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Abstract

The moduli space of toroidal type I vacua, which are consistent at the non-perturbative level, is com-
posed of independent branches characterized by the number (0, 16 or 32) of rigid branes sitting on top of 
orientifold planes. This structure persists also when supersymmetry is spontaneously broken à la Scherk–
Schwarz. We show that all the components of the moduli space in dimension D ≥ 5 indeed admit heterotic 
dual components, by explicitly constructing heterotic-type I dual pairs with the rank of the gauge group 
reduced by 0, 8 or 16 units. In the presence of spontaneous breaking of supersymmetry, the dual pairs we 
consider are also free of tachyonic instabilities at the one-loop level, provided the scale of supersymmetry 
breaking is lower than the string scale.
© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Worldsheet conformal field theories admit marginal deformations. As a consequence, the 
spectra of string theories possess generically moduli fields at tree level. When they are coupled to 
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the visible sector, the arbitrary vacuum expectation values of these massless scalars can spoil the 
predictability of the models. They also lead to long range forces, which violate the experimental 
bounds on the validity of the equivalence principle. Therefore, it is important to determine the 
mechanism(s) responsible for their stabilization and/or for reducing their number from the out-
set. Among various approaches, string compactifications with fluxes [1–5] or non-perturbative 
effects at the level of the effective field theories [6–11] have been examined, in order to lift some 
of the flat directions of the scalar potential.

In Refs. [12,13], an interesting class of models that partially address these issues was ana-
lyzed.1 It was considered in the context of the type I string theory compactified on tori, where 
supersymmetry is totally but spontaneously broken at a scale M , via a stringy version [15–23]
of the Scherk–Schwarz mechanism [24]. At 1-loop, an effective potential is generated, and stabi-
lization of all open string Wilson lines was achieved, provided M is lower than the string scale,2

a fact that we assume throughout the present paper. Indeed, by T-dualizing all the internal direc-
tions, one may switch to an orientifold description where the open string moduli translate into 
the positions of the 32 Dirichlet-branes (D-branes). The key point is that these objects are either 
moving in the bulk in pairs as mirror images, or they are rigid, namely their positions are forced 
to be fixed on top of orientifold planes (O-planes), thus reducing the rank of the gauge group as 
well as the dimension of the moduli space [25].

However, difficulties persist about the moduli arising from the closed string sector. First of 
all, these scalars (except M a priori) remain flat directions of the 1-loop effective potential 
V1-loop. In fact, in D spacetime dimensions, one finds that V1-loop ∼ (nF − nB)MD at the min-
ima of the open string moduli, where nF and nB are the numbers of massless fermionic and 
bosonic degrees of freedom, respectively. Second, to account for the flatness of the universe, pe-
culiar models sometimes referred to as “super no-scale models”, which have massless degenerate 
spectra (nF = nB ), should be considered [26–32].3 Alternatively, one can deal with Friedmann-
Lemaître-Robertson-Walker flat cosmological evolutions, where the supersymmetry breaking 
scale [33–35] and possibly the finite temperature of the Universe [36–42] are time-dependent.

In the present work, we reconsider the above class of open string models from a heterotic 
dual point of view. One of our motivations is that finding from scratch heterotic models free 
of tachyonic instabilities at 1-loop turns out to be a difficult task, even when M � 1 [34]. 
Hence, an efficient way to reach this goal is to start from the orientifold picture, where mod-
els with these properties are easily identified, thanks to the interpretation of moduli in terms 
of geometrical positions of D-branes. Moreover, since open string models are based on per-
turbative constructions, additional conditions should exist to ensure their consistency at the 
non-perturbative level [43–47]. In particular, the O(32) gauge bundles should allow an embed-
ding in Spin(32)/Z2 bundles, as required from the dual (perturbative) heterotic point of view. 
It turns out that the moduli space of the orientifold models splits into distinct components char-
acterized by various patterns of rigid branes. One of our main results is that at least for D ≥ 5, 
all of these consistent branches admit heterotic dual descriptions. Finally, one may forecast that 
the stabilization of the closed string moduli present in the orientifold picture may be achieved on 

1 In Ref. [14] models with spontaneously broken supersymmetry and dynamical stabilization of moduli at self-dual 
radii in AdS vacua were already considered.

2 In our conventions, all dimensionfull quantities are expressed in string units, with α′ set to 1.
3 In that case, V1-loop is much lower than in generic models, and it is conceivable that it may combine with higher 

loops corrections to yield a stabilization of M and of the dilaton field, with a small value of the resulting cosmological 
constant.
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the heterotic side, at points of enhanced gauge symmetry in moduli space [38–42,48]. However, 
this expectation turns out to be essentially incorrect, due to the fact that the relevant heterotic 
descriptions are freely acting orbifold constructions that project out the extra states that usually 
arise at particular points in moduli space. Hence, heterotic and type I models are typically on 
equal footing from this point of view.

The plan of the paper is as follows. In Sect. 2, we summarize the relevant features of the 
orientifold models of Ref. [12], whose open string moduli are stabilized at 1-loop when M � 1. 
We also list the conditions valid in dimension D ≥ 5 [43] that are expected to guarantee the 
non-perturbative consistency of the models. Sect. 3 presents the simplest example of a heterotic 
model that is dual to such an orientifold theory. It is realized in five dimensions and corresponds, 
on the open string side, to the case where the 32 D-branes are isolated with rigid positions, thus 
generating a trivial gauge symmetry we formally denote by SO(1)32. This notation is justified 
by the fact that in general, a stack of p D-branes on an orientifold plane yields an SO(p) gauge 
symmetry. On the heterotic side, the counterpart of an isolated rigid D-brane located on top of 
an orientifold plane is an Ising conformal block. This peculiar model turns out to be free of any 
tachyonic instability at tree level, as is also the case in the model of Ref. [14], even at large su-
persymmetry breaking scale. In the SO(1)32 case, the potential is positive at least when M � 1, 
so that M may be attracted to smaller and smaller values. On the contrary, in Ref. [14], the scale 
M is stabilized around 1, where it leads to a negative potential at 1-loop. It should be also noticed 
that the SO(1)32 model, in its supersymmetric version, already appeared in Ref. [49]. In Sect. 4, 
we show that in the heterotic description, the existence of points of enhanced gauge symmetry 
responsible in principle for the stabilization of internal torus moduli is quite limited. Sect. 5 is de-
voted to the construction of another example of a heterotic model in six dimensions. It is dual to a 
tachyon free orientifold theory, whose open string gauge symmetry is [SO(3) ×SO(1)]8 coupled 
to fermionic matter in the “bifundamental” representations. The heterotic description necessarily 
requires an asymmetric freely acting orbifold projection, as dictated by modular invariance. Our 
conclusions and perspectives are contained in Sec. 6.

2. Orientifold vacua, rigid branes and broken supersymmetry

Before moving to the construction and analysis of heterotic models with reduced rank, let us 
review the main features of toroidal orientifold constructions with broken supersymmetry, free 
of tachyonic instabilities at 1-loop (provided M � 1) [12], and that are expected to be consistent 
at the non-perturbative level [43].

