire system, given
that each adjustment of the system and of its parameters could lead to a decrease in
production quantity. Therefore, the effectiveness of the ramp-up phase can be hardly
predicted, and it is unlikely to reach the set targets of time, cost and quality [29].

One of the most relevant elements in the initial adoption phase of new production tech-
nologies is related to the supplier capabilities. Indeed, approximately 37% of production
line disruptions during the ramp-up period are related to problems originating from the
suppliers [1]. Differently, Wlazlak and Hilletofth (2019) [30] propose a model for original
equipment manufacturer (OEM) supplier integration during ramp-up through a two-way
communication about changes, costs, specification, resolution of technical problems and
investments in new manufacturing technologies [30]. Colledani et al. (2018) [6] identify
the behavior of the equipment among the causes of TH loss during the initial adoption
phase of new technologies. Nominal conditions provided by the supplier of the technology
are considered in the design phase of the system; however, during the integration of the
equipment into the real system, more failure modes may emerge than those indicated by
the supplier. Therefore, the greater the effort devoted to the design and planning of the
ramp-up phase, the more efficient it will be in terms of time and cost [24].
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On a different aspect, several scientific contributions discuss methodologies and
approaches to optimize ramp-up conditions and equipment management. Klocke et al.
(2016) [31] propose a model for the selection of machinery and equipment to obtain favor-
able conditions during the production start-up. The authors defined a target system for
the evaluation of different technologies or production systems in which they considered
parameters such as time to market and time to volume. However, the authors provide
only a limited overview on the business processes without considering the whole supply
chain. Burggraf et al. (2016) [32] propose the use of the modular approach to counter the
spread of the ramp-up effects in the production system, to reduce the complexity of the
system, and to decouple the various modules. The limitation of this research lies in the
lack of modular structures in already existing companies; therefore, the approach becomes
not applicable in most industrial contexts. Colledani et al. (2018) [6] indicate the use of
continuous improvement approaches to identify and remove disturbances affecting the
behavior of the equipment, breakdowns of machinery and the integration of resources
into the system with a perspective oriented to production. The study could be integrated
with a methodology for reducing the variability of the TH obtained during the ramp-up
phase, given that the performance improvement of a system could be partially hidden
and difficult to trace in a system characterized by high variability. Finally, Schuh et al.
(2015) [33] introduce a framework for ramp-up process management based on system
complexity, while Kukulies and Schmitt (2018) [34] develop a model to stabilize production
output by modeling uncertainties in the product design phase.

In conclusion, though the technological factors of the ramp-up are largely studied in
the scientific literature, they are never integrated with human factors in a comprehensive
framework to evaluate the ramp-up period of new production technologies. Indeed, the
ramp-up is a learning process characterized by human errors and learning by doing, and
there is no methodology for the evaluation of its performances that takes into consideration
both source of inefficiencies.

In this context, the overall equipment effectiveness (OEE) is currently one of the most
relevant frameworks to evaluate the effectiveness of individual equipment and integrated
production systems [35]. OEE is an indicator that supports management to determine
production capacity, reduce production losses and evaluate new equipment investments,
but the traditional evaluation method does not explicitly consider the human factor. Hence,
through exploiting the potential of digitalization and Industry 4.0, this paper provides
a comprehensive framework for analyzing the initial adoption phase of new production
technologies by considering the human aspects that impact the ramp-up period.

2.3. Summary of the Criteria and Applicability to the Initial Adoption Phase of New
Production Technologies

From the previous considerations, even though a great effort has been made towards
the discussion of the main factors that impact the initial adoption phase of new production
technologies, it seems that a framework for obtaining a comprehensive evaluation of this
phase is missing.

Differently, several scientific contributions proposed models and criteria for the ramp-
up phase of new products, new processes and following a reconfiguration of the system. For
this reason, a review of these criteria has been performed to identify their applicability to
the specific ramp-up phase of new production technologies. The results of this assessment
are shown as in Table 1 which reports all the criteria, the research work they have been
introduced in, the specific type of ramp-up they are referred to, and the evaluation of their
applicability to the initial adoption phase of new production technologies.
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Table 1. Applicability of ramp-up criteria to the initial adoption phase of new production technologies.

