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Taking inspiration from lattice QCD results, we argue that anon-perturbative mass term for

fermions can be generated as a consequence of the dynamical phenomenon of spontaneous chiral

symmetry breaking, in turn triggered by the explicitly breaking of chiral symmetry induced by

the critical Wilson term in the action. In a pure lattice QCD-like theory this mass term cannot be

separated from the unavoidably associated linearly divergent contribution. However, if QCD with

a Wilson term is enlarged to a theory where also a scalar field is present, coupled to a doublet of

SU(2) fermions via a Yukawa interaction, then in the phase where the scalar field takes a non-

vanishing (large) expectation value, a dynamically generated and “naturally” light fermion mass

(numerically unrelated to the expectation value of the scalar field) is seen to emerge, at a critical

value of the Yukawa coupling where the symmetry of the model is maximally enhanced.
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Dynamical quark mass R. Frezzotti

1. Introduction and outlook

In this contribution we argue that in non-Abelian gauge theories with chiral symmetries bro-
ken at the UV cutoff by Wilson-like terms the dynamics of spontaneous chiral symmetry breaking
(SχSB) - triggered in the critical limit by the residual explicit chiral breaking - generates a dynami-
cal mass for fermions. If one can solve, as we are going to showin a simple model including QCD,
the “naturalness” problem [1] associated to the need of “finetuning” the parameter controlling the
recovery of chiral symmetry, this road may lead to a viable non-perturbative (NP) analog of the
Higgs mechanism for mass generation [2]. In such a frameworkelectroweak interactions can be
naturally introduced. If a superstrong interaction at the TeV scale is also introduced, one can set up
a model where mass hierarchy and the flavour properties of theStandard Model (recovered as the
low energy theory) are understood and arise in a natural way.

2. Inspiration and numerical evidence from lattice QCD

As is well known, in lattice QCD (LQCD) with Wilson fermions [3] quark mass renormal-
ization requires the subtraction of a linearly divergent counter-term,mcrq̄q (q being theNf -flavour
quark field), arising because the Wilson term in the lattice Lagrangian explicitly breaks chiral sym-
metry. In generalmcr will have a formal small-a expansion of the kind

mcr =
c0

a
+c1ΛQCD+c2aΛ2

QCD+O(a2) . (2.1)

Eq. (2.1) suggests that, if we could set the mass parameter,m0, in the lattice fermion action just
equal to the linearly divergent term in (2.1), then thec1ΛQCD contribution (if non-zero) would play
the role of a quark mass in the renormalized chiral Ward–Takahashi Identities (WTIs). To make
use of this remark for NP mass generation one has to answer positively the following questions.

1) Are there numerical indications for the existence of a term like the second one in the r.h.s.
of (2.1) in actual LQCD simulation data? 2) Do we understand its dynamical origin? 3) Is it
possible to disentangle a (small) NP fermion mass from the much larger (perturbative) effect that
comes along with it when chiral symmetry is broken at a high scale?

Figure 1: The critical value ofam0 in Wilson LQCD simulations as a function ofa/r0.
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To answer question 1), in Fig. 1 we present a compilation of LQCD data showing the be-
haviour ofamcr, which is the value of theam0 Lagrangian parameter at whichamPCAC vanishes,
as a function ofa/r0 (herer0 denotes the Sommer scale). We show four sets of data taken from
refs. [4], [5, 6], [7] and [8]. The three lower sets of points correspond to measurements ofamcr car-
ried out at maximal twist using the Wilson twisted mass regularization of LQCD in the quenched
(Nf = 0) approximation (blue squares [4]), withNf = 2 dynamical flavours (red diamonds [5, 6])
and with Nf = 4 dynamical flavours (black circles [7]). The green stars correspond to Wilson
clover-improved [10] data withNf = 2 dynamical flavours [8] obtained with Schrödinger func-
tional boundary conditions. For the sake of Fig. 1 we have taken r0 = 0.45 fm [5, 6].

In the present notations the intercept of the fitted line through the data is thec0 coefficient
of (2.1), while its slope,c1ΛQCD×r0, is the quantity of interest. Indeed, the points of refs. [4], [5, 6],
[7] all exhibit a nice linear behaviour (with a mildNf dependence) in a widea/r0 window, which
allows identifying a non-vanishingc1ΛQCD slope taking values1 in the range 700 to 1000 MeV.

