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Abstract: Towards the next generation of compact plasma-based accelerators, useful in several fields,
such as basic research, medicine and industrial applications, a great effort is required to control
the plasma creation, the necessity of producing a time-jitter free channel, and its stability namely
uniformity and reproducibility. In this Letter, we describe an experimental campaign adopting a
gas-filled discharge-capillary where the plasma and its generation are stabilized by triggering its
ignition with an external laser pulse or an innovative technique based on the primary dark current
(DC) in the accelerating structure of a linear accelerator (LINAC). The results show an efficient
stabilization of the discharge pulse and plasma density with both pre-ionizing methods turning
the plasma device into a symmetrical stable accelerating environment, especially when the external
voltage is lowered near the breakdown value of the gas. The development of tens of centimeter long
capillaries is enabled and, in turn, longer acceleration lengths can be adopted in a wide range of
plasma-based acceleration experiments.

Keywords: plasma channels; plasma instabilities; low-energy ns-lasers

1. Introduction

Plasma wakefield acceleration, proposed by Tajima and Dawson [1] in 1979, is able to
provide accelerating fields of tens of GV/m, orders of magnitude larger than RF-based ones,
so it has been able to attract a lot of attention during the last few decades. Such an acceleration
gradient allows to build ultra-compact accelerators suitable in a wide range of applications
involving advanced radiation sources based on Free Electron Lasers (FEL) [2–4], Compton
scattering [5], and THz radiation [6]. In addition, medical applications, as, for instance,
therapy based on so-called FLASH therapy [7] can benefit from compact small accelerators.
Moreover, recent works also demonstrated the feasibility to implement plasma-based setup
suitable for beam transport as focusing devices producing huge fields of the order of kT/m [8],
produced by the discharge flowing through the plasma [9], and able to squeeze the beam
size down to few microns [10]. Such remarkable accelerations are produced by the plasma
wake, excited by a driver pulse, namely, an intense laser pulse (LWFA [11–15]) or a relativistic
particle beam (PWFA [16–18]). The resulting wakefield is subsequently adopted to accelerate
a trailing witness bunch. The latter has several advantages as it is not limited by diffraction nor
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dephasing, making possible large acceleration lengths [19–21]. Several techniques are currently
employed to generate the plasma channel starting from neutral gas, namely, using an high-
voltage (HV) discharge [22] or a laser pulse [23]. However, the plasma, dynamically produced
shot-by-shot with a lifetime of about few tens of microseconds [24], suffers from stability
and reproducibility issues that are key features to perform stable acceleration experiments
or plasma sections, not affected by large jitters, to transport electron bunches. In this Letter,
we present experimental proof of plasma parameters stabilization adopting two different gas
pre-ionizing techniques, one based on triggering by an external laser source, and the other on
the generated primary LINAC dark current. The results show that, by pre-ionizing the gas, the
resulting shot-to-shot plasma parameters fluctuations are reduced. The stabilization regarding
both the discharge waveform and the minimization of the time-jittering is highlighted. They
succeeded to turn the plasma device into a symmetrical stable accelerating environment even
when the starting configuration is an highly unstable non-symmetrical one (namely, when the
external voltage is lowered near the breakdown value of the gas) not able to perform high-
quality stable plasma-based acceleration. Finally, the triggering methods are able to produce
very stable plasma, being a great advantage in a wide range of plasma-based experiments [10].

2. Experimental Setup

The experimental campaign has been carried out at the SPARC_LAB test facility [25]
using a 3 cm long hydrogen gas-filled capillary discharge. The experimental setup is shown
in Figure 1.

Figure 1. Experimental setup. The incoming bunch is focused by a triplet of permanent-magnet
quadrupoles (PMQ) into the plasma accelerator module. A second triplet of PMQs is used to extract
and transport the bunch up to the diagnostics station. A 3 cm long 3D-printed capillary adopts two
symmetric inlets and two electrodes at its ends, connected with the HV source, to produce the full
ionization. A pre-ionization laser is focused at the negative electrode spot. The plasma emission is
then transported into an imaging spectrometer to allow the effective plasma density retrieval through
Stark-broadening technique.
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The SPARC_LAB photo-injector consists of a 1.6-cell S-band electron gun, followed
by two 3 m long S-band acceleration sections and one 1.3 m C-band section. The beam is
generated directly from the photo-cathode using laser-comb technique [26] by illuminating
it with ultra-short laser pulses (130 fs, rms). The first section of the photo-injector is
also used as bunch compressor by means of the velocity-bunching technique [27], thus
allowing to both accelerate and compress the beam, making the photo-injector very compact.
Moreover, it allows precisely adjusting the bunch duration [28] and there is no loss of
charge. The plasma experimental setup, depicted in Figure 1, is installed downstream of
the photo-injector. It consists of a 3 cm long, 1 mm diameter, 3D-printed capillary filled
with hydrogen gas by means of two symmetrical positioned inlets, respectively, located
at 1/4 and 3/4 of the structure length. The gas, produced by an electrolytic generator,
is injected at a rate of 1 Hz. The gas injection is controlled by a fast electro-valve set
with 3 ms aperture time, able to fulfill the experimental requirements. Moreover, the
pressure inside the capillary is monitored, and it is of the order of 10–15 mbar. At the
capillary opposite ends, two electrodes are positioned and connected with a HV discharge
pulsar able to provide up to 600 A current with 20 kV voltage [29] modeling the plasma
parameters as required experimentally. The vacuum chamber, as depicted in Figure 1,
hosts both the capillary and electro-valve in an environment operating at 10−5 mbar.
For the gas pre-ionization method based on laser, a 532 nm laser delivering 5 ns pulses
with few hundreds of µJ energy is used. The laser focus corresponds with the channel
entrance at the first electrode. The plasma radiation is then transported into a SpectraPro-
275 imaging spectrometer equipped with an Andor iSTAR-320 intensified camera. By
means of this setup, the longitudinal plasma density profile is retrieved by employing a
Stark-broadening spectroscopic technique [30–33], by monitoring the Hβ line, as shown
in Figure 1. The proper timing for injection of the beam into the plasma is adjusted by
changing the synchronization between the discharge and the beam and is measured using
Stark-broadening based diagnostics.