# Criterion Reference Type of Ramp-Up Applicability during the Initial Adoption
Phase of New Production Technologies

1 Measurement of the ramp-up period:
ramp-up time or time to volume [6]

New process or
system reconfiguration or launch of

new products

Yes, time to volume can also be adopted
for new production technology evaluation

2

Plan for a gradual increase in volume:
pre-series production, low output volume,
regular start of the production, maximum

productivity level

[6] Launch of new products Yes, to plan a gradual increase of
production of new machineries

3

Test plan and start of production for new
machineries: preliminary acceptance of the
project, final acceptance, transit in the stage

of use, increase in output volume, target
production level

[18] New technology
or new process

Yes, to ensure that the technology
meets the company’s quality

and safety standards

4 Measurement of actual and lost TH
and reduction of its variability [6] System reconfiguration Yes, to identify the causes

of production inefficiencies

5 Identification of the internal and external
causes that lead to a loss of TH [6] System reconfiguration

Yes, considering the behavior of the
equipment, human errors and any causes of

misalignment between what was designed and what
occurred in reality

6
Selection of machineries and equipment

to obtain favorable conditions for ramp-up
and decrease the loss of TH

[31] New technology or
system reconfiguration

Yes, by selecting a machinery
that can be quickly integrated

7

Macro-strategies for TH reduction:
anticipation of disturbances in the

production phase, data collection and
analysis for continuous improvement

[6] System reconfiguration Yes, through cooperation between the
machinery supplier and the operations team

8 Reduction of the ramp-up time through
the delay of detailed system descriptions [6] System reconfiguration

No, as any changes made while
production has started could negatively

impact the entire process
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Table 1. Cont.

# Criterion Reference Type of Ramp-Up Applicability during the Initial Adoption
Phase of New Production Technologies

9
Manufacturing standards for the mitigation

of disturbances encountered during
the ramp-up phase

[32] New process
Yes, considering modular manufacturing

to decouple the new process from
existing processes

10 Identification and removal of disturbances
related to the behavior of the equipment [6] System reconfiguration

Yes, partially applicable when
installing a single machine
decoupled from the process

11 Methods to transfer tacit knowledge [21] New process Yes, by offering a methodology
for knowledge transfer

12 Structural organization during
the ramp-up process [18] New process Yes, by selecting the best structure

to use in the case of new equipment

13 Dedicated teams for the change of
the technical product characteristics [18] Launch of new products

Yes, by creating a team of experts
who pass on knowledge for future

ramp-ups of similar equipment

14
Usage of VR for employee training to speed

up learning and to identify
common mistakes

[17,23] New process

Yes, considering the trade-off between
the cost of implementing virtual training,

the complexity of the activity to be carried out and the
cycle time of the operation

15 Usage of learning curves
during employee training [5,24] New process Yes, considering the role of the

operator in Industry 4.0

16 Management of the complexity of ramp-up
processes by assigning complexity drivers [33] New process Yes, for managing the complexity

of the ramp-up activity

17 Stabilization of manufacturing output by
modeling uncertainties in the design phase [34] Launch of new products Yes, considering the needs for the

integration of new equipment

18 OEM-supplier integration to reduce
disruptions during ramp-up [30] New technology

Yes, collaboration between the OM team and supplier of
the technology is required to adapt the equipment to the

needs of the company
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3. Framework Proposal

This paper aims to propose a comprehensive framework to evaluate the ramp-up
phase of new production technologies by providing an evaluation methodology that
highlights the critical aspects encountered during this period. Starting from the original
TPM OEE definition [36], the paper introduces two different OEE calculation methodologies
that allow distinctions to be made between human performance, process configuration
and technical features of the production technology. In this context, if the causes of
inefficiencies are not correctly identified, a risk of extension of the ramp-up period and a
loss of additional TH can occur [29]. For this reason, the ramp-up phase is characterized by
training of operators and managers, and, consequently, the classic definition of OEE should
be adapted to differentiate between losses attributable to human and technical factors.

