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We evaluate by means of lattice QCD calculations the low-energy constant l7 which parametrizes strong
isospin effects at next-to-leading order (NLO) in SU(2) chiral perturbation theory. Among all low-energy
constants at NLO, l7 is the one known less precisely, and its uncertainty is currently larger than 50%. Our
strategy is based on the RM123 approach in which the lattice path-integral is expanded in powers of the
isospin breaking parameter Δm ¼ ðmd −muÞ=2. In order to evaluate the relevant lattice correlators we
make use of the recently proposed rotated twisted-mass (RTM) scheme. Within the RM123 approach, it is
possible to cleanly extract the value of l7 from either the pion mass splittingMπþ −Mπ0 induced by strong
isospin breaking at order OððΔmÞ2Þ (mass method), or from the coupling of the neutral pion π0 to the

isoscalar operator ðūγ5uþ d̄γ5dÞ=
ffiffiffi
2

p
at orderOðΔmÞ (matrix element method). In this pilot study we limit

the analysis to a single ensemble generated by the Extended Twisted Mass Collaboration (ETMC) with
Nf ¼ 2þ 1þ 1 dynamical quark flavors, which corresponds to a lattice spacing a ≃ 0.095 fm and to a
pion massMπ ≃ 260 MeV. We find that the matrix element method outperforms the mass method in terms
of resulting statistical accuracy. Our determination, l7 ¼ 2.5ð1.4Þ × 10−3, is in agreement and improves
previous calculations.

DOI: 10.1103/PhysRevD.104.074513

I. INTRODUCTION

Chiral Perturbation Theory (ChPT) represents a power-
ful theoretical framework to describe the low-energy
dynamics of QCD taking full advantage of the conse-
quences of spontaneous chiral symmetry breaking. The
ChPT Lagrangian is organized as a power expansion in
terms of the external momenta and quark masses and,
depending on whether only light quarks are considered or
the strange quark is included, one has SU(2) or SU(3)

ChPT. The chiral expansion is then written in terms of
low-energy constants (LECs) whose values are fixed by
matching a number of observables to the predictions of
fundamental QCD or to their experimental determination.
The ChPT Lagrangian at LO contains only two LECs: the
pion decay constant fπ ∼ 132 MeV and the parameter B0

proportional to the chiral condensate hψ̄ψi, while at next-
to-leading order (NLO) the SU(2) ChPT Lagrangian is
parametrized, apart from contact terms, by the seven LECs
fligi¼1;…;7 [1]. Strong isospin-breaking (IB) effects at
NLO are all parametrized by l7, which corresponds to
the only LEC that couples to an operator function of the up-
down quark mass difference mu −md. In the seminal
papers by Gasser and Leutwyler [1,2], a phenomenological
estimate of the values of the NLO LECs fligi¼1;…;7, based
on the available experimental information, was given.
l7 enters any ChPT-based calculations where IB effects

play an important role, and for this reason a first principle
and high precision evaluation of its value is important for
several phenomenological analyses. To give some example,
according to Ref. [3] the prediction at NLO of the axion
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mass ma ¼ 5.70ð6Þð4Þ μeVð1012 GeV=faÞ, where fa is
the axion decay constant, has an overall uncertainty of
orderOð1%Þ where the first source of error comes from the
uncertainty on the up-down quark mass ratiomu=md, while
the second one is due to the uncertainty on the value of l7.
A precise determination of l7 turns out to be even more
crucial in the evaluation at NLO of the axion quartic self-
coupling λa ¼ −0.346ð22Þm2

a=f2a, where the resulting
≃6% error is completely dominated by the uncertainty
on l7. More recently [4], the axion-pion scattering process
aπ → ππ has been computed in SU(2) ChPT at NLO in
order to probe the convergence of the chiral expansion of
the axion-pion thermalization rate ΓaðTÞ, from which it is
possible to put the so-called hot dark matter (HDM) bounds
on the axion mass. In this case, the uncertainty on the value
of l7 produces a 15–20% uncertainty in the amplitude for
aπ → ππ at NLO.
Among the LECs l7 turns out to be one affected by the