Our starting point is the type I string in D dimensions, obtained by an orientifold [50–54]
of the ten-dimensional type II string compactified on a torus T 10−D . We denote the Neveu–
Schwarz-Neveu–Schwarz (NS-NS) metric and Ramond–Ramond (RR) two-form moduli by GIJ

and CIJ , I, J ∈ {D, . . . , 9}. For our purposes, it is convenient to T-dualize all of the internal 
directions, in order to switch to a perturbatively equivalent orientifold of type IIA when D is odd, 
or of type IIB when D is even. As known, these orientifolds amount in neutral combinations of 
O(D − 1)-planes and D(D − 1)-branes. Although D-branes are dynamical defects in spacetime 
which support the open string endpoints, orientifold planes are rigid walls localised at the fixed 
loci of the involution �̃ = � I10−D , where � is the standard worldsheet parity while I10−D

inverts the 10 − D spacelike coordinates transverse to the O(D − 1)-planes.4 The involution 

4 Depending on the value of D, an extra operator (−1)FR is needed in order to ensure that the orientifold involution is 
indeed order-two. In our notations, (−1)FR flips the sign of all NS-R and RR states.
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�̃ has 210−D fixed points in the T-dual torus. Each fixed locus supports a different O-plane, 
whose nature, i.e. its RR charge and tension, depends on background values of discrete closed 
string moduli5 [55–58] which, in turn, are related to the presence or not of vector structure 
[59,60]. Therefore, depending on the number of non-trivial discrete deformations, the orientifold 
vacuum involves different numbers of O(D − 1)+- and O(D − 1)−-planes with charges and 
tensions given by ±2D−5, respectively. A number N of D(D − 1)-branes is then added to the 
construction to cancel the total RR charge. The open string moduli are nothing but the positions 
of the D-branes in the T-dual torus, X̃I = 2πaI

α , where α ∈ {1, . . . , N} labels the different D-
branes. They are dual to the Wilson lines aI

α of the initial type I theory compactified on T 10−D . 
Compatibility with the orientifold involution �̃ implies that the configurations of D-branes are 
typically given in terms of pairs of branes, with arbitrary coordinates X̃I = 2πaI

α and X̃I =
−2πaI

α . Alternatively, a brane can sit on top of an orientifold plane, in which case its position is 
rigid, with X̃I = 2πaI

α ≡ 0 or π . Indeed, it was argued in [55] that an odd number of D-branes 
could be moved close to an orientifold plane6 yielding, for instance, a Chan-Paton gauge group 
SO(15) × SO(17), which is perfectly legitimate from the vantage point of type I perturbation 
theory.

As a result, the moduli space admits disconnected components that are characterized by the 
rank of the open string gauge group, which is lower than 16 when O(D − 1)+-planes are present 
or D(D−1)-branes have rigid locations. In particular, the way rigid branes are distributed among 
the O-planes does matter when D ≤ 7 [43].7 In addition, it is very important to stress that by 
assuming heterotic-type I duality, non-trivial constraints arise for the non-perturbative consis-
tency of orientifolds [43–47]. To be specific, let us consider the case where all O(D − 1)-planes 
are O−-planes, so that N = 32. When rigid D(D − 1)-branes are present, Wilson line matri-
ces WI = diag(e2iπaI

α , α ∈ {1, . . . , 32}) in the type I picture can have determinant equal to −1, 
and thus correspond to O(32) flat connections on T 10−D . At the non-perturbative level, the 
authorized O(32) flat bundles have to lift to Spin(32)/Z2 bundles, and in the special case of 
10 − D = 3, the Chern–Simons invariant must also vanish, for the gauge theory to be anomaly 
free.8 Under these conditions, heterotic dual descriptions are expected to exist. In Ref. [43], 
all D(D − 1)-brane configurations satisfying these constraints in dimension D ≥ 5 have been 
classified, provided the O(D − 1)-planes are all of O− type, which is the case also considered 
throughout the present work. Denoting with Gmax the gauge group of maximal dimension gen-
erated by the open strings and with O′− the orientifold planes9 where rigid branes sit, it turns out 
that:

• For D ≥ 7, rigid branes are forbidden. Therefore, the moduli space has a single branch and 
Gmax = SO(32).

5 These are the components of the NS-NS metric G̃IJ and RR two-form C̃IJ , I, J ∈ {D, . . . , 9}, which are odd with 
respect to the orientifold involution.

6 The paper [55] actually discusses the dual construction in terms of generic Wilson lines assumed to be in O(32)

rather than SO(32).
7 There are topologically inequivalent configurations, i.e. not related to each other by a change of coordinates.
8 In Ref. [12], only the condition that the O(32) bundle is an SO(32) bundle was imposed.
9 We are using here the notation in Ref. [43]. It should be noticed that the O′−-planes are also known in literature as 

Õ−-planes. As known, they can be related by chains of S and T dualities to the so called O+-planes and ̃O+-planes that, 
however, are not discussed here.
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• For D = 6, two branches exist. The first one corresponds to the seven-dimensional mod-
els compactified on a circle. There are no rigid branes and Gmax = SO(32). In the sec-
ond branch, there is a rigid brane sitting on each of the 16 O5′−-planes, so that Gmax =
SO(17) × SO(1)15, with a reduced rank.

• For D = 5, three cases can arise. In the first, no rigid branes are present and Gmax = SO(32). 
In the second, exactly 16 rigid branes must sit on top of the 16 O4′−-planes located on 
one of the hyperplanes X̃I = 0 or π , for some I ∈ {5, . . . , 9}. In this branch, Gmax =
SO(17) × SO(1)15. The previous two branches arise simply by compactifying the D = 6
allowed models on one additional circle. Finally, a third case exists where all 32 D4-branes 
are rigid and isolated, each of them being located on one of the 32 O4′−-planes. In this last 
branch, the open string “gauge group” is SO(1)32, which is trivial.

The above observations have interesting consequences when a spontaneous breaking of su-
persymmetry is implemented at tree-level by the Scherk–Schwarz mechanism [24], generalized 
to the framework of open string theory [15–21]. In the present paper, we will consider the sim-
plest realization of such a breaking, whereby (−1)F is gauged and fibred along a single compact 
direction, with F the spacetime fermion number. In the initial type I setup, this amounts to intro-
ducing a mass gap M of the order of the inverse length of this coordinate, between bosonic and 
fermionic superpartners. Because no linearly realized supersymmetry is left over, an effective 
potential depending on all Wilson lines is generated at 1-loop. As shown at the perturbative level 
in Ref. [12], the configurations where all D-branes (rigid or not) in the orientifold picture are 
distributed on the O(D − 1)-planes correspond to extrema of the potential. In particular, let us 
denote with p2A−1 and p2A, A ∈ {1, . . . , 210−D/2}, the numbers of D(D − 1)-branes stacked on 
the O-planes 2A − 1 and 2A that are adjacent along the (T-dualized) Scherk–Schwarz direction 
at 0 and π , respectively. When the supersymmetry breaking scale M is lower than the string 
scale, local minima are obtained when each pair (p2A−1, p2A) takes one of the following values:

(p,0) , (0,p) , (p,1) , (1,p) , except (2,1), (1,2) , (2.1)

with p a positive integer. The Wilson line/position moduli of the stacks of D-branes (not rigid 
from the outset) are then massive at 1-loop, except when (p2A−1, p2A) = (2, 0), (0, 2), (3, 1) or 
(1, 3), for which they are flat directions.10

At such local minima, the 1-loop effective potential takes the particularly simple form

V1-loop = (nF − nB)ξDMD +O
(
M

D
2 e− 2π

M
)
, (2.2)

where nF and nB are the number of massless fermionic and bosonic degrees of freedom. In this 
expression, ξD > 0 is a constant that captures the contributions of the light towers of Kaluza–
Klein (KK) modes propagating along the large Scherk–Schwarz direction (in the type I picture). 
Notice that up to the exponentially suppressed terms, when nF − nB 
= 0, Eq. (2.2) depends 
only on the supersymmetry breaking scale M , which is a particular combination of internal 
metric components. This means that all other closed string moduli, i.e. the dilaton, the remaining 
components of GIJ and the RR two-form moduli CIJ , are flat directions. Finally, the numbers 
of massless states, which are given by