3. Results and Discussion

Optimized and controlled plasma discharge can be achieved. The optimization tech-
nique is based on the creation of initial free electrons achieved by pre-ionizing the gas either
with a laser pulse [34,35] or with the primary dark current in the accelerating structure of a
LINAC. Initially, the plasma channel has been fully characterized without any pre-ionizing
methods. The plasma density and current are shown in Figures 2 and 3.

Figure 2. Non-stabilized plasma measurement. Plasma discharge waveforms (50 sets) measurements
obtained with the stabilization turned off for 5 kV discharge value between the capillary electrodes.

Figure 2 shows a voltage scan of the current waveform acquired by a digital scope.
We can clearly see a large shot-to-shot instability on the plasma current shape and peak
values, mostly for the 5 kV and 6 kV HV discharge configuration. This difference between
low-voltage and high-voltage is quite clear, it is the effect of the full-ionization reached
thanks to the higher voltage. However, as previously highlighted, it is important to have
an efficient and stable plasma section, especially when the external voltage is lowered near
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the breakdown value of the gas enabling the development of very long capillaries and,
in turn, acceleration lengths. Finally, it is noticeable, besides the variation of the current
amplitude peak, a time-jitter of hundreds nanoseconds of its starting time respect to the
fixed stable trigger signal. To go more into detail, the current instability could be blamed
on the statistical process of creating free electrons, that can not be controlled, and in turn
this implies a significant shot-to-shot variation of the breakdown delay time.

Figure 3. Non-stabilized plasma measurement. Plasma longitudinal density profiles measurements
obtained with the stabilization turned off for different discharge value. The density profiles extend
for 9 mm, a fraction of the capillary. Each plot shows a set of 50 measurements obtained by applying
5–7 kV between the capillary electrodes.

Figure 3 shows a voltage scan of the density longitudinal profile acquired by the Stark
system described in the previous section. Indeed, the resulting longitudinal plasma density
profile shows strong irregular oscillations especially in the central part of the capillary
(corresponding to the 0 mm to 4 mm position of the capillary longitudinal profile). At
the capillary opposite the ends where the electrodes are placed, the density decreases and
continues to decrease in the plasma plumes just outside the capillary. This plasma density
behavior occurs because the gas is escaping from the storing structure. As is noticeable from
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Figure 3, the density range reached within the capillary is 0.5–2 × 1017 cm−3. The reported
error bars represent the rms deviation calculated by using 50 measured density profiles.
Considering the capillary configurations with the discharge at 5 and 6 kV, the plasma
density overall shot-to-shot stability is approximately 20% meaning unstable operations,
while, for 7 kV configuration the instability drops to ∼10% but still not an optimized
operation. These measurements highlight the need of a specific technique to adequately
control the plasma channel parameters. A clear enhancement of the plasma stabilization
operated by two different triggering techniques providing smaller fluctuations on density,
plasma discharge and its time-jitter (corresponding to the ones showed in Figures 2 and 3
in the 5–7 kV voltage range), are presented. Adopting pre-ionizing methods, the resulting
stabilization is undeniable when a low-voltage discharge is adopted as in our experimental
campaign. Considering the literature and the parameters of our experimental setup namely
3 cm long, 1 mm diameter capillary filled by Hydrogen at 10 mbar, the breakdown voltage
is approximately 1 kV according to the Paschen law [36]. In turn, applying a 5 kV voltage,
the plasma is rather unstable as experimentally retrieved because such a value is close to
the breakdown one. Meanwhile, it is noticeable that ramping up the voltage (~7 kV) the
plasma properties become more stable as shown in Figure 3. The laser-triggering method
implies the use of a laser with an energy in the 100 µJ range and approximately 1 mm spot
size at the capillary entrance where the electrode is positioned. The corresponding laser
intensity is of the order of 2.5 MW/cm2. The optimization of the triggering technique has
been performed varying the pulse energy in the 100 µJ to 40 mJ range. Within this energy
interval, we did not notice any difference in the plasma parameters stability. Therefore, the
lowest energy was set. Such low-intensity pulses, besides efficiently stabilizing the plasma
environments, do not significantly decrease the lifetime of the plasma-based device as they
are below the damage threshold. Meanwhile, the DC-triggering method does not need
any additional devices but it is internally generated by the LINAC. The dark current value
corresponding to 70–15 pC range has been measured.