largest uncertainty. A first estimate of its value was
obtained by matching the charged/neutral pion mass split-
tingMπþ −Mπ0 parametrized by l7 in SU(2) ChPT at NLO
to the value predicted by SU(3) ChPT at LO and due to
η − π0 mixing [1]. This gives, for this constant which is
scheme and scale independent at NLO, the relation

l7 ¼
f2π

12M2
η
∼ 5 × 10−3: ð1Þ

Higher order corrections to the SU(3) tree level prediction,
which depend on the knowledge of the SU(3) LECs at
NLO, however, turn out to be numerically of the same size
as the LO prediction of Eq. (1), giving rise to a large
systematic uncertainty, namely l7 ¼ 7ð4Þ × 10−3 [3]. A
first attempt to determine the value of l7 from lattice QCD
simulations has been made by the RBC-UKQCD
Collaboration [5], where the NLO and NNLO partially
quenched SU(2) LECs have been extracted by means of a
global fit to various pseudoscalar masses and decay
constants. However, the value l7 ¼ 6.5ð3.8Þ × 10−3 that
has been reported, being obtained from a NNLO ChPT
global fit, is strongly correlated to the other LECs which
contribute at NLO to the dependence of the fitted meson
masses and decay constants on the light quark masses.
In this paper we propose to determine l7 directly from

first principle lattice QCD simulations, evaluating IB
effects within the RM123 approach [6,7], in which the
path-integral is expanded around the isosymmetric point
md ¼ mu in powers of Δm ¼ ðmd −muÞ=2. We use the
rotated twisted-mass (RTM) scheme [8], which have been
shown to reduce the statistical noise of some mesonic
lattice correlation functions. We employ two different
strategies to determine l7: the first one (in the following
mass method) is based on the computation of the charged/
neutral pion mass splitting Mπþ −Mπ0 at order OððΔmÞ2Þ,
while the second one (in the following matrix element

method) consists in extracting l7 from the coupling
ZP0π0 ¼ h0jP0jπ0i of the neutral pion to the isoscalar
operator

P0 ¼ 1ffiffiffi
2

p ðūγ5uþ d̄γ5dÞ ð2Þ

at leading order OðΔmÞ. The clear advantage of our
strategy is represented by the fact that within the
RM123 approach one evaluates directly the derivatives
in Δm of both Mπþ −Mπ0 and ZP0π0 which, being propor-
tional to l7, allow for a clean extraction of its value. This is
different from what happens in the global fit procedure,
where the value of l7 must be evaluated together with the
other LECs which enter at the same and lower order in
ChPT, by fitting the combined quark mass dependence of
several meson masses and decay constants.
We make use of the gauge configurations produced

with Wilson-clover TM fermions by the Extended
Twisted Mass Collaboration (ETMC) [9,10]. For this
feasibility study, we limit our simulations to a single
value of the lattice spacing a ≃ 0.095 fm and to an
higher-than-physical pion mass Mπ ≃ 260 MeV, postpon-
ing the extrapolation to the continuum and chiral limit to
a future work. We also note, however, that any residual
pion mass dependence which is left in our present
estimate of l7 represents a NNLO (or higher order)
effect in ChPT. This is only relevant for phenomeno-
logical applications which aim to an accuracy beyond
NLO in the chiral expansion, where many other unknown
LECs are involved in any case.
The remaining of the paper is organized as follows: in

Sec. II we briefly introduce the mass method and the
matrix element method. In Sec. III we derive the
diagrammatic expansion of the relevant lattice correlators
in the RTM scheme, describing the procedure we used t
o relate them to the pion mass splitting Mπþ −Mπ0 and to
the matrix element ZP0π0 . In Sec. IV we present our
numerical results, and finally in Sec. V we draw our
conclusions.