The Schrödinger functional data of ref. [8] are, instead, pretty flat implying that thec1 coef-
ficient is very small. As we shall argue in the next section, a non-zero slope is related to the O(a)
Wilson-like term in the Symanzik low energy effective Lagrangian (SLEL) [9]. The presence of the
non-perturbatively tuned clover-term [10] in the lattice Lagrangian employed in ref. [8] effectively
kills (the interesting NP effects originating from) thed = 5 SLEL operator [11].

3. The dynamical origin of thec1ΛQCD term

The c1ΛQCD term in (2.1) has its origin in a delicate interplay between O(a) corrections to
quark and gluon propagators and vertices ensuing from the spontaneous breaking of chiral sym-
metry, and the quadratic divergence of the loop integrationin diagrams where one Wilson term
vertex is inserted. Typical (lowest order ing2

s) correlators where this occurs are depicted in Fig. 2,
where the grey blob is a NP O(a) correction to the gluon or (the helicity-preserving components of)
the quark propagator and the gluon-quark-quark vertex, andaV5 is the derivative vertex from the
Wilson term. Such peculiar O(a) corrections arise from NP contributions in the SLEL expansion

L RL R
aV5 aV5

LL

L

aV5
L RL

aΛ aΛaΛ

Figure 2: Typical lowest order “diagrams” giving rise to dynamicallygenerated quark mass terms (L and R
are quark-helicity labels). The grey blob represents the non-perturbativeaΛQCDαs effect in eqs. (3.2).

of the relevant (gauge fixed) lattice correlators form0→mcr, e.g.

〈O(x,x′, ...)〉
∣

∣

∣

L
= 〈O(x,x′, ...)〉

∣

∣

∣

C
−a〈O(x,x′, ...)

∫

d4zL5(z)〉
∣

∣

∣

C
+O(a2) , (3.1)

O(x,x′, ...) ⇔ Ab
µ(x)A

c
ν (x
′) , qL/R(x)q̄L/R(x

′) , qL/R(x)q̄L/R(x
′)Ab

µ(y) ,

1A word of caution is in order here. The quoted values ofd(amcr)/d(ar−1
0 ) are only indicative, as strictly speaking

there isn’t a mathematically rigorous way to identify ana/r0 range where one can consider numerically negligible both
the logarithmica-behaviour of the gauge coupling upon renormalization (determining the behaviour ofamcr asa→ 0)
and the higher order lattice artifacts that become dominantat large enough values ofa.
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whereL5 is thed= 5 SLEL operator, which breaks chirality. The label|C is to remind that the r.h.s.
correlators are taken in continuum (renormalized) QCD. Thekey remark about these expansions
is that the O(a) correlators in (3.1) can be non-zero only due to the phenomenon of SχSB. From
these (amputated) correlators by using symmetry and dymensional arguments one reads off the NP
contributions to quark and gluon propagators and vertices,namely (in continuum-like notations)

∆Gbc
µν(k)

∣

∣

∣

L
=−aΛQCDαs(ΛQCD)δ bc δµν −kµkν/k2

k2 fAA

(Λ2
QCD

k2

)

,

∆SLL/RR(k)
∣

∣

∣

L
=−aΛQCDαs(ΛQCD)

ikµ(γµ)LL/RR

k2 fqq̄

(Λ2
QCD

k2

)

, (3.2)

∆Γb,µ
Aqq̄(k, ℓ)

∣

∣

∣

L
= aΛQCDαs(ΛQCD) igsλ bγµ fAqq̄

(Λ2
QCD

k2 ,
Λ2

QCD

ℓ2 ,
Λ2

QCD

(k+ ℓ)2

)

,

where the factorαs(ΛQCD) comes from the fact that the gluon emitted from theL5 vertex has to be
absorbed somewhere in the diagram2. The scalar form factorsfAA, fqq̄ and fAqq̄ are dimensionless
functions depending onΛ2

QCD/(momenta)2 ratios. From Symanzik’s analysis of lattice artifacts,
a-expansions like those in eqs. (3.1) are expected to be validfor small values of squared momenta
compared toa−2. Here we assume that the NP effects encoded in eqs. (3.1)–(3.2) persist up to large
(i.e. comparable toa−1) momenta, andconjecturethe asymptotic behaviour

fAA

(Λ2
QCD

k2

)

k2→∞
−→ hAA, fqq̄

(Λ2
QCD

k2

)

k2→∞
−→ hqq̄ , fAqq̄

(Λ2
QCD

k2 ,
Λ2

QCD

ℓ2 ,
Λ2

QCD

(k+ ℓ)2

)

k2,ℓ2,(k+ℓ)2→∞
−→ hqq̄ ,

wherehAA andhqq̄ are O(1) constants and the last two limits are relaterd by gauge invariance.