For this reason, our methodology provides two different OEE measurement method-
ologies by being able to compute the impact of human-process errors on the overall OEE
value. This contribution has been obtained by considering the original OEE definition and
providing a revised version, taking into account the abovementioned losses. Note that this
has also been possible by performing a wide literature review on the methods to be applied
to the ramp-up phase of new production technologies, whose applicability is discussed
in the literature review section. Some assumptions are identified and adopted, which are
described in the next subsections.

Moreover, by determining the possible losses, it has been possible to identify and
introduce specific criteria for the target OEE calculation, whose objective is twofold. Firstly,
these criteria allow managers to determine the moment in which the production technology
is transitioning from the ramp-up state to the fully operational state. Secondly, they allow
proper production capacity and workforce planning to be performed before entering the
fully operational state of the machinery, considering both human and technical factors.

Lastly, the proposed framework and the OEE measurement methodologies have been
discussed in relation to the ISO22400 OEE definition, to ensure the compatibility of the
method with the international standard.

3.1. Brief Recalls on TPM OEE

To establish the foundation for the proposed OEE evaluation methodologies, brief
recalls of the overall equipment effectiveness (OEE) are here reported. The OEE has been
originally conceived and introduced within the contribution of Nakajima (1988) [36], to
provide a methodology for the estimation of industrial equipment inefficiencies. This
measurement has rapidly spread in the industrial and scientific context due to its ease of
use and wide applicability [37–41], and it represents one of the leading manufacturing key
performance indicators (KPIs).

The TPM OEE indicator is based on a time model which considers three main cate-
gories of inefficiencies—time losses, speed losses, and quality losses—which are in turn di-
vided and classified into “six big losses” [36,42]. These losses are described and represented
in the OEE time model in Figure 1 which is adapted from Nakajima’s contribution [36,37].
The time model allows the different indicators that compose the OEE to be determined,
namely: operating rate or availability (ORTPM), performance efficiency (PETPM), and qual-
ity rate (QRTPM). From these considerations, the OEE calculation methodology is reported
as in Table 2 [36,37].

Table 2. Calculation of the TPM OEE.

TPM OEE Calculation Methodology

Operating rate/availability (ATPM) ATPM = OPT
LT = LT−DT−ST

LT (1)

Performance efficiency (PETPM) PETPM = NOT
OPT = OPT−MST−SLT

OPT (2)

Quality rate (QRTPM) QRTPM = VOT
NOT = NOT−DPT−RWT

NOT (3)

OEETPM OEETPM= ATPM×PETPM×QRTPM (4)
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3.2. Proposal of the OEE Measurement Methodologies

This subsection introduces two different OEE measurement methodologies which
allow distinctions to be made between human and technical factors. Both methodologies
originate from the TPM OEE and can therefore be easily traced back to the framework
reported in Table 2.

In addition, it should be highlighted that the methodology aims at differentiating the
technical factors from the human factors, namely human errors and process configuration
errors that can be traced back to the human activities. In this way, it would be possible to
effectively consider the gap between technical performances and human performances,
and to identify potential improvements for the ramp-up period.

Note that the proposed measurement framework strictly requires the possibility of
implementing a data tracking platform in a digital and interconnected industrial environ-
ment. Indeed, the platform must track all the relevant parameters for the OEE calculation:
operating time; downtime events and the time taken for recovery; and the count of com-
pliant, non-compliant and processed products. The fundamental requirement of the data
monitoring platform is to accurately track the flow of raw materials within the plant and the
process, recording every type of physical movement and temporal duration of the materials.
Moreover, it is assumed that the data tracking platform is able to distinguish between errors
due to human activity or due to the machinery product processing. Without this digital
platform and environment, it would not be possible to adopt the proposed framework.

