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Abstract: The introduction of sophisticated waste treatment plants is making the process of trash
sorting and recycling more and more effective and eco-friendly. Studies on Automated Waste Sorting
(AWS) are greatly contributing to making the whole recycling process more efficient. However, a
relevant issue, which remains unsolved, is how to deal with the large amount of waste that is littered
in the environment instead of being collected properly. In this paper, we introduce BackRep: a
method for building waste recognizers that can be used for identifying and sorting littered waste
directly where it is found. BackRep consists of a data-augmentation procedure, which expands
existing datasets by cropping solid waste in images taken on a uniform (white) background and
superimposing it on more realistic backgrounds. For our purpose, realistic backgrounds are those
representing places where solid waste is usually littered. To experiment with our data-augmentation
procedure, we produced a new dataset in realistic settings. We observed that waste recognizers
trained on augmented data actually outperform those trained on existing datasets. Hence, our data-
augmentation procedure seems a viable approach to support the development of waste recognizers
for urban and wild environments.

Keywords: automated waste sorting; convolutional neural networks; background replacement; data
augmentation; computer vision; deep learning; multi-class classification

1. Introduction

Even though sorting and recycling efficiencies are improved by augmenting modern
waste treatment plants, another problem is arising. More and more waste is being littered in
the environment instead of being collected properly. Oceans are full of plastic debris [1,2],
which is spoiling the beauty of coasts [3]. Yet, even if this is a huge problem for oceans,
it becomes gigantic for land. It seems that the presence of macro-plastic debris in soil
is 40 times bigger than in the oceans [4]. Pieces of solid waste are commonly found in
streets, urban parks, beaches, forests and many other places, showing the footprint of a
modern human society. Precious glass bottles, plastic bottles, cans and carton boxes are
littered, and their potential value is lost. Moreover, the COVID-19 pandemic has made
waste management even more challenging, due to uncontrolled increase of household
waste during lockdown [5].

The solution to retrieve macro-litter cannot just rely on the current trend of aug-
menting traditional plants for management of solid waste with Automated Waste Sorting
systems based on image recognition techniques. Actually, litter has bypassed traditional
recycle management, which can transform waste in new precious material. Current waste
recognition systems aim to reduce the number of people working in these unhealthy waste
treatment plants. For example, waste pickers of the most important landfills in Brazil
have been, or still are, subject to many diseases, due to working conditions: mainly osteo-
muscular disorders, but also viral infections and emotional vulnerabilities [6]. Therefore,
current waste recognition systems [7–22] as well as current corpora for training [7,10] focus
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on the activity of waste sorting in waste management plants. Solid waste runs on conveyor
belts and, then, it is sorted into the different types. For this reason, current datasets contain
waste images taken on a uniform background. In fact, conveyor belts have generally a
uniform color. Yet, systems resulting from these datasets can be used only when solid
waste has arrived in its prefinal destination. Searching and sorting solid waste in natural
and urban environments may result in several difficulties for these systems trained on
existing datasets.

In this paper, we introduce a method for building automated waste recognizers that
can be used for identifying and sorting litter directly where it is found. Our method
is based on BackRep, a novel data-augmentation procedure, which expands existing
datasets by cropping solid waste in images taken on a uniform (white) background and
superimposing it on more realistic backgrounds. For our purpose, realistic backgrounds are
those backgrounds representing places where solid waste is usually littered. To experiment
with our data-augmentation procedure, we produced a new dataset in realistic settings.

2. Related Work

Automated Waste Sorting (AWS) has been sometimes framed as an image recognition
task [12] and, indeed, this could be an interesting way to see it. However, this task poses
additional challenges to the classical object recognition in images. Actually, unlike normal
objects, waste objects are distorted, possibly crushed. From our perspective, AWS should
be seen as an image recognition task, as we envisage to build robots operating in different
scenarios to retrieve littered waste.

The major challenge to design AWS systems learned from data is building an image
dataset for the specific task. Hence, this has been one of the first issues that has been
tackled along with the design of AWS systems. One of the most important datasets is the
one gathered during the development of TrashNet [7]. This dataset has been the basis for
many other studies [8–22]. The TrashNet dataset has been further extended by adding
the compost class [10]. However, this type of dataset is important but not completely
useful, as waste images are taken on a neutral white background, which is probably used
to simulate conveyor belts, i.e., the operational environment of AWSs. Here, we propose a
novel testing dataset to simulate a different operational scenario for AWSs.

