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Healthy and pathological human walking are here interpreted, from a temporal point of

view, by means of dynamics-on-graph concepts and generalized finite-length Fibonacci

sequences. Such sequences, in their most general definition, concern two sets of eight

specific time intervals for the newly defined composite gait cycle, which involves two

specific couples of overlapping (left and right) gait cycles. The role of the golden ratio,

whose occurrence has been experimentally found in the recent literature, is accordingly

characterized, without resorting to complex tools from linear algebra. Gait recursivity,

self-similarity, and asymmetry (including double support sub-phase consistency) are

comprehensively captured. A new gait index, named 8-bonacci gait number, and a

new related experimental conjecture—concerning the position of the foot relative to the

tibia—are concurrently proposed. Experimental results on healthy or pathological gaits

support the theoretical derivations.

Keywords: gait analysis, walking gait, asymmetry, self-similarity, golden ratio, fibonacci sequence, locomotion,

neuroscience

1. INTRODUCTION

Four time intervals—associated with the durations of gait cycle, swing, stance and double support
phases—characterize, from a temporal point of view, symmetric and recursive human walking
(Dugan and Bat, 2005). Recently, the ratio between swing and double support phases durations has
been experimentally recognized in Iosa et al. (2013)1 to be close, in healthy subjects symmetrically
and recursively walking at comfortable speed of about 4 km/h (Cavagna and Margaria, 1966), to
the golden ratio φ = (1 +

√
5)/2 ≈ 1.618. Such an irrational number φ is the positive solution to

the equation x2 = 1+ x. It is related to the Euclid’s problem of cutting in a self-proportional way a

1Spatio-temporal gait parameters are analyzed in Iosa et al. (2013) by using a stereo-photogrammetric system with 6 cameras.
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given straight segment (Iosa et al., 2017, 2019). In this light,
φ turns out to describe self-similarity in symmetric walking
(Iosa et al., 2019). Indeed, most of the literature agrees that
the foot off reliably occurs at 60–62% of a physiological gait
when the subject is (symmetrically and recursively) walking
at comfortable speed2. On the other hand, it has been also
experimentally shown that patients with Parkinson’s Disease—
known to be characterized by tremor at rest, rigidity, akinesia,
or bradykinesia, and postural instability—have such a smooth,
graceful andmelodic flow of movement being reduced, with their
gait self-similarity being altered (Iosa et al., 2016b). Notice how
all the experimental evidences above move along the direction
of using temporal gait analyses to complement, in clinical or
general performance evaluations (Salarian et al., 2004; Wang
et al., 2012; do Carmo Vilas-Boas and Cunha, 2016; Ren et al.,
2016; Serrao et al., 2017; Ricci et al., 2019b), the classical gait
analyses including motion analysis, dynamic electromyography,
force plate recordings, energy cost measurements or energetics,
measurement of stride characteristics (Dugan and Bat, 2005;
Greene et al., 2010; Saggio and Sbernini, 2011). However,
human walking naturally includes asymmetric and non-recursive
components, especially in pathological cases, so that at least eight
(in place of four) time intervals have to be considered. These time
intervals include the gait cycle, swing, stance, double support
durations for both the left and right lower limbs (Marino et al.,
2020).

This work definitely exploits the ideas underlying a fractal
approach to the question3, in which the larger scale structure
resembles the subunit structure. It moves along the direction of
providing special interest to the simplest and most general way of
transformation when a new domain is composed of two previous
ones, with a consequent internal evolutionary process including
the generation of a self-referential loop4. In particular, this paper
provides original mathematically-founded arguments addressing
the ¬-{symmetry and recursivity} question above. As in Marino
et al. (2020), the crucial role of φ is found to be intrinsically
related to the mathematical description of the human walking,
rather than to be associated with the special solution constituted
by a temporally self-similar gait5. However, differently from
Marino et al. (2020), no complex tools from linear algebra,
associating special φ-dependent subspaces with a common

2It is worth noting that a similar percentage 61.06% ≡ 1 − φ = 1/φ is the same

that appears, in a normal subject performing a head-up tilt, as the ratio between the

LF (low frequency) component and the total power in the Heart Rate Variability

context (The European Society of Cardiology & the North American Society of

Pacing & Electrophysiology, 1996, pag. 361, Figure 5.f), whereas 38.94% ≡ 1/φ2

equals the ratio between the LF total-power-complement and the total power.
3The generic idea that walking can have a fractal structure can be found in

Hausdorff et al. (1995), while the existence of significant alterations from such a

structure in patients with Parkinson’s Disease has been suggested inHausdorff et al.

(2003).
4As reported in Igamberdiev (2004), certain recursive limits become fundamental

canons of perfection formed as memorization within reflective loops.
5With respect to this, notice that, even in the symmetric and recursive case, the

ratio between swing and double support phases durations in healthy subjects

walking at comfortable speed slightly differs from φ, so that a perfectly self-similar

gait does not occur in practice, with a consequent mismatch arising between

occurred temporal events and currently available related analysis.

temporal model for human walking and running gaits, are here
employed. Instead, human walking is here described in terms of
generalized finite-length Fibonacci sequences (Horadam, 1961)6

and dynamics-on-graph concepts (an interpretation in terms of
Shannon entropy is also presented inAppendix A). Furthermore,
in contrast to Marino et al. (2020), the newmathematical concept
of composite gait cycle is here innovatively analyzed: it involves
(see Figure 1) two specific couples of overlapping gait cycles,
namely the left and right gait cycles and the adjoint right and left
gait cycles, while extending the idea of stride-to-stride interval
(Kavanagh et al., 2006) and step-by-step interval (Potdevin et al.,
2007). The analysis presented in this paper generalizes the one in
Iosa et al. (2013), as much as the new index of section 2, named
8-bonacci gait number, constitutes the most straightforward
generalization of the gait ratio in Iosa et al. (2013) to the
case in which non-{symmetric and recursive} components of
walking (including the concept of double support consistency)
occur. Furthermore, differently from the area of the Synchronicity
Rectangle in Marino et al. (2020), such a new index takes its
minimum zero-value just when the enforced adjoint symmetric
self-similarity occurs. The above index, which can be naturally
extended to even assess gait index variability along past walking
gaits (Appendix B), also innovatively involves a term relying on a
new experimental conjecture (section 2) that opens new analysis
and diagnosis perspectives on the internal analysis of the double
support phase. An experimental support to the results of this
paper is finally provided in section 3, with a detailed discussion
being reported in section 4.

2. MATERIALS AND METHODS

2.1. Walking Phase Partition
Walking is defined as the bipedal locomotion gait (Kirtley, 2006;
Iosa et al., 2013) such that: (1) at least one limb is in contact
with the ground; (2) the contact phases are alternated by the
two limbs. In particular, condition 1. excludes, in walking, the
following possible state of the limbs: {no limbs in contact with
the ground}. Even though each gait cycle conventionally starts
and finish with consecutive foot strikes of the same foot (being
formed by the stance and the swing of the same limb), we here
adopt, as in Marino et al. (2020), the compactly comprehensive
modeling of Figure 2, which defines the right and left gait cycles,
with duration GCr , GCl, as the time intervals (or phases) between
two consecutive strikes of the right foot, namely FSr,a and FSr,b,
and two consecutive lift off of the left foot, namely FOl,a and
FOl,b, respectively. This way, as we shall see, the same right
swing phase appearing in the left stance phase is the one that is
involved in the definition of the right gait cycle (see Figure 2).
Analogously define the adjoint right and left gait cycles, with

duration GC
adj
r , GC

adj

l
, as the time intervals (or phases) between

two consecutive lift off of the right foot, namely FOr,x and FOr,y,
and two consecutive strikes of the left foot, namely FSl,x and
FSl,y, respectively, with FOr,x and FSl,x immediately preceding

6A completely different use of Fibonacci numbers is, instead, suggested in Iosa et al.