Table 3 shows the definition of the metrics used in the OEE evaluation methodology.
From the previous definitions, it is possible to obtain the following metrics, which will be
adopted for the OEE calculation:

Uptime = PT + IT + BT + ST (5)

Downtime = Fproc+Fmac+OM + ST (6)

Non − compliant products = Pnc= Pnc, proc+Pnc,mac (7)

Potential products = Ppot= Ppot, proc+Ppot, mac (8)

Target products = Ptarget= Pc+Pnc+Ppot (9)

where it is possible to observe that, considering a constant machine processing time
(constant machine cycle time; expressed as CT), the following equivalency is obtained:

Uptime = CT · Ptarget= CT ·
(
Pc+Pnc+Ppot

)
(10)
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Table 3. Definition of metrics used for the OEE evaluation methodology.

Parameter Definition

Production time (PT) Sum of all the machine processing times

Idle time (IT) Unplanned machine minor stops and slowdown times

Blocking time (BT) Unplanned stop time due to a block of the
downstream operations sequence

Starving time (ST) Unplanned stop time due to a lack of materials

Faulted time due to the process (Fproc) Sum of all the major stops attributable to human errors
or to process configuration errors

Faulted time due to the machinery (Fmac) Sum of all the major stops attributable to the machinery errors

Operator maintenance (OM) Unplanned time in which the operator performs maintenance

Setup time (ST) Sum of time for setups and changeovers

Non-compliant products due to the process (Pnc, proc) Number of products that need rework due to human
error or due to process configuration

Non-compliant products due to the machinery (Pnc, mac) Number of products that need rework due to machinery errors

Potential products due to the process (Ppot, proc) Number of additional obtainable products in a fully
operational state with the absence of human-process errors

Potential product due to the machinery (Ppot, mac) Number of additional obtainable products in a fully
operational state with the absence of machine errors

Uptime (U) Sum of production time, idle time, blocking time and starving time

Downtime (D) Sum of faulted time, operator maintenance and setup time

Compliant products (Pc) Number of products that do not need reworking

Non-compliant products (Pnc) Number of products that need reworking, either for
human-process errors or for machinery errors

Potential products (Ppot)
Sum of additional obtainable products in a fully operational state
with the absence of human-process and machinery errors

Target products (Ptarget)
Sum of compliant products, non-compliant products
and potential products

Table 4 represents the OEE assessment methodologies, where considers all the inef-
ficiencies that may occur during the production phase (namely inefficiencies due to the
machinery, process configuration or human errors) and where considers only the ineffi-
ciencies due to the machinery, excluding the ones attributable to process configuration
or human errors. Note that both calculation methodologies assume constant processing
times (constant cycle times) and the possibility to implement a tracking platform, while the
following assumptions are provided for the calculation:

• All the inefficiencies and time lost due to process configuration or human errors are
considered as additional processing time for the machinery;

• During the additional processing time, no machinery losses are present;
• All products obtained in the additional processing time are compliant.
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Table 4. Representation of the OEE measurement methodologies, distinguishing between human and technical factors.

OEE Process Calculation OEE Machinery Calculation

Downtime (D) Dproc = D (11) Dmac= Dproc − Fproc (12)
Operating
rate/Availability (A) Aproc =

U
U+Dproc

(13) Amac =
U

U+Dmac
(14)

Performance efficiency
(PE) PEproc =

Pc+Pnc
Ptarget

(15) PEmac =
Pc+Pnc +PPot, proc

Ptarget
(16)

Quality rate (QR) QRproc =
Pc

Pc+Pnc (17) QRmac =
Pc+ Pnc,proc +PPot, proc

Pc+Pnc+ PPot, proc (18)

OEE OEEproc= Aproc · PEproc · QRproc (19) OEEmac= Amac · PEmac · QRmac (20)

In light of these assumptions, it is possible to observe that the measurement methodol-
ogy is derived from the calculation through the elimination of human-process inefficiencies.

Considering the previous table, it is clear that OEEproc evaluates all possible ineffi-
ciencies, including human errors, process configuration errors and losses attributable to
the machinery. Differently, OEEmac separates and recovers the factors attributable to an
incorrect configuration of the process and human errors as additional processing times.
The differentiation of the OEE measurement methodologies allows the real inefficiencies
of the production technology to be isolated, assuming that human errors and process
configuration errors are avoided. For this reason, the OEEmac value is always greater than
the OEEproc value.