10 These directions are flat up to exponentially suppressed terms that are no more negligible when the associated pairs 
of branes move so far that they are approaching other O-planes. When this is the case, the system is better described by 
a new stable or unstable configuration characterized by other (p2A−1, p2A), A ∈ {1, . . . , 210−D/2}.
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nB = 8

(
8 +

210−D∑
A=1

pA(pA − 1)

2

)
, nF = 8

210−D/2∑
A=1

p2A−1p2A , (2.3)

can be derived as follows. The 8 × 8 bosons originate from the (dimensionally reduced) ten-
dimensional dilaton, metric and two-form. The other degrees of freedom counted by nB corre-
spond to the bosonic parts of vector multiplets in the adjoint representations of the SO(pA) gauge 
groups generated by the stacks of pA D(D − 1)-branes on the O(D − 1)-planes. The massless 
fermions arise from strings stretched between all pairs of stacks of D-branes located on adjacent 
O(D − 1)-planes along the Scherk–Schwarz direction. Therefore, they are in the bifundamental 
representation of SO(p2A−1) × SO(p2A). The reason why they are massless is that the mass 
arising from the separation along the Scherk–Schwarz direction is exactly compensated by the 
Scherk–Schwarz mass gap attributed to fermions, as compared to bosons.

As said, although all sets of (p2A−1, p2A) with A ∈ {1, . . . , 210−D/2} satisfying the conditions 
given in (2.1) yield perturbatively allowed local minima of the 1-loop potential with respect to the 
open string Wilson lines, the number of choices consistent at the non-perturbative level is more 
restricted. For instance, following what stated previously, in dimensions D ≥ 7 only the solutions 
(p, 0) and (0, p) with even p’s should be authorized, corresponding to the single allowed branch 
of the moduli space. On the other hand, in D = 6 and D = 5 more choices are expected to be 
non-perturbatively valid, reflecting the existence of the two or three branches of the moduli space. 
In the following, we shall show that this is indeed the case by constructing explicit heterotic 
backgrounds with broken supersymmetry that are dual to tachyon free orientifold configurations 
consistent non-perturbatively.

3. Heterotic SO(1)32 model in five dimensions

In this section, we consider the heterotic model that is probably the simplest one providing a 
dual description of an orientifold theory with rigid branes. It illustrates the use of Ising conformal 
blocks in the derivation of modular invariant partitions functions, and was first described in its 
supersymmetric version in Ref. [49]. In the class of open string theories considered in Ref. [12], 
the model we focus on corresponds to the case where all 32 D4-branes are rigid and separated 
on the 32 O4′−-planes, with SO(1)32 open string “gauge group”. Its moduli space is nothing but 
one of the three branches allowed in five dimension, as described in the previous section. The 
model is also characterized by the greatest possible value of nF − nB , which is positive. The 
heterotic dual description is (relatively) simple in the sense that it can be realized in terms of a 
freely acting orbifold that is left-right symmetric, i.e. geometric.

Let us consider a five-dimensional heterotic model based on a Z5
2 free orbifold action on the 

internal T 5 that also breaks completely the SO(32) gauge symmetry and supersymmetry. To be 
specific, each orbifold generator GI , I ∈ {5, . . . , 9}, acts as follows:

• It implements a half-period shift of the compact direction XI ≡ XI
L + XI

R , where XI
L, XI

R

are the left- and right-moving pieces.
• G9 also contains an action (−1)F , whose effect is to implement the Scherk–Schwarz spon-

taneous breaking of supersymmmetry [61–65].
• The GI ’s twist the extra 32 real fermions of the right-moving bosonic side of the heterotic 

string in such a way that all of them have distinct boundary conditions. The actions of the 
5 generators are shown in Table 1. They imply the initial conformal block generating the 
SO(32) degrees of freedom to be replaced by 32 copies of combinations of Ising characters.
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Table 1
Twist actions of the five generators GI on the 32 right-moving real 
worldsheet fermions. A “−” sign indicates a non-trivial Z2 twist of 
the corresponding fermion.

G9 ++++++++++++++++−−−−−−−−−−−−−−−−
G8 ++++++++−−−−−−−−++++++++−−−−−−−−
G7 ++++−−−−++++−−−−++++−−−−++++−−−−
G6 ++−−++−−++−−++−−++−−++−−++−−++−−
G5 +−+−+−+−+−+−+−+−+−+−+−+−+−+−+−+−

What we are interested in is the 1-loop effective potential

V1-loop = − 1

(2π)5

∫
F

d2τ

2τ 2
2

Z(5) , (3.1)

where F denotes the SL(2, Z) fundamental domain, τ = τ1 + iτ2 is the genus-1 Techmüller 
parameter, and Z(5) is the partition function. In the present case, we have

Z(5) = 1(√
τ2ηη̄

)3

1

25

∑
�h,�g

�5,5

[�h
�g
]

(ηη̄)5

× 1

2

∑
a,b

(−1)2(a+b+2ab) θ [ab]4

η4

�0,16

[�h
�g
]

η̄16
(−1)4(g9a+h9b+g9h9)

≡ 1

25

∑
�h,�g

Z(5)

[�h
�g
]
,

(3.2)

where a, b and the components of the 5-vectors �h, �g take the values 0 or 1
2 . In our notations, η

and θ denote the Dedekind and Jacobi modular functions, a, b are the spin structures of the left-
moving worldsheet fermions (where 2a ≡ F ), �h labels the 32 (un)twisted sectors, while the sums 
over b and �g implement the GSO and orbifold projections. Because the Z5

2 generators are freely 
acting, all 31 twisted sectors are massive. Therefore, the gauge symmetry generated by the 32 
right-moving real fermions arises solely from the untwisted sector, and it realizes the following 
chain of breakings

SO(32)
G9−→ SO(16)2 G8−→ SO(8)4 G7−→ SO(4)8 G6−→ SO(2)16 G5−→ SO(1)32 , (3.3)

where SO(1) denotes the trivial group containing only the neutral element. As a result, no 
marginal deformation (no Wilson line) is allowed by the shifted �0,16

[�h
�g
]

Narain lattices and this 
setup is expected to be dual to the orientifold configuration with 32 rigid branes. To be specific, 
from the twist actions of Table 1, we have

�0,16

[�h
�g
]

η̄16
= 1

2

∑
γ,δ

θ̄ [γδ ] 1
2

η̄
1
2

θ̄
[γ+h5
δ+g5

] 1
2

η̄
1
2

· · · θ̄
[γ+h5+···+h9
δ+g5+···+g9

] 1
2

η̄
1
2

, (3.4)

where the spin structures γ, δ take values 0, 12 , and each of the 32 factors is a single Ising confor-
mal block. On the contrary, the lattice of zero-modes of the internal torus depends on the metric 
and antisymmetric tensor moduli GIJ and BIJ ,
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�5,5

[�h
�g
]

=
√

detG

τ
5
2

2

∑
��,�n

e
− π

τ2
[�I +gI +(nI +hI )τ̄ ](G+B)IJ [�J +gJ +(nJ +hJ )τ ]

=
∑
�m,�n

e2iπ �g· �m 
 �m,�n+�h ,

(3.5)

where �m, �n ∈Z5 are the momenta and winding numbers, �� ∈ Z5, and


 �m,�n = q
1
4 PL

I GIJ PL
J q̄

1
4 PR

I GIJ PR
J , (3.6)

where we have defined

P L
I = mI + (B + G)IJ nJ , P R

I = mI + (B − G)IJ nJ , q = e2iπτ . (3.7)