The above relative O(aΛQCDαs) corrections to propagators and vertices generate O(ΛQCDαsg2
s)

corrections to the quark self-energy, hence NP mass terms. Actually there are more relevant NP
corrections besides those in eqs. (3.2) and fig. 2, i.e. corrections to the Wilson-term induced vertices
and helicity-flip quark propagator components. Based on LQCD symmetries, to leading order ing2

s

(anda) all the NP terms can beeffectively reproducedin PT usingad hoc modified Feynman rules,
namely those obtained adding to the LQCD Lagrangian (in continuum-like notations) the terms

∆L|ad hoc= aΛQCDαs

{

hAA
1
2

tr(FF)+hqq̄(q̄γµDµq)+hWil(−
a
2

r)(q̄D2q)
}

. (3.3)

To see how a dynamical mass gets generated, consider the loopmomentum counting of, say, the
“diagram” in the central panel of fig. 2 in thea→ 0 limit. One has factorsaΛQCDαs(ΛQCD)kµ/k2

and 1/k2 from the NP contribution to the quark propagator and the standard gluon propagator,
respectively, and a factorakµ from the derivative coupling of the Wilson vertex. Including the
extrag2

s power from the gluon loop, one gets schematically a fermion mass term of the order

aΛQCDg2
sαs(ΛQCD)

∫ 1/a
d4k

kµ

k2

1
k2akµ ∼ g2

sαs(ΛQCD)ΛQCD . (3.4)

Other “diagrams” give similar NP mass contributions, yielding in eq. (2.1)c1 = O(g2
sαs(ΛQCD)).

2Since a soft quark line (where SχSB occurs) exits theL5 vertex,ΛQCD is chosen as the scale ofαs. The scale at
which the gauge coupling is evaluated will be a key feature tounderstand the fermion mass hierarchy problem [2].
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4. Light mass fermions with natural fine tuning: a toy model

Separation of “large” (infinite in LQCD) from “small” (finiteup to logs) contributions in for-
mulae like (2.1) is only possible on the basis of some symmetry. Though absent in LQCD, this
long sought for symmetry can be seen to exist in some enlargedtheory where besides gauge inter-
actions, an SU(2) fermion doublet is coupled to a scalar field, Φ, via a Yukawa interaction and a
Wilson-like term. To be concrete let us consider the renormalizable toy-model (b−1 = UV cutoff)

Ltoy(Q,G,Φ) = Lkin(Q,G,Φ)+V (Φ)+LYuk(Q,Φ)+LWil(Q,G,Φ) , (4.1)

Lkin(Q,G,Φ) =
1
4

Fa G
µν Fa G

µν + Q̄LγµD
G
µ QL + Q̄RγµD

G
µ QR+

1
2

tr
[

∂µΦ†∂µΦ
]

,

LYuk(Q,Φ) = η
(

Q̄LΦQR+ Q̄RΦ†QL
)

, V (Φ) =
µ2

0

2
tr
[

Φ†Φ
]

+
γ0

4

(

tr
[

Φ†Φ
])2

,

LWil(Q,G,Φ) =
b2

2

(

Q̄L
←−
D

G
µ ΦD

G
µ QR+ Q̄R

←−
D

G
µ Φ†

D
G
µ QL

)

.

Besides obvious symmetries,Ltoy is invariant under the (global)χL× χR transformations

•χL : χ̃L⊗ (Φ→ ΩLΦ) , with χ̃L : QL→ΩLQL ,Q̄L→ Q̄LΩ†
L , ΩL ∈ SU(2)L (4.2)

•χR : χ̃R⊗ (Φ→ΦΩ†
R) , with χ̃R : QR→ΩRQR,Q̄R→ Q̄RΩ†

R, ΩR∈ SU(2)R (4.3)

but not under the “chiral” transformations̃χL× χ̃R acting only on fermions. However, much like it
happens with the critical mass in LQCD when chiral symmetry is recovered [12], a critical value of
the Yukawa coupling,ηcr, exists where the transformationsχ̃L× χ̃R become up to O(b2) a symmetry
of Ltoy. This is so because, ignoring possible NP effects, atηcr the χ̃-breaking termsLWil and
LYuk compensate each other to O(b0), andΦ decouples. Hence among Green functions involving
quarks and gluons the same relations are implied byχ̃L× χ̃R andχL× χR invariances.