II. THE MASS METHOD AND THE MATRIX
ELEMENT METHOD

In this section we describe the two methods that,
following Gasser and Leutwyler [1], we considered for a
direct determination of l7. The mass method relies on the
fact that l7 parametrizes the charged/neutral pion mass
difference induced by QCD IB through

M2
πþ −M2

π0
¼ ðmu −mdÞ2

4B2
0

f2π
l7; ð3Þ

where fπ is the pion decay constant normalized as
fπ ≃ 132 MeV. Expanding the left-hand side (lhs) of the
previous equation using
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M2
πþ −M2

π0
¼ ðMπþ þMπ0Þ · ðMπþ −Mπ0Þ
≃ 2MπðMπþ −Mπ0Þ; ð4Þ

and by noticing that at LO in the chiral expansion
M2

π ≃ B0ðmu þmdÞ ¼ 2B0ml, one has

2MπðMπþ −Mπ0Þ ≃ ðmu −mdÞ2
M4

π

m2
lf

2
π
l7: ð5Þ

This allows us to compute l7 through

l7 ¼ 2
ðMπþ −Mπ0ÞQCD

ðmu −mdÞ2
·
m2

lf
2
π

M3
π

; ð6Þ

where we emphasized that the difference ðMπþ −Mπ0ÞQCD
in Eq. (6) indicates only the pure QCD contribution to the
pion mass splitting, which is subdominant with respect to
the leading QED contribution of OðαemÞ.
The matrix element method relies instead on the fact that,

away from the isosymmetric limit, i.e., for different up and
down quark masses, the neutral pion has a nonvanishing
isosinglet component the size of which is quantified by the
matrix element

ZP0π0 ≡ h0jP0jπ0i ¼ 1ffiffiffi
2

p h0jðūγ5uþ d̄γ5dÞjπ0i ð7Þ

The matrix element ZP0π0 is directly proportional to l7

through [1]

ZP0π0 ¼ −ðmu −mdÞ
4B2

0

fπ
l7 ¼ −ðmu −mdÞ

M4
π

fπm2
l
l7; ð8Þ

which allows us to determine l7 via

l7 ¼ −
ZP0π0

mu −md
·
fπm2

l

M4
π

: ð9Þ

Equations (6) and (9) show that in a mass independent
scheme l7 is a dimensionless RGI quantity. Therefore it
can be expressed equivalently in terms of the bare lattice
quantities or the renormalized ones.
To evaluate the pionmass splitting at orderOððmu−mdÞ2Þ

and the matrix element ZP0π0 at Oðmu −mdÞ, we adopt the
RM123 method which is based on the Taylor expansion of
the QCD path-integral around the isosymmetric point [6,7].
In order to reduce the statistical noise of the correlators
involved in the calculation, we will make use of the RTM
scheme introduced inRef. [8]. For completeness this scheme
will be briefly introduced in the next section, the interested
reader is referred to Ref. [8] for more details.

III. RM123 EXPANSION IN THE RTM SCHEME

The lattice QCD RTM Lagrangian of the light doublet
ψ 0
l ¼ ðu0; d0Þ, is given by [8]

LRTMðψ 0
lÞ ¼ ψ̄ 0

lðxÞ½γμ∇̃μ − iγ5τ3WðmcrÞ
þml þ Δmτ1�ψ 0

lðxÞ; ð10Þ

where Δm ¼ 1
2
ðmd −muÞ, ∇̃μ is the lattice symmetric

covariant derivative, written in terms of the forward
ð∇μÞ and backward (∇�

μ) covariant derivatives,

∇̃μ ¼
1

2
ð∇�

μ þ∇μÞ ð11Þ
and WðmcrÞ is the critical Wilson term, which includes the
mass and is globally odd under r → −r,

WðmcrÞ ¼ −a
r
2
∇μ∇�

μ þmcrðrÞ: ð12Þ
Notice the unconventional direction in flavor space of the
isospin-breaking term

LIB ¼ ψ̄ 0
lτ1ψ

0
l: ð13Þ

The quark fields u0; d0 appearing in the RTM Lagrangian,
which are regularized in Eq. (10) with opposite values of
the Wilson parameter r ¼ �1, are not the physical ones.
They are related to the physical up and down quark fields u
and d, through�

u0

d0

�
¼ 1ffiffiffi

2
p

�
1 1

−1 1

��
u

d

�
¼ 1ffiffiffi

2
p

�
uþ d

d − u

�
ð14Þ

The RTM Lagrangian is not equivalent to the standard
twisted mass Lagrangian. It can be shown [8] that rotating
back to the physical doublet ψl ¼ ðu; dÞ, the RTM
Lagrangian coincides with the regularization proposed in
Ref. [11] and adopted by the ETMC to discretize the
Lagrangian of the heavy doublet ψh ¼ ðc; sÞ. From this
observation, it follows that the Lagrangian of Eq. (10)
inherits all the benefits of the standard twisted mass
regularization, including the Oða2Þ improvement of parity
even observables at maximal twist.
In order to determine the diagrammatic expansion (in the