Note that the added value of these measurement methodologies lies in the distinction
between the losses of efficiency caused by human-process configuration errors and the ones
caused by the machinery errors. This is obtained by the inclusion of potential products
(P pot) and in the distinction between non-compliant products due to human-process errors
(Pnc, proc) and non-compliant products due to machinery errors (Pnc, mac) within the OEE
assessment, as well as the distinction between downtime due to human-process errors
(Fproc) and due to machinery errors (Fmac).

3.3. Criteria for Target OEE Calculation

Production and workforce capacity planning is usually performed ahead of the end of
the ramp-up period to anticipate the needs of the fully operational state of the technology.
Moreover, organizations should be able to estimate and determine the conditions under
which the transition from the ramp-up phase to the fully operational state is obtained. In
this context, the OEE measurement could be employed to forecast the expected processable
quantity for the fully operational state of the production technology, since this measurement
is suitable for automatic and semi-automatic production processes [43]. However, the OEE
calculation should also consider the impact of the human aspects (e.g., training) that
influence the duration of the ramp-up phase.

For this reason, starting from the proposed OEE measurement methodologies, a set
of criteria is here introduced to evaluate and perform proper production planning and
to establish the moment in which the ramp-up state is over. The following criteria are
proposed for the estimation of the target OEE to be obtained in the fully operational state
of the production technology:

1. Compute the actual OEE value of the machinery (OEEmac): it is required to compute
the OEE value that filters the components due to human and process configuration
errors occurring during the adoption phase of new production technologies to obtain
the actual machinery OEE value. For this calculation, refer to Section 3.2. It is hence
assumed that the human-process losses do not occur in a fully operational state, or
that they occur in a less systematic manner;

2. Evaluate the average OEE during the ramp-up phase;
3. Evaluate the percentage of OEE which increases due to completion of trainings: this

value can be computed by considering the percentage of OEE increase obtained
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between the end and the beginning of the training. It is therefore possible to indicate
the value as in Equation (21):

∆OEEtraining =
OEEpost−training

OEEaverage, ante−post
− 1 (21)

where OEEpost−training is the OEE value registered at the end of the training, while
OEEaverage, ante−post represents the average OEE value in the whole training period. In
addition, if different groups of people are trained, it is possible to obtain the average
percentage of OEE increase due to trainings completion as in Equation (22):

∆OEE average, training =
∑ ∆OEE training

Number of groups
(22)

Note that this calculation obtains the increase in OEE which is exclusively due to
operator training, which is assumed to be achieved at the start of the production
technology fully operational state;

4. Evaluate the decrease of “Mean Time To Repair” (MTTR) of the regular maintenance
operations carried out by the operators: it is assumed that in a fully operational
state—when the learning process of operators is completed—the operators will be
able to manage the machinery alarms in a shorter time interval, leading to an increase
in availability. In the absence of recorded data for MTTR evaluation, the availability
of the machine can be assessed by considering the downtime in a fully operational
state, when it can be estimated that no downtime will be caused due to incorrect
maintenance procedures that may occur during the ramp-up phase. For this reason,
it is required to estimate the fully operational downtime as in Equation (23) and the
fully operational availability as in Equation (24):

Dmac, fully operational = Dmac − Dreduced maintenance (23)

Amacfully operational =
U

U + Dmac, fully operational
(24)

where Dreduced maintenance represents the expected value of downtime reduction due
to the decrease in regular maintenance operations, MTTR. Note that once the fully
operational availability has been computed, it is possible to provide the re-evaluated
value of the machinery OEE as follows:

OEEmacre−evaluated = Amacfully operational · PEmac · QRmac (25)

5. Compute the expected OEE value for the fully operational state of the production
technology and estimate the number of additional processable products: once all of
the previous criteria have been applied, Equation (26) shows how to compute the
target OEE:

OEEtarget = OEEmacre−evaluated · (1 + ∆ OEEaverage, training) =

=
(

Amacfully operational · PEmac · QRmac

)
· (1 + ∆ OEE average, training

)
(26)

