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The characterization of extracellular space (ECS) architecture represents valuable

information for the understanding of transport mechanisms occurring in brain

parenchyma. ECS tortuosity reflects the hindrance imposed by cell membranes to

molecular diffusion. Numerous strategies have been proposed to measure the diffusion

through ECS and to estimate its tortuosity. The first method implies the perfusion for

several hours of a radiotracer which effective diffusion coefficient D∗ is determined

after post mortem processing. The most well-established techniques are real-time

iontophoresis that measures the concentration of a specific ion at known distance from

its release point, and integrative optical imaging that relies on acquiring microscopy

images of macromolecules labeled with fluorophore. After presenting these methods,

we focus on a recent Magnetic Resonance Imaging (MRI)-based technique that consists

in acquiring concentration maps of a contrast agent diffusing within ECS. Thanks to

MRI properties, molecular diffusion and tortuosity can be estimated in 3D for deep brain

regions. To further discuss the reliability of this technique, we point out the influence of

the delivery method on the estimation of D∗. We compare the value of D∗ for a contrast

agent intracerebrally injected, with its value when the agent is delivered to the brain after

an ultrasound-induced blood-brain barrier (BBB) permeabilization. Several studies have

already shown that tortuosity may be modified in pathological conditions. Therefore, we

believe that MRI-based techniques could be useful in a clinical context for characterizing

the diffusion properties of pathological ECS and thus predicting the drug biodistribution

into the targeted area.

Keywords: brain tissue tortuosity, extracellular diffusion,MRI contrast agents, in vivo concentration quantification,

dynamic T1 mapping, ultrasound-induced BBB permeabilization

WHY ASSESSING BRAIN TORTUOSITY?

The diffusion of substances in the brain is predominantly occurring through the narrow
extracellular space (ECS) that comprises the fluid-filled spaces external to cell membranes. A
consequent number of studies (see [1] for an extensive review) have already established that the
ECS labyrinthine nature makes the brain act like a porous medium for substances that cannot cross
cellular membranes, allowing the use of established diffusion equation [2]. Two main structural
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descriptors, α and λ, are usually reported to define the diffusion
processes in the ECS. The volume fraction α reflects the fact
that molecules released into the ECS are restricted to a smaller
volume than the entire brain volume. Furthermore, the diffusion
of molecules can be considered as hindered by cells, because of
the increase in path length imposed by the ECS geometry. This
hindrance relatively to a free medium is quantified introducing
the tissue tortuosity λ [3]:

λ =

√

Dfree

D∗

where Dfree is the diffusion coefficient in obstacle-free medium
(water or very dilute gel), andD∗ the effective diffusion coefficient
in ECS.

Volume fraction α admits of a simple interpretation
and its value is reported to be ∼0.2 for most regions of
different studied brains [1]. Moreover, tortuosity λ, which
value is around 1.6 for small molecules, remains a composite
parameter as many potential mechanisms may contribute to
the hindrance experienced by molecules. This parameter is
commonly described as some combination of (i) an increased
path length as molecules are compelled to diffuse around
cellular obstructions [4, 5], (ii) a transient trapping in dead-
space microdomains [6, 7], and (iii) extracellular matrix
interactions [8, 9]. When considering the ECS diffusion of larger
macromolecules, such as dextrans or proteins, a new behavior
occurs leading to an increase of λ with the hydrodynamic
diameter (dH). In this regime, the ECS porous structure is
dominating and the observed restricted diffusion of molecules
is mainly influenced by (i) the steric hindrance arising from
the pore’s limited cross-sectional area and (ii) the drag from
the pore walls. Thorne and Nicholson performed tortuosity
measurements using quantum dot nanocrystals (dH∼35 nm),
and they were able to estimate that the true average ECS width
in the in vivo rat cortex lies between 38 and 64 nm using specific
pore models [10].

Although diffusion transport predominates in the ECS, it is
often modified by loss of molecules through removal across
the blood-brain barrier (BBB), uptake into cells, or binding to
receptors. Furthermore, clearance processes may also be due to
a hydrodynamic flow of fluid, but it seems likely that this bulk
flow is confined to the perivascular spaces in healthy brain [11]. If
the underlyingmechanism, importance, and even the existence of
interstitial fluid flow remain incompletely resolved, this question
has become a topic of renewed interest with the introduction of
the brain lymphatic drainage system, known as the glymphatic
system [12–14]. This system, which involves convective transport
from para-arterial to para-venous cerebrospinal fluid through
ECS, has been proposed to account for solute clearance in brain,
and for removing toxic metabolites from the brain [15]. However,
Jin et al suggested that the glymphatic system flow is not essential,

Abbreviations: ECS, ExtraCellular Space; BBB, Blood-Brain Barrier; RTI, Real-
Time Iontophoresis; TMA, TetraMethylAmmonium; IOI, Integrative Optical
Imaging; MRI, Magnetic Resonance Imaging; ADCw, water Apparent Diffusion
Coefficient; Gd, Gadolinium

since the role of diffusion seems to remain dominant when
observing the molecules dispersion in the ECS [16].