RTM basis) ofMπþ −Mπ0 at orderOðΔm2Þ and the matrix
element ZP0π0 at order OðΔmÞ it is necessary to establish
the relation between the physical correlators CπþπþðtÞ −
Cπ0π0ðtÞ and CP0π0ðtÞ (CABðtÞ ¼ h0jAðtÞB†ð0Þj0iÞ, written
in terms of the physical quark fields u and d, and the
correlators written in the rotated basis. Using Eq. (14), it is
straightforward to show that such relations are given by

CπþπþðtÞ − Cπ0π0ðtÞ ¼ −2Cπ0þπ0−ðtÞ; ð15Þ

CP0π0ðtÞ ¼ −
1ffiffiffi
2

p ½CP00π0þðtÞ þ CP00π0−ðtÞ�; ð16Þ

where

π0− ¼ ū0γ5d0; π0þ ¼ d̄0γ5u0; P00 ¼ 1ffiffiffi
2

p ½ū0γ5uþ d̄0γ5d�:

ð17Þ
We now discuss the RM123 expansion of the correlators

appearing in the right-hand side (rhs) of Eqs. (15) and (16),
respectively at second and first order in Δm, postponing to
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the next subsection the description of the relations between
the correlators and the physical observables that we want to
extract.
In full generality, the expansion of the VEV of a given

observable O up to second order in Δm, can be written as

hOi ¼ hOi0 − Δm
X
x

hOLIBðxÞi0

þ ðΔmÞ2
2

X
x;y

½hOLIBðxÞLIBðyÞi0

− hOi0hLIBðxÞLIBðyÞi0� þ…; ð18Þ
where h·i0 denotes the average in isosymmetric QCD. For
the correlators Cπ0þπ0−ðtÞ, CP00π0þðtÞ and CP00π0−ðtÞ, the
expansion reads (the latter two must be expanded at leading
order only)

Cπ0þπ0−ðtÞ ¼
ðΔmÞ2

2

X
x;y

½hPπ0þðtÞLIBðxÞLIBðyÞP†
π0−ð0Þi0�

ð19Þ

CP00π0þðtÞ ¼ −Δm
X
x

hP00ðtÞLIBðxÞP†
π0þð0Þi0 ð20Þ

CP00π0−ðtÞ ¼ −Δm
X
x

hP00ðtÞLIBðxÞP†
π0−ð0Þi0; ð21Þ

where PPðxÞ is an interpolator of the meson P. In the
previous expression it is implied that the interpolating fields
are projected to zero three momentum p⃗ ¼ 0. In all cases,
the leading zeroth order term vanishes because in the
isosymmetric limit there is no mixing between the rotated
pions, and they also do not possess an isoscalar component.
Moreover, the orderOðΔmÞ term in the expansion of Cπ0þπ0−

also vanishes (as expected), because at least two insertions of
the perturbation LIB are needed in order to convert ū0 ↔ d̄0
and have a mixing between π0þ and π0−. In the physical
basis, this corresponds to the fact that the pion correlators are
symmetric with respect to u ↔ d and can receive, therefore,
only corrections proportional to even powers of Δm.
Performing the corresponding Wick contractions and

then taking the isosymmetric limit, one obtains the follow-
ing diagrammatic expansion for the previous correlators1

ð22Þ

ð23Þ

The black lines in the diagrams represent the isosymmetric light quark propagators with Wilson parameter r ¼ �1 as
denoted in the plots, i.e., the isosymmetric propagator of the u0 and of the d0 quark. Black vertices denote the insertion of γ5,

1In Eqs. (22) and (23), the quark-line connected and disconnected Wick contractions have a relative minus sign stemming from the
extra fermion loop present in the disconnected contribution. For later convenience, we decided to pull out this extra minus sign from the
definition of the disconnected diagrams.
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while red vertices correspond to the insertion of the
perturbation LIB. Diagrams obtained from one another
through a simultaneous flip of the Wilson parameter of all
the propagators are equivalent. Finally, in Eqs. (22) and
(23) we included the renormalization constant (RC) of the
operator LIB and of the mass difference md −mu ¼ 2Δm
which, in our twisted mass formulation, are given respec-
tively by the RC of the scalar density ZS, and by the inverse
of the RC of the pseudoscalar density Z−1