In Eq. (3.2), the sign (−1)4(g9a+h9b+g9h9) is responsible for the spontaneous breaking of super-
symmetry [65]. Notice that it reverses the GSO projection in the 16 twisted sectors that have 
h9 = 1

2 .
In the untwisted sector �h = �0, we obtain

Z(5)

[�0
�g
]

= 1

τ
3
2

2 (ηη̄)8

(
V8 − (−1)g9S8

)∑
�m,�n

(−1)2�g· �m
 �m,�n

(
Ō16Ō16 − (−1)

δ�g,�0 V̄16V̄16 + S̄16S̄16 − (−1)
δ�g,�0C̄16C̄16

)
,

(3.8)

where O(2n) affine characters are defined as [50,52]

O2n =
θ
[

0
0

]n + θ
[

0
1
2

]n

2ηn
, V2n =

θ
[

0
0

]n − θ
[

0
1
2

]n

2ηn
,

S2n =
θ
[ 1

2

0

]n + (−i)nθ
[ 1

2
1
2

]n

2ηn
, C2n =

θ
[ 1

2

0

]n − (−i)nθ
[ 1

2
1
2

]n

2ηn
. (3.9)

The O(16) characters arise because the 31 orbifold group elements 
∏

I G
2gI

I , for �g 
= �0, twist 
16 out of the 32 real right-moving fermions, as can be checked from Table 1. Therefore, the 
characters with different �g 
= �0 are formally equal. As announced before, the shift actions of the 
generators GI on the periodic directions XI , I ∈ {5, . . . , 9}, imply that all states in the twisted 
sectors �h 
= �0 have very large masses, when the sizes of the compact directions X5, . . . , X8 are 
not very small with respect to the string length. To be specific, we have

Z(5)

[�h
�0
]

= 1

τ
3
2

2 (ηη̄)8

[
δh9,0

(
V8 − S8

) + δ
h9,

1
2

(
O8 − C8

)]∑
�m,�n


 �m,�n+�h
(
Ō16S̄16 + V̄16C̄16 + S̄16Ō16 + C̄16V̄16

)
,

(3.10)

where �n + �h cannot vanish. In this expression, the O(16) characters are implicitly dependent 
on �h 
= �0. Notice that the right-moving combinations Ō16S̄16/η̄

8, S̄16Ō16/η̄
8 start at the mass-

less level, implying the absence of tachyonic modes at any point in the moduli space. This is 
to be contrasted with the case of non-freely acting orbifold actions. To clarify this point, con-
sider for instance a single twist action GI on the �0,16 lattice. This orbifold action breaks 
SO(32) → SO(16) × SO(16) in the untwisted sector hI = 0. If GI was not acting as a shift 
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along XI , there would be additional massless states arising in the twisted sector hI = 1
2 , in 

spinorial representations of the SO(16)’s. This mechanism is well known, since it induces the 
restauration of an E8 × E8 gauge symmetry [66] due to the identity(

Ō16 + S̄16

)
×

(
Ō16 + S̄16

)
= ŌE8 × ŌE8 , (3.11)

where OE8 is the affine E8 character. The ground state of the E8 × E8 Kac-Moody algebra turns 
out to have negative conformal weight, Ō16Ō16/η̄

8 = q̄−1 + · · · . Combined with the NS left-

handed ground state, O8/η
8 = q− 1

2 + · · · , level-matched tachyons arise in regions of moduli 
space where the supersymmetry breaking scale M , which is defined as

M =
√

G99

2
, (3.12)

is of the order of the string scale.
The light spectrum of the model when M � 1 amounts to the massless states accompanied 

with their KK towers of modes propagating along the large Scherk–Schwarz direction X9. At 
generic points of the T 5 moduli space,11 the massless bosonic degrees of freedom arise from 
the combinations of characters V8Ō16Ō16/(ηη̄)8 and V8V̄16V̄16/(ηη̄)8, in the untwisted sector 
�h = �0. Their counting goes as follows,

nB = 8

25

([
8 + 120 + 120 + 16 × 16

] + 31 × [
8 + 120 + 120 − 16 × 16

])
= 8 × 8 ,

(3.13)

which matches with the orientifold result given in Eq. (2.3), when pA = 1, A ∈ {1, . . . , 32}. 
These states correspond to the bosonic parts of the N5 = 2 supergravity multiplet and of five 
Abelian vectors multiplets, in five dimensions. In total, a gauge symmetry U(1)5

grav × U(1)5

is generated by (G + B)Iμ and (G + B)μI , I ∈ {5, . . . , 9}, where the first factor is associated 
with the graviphotons. The massless fermions arise from the characters −S8Ō16Ō16/(ηη̄)8 and 
−S8V̄16V̄16/(ηη̄)8. Since the generator G9 contains an action (−1)F , the sectors with g9 = 1

2
contribute with an opposite sign, giving

nF = 8

25

([
8 + 120 + 120 + 16 × 16

] + (15 − 16) × [
8 + 120 + 120 − 16 × 16

])
= 8 × 16 .

(3.14)

All of these states are neutral with respect to the gauge group U(1)5
grav × U(1)5. As before, the 

value of nF agrees with Eq. (2.3), when all pA’s are equal to 1. This confirms that the heterotic 
model is dual to the orientifold theory with 32 rigid D4-branes on top of the 32 O4-planes.

Some comments related to the moduli fields arising in our dual pair are in order. In the initial 
type I framework, the moduli are the dilaton and the internal metric GIJ in the NS-NS sector, 
and the internal RR 2-form CIJ . As can be seen in Eq. (2.2), it turns out that all of them (except 
M) remain massless at 1-loop, up to contributions suppressed exponentially when M � 1. To 
understand why, notice that GIJ and CIJ can be interpreted as Wilson lines along T 5 of the 
Abelian vector bosons GμJ and CμJ present in ten dimensions. Because the states lighter than 
M in the open string perturbative spectrum are neutral with respect to these gauge bosons, their 
masses at tree level are independent on the Wilson lines GIJ , CIJ . Hence, the 1-loop Coleman-
Weinberg effective potential, which is exclusively expressed in terms of the classical squared 

11 Actually, we will see shortly that there are no extra massless states at any particular point of the moduli space.
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masses, admits flat directions associated with these scalars, up to exponentially suppressed cor-
rections arising from the heavy spectrum.

On the contrary, one may a priori expect that the dual moduli fields GIJ , BIJ be stabilized 
in the heterotic model, because of the existence of perturbative states charged under GμI , BμI . 
Actually, such charged states must have non-trivial winding numbers along T 5, and thus corre-
spond to non-perturbative D1-branes in type I string, where they cannot lead to a perturbative 
stabilization of moduli fields. On the heterotic side, one can show that the Coleman-Weinberg 
effective potential is extremal with respect to a Wilson line, when the latter takes a value at which 
non-Cartan states charged under the associated Abelian symmetry are becoming massless.12 This 
mechanism was used in Refs. [34,39,40,48] to stabilize internal radii in toroidal compactifica-
tions. Therefore, in our case of interest, stabilization of GIJ , BIJ relies on the existence of 
points in the freely acting orbifold moduli space, where U(1)5 is enhanced to a non-Abelian 
gauge group.