In Figures 4 and 5, we present the characterization of the plasma and discharge
parameters influenced by the pre-ionizing techniques. Adopting the presented techniques,
the discharge waveform becomes very stable as shown in Figure 4. For sake of completeness,
we have to highlight that the trigger/laser signal coming from a photo-diode installed
outside the vacuum chamber is arriving at around 3 µs. The RMS amplitude instability
is now minimized to the Amperes-level (∼1 A) and its rising edge time-jittering is of the
order of few nanoseconds (∼2 ns).

Figure 4. Stabilized plasma measurement. Plasma discharge waveforms (50 sets) measurements ob-
tained with both the pre-ionizing methods for 5 kV discharge value between the capillary electrodes.
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Figure 5. Stabilized plasma measurement. Plasma longitudinal density profiles measurements
obtained with both the pre-ionizing methods for different discharge value. The density profiles
extend for 9 mm, a fraction of the capillary. Each plot shows a set of 50 measurements obtained by
applying 5–7 kV between the capillary electrodes.

Triggering the discharge, undeniably improves the shot-to-shot stability and the
longitudinal uniformity of the resulting plasma profile, as showed in Figure 5 and reported
in Table 1. The plasma density now fluctuates by approximately 7% as highlighted by
the smaller range of the shadowed area and, overall, it reaches smoother values (up to
1–1.3 × 1017 cm−3) along the fraction of the capillary structure shown in Figure 5. Moreover,
besides the enhanced uniformity of the plasma between the two electrodes, a strongly
reduced fluctuations of the outer plumes is noticeable.
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Table 1. Data regarding the plasma density and its rising edge shot-to-shot stability with and without
the laser-triggering technique.

Measurements Voltage Instability Instability Instability
No Triggering Laser ON DC ON

Density
Amplitude 5 kV ∼20% ∼7% ∼7%

Density
Amplitude 6 kV ∼20% ∼7% ∼7%

Density
Amplitude 7 kV ∼10% ∼7% ∼7%

Shot-to-shot
stability 5 kV 800 ns 5 ns 5.6 ns

Shot-to-shot
stability 6 kV 220 ns 4 ns 4.1 ns

Shot-to-shot
stability 7 kV 83 ns 1.8 ns 2.8 ns

The implementation of both methods gives a similar result regarding the stabilization
of the current waveform and the uniformity of the longitudinal plasma density. Finally, an
additional measurement regarding the time-jittering minimization, by the two triggering
techniques, has been performed.

In Figure 6, the time-jittering with the two different triggering methods is reported.
It is noticeable that without any stabilization method the time-jittering is in the µs-range
(orange line). While, applying both methods we noticed a minimization of the jitter down
to the ns-range, being able to stabilize the discharge until 3 kV near the breakdown level.
The two methods combined do not produce any further minimization of the jittering. In
Figure 7, an additional study has been performed to fully characterize the DC-triggering
method influence. A current scan has been performed, from 70 pC to 15 pC, at the extreme
configurations of the discharge voltages operational-range for 4 kV, unstable configuration
near the breakdown level, and 9 kV, quasi-stable configuration, adopting just the DC-
triggering configuration. It is retrieved that the time-jitter is almost constant as a function
of the charge for 9 kV (∼2 ns), while for a 4 kV discharge it is almost constant (∼16 ns) until
40 pC and then is slightly degraded (∼3 ns reaching ∼20 ns) until 15 pC.
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Figure 6. Time-jitter measurements. Time-jittering of the discharge waveform without any stabiliza-
tion method (red line), minimized by the laser-trigger technique (blue dashed-dotted line), by the
DC-trigger technique (blue dashed line) and with both method combined (blue dotted line).
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Figure 7. Time-jitter measurements. Time-jittering of the discharge waveform minimized by the
DC-trigger technique at 9 kV configuration (top) and at 4 kV configuration (bottom).

4. Conclusions

In conclusion, the improvements provided by a pre-ionizing technique, both driven
by a laser pulse or by the LINAC generated dark current, regarding the optimization
of a plasma device, namely, a gas-filled discharge-capillary are reported and extensively
discussed. The goal was to demonstrate the reduction of the jitter sources and, in turn, the
optimization of the plasma source becoming a symmetrical stable accelerating environment,
even when the starting configuration is an highly unstable non-symmetrical one, for future
accelerator machines employing plasma-based devices. Comparing the plasma generated
by only applying a high-voltage discharge and the one created with an additional triggering
technique, we found a clear enhancement of the overall stability. Both techniques are valid
approach but, for the first time to our knowledge, we demonstrate that the dark-current
triggering method, requiring less complex setup, achieves comparable results to other
techniques to fulfill the plasma stabilization. This approach allows to generate stable beams,
as required by user-oriented applications, paving the way toward the development of
next-generation compact plasma-based accelerators.
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