(2017), which is related to the interpretation of φ as the convergent equilibrium of

the Ultimatum Game.
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FIGURE 1 | Partitions of the walking gaits.

FSr,a and FOr,x, respectively (see Figure 2). Here: GC stands for
Gait Cycle; FS stands for Foot Strike; FO stands for Foot Off; r
and l stand for right and left, respectively; adj stands for adjoint.
Thereafter: ST stands for STance; SW stands for SWing; DS stands
for Double Support.

Remark: As shown in Figure 2, each stance contains the
contralateral swing besides the double support sub-phase with
the left foot behind and the right foot ahead and the double
support sub-phase with the right foot behind and left foot ahead.
This will be crucial in defining the double support consistency
concept of the reminder of this paper. On the other hand, the
need of considering the adjoint gait relies on the fact that the
assumption of gait symmetry and recursivity often decays in
pathological walking.

First refer to the right and left gait cycles, with duration GCr ,
GCl. The phase in the right (resp., left) gait cycle in which the
right (resp., left) limb is in-contact with the ground is named
right (resp., left) stance and has time duration STr (resp., STl).
The right swing and left swing phases are defined as the time
intervals in which the right (resp., left) limb is not in contact
with the ground during the right (resp., left) gait cycle (Iosa et al.,
2013). Their durations are given by7:

SWr = GCr − STr , SWl = GCl − STl. (1)

As aforementioned, during walking, there cannot be a double
float phase in which both feet are off the ground (condition 1.),
so that the left swing phase (resp., right swing phase) must be
entirely contained in the right stance phase (resp., left stance
phase). The non-negative difference between their durations
leads to the definition of the right (resp., left) double support

7The swing duration is sometimes denoted by SS, with SS standing for Single

Support.

phase that is entirely contained in the right gait cycle (resp., left
gait cycle). Its duration DSr (resp., DSl) is given by:

DSr = STr − SWl (DSl = STl − SWr). (2)

The durations DSr and DSl in turn satisfy DSr = DSx + DSy,
DSl = DSy + DSz , where DSx, DSy, DSz denote the durations
of the double support sub-phases highlighted in Figure 2. On
the other hand, the same quantities can be introduced for the

adjoint right and left gait cycles, with duration GC
adj
r , GC

adj

l
.

They are denoted by ST
adj
r , ST

adj

l
, SW

adj
r , SW

adj

l
, DS

adj
r , DS

adj

l
and

satisfy by definition (see Figure 2): DS
adj
r = DSr , SW

adj

l
= SWl,

ST
adj
r = STr . Again, the durations DS

adj
r and DS

adj

l
in turn

satisfy DS
adj
r = DSx + DSy, DS

adj

l
= DSw + DSx, where DSx

denotes the duration of the double support sub-phase highlighted
in Figure 2.

The following proposition holds. It generalizes the
corresponding one in Marino et al. (2020), while it allows
to extend the analysis of Iosa et al. (2013) to pathological gaits

in which the inequalities: GCr 6= GCl (resp., GC
adj
r 6= GC

adj

l
),

STr 6= STl (resp., ST
adj
r 6= ST

adj

l
), SWr 6= SWl (resp.,

SW
adj
r 6= SW

adj

l
), DSr 6= DSl (resp., DS

adj
r 6= DS

adj

l
)

possibly occur.
Proposition 1: Given the 16 time intervals durations GCr ,

GCl, STr , STl, SWr , SWl, DSr , DSl, GC
adj
r , GC

adj

l
, ST

adj
r , ST

adj

l
,

SW
adj
r , SW

adj

l
, DS

adj
r , DS

adj

l
(under DS

adj
r = DSr , SW

adj

l
= SWl,

ST
adj
r = STr), they define a composite walking cycle if the following
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FIGURE 2 | Composite gait cycle: right and left gait cycles and adjoint right and left gait cycles.

eight equality constraints are satisfied:

STr = DSr + SWl, GCr = DSr + SWl + SWr

STl = DSl + SWr , GCl = DSl + SWr + SWl.

ST
adj
r = DS

adj
r + SW

adj

l
, GC

adj
r = DS

adj
r + SW

adj

l
+ SW

adj
r

ST
adj

l
= DS

adj

l
+ SW

adj
r , GC

adj

l
= DS

adj

l
+ SW

adj
r + SW

adj

l
.

(3)

2.2. Generalized Finite-Length Fibonacci
Sequences and Classification
Define the two (right and left) chains that are represented by the
sequences:

DSr → SWl → STr → GCr

DSl → SWr → STl → GCl,

along with their adjoint versions8:

DS
adj
r → SW

adj

l
→ ST

adj
r → GC

adj
r

DS
adj

l
→ SW

adj
r → ST

adj

l
→ GC

adj

l
.

The symmetric and recursive case and the (more general) non-
{symmetric and recursive} one will be distinguished, in order to
make the asymmetric walking be viewed as a natural extension of
the symmetric and recursive one.

Symmetric and recursive walking. The following equalities:

GCr = GCl = GC
adj
r = GC

adj

l
= GC, STr = STl = ST

adj

l
=

8For the sake of clarity, we do not explicitly use, in this subsection, the fact that

DS
adj
r = DSr , SW

adj

l
= SWl , ST

adj
r = STr .

ST
adj
r = ST, SWr = SWl = SW

adj
r = SW

adj

l
= SW, DSr = DSl =

DS
adj

l
= DS

adj
r = DS hold in symmetric and recursive walking, so

that the two above chains and their adjoint versions collaps into
one, namely into DS→ SW→ ST→ GC.

The following proposition holds, whose proof directly
comes from (3), once it is specialized to the symmetric and
recursive case.

Proposition 2: The chain DS → SW → ST → GC represents
a (generalized) (a, b)-generated 4-length Fibonacci sequence9 of
the form:

a, b, c, d (4)

with a, b, c, d being non-negative numbers such that c = a+ b and
d = b+ c.

According to Horadam (1961), the golden ratio φ is a natural,
feasible fixed point10 for the consecutive ratios b/a, c/b and d/c
that are related to the generalized 4-length Fibonacci sequence
(4). In fact, when b/a = φ, then c/b = (a+ b)/b = 1/φ+ 1 = φ

and d/c = (b + c)/c = 1/φ + 1 = φ result. In this case, the
sequence is described by the model: y(k+ 1) = φy(k), k = 0, 1, 2,
where y(0) = a, y(1) = b, y(2) = c, y(3) = d. One value thus
determines the whole sequence11, in the sense that the value of

9Note that, in the case of DS = 0 (namely, in the limit case at which walking

switches into running), sequence (4)—normalized with respect to SW—, reduces

to the classical Fibonacci sequence generated by 0, 1.
10The other fixed point (1 − φ) for the consecutive ratios b/a, c/b and d/c is not

feasible when, as in this case, a and b are non-negative.
11Notice the meaningful similarity between the 4-length sequence a = DS, b =
SW, c = ST, d = GC (in the walking cycle) and the 4-length sequence a = D-S-

2IVr , b = S+IVr , c = If , d = R-R (in the cardiac cycle measured after 15min of rest
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just one ratio identically characterizes the whole sequence of ratios
(see the Shannon entropy- based interpretation of Appendix A).