P .
The main advantage of the RTM basis is that it allows us

to consider mesonic correlators where the quark and
antiquark fields entering the correlators are always dis-
cretized with opposite values of the Wilson parameter r, as
shown in Eqs. (22) and (23). Such correlators are notori-
ously affected by a smaller statistical uncertainty with
respect to correlators involving quark propagators with
equal values of r.

A. From correlators to the physical observables

We now discuss how to relate the correlators defined in
the previous section to the charged/neutral pion mass
difference (mass method) and to the coupling ZP0π0 of
the neutral pion to the isoscalar density (matrix element
method) induced by strong IB.
Let us start from the mass method, and consider the

correlators of the charged and neutral pion in the physical
basis. In the complete theory, where the perturbation
ΔmLIB is treated to all orders, one has

CπþπþðtÞ¼AπþðΔmÞcosh ½MπþðΔmÞðT=2− tÞ�þ… ð24Þ

Cπ0π0ðtÞ¼Aπ0ðΔmÞcosh ½Mπ0ðΔmÞðT=2− tÞ�þ… ð25Þ

where T is the temporal extent of the lattice, the dots
indicate excited-state contributions which from now on will
be neglected assuming the ground state dominance, and for

a meson P the amplitude AP is related to the matrix element
ZPP ¼ hPjP†

Pj0i, through

AP ¼ jZPPj2
MP

e−MPT=2: ð26Þ

At fixed value of ml, the masses Mπþ ;Mπ0 and the
amplitudes Aπþ ; Aπ0 are implicitly functions of the quark
mass difference. Hence we can express the derivatives of the
correlators with respect to Δm in terms of the derivatives of
amplitudes and masses. For the generic correlatorCPPðtÞ the
first derivative in Δm is given by ðQ0 ¼ dQ=dðΔmÞÞ

C0
PPðtÞ ¼ A0

P cosh ½MPðT=2 − tÞ�
þ APM0

P · ðT=2 − tÞ · sinh ½MPðT=2 − tÞ�; ð27Þ

while for the second derivative one gets

C00
PPðtÞ¼A00

Pcosh ½MPðT=2− tÞ�
þð2A0

PM
0
PþAPM00

PÞ ·ðT=2− tÞ · sinh ½MPðT=2− tÞ�
þAPðM0

PÞ2 ·ðT=2− tÞ2 · cosh½MPðT=2− tÞ�: ð28Þ

The first and second derivatives must be evaluated at
Δm ¼ 0, where several simplifications occur: the first
derivative of the pion masses and amplitudes at Δm ¼ 0
vanishes

M0
π0
jΔm¼0¼M0

πþjΔm¼0¼A0
π0
jΔm¼0¼A0

πþjΔm¼0¼0: ð29Þ

and one also has

MπþjΔm¼0¼Mπ0 jΔm¼0≡Mπ;AπþjΔm¼0¼Aπ0 jΔm¼0≡Aπ:

ð30Þ
This implies that

½C00
πþπþðtÞ − C00

π0π0
ðtÞ�Δm¼0

¼ ðA00
πþ − A00

π0
Þ cosh ½MπðT=2 − tÞ� þ ðM00

πþ −M00
π0
ÞAπ · ðT=2 − tÞ · sinh ½MπðT=2 − tÞ�: ð31Þ

The isosymmetric pion mass, Mπ , and amplitude, Aπ , can
be computed from the ground state of the isosymmetric
pion correlatorCisoQCD

ππ , represented by the single connected
diagram without any mass insertion, and computed with

opposite values of the Wilson parameter r. We find it
convenient to cancel the time dependence in the first term
of Eq. (31) by normalizing the expression to the charged
pion correlator CisoQCD