Moving beyond PT, always atηcr, one has to consider the possibility of dynamical breaking
of the (approximate)̃χL× χ̃R symmetry (S̃χSB). We can have two very different scenarios. In both
cases we assume that the scalar mass is much larger thanΛs, the RGI scale of the theory.

If µ2
0 is such thatV (Φ) has a single minimum with〈Φ〉= 0, LWil andLYuk (both linear inΦ)

are expected to provide no seed for Sχ̃SB, so theχ̃L× χ̃R symmetry is thus realized à la Wigner [2].
Physics is drastically different ifµ2

0 is such that a double well potential develops. In this case
it is convenient to expand the scalar field around its vacuum expectation value (vev) writing

Φ(x) = (v+σ(x))12×2+ i~π(x)~τ , (4.4)

with~π a triplet of massless pseudoscalar Goldstone bosons andσ a scalar of massmσ =O(v)≫Λs.
As (ignoringΦ fluctuations) thed= 6 termLWil looks much like thed= 5 Wilson term in LQCD,
we expect thẽχ-breaking terms inLWil (andLYuk) to now trigger dynamical S̃χSB [2]. In partic-
ular NP terms coming from S̃χSB effects are expected to give rise to modifications of (gluon and
fermion) propagators and fermion-antifermion-gluon vertices, as well as to peculiar gluon-gluon-
scalar, fermion-antifermion-scalar, fermion-antifermion-gluon-scalar vertices, etc. Consider, for
instance, the small-b2 expansions (terms odd inb are excluded byLtoy symmetries)

〈O(x,x′, ...)〉
∣

∣

∣

R
= 〈O(x,x′, ...)〉

∣

∣

∣

F
−b2〈O(x,x′, ...)

∫

d4z[L/χ
6 +Lχ

6 ](z)〉
∣

∣

∣

F
+O(b4) , (4.5)

O(x,x′, ...)⇔ Ab
µ(x)A

c
ν (x
′)[Φ†Φ](y) , QL/R(x)Q̄L/R(x

′)[Φ†Φ](y) , QL/R(x)Q̄L/R(x
′)[Φ†Φ](y)Ab

µ(y
′) ,
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where the label|R (|F ) means that vev’s are taken in the UV-regulated (formal)Ltoy model andL/χ
6

(Lχ
6 ) is thed = 6 χ̃-breaking (conserving) SLEL operator. Focusing on the O(b2) terms fromL/χ

6 in
the r.h.s. and looking at the contributions with just oneσ -propagator, we read off the NP corrections
to the gluon-gluon-scalar,QL/R-Q̄L/R-scalar andQL/R-Q̄L/R-gluon-scalar vertices, getting

∆Γbcµν
AAΦ (k, ℓ)

∣

∣

∣

R
= b2Λsαs(Λs)

δ bc

2
{[k(k+ ℓ)δµν −kµ(k+ ℓ)ν ]+ [µ→ ν ]}FAAΦ

(Λ2
s

k2 ,
Λ2

s

ℓ2 ,
Λ2

s

(k+ ℓ)2

)

,

∆ΓQQ̄Φ(k, ℓ)
∣

∣

∣

R
= b2Λsαs(Λs)

i
2

γµ(2k+ ℓ)µ FQQ̄Φ

(Λ2
s

k2 ,
Λ2

s

ℓ2 ,
Λ2

s

(k+ ℓ)2

)

, (4.6)

∆Γb,µ
QQ̄AΦ(k, ℓ,ℓ

′)
∣

∣

∣

R
= b2Λsαs(Λs) igsλ bγµ FQQ̄AΦ

( Λ2
s

mom2

)

, mom∈ {k, ℓ,ℓ′, ..., ℓ′+ ℓ,k+ ℓ} .