Non-{symmetric and recursive} walking. Define the quantities
1SW = SWl − SWr , 1SWadj = SW

adj

l
− SW

adj
r . The following

proposition, whose proof again comes from (3), provides the
main result of this subsection.

Proposition 3: Let cI = STr , cII = STl, dI = GCr + 1SW,
dII = GCl − 1SW. The two sequences

I : aI , bI , cI , dI

II : aII , bII , cII , dII (5)

are (generalized) 4-length Fibonacci sequences, generated by aI =
DSr , bI = SWl, and aII = DSl, bII = SWr , respectively. The same
holds for the corresponding adjoint sequences12

Iadj : a
adj
I , b

adj
I , c

adj
I , d

adj
I

IIadj : a
adj
II , b

adj
II , c

adj
II , d

adj
II

that involve the quantities: a
adj
I = DS

adj
r , b

adj
I = SW

adj

l
, a

adj
II =

DS
adj

l
, b

adj
II = SW

adj
r , c

adj
I = ST

adj
r , c

adj
II = ST

adj

l
, d

adj
I = GC

adj
r +

1SWadj, d
adj
II = GC

adj

l
− 1SWadj.

Sequences (5) thus constitute multiple—namely, two—copies
of (4), with the same happening for the adjoint sequences. The
golden ratio φ here thus possibly occurs as a natural, feasible
fixed point for the consecutive ratios bI/aI , cI/bI , dI/cI and
bII/aII , cII/bII , dII/cII , with the same again happening for the
adjoint sequences.

It is straightforward to note that the mean [element by
element] of the two sequences I and II in (5) is again a
(generalized) 4-length Fibonacci sequence of the form (4). Its
elements are constituted by the mean double support, mean
swing, mean stance, mean gait cycle, respectively [X-mean X̄
denotes the quantity: (Xl + Xr)/2]. The resulting mean sequence
again exhibits φ as a fixed point for consecutive ratios (apply
Proposition 2), so that the same structure of (4) is actually
preserved in the non-{symmetric and recursive} case, at the price,
however, of just considering the corresponding mean values. All
the same happens for the adjoint sequences.

A dynamics-on-graph interpretation is provided hereafter.
It will lead to a classification of gaits in terms of self-
similarity at different magnitudes. The related Shannon-index-
based interpretation (Friedkin et al., 2016; Parsegov et al., 2017)
can be found in Appendix A.

Let us distinguish again between the symmetric and recursive
case and the non-{symmetric and recursive} one.

at supine position), both of them with φ as fixed point for the three consecutive

ratios d/c, c/b, b/a (Ozturk et al., 2016), where IVr is the duration of the iso-

volumic relaxation phase, D is the diastole duration, S is the systole duration, If is

the inflow duration, R-R is the interval between two consecutive heart beats. Even

notice correspondences with the latest analysis of the ratios of phase durations in

the front crawl swimming stroke in Verrelli et al. (2021).
12Notice that the two sequences I and Iadj coincide, owing to the equalities: DS

adj
r =

DSr , SW
adj

l
= SWl , ST

adj
r = STr .

FIGURE 3 | Symmetric and recursive walking: dynamics-on-graph

interpretation.

Symmetric and recursive case. Consider sequence (4). Let xj
denote the node (or vertex) j (belonging to layer j) represented in
Figure 3 (j = 1, 2, 3, 4), with x1 = a, x2 = b, x3 = c, x4 = d.

Write

xj =
4
∑

i=1

aijxi + xj(0),

where: xj(0) is different from zero only when the input degree
of the vertex j is equal to zero; aij is the (i, j)−element of the
adjacency-like matrix:

Ad =









0 0 1 0
0 0 1 1
0 0 0 1
0 0 0 0









, (6)

showing that the input-degree is either zero or two for any vertex.
When the fixed point φ occurs for the ratios b/a, c/b, d/c, the
graph of Figure 3 becomes the strongly connected graph, with
all input-degrees being equal to 1 (see Figure 4) and with the
corresponding φ-dependent adjacency-like matrix reading:

Adφ =









0 φ 0 0
0 0 φ 0
0 0 0 φ

φ−3 0 0 0









.

While in the first general case two generating values determine the
components of the whole graph (in the aforementioned sense),
in the second self-similar case just one generating value does it.
This is actually the ideal physiological gait of a healthy subject
symmetrically and recursively walking at comfortable speed, as
described in Iosa et al. (2013).

Non-{symmetric and recursive} case. Consider sequences (5)
and their adjoint versions (in their redundant number of four,

though the equalities DS
adj
r = DSr , SW

adj

l
= SWl, ST

adj
r = STr

make the two sequences I and Iadj coincident in Proposition 3,

according to footnote 12). Let xj = [vj, vj+4]
T (resp., x

adj
j =

[v
adj
j , v

adj
j+4]

T) denote the vector with its components, in order,
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FIGURE 4 | Symmetric and recursive walking with fixed point occurring in the

sequence: dynamics-on-graph interpretation.

being constituted by the vertices vj, vj+4 (resp., v
adj
j , v

adj
j+4)

belonging to layer j in Figure 5 (j = 1, 2, 3, 4). Write for layers
3 and 4:

xj+2 = xj+1 +
[

2− j j− 1
j− 1 2− j

]

xj, j = 1, 2

x
adj
j+2 = x

adj
j+1 +

[

2− j j− 1
j− 1 2− j

]

x
adj
j , j = 1, 2.

The adjacency-likematrix [characterizing the representation vj =
∑8

i=1 aijvi + vj(0) (resp., v
adj
j =

∑8
i=1 aijv

adj
i + v

adj
j (0)), with

vj(0) (resp. v
adj
j (0)) being different from zero only when the input

degree of the node j is equal to zero] for the graph represented in
Figure 5, namely:

Aa,d =

























0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

























,

can be immediately obtained, again showing that the input-
degree is either zero or two for any vertex.

We are now thus able to identify four relevant cases besides
the general case in which 6 generating values determine the xj-

components (resp., x
adj
j -components) for the whole graph. They

are in order (take also into account the interpretation in terms of
Shannon entropy of Appendix A):

• 1-chain adjoint self-similarity (or adjoint minimum-entropy

in one chain): just one ratio among v2/v1, v6/v5, v6
adj/v

adj
5

equals φ, with, consequently, just 5 values to determine the
xj-components for the whole graph.

• 2-chains adjoint self-similarity (or adjoint minimum-entropy

in two chains): two ratios among v2/v1, v6/v5, v6
adj/v

adj
5

equal φ, with, consequently, just 4 values to determine the
xj-components for the whole graph.