To figure out if this is possible, let us first consider the case where the Z5
2 orbifold action is 

not implemented. The states at lowest oscillator levels in the NS sector and with momentum and 
winding numbers m5 = −n5 = ±1 (and mI = nI = 0, I 
= 5) are the bosonic degrees of freedom 
of two vector multiplets of charges ±√

2 under the U(1) gauge symmetry associated with the 
internal direction 5. At the locus in moduli space where G5I = δ5I , B5I = 0, I ∈ {5, . . . , 9}, they 
are becoming massless and enhance U(1) → SU(2). However, in our model, the generator G5
acts as a half-period shift along X5, implying a projection of the spectrum onto modes with even 
momenta m5. In particular, the above mentioned non-Cartan massless states are projected out, as 
follows from Eq. (3.8),

1

2

∑
g5=0, 1

2

(−1)2g5m5 |m5 = −n5 = ±1〉 = 0 , (3.15)

jeopardizing the enhancement. Note that naively, because the generator G5 implements a half-
period shift along X5, one may think that an enhanced SU(2) symmetry should arise at the point 
G5I = 4δ5I , B5I = 0 in moduli space. However, if this were true, the additional massless states 
would arise from the twisted sector h5 = 1

2 , and we have seen in Eq. (3.10) that this sector is 
massive, due to the simultaneous action of the generator G5 on the �0,16 lattice.

The projection of the non-Cartan massless states is not specific to the SU(2) case. Therefore, 
all internal moduli GIJ , BIJ of the heterotic model remain massless at 1-loop, because perturba-
tive states charged under the Abelian U(1)5 gauge symmetry are not present. In order to stabilize 
some of the compactification moduli, we have to implement alternative free actions of the Z5

2
generators on the internal directions, so that non-Cartan states belonging to the untwisted sector 
�h = �0 survive. This is what we do in the following section.

4. Partial heterotic stabilization of the torus moduli

As explained at the end of the previous section, in order to stabilize some components of 
the internal metric GIJ and of the antisymmetric tensor BIJ in the heterotic model, we need to 
imagine different free actions of the generators GI , I ∈ {5, . . . , 9}, on the internal torus. The new 

12 This follows from the fact that at such points, the tadpoles of the Wilson lines are proportional to the sum over the 
charges, and that all particles can be paired with their antiparticles to yield vanishing contributions [48].
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orbifold projection should allow the enhanced gauge symmetry states to survive in the untwisted 
sector �h = �0.

To understand how this can be achieved, it should be noticed that in Eq. (3.15), the non-Cartan 
states of SU(2) would be preserved by the action of the generator G5 if m5 in the exponent was 
replaced by m5 +n5, which is even. Hence, free actions implemented as half-period shifts on both 
coordinates XI

L + XI
R and T-dual coordinates XI

L − XI
R may lead to a stabilization of internal 

moduli at points of enhanced gauge symmetry. At such loci, nF − nB decreases, implying the 
heterotic massless spectrum to differ from that of the dual perturbative one in type I.

In orbifold language, actions of this kind on coordinates and T-dual coordinates are said left-
right asymmetric [67]. The construction of orbifold models in this case turns out to be more 
constrained than in the symmetric one, due to modular invariance [68,69]. To understand why, let 
us consider a (d, d)-lattice associated with arbitrary shift actions on the XI

L +XI
R and XI

L −XI
R , 

I ∈ {10 − d, . . . , 9}. Labelling the components of the lattice with d-vectors �h, �g and �h′, �g′, and 
parameterizing the continuous deformations by a metric GIJ and an antisymmetric tensor BIJ , 
we have

�d,d

[�h,�h′
�g,�g′

]
=

√
detG

τ
d
2

2

∑
��,�n

e2iπ(�g′·�n−�h′· ��) e− π
τ2

[�I +gI +(nI +hI )τ̄ ](G+B)IJ [�J +gJ +(nJ +hJ )τ ]

= e2iπ �g·�h′ ∑
�m,�n

e2iπ(�g· �m+�g′ �n) 
 �m+�h′,�n+�h , (4.1)

where the second equality is obtained by Poisson summation over �� ∈ Zd . In our case of inter-
est, all components of �h, �g and �h′, �g′ take values in 1

2Z.13 In the above formula, we make use 
of the definitions given in Eqs. (3.6), (3.7), but for a d-dimensional torus. Notice that the com-
ponents of �h′, �g′ can actually be defined modulo 1. However, the most general transformation 
�h → �h + �δ (or �g → �g + �δ), where δI ∈ {0, 1}, amounts to multiplying the lattice by (−1)2�g′·�δ

(or (−1)2�h′·�δ). Therefore, in order to construct modular invariant partition functions, the allowed 
vectors �h, �g, �h′, �g′ (and correspondingly the allowed vectors �δ) should be constrained for all signs 
(−1)2�g′·�δ and (−1)2�h′·�δ to be +1.

Besides the case of pure left-right symmetric (momentum) shifts we considered in Sect. 3, 
where all asymmetric vectors vanish, �h′ = �g′ = �0, a non-trivial solution is to choose the generator 
G5 to act on the momenta and winding numbers of the pair of coordinates X4 and X5 of the (6, 6)

lattice of a six-dimensional internal torus. Moreover, the remaining generators G6, . . . , G9 can be 
chosen to be identical to those introduced in the previous section. Namely, G6, . . . , G8 act on the 
momenta of X6, . . . , X8, while G9 implements the Scherk–Schwarz breaking of supersymmetry 
by acting both on the momentum of the direction X9 and as (−1)F [65]. Hence, the spacetime 
dimension of the model is four. The components of the constrained left-right symmetric and 
left-right asymmetric vectors are

h4 = h′
4 = h5 , g4 = g′

4 = g5 ,

h5 = h′
5 = h5 , g5 = g′

5 = g5 ,

hI = hI , h′
I = 0 , gI = gI , g′

I = 0 , I ∈ {6,7,8,9} ,

(4.2)

and the shifted lattice can be written as

13 The identity in Eq. (4.1) is actually valid for arbitrary real vectors �h, �g and �h′, �g′.
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�6,6

[�h
�g
]

=
√

detG

τ 3
2

∑
��,�n

(−1)2g5(n4+n5)+2h5(�4+�5)

× e
− π

τ2
[�I +gI +(nI +hI )τ̄ ](G+B)IJ [�J +gJ +(nJ +hJ )τ ]

,

(4.3)

where ��, �n are 6-vectors. We stress that the 6-vectors �h, �g depend only on 5-vectors �h, �g. The key 
point is that because the transformation h5 → h5 + 1 (or g5 → g5 + 1) shifts pairs of integers 
n4, n5 (or �4, �5), they are symmetries of the lattice, as required to construct modular invariant 
partition functions based on a finite number (equal to 25 × 25) of conformal blocks (�h, �g). In 
fact, the definitions (4.2) mean that each GI , I ∈ {6, . . . , 9}, acts as a half-period shift of the 
coordinate XI

L + XI
R , while G5 acts as half-period shifts on X4

L + X4
R , X5

L + X5
R , as well as on 

the T-dual coordinates X4
L −X4

R , X5
L −X5

R . The Hamiltonian form of the lattice is obtained from 
Eq. (4.1) and results in

�6,6

[�h
�g
]

= (−1)4g5h5
∑
�m,�n

(−1)2g5(m4+n4+m5+n5)+2
∑9

I=6 gI mI 
 �m+�h′,�n+�h . (4.4)

Recalling that the generators GI , I ∈ {5, . . . , 9}, also act as twists on the right-moving worldsheet 
fermions, the modular invariant partition function can be written as

Z(4) = 1(√
τ2ηη̄

)2

1

25

∑
�h,�g

�6,6

[�h
�g
]

(ηη̄)6

1

2

∑
a,b

(−1)2(a+b+2ab)