ππ , obtaining

½C00
πþπþðtÞ − C00

π0π0
ðtÞ�Δm¼0

CisoQCD
ππ ðtÞ ¼ A00

πþ − A00
π0

Aπ
þ ðM00

πþ −M00
π0
Þ · ðT=2 − tÞ · tanh ½MπðT=2 − tÞ�: ð32Þ

Given that at second order in Δm

CπþπþðtÞ − Cπ0π0ðtÞ ¼
1

2
ðΔmÞ2½C00

πþπþðtÞ − C00
π0π0

ðtÞ�Δm¼0
ð33Þ
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Mπþ −Mπ0 ¼
1

2
ðΔmÞ2½M00

πþ −M00
π0
�; ð34Þ

the charged/neutral pion mass difference at order
OððΔmÞ2Þ can be extracted through a standard “effective

slope” analysis in time of the diagrams displayed in
Eq. (22), as it will be explained in the next section.
Let us now discuss the matrix element method and

consider first the correlator CP0π0ðtÞ in the physical basis.
Inserting a complete set of eigenstates between the pion
source and the isoscalar operator, one gets

CP0π0ðtÞ ¼
X
n

h0jP0ðtÞjni 1

2En
hnjP†

π0
ð0Þj0i ¼ h0jP0jπ0i 1

Mπ0
hπ0jP†

π0
j0ie−Mπ0T=2 cosh ½Mπ0ðT=2 − tÞ� þ… ð35Þ

where the dots correspond to terms that are exponentially
suppressed w.r.t. the neutral pion contribution for large time
separations t ≫ a; T − t ≫ a. Assuming the ground state
dominance we have

CP0π0ðtÞ¼
ZP0π0 ·Zπ0π0

Mπ0
e−Mπ0T=2cosh½Mπ0ðT=2− tÞ�; ð36Þ

where

ZP0π0 ¼ h0jP0jπ0i: ð37Þ

As in the previous case, the matrix elements ZP0π0 ; Zπ0π0

and the neutral pion mass Mπ0 are implicitly function of
Δm. Therefore we can expand CP0π0 at first order in Δm, in
terms of the derivatives of ZP0π0 ; Zπ0π0 and Mπ0 . In this
case, however, ZP0π0 vanishes in the isosymmetric limit,
because the neutral pion does not have an isoscalar
component for Δm ¼ 0, and one gets

CP0π0ðtÞ ¼ ΔmC0
P0π0

ðtÞjΔm¼0; ð38Þ

where

C0
P0π0

ðtÞjΔm¼0 ¼
Z0
P0π0

· Zππ

Mπ
e−MπT=2 cosh ½MπðT=2 − tÞ�

ð39Þ

and

ZP0π0 ¼ ΔmZ0
P0π0

þOððΔmÞ2Þ; Zπ0π0 jΔm¼0 ≡ Zππ:

ð40Þ

In order to isolate the quantity we are interested in, namely
Z0
P0π0

, it is useful to normalize again over the isosymmetric
charged pion correlator

CisoQCD
ππ ðtÞ ¼ jZππj2

Mπ
e−MπT=2 cosh ½MπðT=2 − tÞ�: ð41Þ

In this way we get

C0
P0π0

ðtÞjΔm¼0

CisoQCD
ππ ðtÞ ¼ Z0

P0π0

Zππ
: ð42Þ

By performing a constant fit to the ratio of correlators in
Eq. (42), and by extracting Zππ from CisoQCD

ππ ðtÞ, it is
possible to determine Z0

P0π0
, and thus ZP0π0 at OðΔmÞ.

IV. NUMERICAL RESULTS

We performed simulations on the cA211.30.32 ensemble
generated by the ETMC [9], which has a spatial extent
L ¼ 32 and aspect ratio T=L ¼ 2. The number of gauge
configurations that have been analyzed is Ncfg ¼ 1232.
The ensemble corresponds to an higher-than-physical pion
mass Mπ ≃ 260 MeV with MπL ≃ 4.01, and to a lattice
spacing a ≃ 0.095 fm. We made use of local sources to
interpolate the pion fields, and used one stochastic source
per time in order to invert the Dirac operator. The computa-
tional cost of the simulation is of about 7 × 104 Core Hours.
Relying on Eqs. (6) and (9), which are the basis for our

mass and matrix element methods, we have built the
following estimators to extract l7 from the diagrams in
Eqs. (22) and (23):