• Weak adjoint self-similarity (or adjoint asymmetric minimum-

entropy): all the three ratios v2/v1, v6/v5, and v6
adj/v

adj
5 equal φ

but at least one inequality among v2 6= v6, v6 6= v
adj
6 , v2 6= v

adj
6

holds, with, consequently, just 3 or 2 values to determine the
xj-components for the whole graph.

• Adjoint symmetric self-similarity (or adjoint symmetric

minimum-entropy): all the three ratios v2/v1, v6/v5, v6
adj/v

adj
5

equal φ under the multiple equality v2 = v6 = v
adj
6 , with,

consequently, just 1 value to determine the xj-components for
the whole graph.

• Enforced adjoint symmetric self-similarity (or enforced
adjoint symmetric minimum-entropy): adjoint symmetric
self-similarity in which the double support sub-phases are
equally partitioned (consistency), that is DSx = DSy (and
DSw = Dxy, DSy = DSz).

In the last case, φ occurs as a fixed point for the consecutive
ratios of the sequences in (4) in a symmetric and recursive
setting, so that the graphs of Figure 5 become the (non-minimal-
dimension) strongly connected graphs in Figure 6 (in which
each graph reproduces the same Figure 4 on its top) with all in
degrees being equal to 1 andwith the correspondingφ-dependent
adjacency-like matrix reading:

Aa,dφ =

























0 φ 0 0 0 0 0 0
0 0 φ 0 0 0 0 0
0 0 0 φ 0 0 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 1/φ 0 0 0
0 0 0 0 0 1/φ 0 0
0 0 0 0 0 0 1/φ 0

























.

2.3. A New Experimental Conjecture
The new experimental conjecture of this subsection extends
the ideas underlying a fractal approach to the double support
sub-phases within the gait13. It is inspired from experimental
results reported in Novacheck (1998) showing that physiological
symmetric walking is not only characterized by a stance duration
being close to 62% of gait cycle duration, a swing duration being
close to 38% of gait cycle duration, a double support duration
being consequently close to 24% of gait cycle duration, but also
by an instant of minimum angular position (with negative sign)
of the foot relative to the tibia (with a 90 degrees-angle between
foot and tibia being plotted at 0◦) occurring at about 7% of
gait cycle duration in each double support sub-phase (with 5%
as percentage for the complementary interval duration). It may
thus be interestingly recognized that the structure of a Fibonacci
sequence (with fixed point φ) appears in the sequence: 5 × 2 =
10 (1/φ5 ≈ 9.018); 7 × 2 = 14 (1/φ4 ≈ 14.591); 24 (1/φ3 ≈
23.608); 38 (1/φ2 ≈ 38.198); 62(1/φ ≈ 61.804); 100.

For the sake of clarity, denote by
{RHS[1], LTO[1], LHS[1], RTO[1], RHS[2], LTO[2]} the sequence of
time instants corresponding to the right-heel-strike (FSr,a, FSr,b),
left-toe-off (FOl,a, FOl,b), left-heel-strike (FSl,y), right-toe-off
(FOr,y) for two subsequent gaits i = 1, 2 of Figure 2. The

13The adjoint gait is not considered in this subsection, since recursivity has been

already addressed in the preceding subsection.
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FIGURE 5 | Generic walking: dynamics-on-graph interpretation (same colors denote equal quantities) [DSadj
r = DSr , SW

adj
l = SWl , ST

adj
r = STr ].

following equalities:

DSr = LTO[1] − RHS[1] + RTO[1] − LHS[1]

DSl = RTO[1] − LHS[1] + LTO[2] − RHS[2]

SWr = RHS[2] − RTO[1]

SWl = LHS[1] − LTO[1]

hold, with STr , STl, GCr , GCl satisfying (3). We are able to
present the following conjecture.

Conjecture C: Consider the positive real numbers z1, z2, z3
denoting the time distances from RHS[1], LHS[1], RHS[2] of the
three time instants—belonging to the open sets (RHS[1], LTO[1]),
(LHS[1], RTO[1]), (RHS[2], LTO[2])—representing the three
instants of minimum angular positions (with negative signs) of the
(left and right) feet relative to the tibias (with a 90 degrees-angle
between foot and tibia being plotted at 0-degrees). The numbers
z1, z2, z3 are conjectured to characterize the expansion to the
left of the (generalized) 4-length Fibonacci sequences (5) into the
6-length (functional) ones [namely, bI = aI + (z1 + z2) + 1I,
bII = aII + (z2 + z3)+ 1II hold]:

I : aI − (z1 + z2 + 1I(aI, bI, aII, bII)), z1 + z2

+1I(aI, bI, aII, bII), aI, bI, cI, dI (7)

II : aII − (z2 + z3 + 1II(aI, bI, aII, bII)), z2 + z3

+1II(aI, bI, aII, bII), aII, bII, cII, dII,

with the reals 1I(·) and 1II(·) being zero (z-specific expansion)
when symmetric and self-similar gait occurs (i.e., for aI = aII &
bI = φaI = bII = φaII).

The contribution of 1I and 1II may be related to energy
expenditure, with their zero-nature (z-specific expansion) in
symmetric and self-similar walking being reminiscent of the
physical fact that, at the speed at which symmetric and self-
similar walking occurs, locomotor system saves energy and

FIGURE 6 | Symmetric and recursive self-similarity for walking with fixed

points occurring in all the sequences: dynamics-on-graph interpretation (same

colors denote equal quantities) [DSadj
r = DSr , SW

adj
l = SWl , ST

adj
r = STr ].

its activity is only required to oppose gravity, to maintain
postural configurations and to reintegrate energy loss during each
cycle (Mochon and McMahon, 1980; Iosa et al., 2016a). When
the conjecture above is verified in symmetric and self-similar
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walking, the (generalized) 4-length Fibonacci sequences in (5)
collapse into one sequence that is being expanded to the left14,
through z1, z2, z3 only, into the 6-length one:

a− (z1 + z2), z1 + z2, a, b, c, d, (8)

with each element of the above sequence possessing a clear
physical meaning and with φ occurring as a fixed point for all
the consecutive five ratios: (z1 + z2)/(a− (z1 + z2)), a/(z1 + z2),
b/a, c/b, d/c.

2.4. A New Index: The 8-bonacci Gait
Number
Let λ, δ, µadj, λadj, νconj be positive weights. Given positive
reals ξn, ξd, ξv (where n generically stands for numerator, d
stands for denominator, v stands for value), define the normalized
quantity15:

(

ξn

ξd
− ξv

)2

n

=
(

ξn

ξd

)−1 (
ξn

ξd
− ξv

)2

. (9)

In accordance with the previously presented classification of
gaits, the following index, named 8-bonacci gait number:

Y8 =

√

√

√

√

√

(

v2

v1
− φ

)2

n

+
(

v6

v5
− φ

)2

n

+ µadj

(

v
adj
6

v
adj
5

− φ

)2

n

+λ

√

√

√

√

(

v6

v2
− 1

)2

n

+ λadj

(

v
adj
6

v6
− 1

)2

n

+νconj

√

(

aI

z1 + z2
− φ

)2

n

+
(

aII

z2 + z3
− φ

)2

n

+δ

√

(

DSx

DSy
− 1

)2

n

(10)

is introduced in order to characterize the special case of enforced
adjoint symmetric self-similarity in walking (recall conjecture C).
The expression of such an index in (10), once it is explicitly