Note that this methodology allows the target OEE value for the fully operational state
of the considered production technology to be computer, and therefore estimates the period
in which the ramp-up phase ends. Indeed, once the training periods are completed and the
production technology performances steadily achieve the target OEE value, it is possible to
establish the conclusion of the ramp-up period.
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3.4. OEE Evaluation Methodology and ISO22400 Standard

The ISO22400 represents the international standard published by the “International Or-
ganization for Standardization” (ISO) with the aim of defining, harmonizing and standard-
izing key performance indicators (KPIs) for manufacturing operations management [44,45].
This standard has recently gained a rising interest in both the industrial and scientific
environments [37,46–48] due to its practical and wide applicability to the manufacturing
field. The standard provides relevant KPIs for different activities within the context of
manufacturing operations management, and specifically it defines two different methods
of computing the OEE, which can be traced back to the original TPM OEE definition [37].
The detailed definition of the ISO22400 OEE indicators is provided in the ISO standard
(2014) [45] and in the contribution of Schiraldi and Varisco (2020) [37].

In this context, due to the growing interest towards the application of the ISO22400
standard, this section shows the relationships between the metrics and losses of efficiency
that have been introduced in Table 3 Indeed, the definition of a link between the proposed
framework and the ISO22400 standard could help researchers and practitioners move
toward the correct application of the provided OEE measurement methodologies. For
this reason, starting from the contribution of Schiraldi and Varisco (2020) [37], which
indicates the equipment state to be considered for the ISO22400 OEE computation, in what
follows the correspondence between proposed metrics and the possible equipment states
classification is provided.

Table 5 shows the equipment states that can be related to the specific parameters
introduced by Section 3.2. The table correlates the specific metrics of the proposed frame-
work with the equipment state, which leads to the time elements of the ISO22400 standard
they are referred to [37]. Hence, this classification matches the proposed OEE measure-
ment methodologies with the ISO22400 OEE indicators and establishes a connection for
performing an effective implementation of the standard.

Table 5. Correspondence between the proposed metrics and the equipment states proposed by Schiraldi & Varisco
(2020) [37].

Parameter Related Equipment State Specification

Production time (PT) ON Run
Idle time (IT) SLOW Stopped for delays; reduced speed
Blocking time (BT) STOP Blocking
Starving time (ST) STOP Starvation
Faulted time due to the process (Fproc) STOP/OFF Unplanned switch off
Faulted time due to the machinery (Fmac) STOP/OFF Unplanned switch off
Operator maintenance (OM) STOP Unplanned switch off
Setup time (ST) STOP Setup
Non-compliant products due to the process (Pnc, proc) ON Run
Non-compliant products due to the machinery (Pnc, mac) ON Run
Potential products due to the process (Ppot, proc) SLOW Stopped for delays; reduced speed
Potential product due to the machinery (Ppot, mac) SLOW Stopped for delays; reduced speed
Uptime (U) ON Run

Downtime (D) STOP/OFF Unplanned switch off; blocking;
starvation

Compliant products (Pc) ON Run
Non-compliant products (Pnc) ON Run
Potential products (Ppot) SLOW Stopped for delays; reduced speed
Target products (Ptarget) ON Run

4. Case Study of a Semi-Automatic Packaging Machine in a Logistics Company

The case study examines the adoption phase of a new technology for a B2C company
in the logistics sector that interfaces with consumers through e-commerce. Specifically,
the integration of a semi-automatic packaging machine that produces parcels intended
for small objects in outbound operations is studied. The raw materials employed by the



Appl. Sci. 2021, 11, 8620 16 of 22

machine are paper, glue and inkjet. The machine was originally intended for the packaging
of parcels with constant dimensions, considering little variability in size, such as covers
and documents, and it has been adapted for the packaging of objects of variable though
limited size. Following the machine reconfiguration, no historical metrics relating to the
processing procedures and technology performance were present.

The human figure role is here linked to the insertion of products on the machine’s
feeding belt after scanning the objects, and to the management of production stops through
the human-machine interface. Operators must also manage machine downtime events and
start-ups following downtimes.