l̄7ðtÞ ¼
�
ZS

ZP

�
2

·
f̂2πm̂2

l

M̂3
π

· ∂t

�
Cconn
MM ðtÞ − Cdisc

MMðtÞ
CisoQCD
ππ ðtÞ

�
ðmass methodÞ; ð43Þ

l̄7ðtÞ ¼ −
�
ZS

ZP

�
·
f̂πm̂2

l

M̂4
π

· Ẑππ ·

�
Cconn
MEMðtÞ − Cdisc

MEMðtÞ
CisoQCD
ππ ðtÞ

�
ðmatrix element methodÞ: ð44Þ
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In our twisted mass setup, the pion decay constant can be
obtained from Ẑππ , which is the bare matrix element
hπ0jP†

π0
j0i extracted from CisoQCD

ππ , using2

f̂π ¼ 2m̂l
Ẑππ

M̂π sinhðM̂πÞ
: ð45Þ

The operator −∂t in Eq. (43), corresponds to the evaluation
of the so-called effective slope δmeffðtÞ from the ratio of
correlators δC=C, which is defined through

δmeffðtÞ≡−∂t
δCðtÞ
CðtÞ ¼ 1

FðT=2− t;MÞ
�
δCðtÞ
CðtÞ −

δCðt−1Þ
Cðt−1Þ

�
;

ð46Þ

where in our case

δCðtÞ≡ Cconn
MM ðtÞ − Cdisc

MMðtÞ; CðtÞ≡ CisoQCD
ππ ðtÞ: ð47Þ

In Eq. (46), M is the ground state mass extracted from the
correlator CðtÞ, T is the temporal extent of the lattice and
Fðx;MÞ is an analytical factor given by

Fðx;MÞ ¼ x tanh ðMxÞ − ðxþ 1Þ tanh ðMðxþ 1ÞÞ: ð48Þ

In the large time limit t ≫ a; ðT − tÞ ≫ a, both estimators
in Eqs. (43) and (44) tend to l7.

In Table I we collected the values of the input parameters
that have been used for the determination of l7 on the
cA211.30.32 ensemble. The ratio between the RCs ZS and
ZP has been computed using

ZS

ZP
¼ Ẑππ

ẐOS
ππ

; ð49Þ

where ẐOS
ππ is the bare matrix element hπ0jP†

π0
j0i extracted

from the Osterwalder-Seiler pion correlator, i.e., from the
single connected diagram in which the quark and antiquark
propagators are computed with the same value of the
Wilson parameter r. In Fig. 1 we show our determination
of the diagrams Cconn

MM ðtÞ and Cdisc
MMðtÞ normalized over the

isosymmetric charged pion correlator CisoQCD
ππ ðtÞ, while in

Fig. 2 we show our determination of Cconn
MEMðtÞ and

Cdisc
MEMðtÞ. As the figures show, for both mass and matrix

element methods, the signal of l7 comes from a large
cancellation between the connected and the disconnected
contributions. This makes the evaluation of l7 a non-trivial
task, since a very good precision on both diagrams is
needed to ensure that the difference is not dominated by the
statistical noise. In this respect, the use of the RTM scheme
turns out to be crucial (see Ref. [8] for more details on this
improvement). In Fig. 3, we show our determination of

FIG. 1. Comparison between the connected diagram Cconn
MM ðtÞ and the disconnected diagram Cdisc

MMðtÞ contributing to CπþπþðtÞ −
Cπ0π0ðtÞ and normalized over the isosymmetric charged pion correlator CisoQCD

ππ ðtÞ.

TABLE I. List of the input parameters entering the determi-
nation of l7 as obtained on the cA211.30.32 ensemble. m̂l is the
bare light lattice quark mass.

m̂l f̂π M̂π ZP=ZS

cA211.30.32 0.0030 0.06674 (15) 0.12530 (16) 0.726 (3)

2Alternatively, the pion decay constant can be computed from
the correlation function CA0π0ðtÞ ¼ h0jJ05ðtÞP†