As the aim of AWS systems is seen as an object recognition task in images, applying
deep-learning architectures is one of the most examined approaches. Convolutional Neural
Network (CNN)-based models such as AlexNet [23] have been used for building solutions
such as TrashNet [7]. Yet, different models have been proposed by increasing the depth
and even modifying the structure of the neural network. In this framework, RecycleNet [8]
improved dramatically the performance obtained on the TrashNet dataset. RecycleNet
extends a 121 layers DenseNet [22] with the use of skip connections via concatenation on
Models with many layers combined with application of transfer learning.

As the expected use of AWS systems is in apps in mobile phones [10,14] or in software
embedded in waste picker robots [21], existing datasets [7,10] and, consequently, existing
learned AWSs are no more adequate. Waste picker robots may be placed in urban as well
as natural environments to clean and recycle precious waste using adapted AWS systems.

Datasets representing waste where it is usually found are starting to be hypothesized [12],
and a project to build a crowdsourced multilabel dataset is in progress [24]. However,
since, similar wastes may appear on quite a lot of different backgrounds and conditions,
gathering a reliable dataset for the AWS task is really challenging. For this reason, we
believe the data augmenting approach proposed here may greatly contribute to generalize
the classification model by exploiting conveyor-belt-oriented datasets to our advantage.

The use of data-augmentation techniques is quite common in the framework of
image classification, usually applied to increase both the amount and the diversity of
data (images), reducing the dependence of the classification from image characteristics
which are assumed irrelevant, such as scale, brightness, rotation, filtering, partial erasing.
Augmentation is then performed by applying (sequences of) operators, which are assumed
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to represent invariances with respect to classifications, on the images. Given a set of
operators, finding an effective data-augmentation technique based on suitable compositions
of such operators may greatly improve the overall classifier predictions. Although in many
cases the proposed augmentation techniques are dataset-dependent, several techniques
have also been proposed in the literature to learn an effective augmentation technique from
the dataset itself, by searching a space of possible augmentation procedures [25–28]. In this
paper, however, we concentrate on the case of data augmentation with respect to a different
characteristic, i.e., image background. As observed above, this seems particularly relevant
in the application framework considered. Litter may be found and should be classified in
quite different contexts, in a way which must be as robust as possible with respect to such
contexts, and thus to the image background.

The BackRep technique presented here is based on augmenting the dataset by inserting
trash items from images taken on a uniform background on a set of different realistic
backgrounds. It is an open issue to perform a detailed study of how much the choice of
different backgrounds (in a given set) affects the classifier performance. We also observe
that the approach of [25–28] to automatically derive augmentation technique from data
seems suitable to be applied also in the framework considered here.

3. Datasets

To test waste recognizers in normal setting, we relied on an existing dataset–
CompostNet [10]—which has been mainly used for training (Section 3.1) and we gathered
a testing dataset where waste images are taken where waste can be most often found
(Section 3.2).

3.1. An Existing Conveyor-Belt-Oriented Dataset

We referred to the CompostNet dataset [10] to test the ability of our data-augmentation
method to exploit existing datasets for training waste classifiers that can be applied to
identify and classify waste in a general setting.

In the CompostNet dataset, waste images are taken on a white background (Figure 1).
For this reason, these images are oriented to support the building of waste classification
models which can be used for sorting waste on conveyor belts. In fact, the CompostNet
dataset completes the TrashNet dataset [7] adding the compost class. The TrashNet dataset
consists of 2527 images on six different classes of materials: paper, glass, plastic, metal,
cardboard and trash (see Table 1). These images represent ruined objects, which can be
associated with the notion of waste. These images were produced as part of the activities
reported in [7] and they were taken from multiple viewpoints to expand (and improve)
the dataset with additional images representing the complex shapes of damaged waste.
Their initial idea of using the Flickr Material Database [29] and images from Google
ImagesTM was not applicable. In fact, these images did not accurately represent the state
of wasted goods as most of them represents undamaged or totally unused objects. The
TrashNet dataset has been largely used [7,8,10,11,13,15,16,20,21]. The set of additional
images in CompostNet has the same features of the rest of the TrashNet dataset. The
177 compost images have a white background (see Table 1).

In our experiments, we used the 70%-13%-17% split for train, validation and test,
respectively, as in [7]. All the categories have been included. Validation split will be useful
for tuning hyperparameters during the learning phase. Hence, the model will be tested on
these samples so that the gold test set will remain unused.
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Figure 1. Trashnet dataset, one sample for each class.

Table 1. TrashNet and CompostNet Dataset distribution.