14Note that extending such an argument up to the case of infinite-length Fibonacci

sequences would lead to asymptotic self-similarity generation. In fact, the limit

behavior:

lim
k→+∞

yi(k+ 1)

yi(k)
= lim

k→+∞

φk+1βi − (1− φ)kαi

φkβi + (1− φ)kφαi
= φ

holds.
15Different normalizations can be apparently used.

rewritten as

Y8 =

√

√

√

√

√
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n
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n

,

shows that, differently from the area of the Synchronicity
Rectangle in Marino et al. (2020), (10) takes its minimum zero-
value just when enforced adjoint symmetric self-similarity under C
occurs. It turns out to constitute the most natural generalization,
to the non-{symmetric and recursive} walking case, of the
corresponding gait ratio |SW/DS−φ| defined in Iosa et al. (2013)
and Iosa et al. (2016b) for symmetric walking, while it simply
incorporates a weighted modification of the index= |1SW|/SW
in Błażkiewicz et al. (2014), evaluated at both the gait and the
adjoint gait. A conceptual extension of the use of the 8-bonacci
gait number to assess the gait index variability along past walking
gaits can be naturally introduced, which is briefly reported in
Appendix B. A simplified version of the above 8-bonacci gait
number, named s-8-bonacci gait number (s stands for simplified)
can be also derived from the previous expression by setting
µadj = λadj = νconj = 0. This leads to

Y8[s] =

√

(

SWl

DSr
− φ

)2

n

+
(

SWr

DSl
− φ

)2

n

+λ

√

(

SWr

SWl
− 1

)2

n

+ δ

√

(

DSx

DSy
− 1

)2

n

(11)

that is the weighted sum16 of three terms: (i) the first one
to account for the self-similarity contribution to the gait
generation; (ii) the second one to account for the swing symmetry
contribution to the gait generation; (iii) the third one to account
for the double support consistency, that is the symmetry, within
the gait, between the double support sub-phase with the left foot
behind and the right foot ahead and the double support sub-
phase with the right foot behind and left foot ahead. A zero value
for the s-8-bonacci gait number (11) thus describes the case in
which self-similarity, swing symmetry, double support consistency
occur. Such a simplified index turns out to be useful when data
concerning the adjoint gaits and the position of the foot relative
to the tibia are not available, as in the case of gait analysis reports
(like the ones used in section 3.2), just providing mean values of
left and right percentages of stance, swing and double support.

16The gains within can be freely chosen by the user, in accordance with the specific

analysis requirements.
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2.5. Experiments
2.5.1. Experimental Set 1

Experimental results (referred to as results for the Experimental
set 1) are reported in section 3.1 to test the validity of
the conjecture C. Experimental set 1 is here conceived as a
proof of concept. A single healthy subject was tested in two
different days—in order to assess phase duration reliability
through acquisition via different sensor systems (insole, Movit,
as described underneath)—and at different speeds—in order to
take into account how speed changes are crucial to the presented
analysis—. Testing just one healthy subject was considered
sufficient at this stage17. The main part of the first measurement
system is an insole composed of two parts to adapt to different
feet and shoes. Four PTF (Polymer Thick Film) force sensors
FSR402 (Interlink Electronics Inc, Los Angeles, USA) were placed
on the four points characterized by the greatest pressure of
the foot (first and second metatarsal head, medial and central
heel). The related positions were chosen through the analysis
of real walking measurements, acquired by a baropodometric
platform and with Pedar R© insole (Novel gmch, Germany). They
are able to detect the time instants for the first and the last
contacts. Secondly, we performed the motion capture and the
motion analysis through the Movit System G1 (Captiks, Rome,
Italy), which provides accelerometer, gyroscope, magnetometer,
quaternion, barometer synced data and is composed of 10-DOF
wireless wearable small inertial devices and an USB wireless
receiver (Costantini et al., 2018; Ricci et al., 2019a,b; Saggio,
2020).

2.5.2. Experimental Set 2

Experimental results (referred to as results for the Experimental
set 2) are reported in section 3.2 to illustrate the effectiveness
of the s-8-bonacci gait number (11) in explicitly identifying
pathological gaits. A secondary analysis was conducted on data
collected and published in previous studies (Iosa et al., 2013,
2016a,b). Three groups were selected: (i) group of healthy control
subjects (HCS); (ii) group of patients who are characterized by
highly asymmetric deficits [such as patients with hemiparetic
stroke, (HSP)]; (iii) group of patients who are characterized by an
alteration in gait ratio not always being accompanied by motor
asymmetries [such as patients with quite symmetric symptoms
due to Parkinson’s Disease, (PDP)]. The data were extracted from
the database according to the following procedure, which was
established to accomplish the purposes of the study: (i) extraction
of data of subjects in the three groups who are matched per age
and per walking speed (this last condition implied the extraction
of healthy subjects walking slowly and patients with deficits
slightly affecting gait speed); (ii) extraction of data of patients
with stroke who are characterized by an evident gait asymmetry
and patients with PD who are characterized by deficits slightly
impairing their gait asymmetry. These strict criteria allowed us
to extract data concerning just 5 subjects within each group.

17As we shall see, a larger number of subjects will be enrolled for the Experimental

set 2.

3. RESULTS

3.1. Experimental Set 1
Two sets of experiments (3 experiments per set) have been carried

out in two different days. The same subject (female, 160 cm, 25
years old, 54 kg) has been involved; 10 meters walking tests in a
hallway have been performed at three different speeds for each
set of experiments. The temporal analysis concerns two adjacent
left and right gaits at steady-state. The sequence of time instants
{RHS[1], LTO[1], LHS[1], RTO[1], RHS[2], LTO[2]} corresponding
to the right-heel-strike, left-toe-off, left-heel-strike, right-toe-off
for the two considered subsequent gaits i = 1, 2 has been
derived from the measurements acquisitions provided by the two
(aforementioned) sensor systems. The Movit system has been
able even to provide the three time instants z1, z2, z3. All of the
results for the Experimental set 1 are summarized in Tables 1–4.
Each of Tables 1–3, concerning experiments at different speeds,
report in order (in seconds): (i) the elements of sequence I in (7);
(ii) the elements of sequence II in (7); (iii) the consecutive ratios
between the elements of sequence I in (7); (iv) the consecutive
ratios between the elements of sequence II in (7).

Showing data consistency from different sensor systems. The
Bland-Altman analysis, which corresponds to the 24 couples of

independently measured values ai, bi (i = I,II) in Tables 1–
3 coming from Movit and insole, respectively, shows: bias =
0.005046; standard deviation of bias = 0.01083; 95% limits

of agreement = {−0.01619, 0.02628}, whereas the related two
sequences (Movit and insole, respectively) exhibit: mean =
{0.3181, 0.3131}; standard deviation = {0.10996, 0.10674}; lower

95% CI of mean = {0.2717, 0.2680}; upper 95% CI of mean =
{0.3646, 0.3582}.