× θ [ab]4

η4

�0,16

[�h
�g
]

η̄16
(−1)4(g9a+h9b+g9h9)

≡ 1

25

∑
�h,�g

Z(4)

[�h
�g
]
,

(4.5)

where the (0, 16)-lattice is given in Eq. (3.4).
In the untwisted sector �h = �0, the NS states at lowest oscillator levels and with quantum 

numbers

m4 = −n4 = ±1 , mI = nI = 0 , I ∈ {5,6,7,8,9} ,

and m5 = −n5 = ±1 , mI = nI = 0 , I ∈ {4,6,7,8,9} ,
(4.6)

survive the orbifold Z5
2 projections, since

1

25

∑
�g

(−1)2g5(m4+n4+m5+n5)+2
∑9

I=6 gI mI |mI = −nI = ±1〉 = |mI = −nI = ±1〉 ,

I ∈ {4,5}. (4.7)

As a result, when the background (G + B)IJ is of the form

(G(0) + B(0))αβ =
(

1 0
0 1

)
, α,β ∈ {4,5} ,

(G(0) + B(0))αB = (G(0) + B(0))Aβ = 0 , A,B ∈ {6, . . . ,9} ,

(G(0) + B(0)) arbitrary ,

(4.8)
AB
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the bosonic states of 2 + 2 vector multiplets are becoming massless, extending the U(1)2 gauge 
symmetry associated with the directions X4 and X5 to SU(2)2.

To show that internal moduli fields are stabilized at this locus, we consider the 1-loop effective 
potential

V1-loop = − 1

(2π)4

∫
F

d2τ

2τ 2
2

Z(4) . (4.9)

At low supersymmetry breaking scale compared to the string scale, the dominant contribution of 
V1-loop arises from the nF + nB + �nB massless states, their superpartners, and their KK towers 
of modes propagating along the large Scherk–Schwarz direction X9, where �nB = 8 × (2 + 2)

denotes the number of extra massless bosons. All other string states, whose masses are of the 
order of the string scale, yield exponentially suppressed contribution, O(e−π/M). In Ref. [34], 
the 1-loop effective potential in the case of a pure toroidal compactifications (no orbifold action, 
free or not free) is derived. Because we have seen in Sect. 3 that all light states of the Z5

2 freely 
acting orbifold model we consider belong to the untwisted sector, �h = �0, it turns out that the 
effective potential in this case equals the result of Ref. [34], up to exponentially suppressed 
corrections.14 In order to write the final answer, we define small background fluctuations yIJ , 
I, J ∈ {4, . . . , 9}, (I, J ) 
= (9, 9),

(G+B)IJ =
(

(G(0) + B(0))ij + √
2yij (G(0) + B(0))i9 + √

2yi9

(G(0) + B(0))9j + √
2y9j (G + B)99

)
, i, j ∈ {4, . . . ,8} ,

(4.10)

in terms of which the Taylor expansion of the 1-loop effective potential at quadratic order and in 
the string frame takes the form

V1-loop = [
nF − (nB + �nB)

]
ξ4 M4

+ M4 2

π
ξ2

5∑
j=4

8T[3]SU(2)

[
3y2

9j + 1

G99

8∑
i=4

y2
ij + · · ·

]
+O

(
M2e−π/M

)
.

(4.11)

In this expression, ξD is given by

ξD = 2�(D+1
2 ) ζ(D + 1)

π
3D+1

2

(
1 − 1

2D+1

)
, (4.12)

while the factor 8 counts the degeneracy of the bosons (or fermions) in each vector multiplet, 
and T[3]SU(2)

= 2 is the Dynkin index of the adjoint representation of SU(2). In fact, yIJ can be 
interpreted as the Wilson line along the periodic direction XI , of the Cartan U(1) associated with 
the direction XJ . We see that all Wilson lines along T 6 of the enhanced gauged group SU(2)2

acquire a mass at 1-loop, namely the moduli yI4, yI5, I ∈ {4, . . . , 9}, while all others remain 
massless. Because nF − (nB + �nB) = 8 × (16 − 8 − 2 − 2) = 8 × 4, the potential is positive 
and the supersymmetry breaking scale M = √

G99/2 has a tadpole.
Notice that the preservation of enhanced gauge symmetry states by a generator acting on 

both momenta and winding numbers is not automatic. As an example, let us consider before 

14 The contribution of the light KK towers of states in the “non-orbifolded” model must be dressed by an overall factor 
1/25, which is compensated by the sum over �g. This follows from the fact that none of these towers is projected out.
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implementation of the Z5
2 orbifold projection the NS states at lowest oscillator levels that have 

quantum numbers

(m4, n4,m5, n5) = (±1,0,±1,∓1) , (0,±1,±1,∓1) , (±1,∓1,0,0) ,

with mI = nI = 0 , I ∈ {6,7,8,9} .
(4.13)

All of these modes turn out to become massless at the point in moduli space corresponding to 
the background similar to that given in Eq. (4.8), but with

(G(0) + B(0))αβ =
(

1 1
0 1

)
, α,β ∈ {4,5} . (4.14)

In that case, the U(1)2 gauge symmetry associated with the directions X4 and X5 is enhanced to 
SU(3). However, among these six non-Cartan states of SU(3), the four first are projected out by 
the operator appearing in the l.h.s. of Eq. (4.7). Therefore, the asymmetric orbifold action of the 
generator G5 reduces SU(3) to SU(2), and we obtain nothing better than what we would have 
found, had we compactified the model of Sect. 3 on a factorized circle of radius 1.

In principle, by further compactifying to lower dimensions and imposing more than one freely 
acting generator GI to act on momenta and winding numbers as we have done for G5, it is pos-
sible to stabilize more internal moduli, while further decreasing the net value of the potential. 
However, at low supersymmetry breaking scale, the Scherk–Schwarz direction X9 being large, 
there cannot be extra massless states charged under the U(1) associated with this coordinate. 
Therefore, in this regime, the Wilson lines associated with this Abelian factor cannot be stabi-
lized.

5. Heterotic [SO(3) × SO(1)]8 model in six dimensions

As reviewed in Sect. 2, the moduli space of the non-perturbatively consistent six-dimensional 
orientifold models containing only O5−-planes is made of two disconnected branches [43]. The 
first one describes all continuous Wilson line deformations of the usual SO(32) theory, with the 
rank of the open string gauge group equal to 16. The second one corresponds to the deformations 
of the orientifold theory with one rigid D5-brane on top of each of the 16 O5′−-planes. In this 
case, the remaining 16 D5-branes are free to move in pairs and the rank of the open string 
gauge group is reduced to 8. The maximal gauge symmetry is obtained when the 8 pairs of 
D5-branes are located on top of a single O5′−-plane, yielding SO(17) × SO(1)15. On the other 
hand, distributing the D5-brane pairs on top of different O5′−-plane reduces the gauge group to 
SO(3)8 × SO(1)8.

In the present section, we show that the orientifold moduli space component of reduced rank 
admits a heterotic dual description. For this purpose, it is enough to construct explicitly a dual 
heterotic model valid at any particular point in moduli space, since its marginal deformations15

span all of the moduli space branch. In the following, we make the choice to realize the dual of 
an orientifold configuration with open string gauge group SO(3)8 × SO(1)8.

In the SO(1)32 orientifold model in five dimensions, all five internal directions are on equal 
footing because of the democratic distribution of the 32 rigid D4-branes on top of the 32 O4-
planes. Therefore, it is a matter of convention to implement the Scherk–Schwarz breaking of 
supersymmetry along any of the five compact directions. However, in the case of an SO(3)8 ×

15 At tree level, they are identical whether the Scherk-Schwarz mechanism is implemented or not.
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Table 2
Twist actions of the four generators GI on the 32 right-moving real world-
sheet fermions. A “−” sign indicates a non-trivial Z2 twist of the corre-
sponding fermion.