Category Entries Percentage

TrashNet Categories

Cardboard 403 15
Glass 501 18
Metal 410 15
Paper 594 22
Plastic 482 17
Trash 184 7

Compost 177 6

Total 2751 100

3.2. Littered Waste Testset

For evaluating whether waste recognition systems can provide good results for waste
in normal setting, we prepared a testing corpus: the Littered waste Testset. In our corpus,
images of waste items are taken on more normal settings, i.e., the background is not a
neutral white. This aims to represent waste where it is most usually littered and not on the
conveyor belt of a waste management plant.

The Littered waste Testset consists of 114 images categorized according to the cate-
gories of the CompostNet dataset (see Table 2). A group of 4 volunteers took the pictures in
domestic and outdoor contexts with different kinds of backgrounds and light (see Figure 2).
The group used their phone camera and images were then resized to 500 × 400 pixels. The
distribution of classes of waste has been determined by the volunteers. These are waste
found in urban environment and in their homes. Volunteers were asked to produce at least
ten samples per class.

This novel testset may be confusing for waste categorization systems trained on
conveyor-belt-oriented dataset. Actually, parts of the background may improperly affect
the behavior of the convolution neural network, since the texture as well as the color may be
similar to other kinds of waste. For example. the background of the plastic cap in Figure 2
may be mistaken for a carton. This makes the use of this dataset extremely challenging.
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Figure 2. Littered waste testset: two samples for each class.

Table 2. Distribution of the Categories on the Littered waste Testset.

Category Entries Percentage

TrashNet Categories

Cardboard 15 13
Glass 11 10
Metal 11 10
Paper 15 13
Plastic 26 23
Trash 16 14

Compost 19 17

Total 114 100

4. Methods and Implementation

The main goal of our research is building Automated Waste Sorting systems to identify
and classify waste retrieved in its littered site, as represented in the Littered waste testset
(Section 3.2). Hence, we first introduce here BackRep, our data-augmentation method for
exploiting existing categorized waste datasets (Section 4.1). Secondly, we briefly report on
AlexNet [7] and InceptionV4 [30], which are two state-of-the-art systems applied to waste
classification. These two latter systems have been used in combination with BackRep to
prove its viability with respect to the main goal.

4.1. Data-Augmentation with Background Replacement

The core of our method is a data-augmentation procedure based on image background
replacement (BackRep). The intuition behind this approach is that of putting existing,
categorized waste in context. BackRep is adding the noise that waste classifiers may find in
Littered waste. Then, images in context help waste classifiers to focus on the most relevant
parts of images.

The BackRep procedure relies on an existing conveyor-belt-oriented annotated dataset
and consists of the following three modules (see Figure 3):
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Figure 3. BackRep: a data-augmentation procedure based on image background replacement.

• Select&Crop selects the waste from an image in a conveyor-belt-oriented dataset, crops
it and, then, removes the background, replacing it with transparency. This is possible
as images in conveyor-belt-oriented datasets are generally on a uniform background.
Hence, selecting and cropping waste may be done with a high level of quality by
means of existing, widely available image processing libraries. In our study, we used
the OpenCV Python library.

• Littered waste Background Selection is a pseudo-random selection function of possible
backgrounds. This pseudo-random function extracts backgrounds from available
repositories. In our study, backgrounds derive from two major sources: (1) license
free images found on Unsplash (https://unsplash.com, accessed on 5 August 2021);
(2) background pictures produced in the present study. These backgrounds are ran-
domly selected among pictures representing surfaces with different textures and
lighting, as wastes can be found anywhere (see Figure 4).

• Merge is the simpler module as it merges cropped images and new backgrounds. The
final output is a novel image with its trash classification label (see Figure 5).

https://unsplash.com
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Figure 4. Background samples.

Figure 5. Overlay samples.

4.2. Two Automated Waste Sorting Systems

To experiment with our main idea, we selected two different state-of-the-art models:
AlexNet [23] as in TrashNet [7] and InceptionV4 [30]. In the following, we briefly describe
the models and their experimental configuration.

Our version of AlexNet [23] is a sequential model slightly modified in line with
TrashNet [7], which reduced the number of filters in the convolutional layers. In our
experiments, we adopted the following additional modules and hyperparameters. First,
VGG16 [31] image preprocessing module (from the KERAS library [32]) normalized images,
even if AlexNet does not foresee the normalization of the input. This preprocessing module
has been selected because it improved performance on the validation set and reduced the
swinging shape of the loss curve, which was observed in [7]. Secondly, hyperparameters
have been manually selected after some fine tuning over the validation set: the optimizer is
Adam [33] with learning rate of 0.001 and models were trained for 20 epochs with batches’
size of 32 images. Model summary is shown in Table 3.