The infeed belt is divided into slots highlighted by colored markers, and the objects
must be inserted in the available slots, otherwise the items will be discarded from the
machine upon entry. Moreover, the machine has the following features:

• The technology has a minimum operating speed and a maximum speed; at the begin-
ning of production, the operating speed has to be set according to the planned hourly
units and according to the number of operators employed in the process. Following
the start-up, the technology operates at a constant capacity and does not automatically
adjust the speed of packages productions to the infeed rate of operators;

• For each empty slot on the infeed belt, an empty package is produced. Therefore, all
slots on the feeder belt must be filled, so as to not produce paper waste in the form of
empty packages;

• The technology registers the position of the items inserted in the slot after the article is
scanned by the operator and positioned on the belt. At the entrance of the packaging
module, the position of the object is checked using sensors; if there are no belt position
variations, the object continues towards the packaging operations. Otherwise, it is
discarded in a waste trolley. Objects that do not comply with the dimensions required
by the machine are also rejected;

• The machine also has a second reject trolley for non-compliant packages. Initially, the
machine was tested with the support of the supplier. Once the processing procedures
were defined, the company employed its operators in the process, which resulted in a
machine performance decrease.

In what follows, the proposed methodology is applied to and validated through the
described case study. Firstly, a description of the OEE measurement methodologies is
provided in relation to the specific features of the case study. Then, results of the applied
methodology are reported and discussed. Note that for confidentiality purposes data
are not shown in this contribution; hence Section 4.2 shows only the data trend for the
proposed metrics.

4.1. OEE Definition: Semi-Automatic Packaging Machine

The previously described OEE measurement methodologies can be applied to several
typologies of production technologies through an adaptation of the different metrics.
Indeed, the factors to be considered for the OEE evaluation vary according to the type of
machinery and the kind of inefficiency typically encountered in the production start-up
phase. To give a practical overview of the proposed OEE indicators, they are here adapted
and applied to the described case study. Table 6 shows the specific parameters which
have been adopted in the OEE evaluation. Note that this application can be performed for
different types of machines to obtain relevant OEE measurements.

Considering the “not scanned products” (Pno, scan), these can be observed when the
technology requires operators to scan a product identification code prior to processing
which is either not performed by error or incorrectly performed. Differently, the “not
loaded products” (Pno load) consist of all the semi-finished products or raw materials that
are transported to the machinery and yet not processed by the operators, even though
they have been considered processable by the information system. This may happen when
the operators conduct an inspection of the technical and physical characteristics of the
items and decide that they are not compliant with the technology’s processing conditions.
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For this reason, this operator’s choice must be considered as a loss of efficiency due to a
human error. In addition, the “empty packages” (Pempty) are defined as the number of void
packages due to the constant operating speed of the machine, which is not adapted to the
processing rate of the operators. Hence, this loss must be assumed as an intrinsic loss of
efficiency caused by the machinery.

Table 6. Definition of metrics used for the OEE evaluation methodology for a semi-automatic packaging machine.

Parameters Specific Definition

Not scanned products (Pno scan) Number of products not scanned correctly by operators

Not loaded products (Pno load) Number of products that are inspected by operators,
but that are not processed

Empty packages (Pempty) Number of empty packages caused by the constant production speed of
the machinery

These considerations lead to the following definition of potential products and target
products for the semi-automatic packaging machine:

Ppot, proc= Pno scan+Pno load (27)

Ppot, mac= Pempty (28)

Potential products = Ppot= Ppot, process+Ppot, mac = Pno scan+Pno load+Pempty (29)

Target products = Ptarget= Pc+Pnc+Pno scan+Pno load+Pempty (30)

Therefore, in this case, the only loss of performance efficiency for the OEE process
is given by the “empty packages” (Pempty). Indeed, as already mentioned, this loss is
encountered for technologies that operate at a constant operative speed without adapting
the production capacity to the processing rate of the operators.

4.2. Results and Discussion

Figures 2–5 provide, respectively, the data trend for the process and machine OEE,
availability, performance efficiency and quality rate. Note that only the data trends for
a period of 20 days are shown for confidentiality purposes, and no absolute values are
reported and described. Moreover, in the different figures, the dashed curves show the
performance recorded during the controlled tests conducted by the machine’s supplier tech-
nicians, while the continuous curves record the performances following the employment
of the company’s operators for production.