π0
ð0Þj0i, where J05

is the zeroth component of the axial current. We checked that the
two methods give similar values of f̂π , and that the resulting
values of l7 are the same within errors.
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l̄7ðtÞ as obtained from both mass and matrix element
methods. As can be seen, the matrix element method seems
to perform better, giving a more precise result with respect
to the mass method. In both cases, the signal disappears
after a time separation t=a ∼ 15, and l7 can be extracted
only at smaller times. We decided to fit both estimators in
the time interval [5, 13]. We obtain in this way

l7 ¼ 3.5ð2.0Þ × 10−3; ðmass methodÞ; ð50Þ

l7 ¼ 2.3ð1.0Þ × 10−3; ðmatrix element methodÞ: ð51Þ

Even if our analysis is limited to a single value of the
lattice spacing and to a single pion mass Mπ ≃ 260 MeV,

we can give a rough estimate of the systematic error due to
the missing chiral and continuum extrapolations. The two
results of Eqs. (50) and (51), obtained from the mass and
the matrix element methods, are affected in principle by
different lattice artifacts, and the deviation among their
central values can be taken as a first (likely conservative)
estimate of the Oða2Þ effects. Instead, for the light quark
mass dependence, it is reasonable to assume that the impact
of the extrapolation ml → 0 is negligible as compared to
the statistical uncertainty affecting our determination, given
that in ChPT the presence of a nonzero light quark massml
corresponds to a NNLO correction to the formulas in
Eqs. (3) and (8). Our (conservative) estimate of the value of
l7 is

l7 ¼ 2.5ð1.3Þstatð0.5Þsyst × 10−3 ¼ 2.5ð1.4Þ × 10−3; ð52Þ

where the central value and the error estimate have been
obtained from the two determinations of Eqs. (50) and (51)
making use of Eqs. (38)–(43) of Ref. [10].
Our determination can be compared with the phenom-

enological estimate given in Ref. [3]

lph
7 ¼ 7ð4Þ × 10−3; ð53Þ

and with the global-fit based result obtained by the
RBC-UKQCD Collaboration l7 ¼ 6.5ð3.8Þ × 10−3 [5].
Our result is in agreement but significantly improves both
estimates, and shows the effectiveness of the RM123
approach to determine l7.

V. CONCLUSIONS

In this paper we showed that it is possible to determine
directly from lattice QCD calculations the SU(2) ChPT

FIG. 2. Comparison between the connected diagram Cconn
MEMðtÞ and the disconnected diagram Cdisc

MEMðtÞ contributing to CP0π0ðtÞ.

FIG. 3. Determination of l7 on the cA211.30.32 ensemble
using both the mass method and the matrix element method. The
semitransparent bands correspond to the result of a constant fit in
the time interval [5, 13].
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low-energy costant l7 which parametrizes QCD isospin-
breaking effects in the chiral Lagrangian at NLO and that is
crucial for several phenomenological analyses. Our strategy
is based on the RM123 approach [6,7], which allows us to
evaluate isospin-breaking effects perturbatively in the up-
down quark mass difference mu −md. In addition, in order
to increase the precision of the lattice correlators involved
in the calculation we made use of the recently proposed
rotated twisted-mass (RTM) scheme [8].
To determine l7 we explored two strategies. The first

one, the mass method, is based on the computation of the
charged/neutral pion mass difference Mπþ −Mπ0 , whose
second derivative in mu −md, evaluated at the isosym-
metric point mu ¼ md, is directly proportional to l7. The
second strategy, the matrix element method, allows to
compute l7 from the slope in mu −md of the coupling
ZP0π0 between the neutral pion and the isoscalar operator
P0, which is a pure isospin breaking effect. The two
methods give rise to consistent results, but we find that
the matrix element method displays an higher statistical
accuracy with respect to the mass method. The comparison
of our determination with existing results reveals substan-
tial agreement, although the difference is slightly larger
than one standard deviation. It is however important to
remind that our results are obtained at a single value of the

lattice spacing and with a pion mass Mπ ≃ 260 MeV.
Therefore, our result should be understood as a proof-of-
principle calculation, showing the feasibility of a direct
determination of l7 from lattice QCD calculations. In the
future we plan to perform simulations at different values of
the lattice spacing and explore different light quark masses
in order to perform a reliable extrapolation toward the
continuum and chiral limit. A possibility would be to
extend the calculation to the other ensembles produced
by the ETM Collaboration with Wilson-clover TM fer-
mions, or alternatively, one could consider other lattice
discretizations.
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