FAAΦ, FQQ̄Φ andFQQ̄AΦ are dimensionless functions depending onΛ2
s/mom2 ratios. From standard

Symanzik arguments, small-b expansions like those in (4.5) are expected to be valid for momenta
much smaller than the UV-cutoffb−1. Like in Wilson LQCD, we assume that the NP effects
encoded in (4.5)–(4.6) persist up to mom2 = O(b−2), andconjecturethe asymptotic behaviour

FAAΦ

( Λ2
s

mom2

)

mom2→∞
−→ HAA, FQQ̄Φ

( Λ2
s

mom2

)

mom2→∞
−→ HQQ̄ , FQQ̄AΦ

( Λ2
s

mom2

)

mom2→∞
−→ HQQ̄ ,

whereHAA andHQQ̄ are O(1) constants and the last two limits are related by gauge invariance.
Further NP corrections analogous to the ones of eqs. (4.6) actually occur forLWil-induced

vertices. Based on the symmetries of the model (4.1), to leading order ing2
s (andb2) these NP

terms can beeffectively reproducedin PT by usingad hoc modified Feynman rules, namely those
that one infers after adding to theLtoy Lagrangian the terms

∆L |ad hoc=
b2

2
Λsαs

{

tr[Φ†U+h.c.]
[HAA

2
tr(FF)+HQQ̄(Q̄/DQ)

]

+HWil[Q̄L
←−
DUDQR+h.c.]

}

(4.7)

with U = Φ[Φ†Φ]−1/2. The dimensionless fieldU , which transforms likeΦ underχL× χR, must
necessarily arise in NP corrections owing to the exactχL× χR symmetry of the theory.

L RL R
b
2
V6

LL

L

b
2
V6

b
2
V6

L L R
b
2
Λ b

2
Λb

2
Λ

Figure 3: Typical lowest order “diagrams” giving rise to dynamicallygenerated quark mass terms (L and R
are fermion-helicity labels). The grey blob represents thenon-perturbativeb2Λsαs(Λs) effect in eqs. (4.6).

Formally using PT with modified Feynman rules, one checks that diagrams like those in fig. 3
(the dotted line represents the propagation of aσ /π particle) yield a fermion mass O(g2

sαs(Λs)Λs).
Indeed, for the counting of loop momenta of, say, the centraldiagram of fig. 3 in theb→ 0 limit, one
finds a double integral with factors 1/k2 and 1/(ℓ2+m2

σ/π) from the standard gluon andσ /π prop-

agators, the factorsγµkµ/k2 andγν(k+ ℓ)ν/(k+ ℓ)2 for the quark propagators, a factorb2(k+ ℓ)λ
from theLWil derivative coupling and a factorb2(2k+ ℓ)ρ γρ Λs from the NP vertex∆ΓQQ̄Φ(k, ℓ)|

R.
Thus the overallb4 power is compensated by the two-loop integral quartic divergency.
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From the NP results we got on the fermion self-energy diagrams and the exactχL×χR invari-
ance of the theory (see eq. (4.7)), we expect the generating functional of 1PI Green functions to
display a NP term of the form3

C1Λs[Q̄LUQR+ Q̄RU†QL] , C1 = O(g2
s(b
−1)αs(Λs)) . (4.8)

Besides a fermion mass, this term in the Nambu-Goldstone phase of the model atη = ηcr, gives
rise to NPΦ-to-fermions and (via fermion loops)Φ-to-gluons couplings, which also stem from
the dynamical breaking of thẽχL× χ̃R invariance. Nevertheless, the fine tuningη → ηcr, that is
crucial to get a fermion mass≪ v, is “natural” because, besides yielding the restoration ofthe
χ̃L× χ̃R invariance in the Wigner phase, it leads in the Nambu-Goldstone phase to the maximal
enhancement of this symmetry that is compatible with its dynamical SSB and related NP effects.

5. Conclusions

We have discussed the possibility that O(g2
sαs(Λs)Λs) fermion masses are dynamically gener-

ated from an interplay between vanishingly small chirally breaking effects left-over in the “critical”
theory and power divergencies of loop integrals with the insertion of Wilson-like vertices. We have
also shown that it is possible to solve the “fine tuning” problem associated with the need of sepa-
rating “large” from “small” mass contributions, in a toy-model where an SU(2) doublet of strongly
interacting fermions is coupled to a scalar via Yukawa and Wilson-like (χ̃-breaking) terms.
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