InceptionV4 [30] is a pre-trained architecture for image recognition applied to waste
classification. One of the main ideas in this architecture is transfer learning. In fact, the
model is pre-trained with ImageNet weights. Moreover, this architecture includes skip
connections. In our experiments, basically, all the pre-trained weights have been fixed
during training except for the last layer. We replaced the dense top layer with a network
of a Global Average Pooling 2D layer with 1536 neurons and a fully connected layer with
1024 neurons and ReLU activation. This subnetwork aims to maximize feature extraction.
The final classifier is a Dense layer with SoftMax function for output normalization with
7 neurons, one for each class. The model went through 80 epochs of training with mini-
batches of 32 images. Additionally in this case, Adam [33] with learning rate of 0.001 has
been used as optimizer.
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Table 3. AlexNet parameter summary.

Layer (Type) Output Shape Param

Conv2D (None, 64, 64, 96) 34,944
MaxPooling2D (None, 32, 32, 96) 0

Conv2D (None, 32, 32, 192) 460,992
MaxPooling2D (None, 16, 16, 192) 0

Conv2D (None, 16, 16, 288) 497,952
Conv2D (None, 16, 16, 288) 746,784
Conv2D (None, 16, 16, 192) 497,856

MaxPooling2D (None, 7, 7, 192) 0
Flatten (None, 9408) 0
Dense (None, 4096) 38,539,264
Dense (None, 4096) 16,781,312
Dense (None, 7) 28,679

5. Results

Experiments aim to investigate if our technique of Background Replacement (Back-
Rep) for data augmentation (see Section 4.1) helps in adapting conveyor-belt-oriented
Automated Waste Sorting (AWS) systems to recognize waste in realistic settings.

For the above reason, we experimented with two state-of-the-art systems–AlexNet [7] and
InceptionV4 [30] (see Section 4.2)—enhanced with our BackRep. We texted four different
configurations of the two systems: NotAug, BackRep, BackRep&NotAug and LittleAug.
NotAug is the normal system. BackRep is the system where input data are augmented
with our BackRep methodology. BackRep&NotAug is the combination of NotAug and
BackRep, where input data is given as plain and augmented. Finally, LittleAug is the
model fed with a dataset with little augmentation: images are presented in two ways:
(1) plain; (2) vertically and horizontally flipped. This model is used to compare with
baseline augmentation techniques.

We carried out the experiments on both datasets: conveyor-belt-oriented and Littered
waste datasets (see Section 3). Section 3.1 describes the split in training, validation and
test. Systems are trained on the conveyor-belt-oriented using the 4 configurations for
5 times and tested on conveyor-belt-oriented and Littered waste. We reported Accuracy,
Macro Average F1 and Micro Average F1 (see Tables 4 and 5). F1-score is a useful metric to
understand classification performance because it depends on both Recall and Precision ,
and the final score is more influenced by lower values with respect to the arithmetic mean.
The difference between Macro and Micro Average F1 is that the first one is the average
of the unweighted F1-score per class, while the second one is the average of support-
weighted F1-scores. Support is the number of samples for each class. All experiments were
performed on Google’s free GPU on Google Collaboratory.
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Table 4. Accuracy, Macro Average F1 and Micro Average F1 of AlexNet with the 4 different configu-
rations. AlexNet is trained on the conveyor-belt-oriented training set and tested on the conveyor-belt-
oriented and on the Littered waste testing sets. Results report the average and the standard deviation
of 5 runs with different seeds. Difference in results is not statistically different using the t-test.

AlexNet NotAug BackRep BackRep &
NotAug LittleAug

Conveyor-belt-oriented test

Accuracy 0.683(±0.020) 0.444(±0.017) 0.624(±0.017) 0.697(±0.036)
Macro AVG F1 0.675(±0.011) 0.429(±0.012) 0.620(±0.018) 0.690(±0.034)
Micro AVG F1 0.683(±0.009) 0.436(±0.016) 0.626(±0.016) 0.695(±0.035)

Littered Waste test

Accuracy 0.138(±0.037) 0.161(±0.045) 0.149(±0.045) 0.147(±0.019)
Macro AVG F1 0.120(±0.045) 0.134(±0.049) 0.129(±0.045) 0.125(±0.022)
Micro AVG F1 0.110(±0.045) 0.139(±0.045) 0.130(±0.044) 0.112(±0.018)

Table 5. Accuracy, Macro Average F1 and Micro Average F1 of InceptionV4 with the 4 different
configurations. InceptionV4 is trained on the conveyor-belt-oriented training set and tested on the
conveyor-belt-oriented and on the Littered waste testing sets. Results report the average and the
standard deviation of 5 runs with different seeds. The symbols †, ? and ◦ indicate a statistically
significant difference between two results with a 95% of confidence level with the Student’s t test.