G9 ++++++++++++++++−−−−−−−−−−−−−−−−
G8 ++++++++−−−−−−−−++++++++−−−−−−−−
G7 ++++−−−−++++−−−−++++−−−−++++−−−−
G6 +++−+++−+++−+++−+++−+++−+++−+++−

SO(1)8 orientifold configuration in six dimensions, the way of distributing the stacks of D5-
branes for a given choice of Scherk–Schwarz breaking direction does matter. Indeed, as follows 
from Eq. (2.1), in order to get a tachyon free model at 1-loop (provided the supersymmetry 
breaking scale is below the string scale), the gauge symmetry generated by the stacks located 
on adjacent O5-planes along the Scherk–Schwarz direction must be SO(3) × SO(1). Using the 
conventions of Ref. [12], the full open string gauge group of such a configuration is denoted 
[SO(3) × SO(1)]8.

To explicitly construct the dual heterotic model, an appropriate starting point is the SO(32)

heterotic string compactified on T 4. In order to reduce the gauge symmetry to [SO(3) ×SO(1)]8, 
we implement a Z4

2 orbifold action that realizes the following pattern of breakings

SO(32)
G9−→ SO(16)2 G8−→ SO(8)4 G7−→ SO(4)8 G6−→ [SO(3) × SO(1)]8 , (5.1)

where GI , I ∈ {6, . . . , 9}, denote the Z4
2 generators. In particular, they act as twists on the extra 

32 right-moving worldsheet fermions in the way shown in Table 2. G9, G8, G7 are similar to 
those introduced in Table 1, while G6 now twists only 8 fermions rather than 16. In order not 
to generate massless states in the twisted sectors, which ensures the [SO(3) × SO(1)]8 gauge 
symmetry not to be enhanced back, all the orbifold generators must also act freely on the internal 
T 4 coordinates. Moreover, we choose G6 to be the generator that contains in its definition the 
additional action of (−1)F , responsible for the spontaneous breaking of supersymmetry [65].

The 1-loop effective potential

V1-loop = − 1

(2π)6

∫
F

d2τ

2τ 2
2

Z(6) , (5.2)

is expressed in term of the partition function that can be written in the following form,

Z(6) = 1(√
τ2ηη̄

)4

1

24

∑
�h,�g

e
iπϕ

[�h
�g
] �4,4

[�h
�g
]

(ηη̄)4

1

2

∑
a,b

(−1)2(a+b+2ab)

× θ [ab]4

η4

�0,16

[�h
�g
]

η̄16
(−1)4(g6a+h6b+g6h6)

≡ 1

24

∑
�h,�g

Z(6)

[�h
�g
]
, (5.3)

where �h, �g are 4-vectors, whose components take values 0 or 1
2 . In these expressions, and ac-

cordingly with Table 2, the shifted (0, 16)-lattice is given by
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�0,16

[�h
�g
]

= 1

2

∑
γ,δ

θ̄ [γδ ] 3
2 θ̄

[γ+h6
δ+g6

] 1
2 θ̄

[γ+h7
δ+g7

] 3
2 · · · θ̄[γ+h6+···+h9

δ+g6+···+g9

] 1
2 , (5.4)

while the shifted (4, 4)-lattice and the phase ϕ
[�h
�g
]

we have introduced must be chosen in a way 
that ensures modular invariance. The latter is guaranteed when the actions of the SL(2, Z) gener-
ators on the Techmüller parameter translate into matrix transformations on the conformal blocks,

τ → − 1

τ
⇐⇒ (�h, �g) → (�h, �g)S , (γ, δ) → (γ, δ)S,

(a, b) → (a, b)S ,

and (5.5)

τ → τ + 1 ⇐⇒ (�h, �g) → (�h, �g)T , (γ, δ) →
(
γ, δ + γ − 1

2

)
,

(a, b) →
(
a, b + a − 1

2

)
where

S =
(

0 −1
1 0

)
, T =

(
1 1
0 1

)
, (5.6)

provided the components of �h, �g in the definition of Z(6)

[�h
�g
]

can be defined modulo 1.16

It turns out that �0,16
[�h
�g
]

is invariant under either of the shifts hI → hI + 1 or gI → gI + 1, 
I ∈ {6, . . . , 9}, but only satisfies the transformations (5.5) up to non-trivial multiplicative phases. 
To compensate these phases, we may choose

ϕ
[�h

�g
]

= 2
9∑

I=6

(h6gI + g6hI ) , (5.7)

so that the product e
iπϕ

[�h
�g
]
�0,16

[�h
�g
]

indeed satisfies the transformations rules (5.5). However, 

the price to pay once we introduce the non-trivial phase ϕ
[�h
�g
]

is that e
iπϕ

[�h
�g
]
�0,16

[�h
�g
]

is no more 

invariant under the shifts hI → hI +1 and gI → gI +1. Fortunately, the torus lattice �4,4
[�h
�g
]

has 
similar properties, when the orbifold generators act asymmetrically on the internal coordinates. 
Namely, it respects the transformation rules (5.5), but is not invariant under the shifts hI →
hI + 1 and gI → gI + 1, as explained below Eq. (4.1). Using this observation, it appears that the 
following suitable choice of (4, 4)-lattice,

�4,4

[�h
�g
]

= �4,4

[�h,�h′
�g,�g′

]
,

where hI = hI , I ∈ {6,7,8,9} , h′
6 = h7 + h8 + h9 , h′

7 = h′
8 = h′

9 = h6 ,

gI = gI , g′
6 = g7 + g8 + g9 , g′

7 = g′
8 = g′

9 = g6 ,

(5.8)

implies all shifts hI → hI +1 and gI → gI +1 to become symmetries of e
iπϕ

[�h
�g
]
�4,4

[�h
�g
]
�0,16

[�h
�g
]
. 

In that case, the full partition function in Eq. (5.3) is modular invariant. To put it plainly, in the 

16 γ, δ and a, b appearing in Eqs (5.3) and (5.4) are automatically defined modulo 1.
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internal space, G6 acts as a half-period shift on X6
L +X6

R , as well as on X7
L −X7

R , X8
L −X8

R and 
X9

L − X9
R , while each of the remaining generators GI , I ∈ {7, 8, 9}, acts as a half-period shift on 

XI
L +XI

R , as well as on X6
L −X6

R . Because all GI ’s shift a geometric coordinate XI = XI
L +XI

R , 
their actions are free, as required. In total, the different blocks of the partition function take the 
Hamiltonian form

Z(6)

[�h
�g
]

= (−1)
2ϕ

[�h
�g
]
+4h6g6

τ 2
2 (ηη̄)8

1

2

∑
a,b

(−1)2(a+b+2ab) θ [ab]4

η4 (−1)4(g6a+h6b+g6h6)
�0,16

[�h
�g
]

η̄16∑
�m,�n

(−1)2[g6(m6+n7+n8+n9)+g7(m7+n6)+g8(m8+n6)+g9(m9+n6)] 
 �m+�h′,�n+�h .

(5.9)

In order to describe the spectrum, it is useful to write the above result in terms of affine O(2n)

characters. In the untwisted sector �h = �0, because the generator G6 twists 8 real fermions, we 
obtain

Z(6)

[�0
(g6,0,0,0)

]
= 1

τ 2
2 (ηη̄)8

(
V8 − (−1)g6S8

)∑
�m,�n

(−1)2g6(m6+n7+n8+n9)
 �m,�n

(
Ō24Ō8 − (−1)δg6,0 V̄24V̄8 + S̄24S̄8 − (−1)δg6,0C̄24C̄8

)
.