Showing data consistency from repeated experiments. The

Bland-Altman analysis, which corresponds to the 12 couples of

measured values (z1+ z2), (z2+ z3), ai, bi (i = I,II) in Tables 1, 2
for the first and the second experiment (mean = 0.2460, 0.2463),

respectively, shows: bias =−0.002325; standard deviation of bias

= 0.02134; 95% limits of agreement = {−0.04415, 0.0395}.
Showing occurrence of Fibonacci sequences. The sequences in

(5): ai, bi, ci, di (i = I,II) of Proposition 3 are confirmed to
exactly constitute generalized 4-length Fibonacci sequences for
each set of the specific sensor system acquisitions (see again
Tables 1–3), with all the ratios between consecutive elements of
such sequences being pretty close to the golden ratio φ (especially
look at the last ratio) just when the walking speed is 0.97 m/s
(approximately constituting the comfortable walking speed for
the 160 cm/54 kg- subject under investigation) and relatively
different from φ as the walking speed differs from 0.97 m/s (see
the bottom-halves of Tables 1–3).

Showing consistency of Conjecture C. The smaller the difference
between the walking speed and 0.97 m/s is, the more the
sequences (7) are close to constitute the (generalized) 6-length
Fibonacci sequence (8), with all the ratios between consecutive
elements of such sequences being close to the golden ratio
φ. This can be seen by considering the following consistency
indices reported in Table 4: mean values 1(v) of all |1I| and
|1II| [from the two experiments when available] at different
speeds v (Tables 1–3); maximum modulus of the mean distance
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TABLE 1 | Experimental data (Experimental set 1) concerning the elements of the sequences I and II in (7) for a walking speed equal to 0.97 m/s: first experiment (second

experiment).

aI − (z1 + z2) z1 + z2 aI = DSr bI = SWl cI = STr dI = GCr + 1SW

Movit 0.1018 (0.101) 0.168 (0.169) 0.2698 (0.27) 0.4422 (0.442) 0.712 (0.712) 1.1542 (1.154)

insole 0.269 (0.271) 0.423 (0.44) 0.692 (0.711) 1.115 (1.151)

aII − (z2 + z3) z2 + z3 aII = DSl bII = SWr cII = STl dII = GCl − 1SW

Movit 0.101 (0.104) 0.169 (0.165) 0.27 (0.269) 0.48 (0.423) 0.75 (0.692) 1.2108 (1.116)

insole 0.265 (0.274) 0.445 (0.426) 0.71 (0.7) 1.152 (1.139)

z1+z2
DSr−(z1+z2 )

DSr/(z1 + z2) SWl/DSr STr/SWl (GCr + 1SW)/STr

Movit 1.6502 (1.6732) 1.6059 (1.5976) 1.6389 (1.637) 1.6101 (1.6108) 1.6210 (1.6207)

insole 1.5724 (1.6236) 1.6359 (1.6159) 1.6112 (1.6188)

z2+z3
DSl−(z2+z3 )

DSl/(z2 + z3) SWr/DSl STl/SWr (GCr − 1SW)/STl

Movit 1.6732 (1.5865) 1.5976 (1.6303) 1.777 (1.5724) 1.5625 (1.6359) 1.6144 (1.6127)

insole 1.6792 (1.5547) 1.5955 (1.6431) 1.6225 (1.6271)

TABLE 2 | Experimental data (Experimental set 1) concerning the elements of the sequences I and II in (7) for a walking speed equal to 1.51 m/s: first experiment (second

experiment).

aI − (z1 + z2) z1 + z2 aI = DSr bI = SWl cI = STr dI = GCr + 1SW

Movit 0.0487 (0.055) 0.0866 (0.099) 0.1353 (0.154) 0.3457 (0.346) 0.481 (0.5) 0.8267 (0.846)

insole 0.147 (0.145) 0.337 (0.349) 0.484 (0.494) 0.821 (0.843)

aII − (z2 + z3) z2 + z3 aII = DSl bII = SWr cII = STl dII = GCl − 1SW

Movit 0.059 (0.07) 0.0855 (0.104) 0.1445 (0.174) 0.3555 (0.365) 0.5 (0.539) 0.8368 (0.885)

insole 0.149 (0.181) 0.36 (0.36) 0.519 (0.541) 0.873 (0.872)

z1+z2
DSr−(z1+z2 )

DSr/(z1 + z2) SWl/DSr STr/SWl (GCr + 1SW)/STr

Movit 1.7782 (1.8) 1.5623 (1.5555) 2.555 (2.2467) 1.3913 (1.445) 1.7187 (1.692)

insole 2.2925 (2.4068) 1.4362 (1.4154) 1.6962 (1.7064)

z2+z3
DSl−(z2+z3 )

DSl/(z2 + z3) SWr/DSl STl/SWr (GCr − 1SW)/STl

Movit 1.4491 (1.4857) 1.69 (1.673) 2.4602 (2.0977) 1.4064 (1.4767) 1.6736 (1.6419)

insole 2.4161 (1.9889) 1.4416 (1.5027) 1.6820 (1.6118)

Mφ(v) from φ [mean from first and second experiment]
of all the ratios [Movit] between consecutive elements in
sequences (5) at different speeds v (Tables 1–3); maximum
modulus of the mean distance Mφ,e(v) from φ [mean from
first and second experiment] of all the ratios [Movit] between
consecutive elements in sequences (7) at different speeds v
(Tables 1–3).

3.2. Experimental Set 2
Even though severe gait deficits may lead to significant
differences in most of the spatio-temporal gait parameters (w.r.t.
HCS), 15 subjects (5 HCS, 5 HSP, 5 PDP) were selected, who are
not only age-matched but also walking-speed-matched. Starting
from the values of the gait phases, the (left, right) Gait Ratio GR
was computed as the percentage ratio between the (left, right) gait
cycle duration and (left, right) stance duration, while the Mean
Gait Ratio MGR was given by the average between the left and
right GRs. Then, the Symmetry Index SI was computed as the
highest GR divided by the smallest GR (among the two feet).
The s-8-bonacci gait number Y8[s] (11) was finally computed
(λ = δ = 1) and used for comparison. All of the results for
the Experimental set 2 are summarized in Table 5. In particular,
Table 5 shows that, despite the similar speeds, the MGR resulted

significantly different among the three groups: differences were
observed in PDP (p = 0.008 vs. HCS, post-hoc analysis), whereas
no relevant differences were observed in HSP (p = 0.754 vs.
HCS). However, as expected, the symmetry between the gait ratio
evaluated between the left and the right feet resulted lost in HSP
(p = 0.009 vs. HCS), more than in PDP (p = 0.222 vs. HCS).
These results confirm that our extraction was effective in finding
two groups of slightly severely affected patients, one most in gait
harmony (PDP, as also reported in Iosa et al., 2016b), and the
other one in gait symmetry (HSP, as also reported in Iosa et al.,
2016a).