From these data, it is possible to observe a 11% increase in OEEmac and a 18% increase
in OEEproc from day 13 to day 20. This OEE increase gap could be due to the operator
training process: during this timeframe, operator training was sped up, resulting in
lower human-process inefficiencies. Indeed, following the employment of the company’s
operators for production (day 10) and the variability of day 11–12, the company decided to
intensify the operator training process.

A similar pattern is observed also for availability, performance efficiency and quality
rate. Moreover, specifically for the availability, Amac and Aproc obtained the same values
during day 18, meaning that no human-process inefficiency has occurred in that specific
day. This result has been possible due to an intensification of the operator training process,
with a major focus on the faulted time due to operator errors (e.g., operators were frequently
placing items with non-allowed dimensions on the infeed belt, generating downtimes).
Additionally, considering performance efficiency and quality rate, the distance between
machine and process values steadily decreased during the operator training period due to
the possibility to evaluate the human-process inefficiencies with the proposed framework.
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Successively, the target OEE value has been calculated according to the proposed
criteria described in Section 3.3; this allowed the moment in which the ramp-up state was
over to be determined and for proper production and workforce planning to be performed.
Once again, it has not been possible to report the computed value for confidentiality
purposes. In conclusion, this case study allowed the testing and validation of the proposed
OEE measurement methodologies and the criteria for target OEE calculation. It also allowed
the provision of valuable insights for improving the adoption of the new semi-automatic
packaging machine and for reducing the overall length of the ramp-up period.

5. Conclusions

This paper discusses the factors that impact the ramp-up phase of new production
technologies and proposes a framework to evaluate the machinery performances in a digital
and interconnected environment by distinguishing between human and technological
factors. Specifically, the paper analyzes models and criteria for the ramp-up phase of
new products, new processes and system reconfigurations, and provides an indication
of their applicability to the introduction of new production technologies. Moreover, a
comprehensive framework to evaluate the production technology performance is proposed.

The framework is composed of two different OEE measurement methodologies that
distinguish between human-technological factors, as well as a set of criteria that allow for
the estimation and determination of the conditions under which the transition from the
ramp-up phase to the fully operational state is obtained. Secondarily, this methodology
could also be adopted to perform proper production and workforce capacity planning
ahead of the ramp-up period conclusion. Successively, the metrics and definition provided
in this contribution are analyzed in relation to the equipment state classification of Schiraldi
and Varisco (2020) [37], which leads to a matching of the proposed OEE with the ISO22400
OEE measurement methodologies.

It should be noted that, to perform this calculation, it is assumed that the inefficiencies
and time lost due to process configurations or human errors are considered as additional
processing time for the machinery. Moreover, during the additional processing times,
only compliant products are manufactured, without any machinery loss. These strong
assumptions are required to effectively estimate the impact of the process configuration or
human errors on the overall OEE value and to obtain insights and continuous improvement
for the achievement of stable production output.

It should be observed that the proposed framework strictly requires the implemen-
tation of a data tracking platform in a digital and interconnected industrial environment.
Indeed, the platform must track all relevant parameters for the OEE calculation, so that
it will be possible to effectively distinguish between human performance, process con-
figuration and technical features of the production technology. Hence, the fundamental
requirement of the data monitoring platform is to accurately track the flow of raw mate-
rials within the plant and the process, recording every type of physical movement and
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temporal duration of the materials. Indeed, without the presence of a digital platform and
environment, the proposed methodology would become unapplicable.

Additionally, the proposed framework is applied to a case study concerning the
introduction of a semi-automatic packaging machine in a relevant multinational logistics
company. The case study allowed the framework to be assessed and validated by studying
the semi-automatic packaging machine ramp-up period and provided insights for its
optimization. In the future, further applications of this research work could be carried
out to determine its validity in different sectors and to model the OEE measurement
methodologies accordingly. Moreover, an additional development of this methodology
could be given by coupling with continuous improvement techniques (e.g., the Kaizen
technique) to reduce the identified inefficiencies and errors.
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