(5.10)

Moreover, one can see from Table 2 that the remaining 14 group elements 
∏

I G
2gI

I , where 
(g7, g8, g9) 
= (0, 0, 0), twist 16 real fermions, leading to

Z(6)

[�0
�g
]

= 1

τ 2
2 (ηη̄)8

(
V8 − (−1)g6S8

)
∑
�m,�n

(−1)2[g6(m6+n7+n8+n9)+g7(m7+n6)+g8(m8+n6)+g9(m9+n6)]
 �m,�n

(
Ō16Ō16 − V̄16V̄16 + S̄16S̄16 − C̄16C̄16

)
. (5.11)

Similarly, in the sector twisted only by G6, we have

Z(6)

[
(1,0,0,0)

�0
]

= 1

τ 2
2 (ηη̄)8

(
O8 −C8

)∑
�m,�n


 �m+�h′,�n+�h
(
Ō24S̄8 + V̄24C̄8 + S̄24Ō8 + C̄24V̄8

)
,

(5.12)

while for the remaining 14 twisted sectors �h, where (h6, h7, h8) 
= (0, 0, 0), we find

Z(6)

[�h
�0
]

= 1

τ 2
2 (ηη̄)8

[
δh6,0

(
V8 − S8

) + δ
h6,

1
2

(
O8 − C8

)]∑
�m,�n


 �m+�h′,�n+�h
(
Ō16S̄16 + V̄16C̄16 + S̄16Ō16 + C̄16V̄16

)
.

(5.13)

Due to the free action of the generator G6 on X6, it is not surprising that all the states involved 
in Eq. (5.12) are automatically “super-heavy”, when the scale
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M =
√

G66

2
, (5.14)

of supersymmetry breaking is lower than the string scale (the winding number n6 + 1
2 cannot 

vanish).17 Similarly, the free actions of G7, G8, G9 respectively on the directions X7, X8, X9

imply all the states in the sectors (h6, h7, h8) 
= (0, 0, 0) to also be very heavy, when the sizes 
of these directions are not much smaller than the string length (the vector of winding numbers 
�n+ �h cannot vanish). Therefore, when M � 1 and the other compactification moduli are generic, 
the light spectrum, as anticipated, is composed of the massless states of the untwisted sector, 
as well as their towers of modes associated with the large internal direction X6. The massless 
bosons arise in the combinations of characters V8Ō24Ō8/(ηη̄)8, V8V̄24V̄8/(ηη̄)8 in Eq. (5.10), 
and V8Ō16Ō16/(ηη̄)8, V8V̄16V̄16/(ηη̄)8 in Eq. (5.11). Their counting goes as follows,

nB = 8

24

([
8 + 276 + 28 + 24 × 8

] + [
8 + 276 + 28 − 24 × 8

]
+ 14 × [

8 + 120 + 120 − 16 × 16
]) = 8 × (8 + 8 × 3) ,

(5.15)

which matches with the spectrum expected from the orientifold point of view, Eq. (2.3). In total, 
the gauge group symmetry is U(1)4

grav × U(1)4 × [SO(3) × SO(1)]8. Similarly, the massless 
fermions are found from the characters −S8Ō24Ō8/(ηη̄)8, −S8V̄24V̄8/(ηη̄)8 in Eq. (5.10), and 
−S8Ō16Ō16/(ηη̄)8, −S8V̄16V̄16/(ηη̄)8 in Eq. (5.11). Notice that the sectors g6 = 1

2 contribute 
with an opposite sign, as follows from the fact that the generator G6 also acts as (−1)F . As a 
result, we find

nF = 8

24

([
8 + 276 + 28 + 24 × 8

] − [
8 + 276 + 28 − 24 × 8

]
+ (7 − 7) × [

8 + 120 + 120 − 16 × 16
]) = 8 × (8 × 3) ,

(5.16)

again reproducing the counting of the fermionic degrees of freedom found in 8 copies of vector 
multiplets in the bifundamental representation of [SO(3) × SO(1)].

To summarize, the heterotic model we have constructed fulfils all the requests a dual version 
of the orientifold models under consideration should satisfy. Notice that, on the open string side, 
several distributions of D5-branes yield an [SO(3) × SO(1)]8 gauge symmetry, with massless 
fermions in the bifundamentals. They are obtained by exchanging the numbers of D5-branes 
located on a pair of adjacent O5-planes along the Scherk–Schwarz direction. Even though this 
operation does not change the light spectrum, it does change the perturbative heavy modes. How-
ever, as can be seen in Table 2, the 32 fermions of the heterotic description can be split into 8 
equivalent sets of 4. Because the generator G6 flips the sign of any arbitrary fermion out of 4 
in each set, it seems that the heterotic description is unique. Thus, all the “cousin” orientifold 
configurations described above should be equivalent to each-other at the non-perturbative level.

6. Conclusions

The fact that branes may have rigid positions in orientifold models entails appealing pos-
sibilities for reducing moduli instabilities that generically occur at the quantum level, when 

17 Tachyons in O8Ō24S̄8/(ηη̄)8, and massless bosons and fermions in O8V̄24C̄8/(ηη̄)8 and −C8Ō24S̄8/(ηη̄)8 may 
arise, when M = O(1).
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supersymmetry is spontaneously broken. They can also be used to increase the 1-loop potential 
to a vanishing or positive value, at least in a perturbative framework. However, strong constraints 
arising from the consistency of the setup at the non-perturbative level imply a drastic reduction 
of the allowed configurations. In particular, the number of rigid branes can only be 0, 16 or 32, 
with specific distributions on the O′−-planes. In the present work, we have shown that all non-
perturbatively-consistent branches of the toroidal orientifold moduli space in dimension D ≥ 5
admit heterotic dual descriptions. This is done by considering the usual SO(32) heterotic the-
ory, and by explicitly constructing two representative models of reduced rank, with gauge groups 
[SO(3) × SO(1)]8 and SO(1)32.

The SO(32) and [SO(3) × SO(1)]8 models have negative potentials, with respectively mas-
sive or marginal Wilson lines at 1-loop, provided that the supersymmetry breaking scale is below 
the string scale to avoid severe tree level instabilities similar to the Hagedorn transition [70–74]. 
On the contrary, the SO(1)32 theory does not develop tree-level instability of this type at any 
point in moduli space, while its potential is positive at least at low supersymmetry breaking 
scale.18

An interesting fact is that the heterotic counterpart of rigid D-branes is realized by freely 
acting orbifolds that assign to internal real free fermions boundary conditions in such a way that 
one is left with two-dimensional Ising model conformal blocks.

Unfortunately, the issue of moduli stabilization is more subtle than expected. In the open string 
side, the closed string moduli are flat directions due to the lack of light states19 charged under 
the Abelian symmetries arising from the toroidal compactification. One interest into looking for 
heterotic duals lied in the fact that a priori these scalars may be stabilized in a dynamical way 
at points in moduli space of enhanced gauge symmetry. However, the symmetric or asymmet-
ric orbifold actions constrained by modular invariance typically project out such extra massless 
states, jeopardizing the lifting of the corresponding flat directions. Moreover, we only get models 
with unbalanced bosonic versus fermionic massless degrees of freedom, implying the effective 
potential to be large, due to its scaling proportional to a power of the supersymmetry breaking 
scale.
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