4. DISCUSSION

Previous results showed that the MGR is close to golden ratio
for healthy subjects (Iosa et al., 2013), and far from it for PDP
(Iosa et al., 2016b). For patients with stroke, it has been shown
that the MGR is strictly related to speed (Iosa et al., 2016a),
and hence the MGR of a group walking at a speed that is
not significantly lower than the healthy subjects’ one, was not
expected to be significantly different from the MGR of a healthy
subject, as our data here explicitly illustrate. On the other hand,
patients with stroke, owing to their hemiparesis, exhibited a more
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TABLE 3 | Experimental data (Experimental set 1) concerning the elements of the sequences I and II in (7) for a walking speed equal to 0.85 m/s (walking speed equal to

1.1 m/s).

aI − (z1 + z2) z1 + z2 aI = DSr bI = SWl cI = STr dI = GCr + 1SW

Movit 0.104 (0.0932) 0.145 (0.156) 0.249 (0.2492) 0.462 (0.4428) 0.7115 (0.692) 1.173 (1.1348)

Insole 0.243 (0.23) 0.467 (0.43) 0.71 (0.66) 1.177 (1.09)

aII − (z2 + z3) z2 + z3 aII = DSl bII = SWr cII = STl dII = GCl − 1SW

Movit 0.09 (0.0939) 0.141 (0.1562) 0.231 (0.2501) 0.442 (0.423) 0.673 (0.6731) 1.114 (1.0954)

Insole 0.223 (0.23) 0.44 (0.41) 0.663 (0.64) 1.06 (1.05)

z1+z2
DSr−(z1+z2 )

DSr/(z1 + z2) SWl/DSr STr/SWl (GCr + 1SW)/STr

Movit 1.3942 (1.6738) 1.7172 (1.5974) 1.8554 (1.7768) 1.54 (1.5627) 1.6486 (1.6398)

Insole 1.9218 (1.8695) 1.5203 (1.5348) 1.6577 (1.6515)

z2+z3
DSl−(z2+z3 )

DSl/(z2 + z3) SWr/DSl STl/SWr (GCr − 1SW)/STl

Movit 1.5666 (1.6634) 1.6382 (1.6011) 1.9134 (1.6913) 1.5226 (1.5912) 1.6552 (1.6273)

Insole 1.9730 (1.7826) 1.5068 (1.5609) 1.5987 (1.6406)

asymmetric gait than HCS and PDP. According to Table 5, the
s-8-bonacci gait number Y8[s] (11) was simultaneously able to
find statistically significant differences between PDP and HCS
(p = 0.008), and also between HSP and HCS (p = 0.016).
Furthermore, the compensation strategies adopted by the non-
paretic limb made the MGR in HSP similar to the healthy
subjects’ one, but achieved through an asymmetric and less
reliable walking. In other words, the s-8-bonacci gait number
Y8[s] effectively merged the asymmetry with the role of the
proportions among gait phases, resulting statistically significant
for both the disharmonic gait of PDP and the asymmetric gait
of HSP.

Indeed, the main advantage of the 8-bonacci gait number
(10) [even in its simplified version (11)] is to consider, in a
comprehensive manner, symmetry and harmony of walking in
terms of gait phases. Such gait phases have been analyzed since
the birth of gait analysis, thought as a science to analyse human
movement in a quantitative manner (Perry, 1992). Changes in
stance, swing and double support phases are strictly related
and intertwined between the two feet (Perry, 1992), so that it
turns out to be important assessing such changes in an unique
meaningful index. Indeed, when compared to the three gait ratios
already proposed in previous studies (Iosa et al., 2016b; Serrao
et al., 2017), (10) and (11) have the advantage to consider also
asymmetry between right and left lower limb kinematics. These
indices are theoretically close to 0 for a perfectly harmonic and
symmetric gait and far from 0 for a pathological gait. On the
other hand, the analysis performed in the Experimental set 1
has preliminarily shown consistency of data at the root of such
an index computation and phase duration reliability through
acquisition via different sensor systems. The concurrent validity

of the new index [in its version (11)] has been illustrated through

the Experimental set 2, highlighting the differences between

healthy subjects, subjects with hemiparetic stroke characterized

by an asymmetric walking, and patients with Parkinson’s Disease

characterized by a non-harmonic walking.
Anyway, the results of the present study should be interpreted

with caution, owing to its specific limits, such as the small size of
the samples enrolled in the two experimental sets. Many aspects

TABLE 4 | Consistency indices (Experimental set 1).

Walking speed v (m/s) Mean value 1(v) Mφ(v) Mφ,e(v)

0.97 0.01485 0.0567 0.0567

1.1 0.02715 0.1588 0.1588

0.85 0.069 0.2954 0.2954

1.51 0.107325 0.78285 0.78285

should be further investigated in future studies. One of them
relies on the fact that the 8-bonacci gait number is focused on
the proportions among the gait phases, limiting this type of gait
analysis to temporal features. It could be certainly interesting
to put it in relationship with [and test the correlation between
(10)–(11) and quantitative indices related to] the role played by
different sensory information in maintaining the gait harmony18.
On the other hand, an additional potential limit of the present
study is that we compared the s-8-bonacci gait number in healthy
subjects and patients with stroke or Parkinson’s Disease, but if it
has to be useful in clinical settings, then this index should exhibit
responsiveness to small changes obtained with rehabilitation.

In spite of such aforementioned limits, the present study also
possesses points of strength, since it is based on a wide literature
illustrating how gait phases are a reliable and valid measure of
subject’s walking. Even though the capability of the 8-bonacci

gait number in highlighting within-subject changes in walking
has not been explicitly tested, previous studies have already
shown that rehabilitative interventions were able to modify the
phases of gait cycle in patients with Parkinson’s Disease. In light
of the reported changes in terms of stance, swing and double
support phases, we might reasonably suppose that also the 8-
bonacci gait number can detect patients improvements due to
rehabilitation, especially in terms of self-similarity, symmetry,

18For instance, further studies should clarify the role played by vision (owing to

the fact that a reduction of upper body stability and harmony has been exhibited

by subjects walking blindfolded Iosa et al., 2012) or by the vestibular system that

could be involved in maintaining balance during locomotion (Bent et al., 2005).
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TABLE 5 | (Experimental set 2): Mean ± standard deviations for age and spatio-temporal gait parameters, computed for patients with Parkinson’s Disease (PDP), patients

with hemiparetic stroke (HSP) and healthy control subjects (HCS) and compared by Kruskal-Wallis analysis, whose p-values are reported in the last column [in bold if

statistically significant, whereas the symbol * (besides bold characters) highlights statistical significant differences with respect to HCS at post-hoc analyses].

PDP HSP HCS Kruskal-Wallis analysis

Age (years) 67.6 ± 6.7 64.2 ± 2.0 63.2 ± 2.2 0.288

Walking speed (m/s) 0.99 ±0.28 0.88 ± 0.19 1.02 ± 0.11 0.980

MGR 1.51 ± 0.07* 1.62 ± 0.06 1.62 ± 0.02 0.018

SI 1.02 ± 0.02 1.11 ± 0.07* 1.01 ± 0.01 0.008

Y8[s] 1.09 ± 0.38* 0.95 ± 0.51* 0.21 ± 0.10 0.011

consistency of the gaits as a valid and repetitive measure for the
assessment of walking ability (Teufl et al., 2018).