InceptionV4 NotAug BackRep BackRep &
NotAug LittleAug

Conveyor-belt-oriented test

Accuracy 0.844(±0.009) 0.758(±0.005) 0.847(±0.005) 0.851(±0.008)
Macro AVG F1 0.836(±0.011) 0.738(±0.004) 0.832(±0.008) 0.847(±0.009)
Micro AVG F1 0.843(±0.009) 0.757(±0.005) 0.846(±0.005) 0.851(±0.008)

Littered Waste

Accuracy 0.409(±0.012) ?† 0.442(±0.015) † 0.488(±0.025) ?◦ 0.451(±0.014) ◦

Macro AVG F1 0.427(±0.011) ? 0.422(±0.016) 0.483(±0.032) ? 0.461(±0.020)
Micro AVG F1 0.414(±0.013) ? 0.427(±0.016) 0.482(±0.028) ?◦ 0.439(±0.015) ◦

6. Discussion

Our experiments have solid bases as state-of-the-art waste classification systems are
correctly used. In fact, the performances of both AlexNet and InceptionV4 are similar, on
average, to those provided in the original papers [7,30]. Results are obtained as average of
5 runs with different seeds.

InceptionV4 has better performance on the conveyor-belt-oriented test with respect to
AlexNet. In fact, AlexNet reached a 0.683(±0.020) accuracy whereas InceptionV4 reached
0.844(±0.009) (Tables 4 and 5). The complexity of InceptionV4 is then well justified as the
resulting performance wrt accuracy is about 16% higher.

However, our hypothesis is confirmed: conveyor-belt-oriented-trained systems are
not directly applicable to Littered waste scenarios. Actually, both AlexNet and InceptionV4
had a consistent performance drop when tested in Littered waste setting. AlexNet dropped
by more than 0.55 points in accuracy from 0.683(±0.020) in conveyor-belt-oriented test
to 0.138 ± 0.037 in Littered waste test (Table 4). The better InceptionV4 had a similar
performance drop–around 0.44 in accuracy–from 0.844(±0.009) to 0.409(±0.012) (Table 5).

Our BackRep model is a viable solution to exploit conveyor-belt-oriented datasets for
improving waste classification systems in the Littered waste scenario. The use of BackRep
increases results in Littered waste setting in both systems. The improvement in accuracy
is higher for the best system, which is InceptionV4: 0.442(±0.015) vs. 0.409(±0.012)
in the Littered waste setting and this difference in accuracy is statistically significant
(Table 5). Moreover, BackRep in combination with the normal dataset has even better
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results: 0.488(±0.025) vs. 0.442(±0.015). This is a clear and important improvement with
respect to InceptionV4 learned on NotAug. Finally, the improvement is not only due to
the increase in dataset size. In fact, InceptionV4 trained on BackRep&NotAug significantly
outperforms the baseline data-augmentation model LittleAug.

Clearly, BackRep is not perfect. Actually, waste images may be misinterpreted and,
then, wrongly cropped. For example, the can in Figure 5 in the Metal category can be
barely recognized. Yet, this image used during training can help the neural network to
focus on specific and important features of the can itself. Anyone can easily image a metal
can littered in a field, where it can be covered of dirt or grass, so we are possibly training
our network to recognize it even in those cases. The remaining wedge-of-moon-shaped
can may be more informative than the complete can.

Our BackRep procedure as well as our Littered waste has a limitation. A large fraction
of the littered waste is represented by micro-plastics [34]. In fact, micro pieces of plastic
are not detectable with our current solution and these pieces may be so small they require
different approaches, not based on image recognition techniques.

7. Conclusions

Littered waste is overwhelming. In this paper, we presented BackRep, namely a model
to adapt existing Automated Waste Sorting (AWS) systems to be used for littered waste.
We also proposed a novel dataset for testing AWS systems for littered waste. Experiments
showed that AWS systems trained on augmented data outperform waste recognizers
trained on existing datasets. Hence, our data-augmentation procedure BackRep provides a
viable solution to build waste recognizers for urban and wild environments.

In conclusion, our BackRep model may enable the construction of Automated Waste
Sorting systems in Littered waste settings. These systems can be used to equip swarms
of robots, which may be used to clean woods, forests, shores and urban environments
removing macro littered waste.

Clearly, our BackRep model is a general data-augmentation model, which can be
used for different image recognition tasks. Hence, this model opens an interesting line
of research.
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