5. CONCLUSIONS

Healthy and pathological human walking have been
characterized from a temporal point of view in terms of
two sets of eight specific time intervals concerning the composite
gait cycle. The corresponding mathematical description in terms
of generalized finite-length Fibonacci sequences and dynamics-
on-graph concepts has naturally explained the crucial role of the
golden ratio φ, while extending the related analyses in Iosa et al.
(2013) and Marino et al. (2020). An interpretation in terms of
Shannon entropy is also included in Appendix A. The new gait
index (10), named 8-bonacci gait number has been defined to
assess recursivity, asymmetry, consistency, and self-similarity of
the gait. It relies on a new experimental conjecture that concerns
an extended fractal walking decomposition paying attention
on the position of the foot relative to the tibia. Experimental
results concerning the simplified version (11) of the index
(10) have supported the theoretical derivations. Besides the
aforementioned contributions, this paper may even provide new
perspectives for developing quantitative assessment of human
walking, efficient humanoid robotic walkers, and effective neuro-
robots for rehabilitation, in line with the related discussion in
the recent (Iosa et al., 2017). Finally, by repeatedly extending the
application of the adjoint gait (i.e., adjoint gait of the adjoint gait
and so on), a collection of indices representing overlapping gaits
can be constructed and gait index variability along past walking
gaits can be accordingly assessed in a natural way, as described
in Appendix B.
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APPENDIX A

Shannon-Index-Based Interpretation
Consider the generalized Fibonacci sequence: a, b, c, d (generally
arising from the symmetric & recursive or the non-{symmetric &
recursive} cases of Propositions 2 and 3, respectively), along with
the three ratios: b/a, c/b, d/c. Look for a suitably defined string of
characters and a corresponding Shannon-index characterization
of the case in which the golden ratio φ is a fixed point for the
consecutive ratios b/a, c/b and d/c and one value determines the
whole sequence. With respect, recall that the Shannon index (or
diversity index) may be used to quantify the entropy in a string
of text (Spellerberg and Fedor, 2003). The more different letters
there are, the more difficult it is to correctly predict which letter
will be the next one in the string. To this purpose, take the three
differences d1 = b/a− c/b, d2 = d/c− c/b, d3 = b/a− d/c and
letMR be a sufficiently large positive odd integer. Let P be a finite
partition of the compact set [−MR,MR], with disjoint blocks (or
cells)Aj of the form:

Aj = [xj, xj+1], j = 1, 2, . . . ,MR − 1,

Aj = [xj, xj+1], j = MR,

where xj+1 = xj + 2, j = 1, 2, . . . ,MR, and x1 = −MR. Let Pl

a finite refinement of P (l = 0, 1, . . . ,Rl, Rl is a sufficiently large

natural number), with finer blocksA
[l]
k[j]

⊂ Aj of the form:

A
[l]
k[j]

= [x
[l]
k[j]

, x
[l]
k+1[j]

),

where x
[l]
k+1[j]

= x
[l]
k[j]

+ 1/2l, k = 1, . . . , 2(l+1), and x
[l]
1[j] = xj. For

each l = 0, 1, . . . ,Rl, define the set of characters (or letters)

6[l] = {x1 = x
[l]
1[1], . . . , x

[l]

2(l+1)+1[1]
= x2 = x

[l]
1[2], . . . , . . .}.

Consider the string of characters: (s
[l]
1 , s

[l]
2 , s

[l]
3 ), where s

[l]
1 , s

[l]
2 , s

[l]
3

belong to the above set 6[l] and s
[l]
m (m = 1, 2, 3) equals the

smallest element of A
[l]
k[j]

when the difference dm belongs to the

block A
[l]
k[j]

. Let p
[l]
∗r be the number of characters belonging to

the r-th character type in the three-elements-string (s
[l]
1 , s

[l]
2 , s

[l]
3 )

divided by 3 (r = 1, . . . ,N[l], N[l] ≤ 3). Finally take the Shannon

index for such a string (s
[l]
1 , s

[l]
2 , s

[l]
3 ) as

H
[l]
s = −

N[l]
∑

r=1

p[l]∗r ln
(

p[l]∗r

)

,

where
∑N[l]

r=1 p
[l]
∗r = 1. The more unequal the abundances of types

in the string is, the smaller the corresponding Shannon entropy

is made, withH
[l]
s satisfying19

H
[l]
s ∈

[

0, ln
(

N[l]
)]

.

In particular, if all abundance is concentrated to one type,
Shannon entropy is zero and there is no uncertainty in predicting
the type of the next entity. The case in which the golden ratio
φ is a fixed point for the consecutive ratios b/a, c/b and d/c

is thus characterized by the condition
∑Rl

l=1
H

[l]
s = 0, for any

Rl ∈ N ∪ {0}.

APPENDIX B

Introduce the definition of adjoint application, i.e.: given any
left or right gait cycle defined as the time interval between two
consecutive lift off or two consecutive strikes of the corresponding
foot, its adjoint is defined as the time interval between two
consecutive strikes or two consecutive foot off of the corresponding
foot, respectively, starting from the strike or the lift off immediately
preceding the lift off or the strike of the considered gait, respectively.
Denote the adjoint of the adjoint gait by the symbol adj2, whereas
denote the adjoint of the adjoint of the adjoint gait by the symbol
adj3 (see Figure 7). The phases within such gaits inherit the

same notation. Figure 7 shows that, by definition, SW
adj2
r =

SW
adj
r , ST

adj2

l
= ST

adj

l
, DS

adj2

l
= DS

adj

l
, whereas DSy2 and DSz2

[that characterize the double support DS
adj2

l
] satisfy the seam-

constraints: DSy2 = DSw, DSz2 = DSx. The 8-bonacci gait

number at stage−1 can be thus defined as20

Y8,−1 =

[(

SW
adj2

l

DS
adj2
r

− φ

)2

n

+

(

SW
adj2
r

DS
adj2

l

− φ

)2

n

+µ
adj
−1

(

SW
adj3
r

DS
adj3

l

− φ

)2

n

]1/2

+ λ−1

[(

SW
adj2
r

SW
adj2

l

− 1

)2

n

+λ
adj
−1

(

SW
adj3
r

SW
adj2
r

− 1

)2

n

]1/2
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conj
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+
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,

(12)

where µ
adj
−1, λ−1, λ

adj
−1, ν

conj
−1 , δ−1 are positive gains that play the

same role of µadj, λ, λadj, νconj, δ, while DSx2 + DSy2 = DS
adj2
r .

Gait index variability can be naturally assessed by comparing
the 8-bonacci gait numbers at different stages, through the
diversity index computed on the basis of their approximated

19Let [l] be omitted for the sake of brevity. Owing to the fact that 0

Hs ≤
N
∑

r=1

p∗r

(

1

p∗rN
− 1

)

+ ln(N) = ln(N),

withHs = ln(N) when p∗r = 1/N for all r = 1, 2, . . . ,N.
20Further extensions to the past gaits can be apparently performed, in order to

characterize the m-cycle gait index variability along the walking gaits, for any

naturalm.
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FIGURE 7 | Walking gaits and their repetitive adjoints.

values (in accordance with certain required tolerances). Notice
that if the ordered-in-time sequence of left and right foot
strike and off is translated into a sequence of beats, then
the same tools used to quantify the Heart Rate Variability
can be adopted (Hausdorff, 2005). In this respect, a perfectly
self-similar, symmetric, consistent, recursive, gait-index-stable
walking exhibits a power spectral density with exclusive content

at the frequency 2/GC (in Hz if GC measured in seconds).
Evaluating gait fluctuations can be used as a complementary way
of quantifying gait reliability with respect to age and disease,
as well as a means of monitoring the effects of therapeutic
interventions and rehabilitation (Hausdorff, 2005), provided that
this approach is actually based on all the foot strike and the foot
off events.
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