Thus, the precise determination of ECS diffusion properties
represents valuable information for the understanding of
brain physiology and drug delivery in normal or pathological
conditions. To predict the distribution of a specific externally
administered agent, it is essential to know its effective diffusion
coefficient in brain tissue, as well as the relative importance of
diffusion vs. clearance processes that may remove that agent from
the ECS. For example, these parameters are crucial to control the
dose-dependent action of pharmacological agents used to target
specific brain diseases, and consequently to improve clinical
treatment protocols.

WHAT ARE THE WELL-ESTABLISHED
TECHNIQUES FOR ASSESSING ECS
DIFFUSION PROPERTIES?

The concept underlying methods of diffusion measurements is to
introduce a detectable substance into the ECS, to subsequently
measure its concentration distribution in space and time.
It is necessary for the measurement technique to produce
concentration distribution curves rather than single values, so
that the adequate diffusion equation can be applied to extract α

and λ values. The choice of diffusing probe is also key: it should
be small enough to explore all ECS regions, but should also not
cross cellular membranes or BBB to remain predominantly in the
ECS compartment. Furthermore, the probe should be nontoxic
to brain tissue and its concentration should be kept sufficiently
low to avoid osmolarity modifications as well as sufficiently high
to exceed the sensitivity threshold of the detection technique.

Lots of reviews have been written to detail the main drawbacks
and advantages of each technique implemented to measure
ECS diffusion properties, as well as to compare the α and λ

values obtained in various animal brains and physio-pathological
conditions [1, 4, 17–19]. The first technique used radiolabeled
probes, such as inulin, sulfate or dextran [20]. After several hours
of probe perfusion in the ECS of anesthetized animal, its brain
is removed, frozen and sectioned. The post mortem analysis of
several brains processed at various times after perfusion allows
deducing theD∗ value of radiotracer from the temporal evolution
of radioactivity profile. The need of one animal for each time
point is the main disadvantage explaining why this technique is
not in general use today.

To overcome this drawback, Nicholson and Phillips proposed
a “point-source paradigm,” which consists in releasing specific
small ions with a glass micropipette, and then measuring the
resulting concentration ∼100µm away with an ion-selective
microelectrodes (ISMs) [21]. This method is usually called Real-
Time Iontophoresis (RTI) because the source micropipette emits
molecules using iontophoresis, thanks to the application of a
constant current pulse. If the source amplitude is accurately
defined, both α and λ may be estimated. The ion employed for a
vastmajority of studies is the tetramethylammoniummonovalent
cation (TMA+). This molecule is broadly used because it does
not affect physiological function at low concentrations, and it

Frontiers in Physics | www.frontiersin.org 2 May 2018 | Volume 6 | Article 38

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Mériaux et al. MRI Assessment of Brain Tortuosity

remains mostly extracellular for the duration of measurements.
To date, RTI-TMA+ remains the predominant technique for
exploring ECS diffusion properties and their changes induced by
brain development and aging, as well as numerous pathological
states [1]. The major advantage of RTI method is the possibility
to perform real-time measurements in very small volumes of
living tissue, and therefore to follow diffusion properties in
specific brain regions during drug injection or other intervention.
The main drawbacks concern the relatively small number of
usable probes, since each ion requires a dedicated ISM, and the
concentration quantification that is only performed at a single
position.

Nicholson and Tao recently introduced the Integrative Optical
Imaging (IOI) technique, for quantifying in 2D the diffusion
properties of larger probes such as proteins and macromolecules
[22]. The method requires to label the probes with fluorophores,
enabling their in vivo follow-up with dedicated epifluorescence
microscope. The labeled probes are released in the ECS from a
micropipette by a pressure pulse, and by fitting a 2D Gaussian
curve to the image intensity at different time points, theD∗ value,
and hence λ, can be estimated. The diffusion measurements
performed in vivo with IOI technique exhibit at the same time
an excellent sensitivity, a high spatial and temporal resolutions
[10]. One main limitation is that optical detection can only be
performed down to a depth of ∼400µm [18]. Still, the RTI and
IOI methods are now well-established and present in most cases
the same results in terms of estimatedD∗ and λ values [1, 17, 18].

Water diffusion in the brain can be directly assessed
with Magnetic Resonance Imaging (MRI) to probe tissue
microstructure [23]. However, water is found in both
intracellular and extracellular compartments, with specific
exchange rates between them. The relationship between water
movement, water apparent diffusion coefficient (ADCw) maps
and changes in ECS characteristics thus remains difficult to
understand since changes in both α and λ are accompanied by
changes in ADCw [24]. Nevertheless, diffusion MRI of protons
from extracellular molecules such as TMA+ was recently
demonstrated to be a potential alternative to the RTI method
[25]. Another study investigated the use of 2FDG-6P as a
compartment-specific marker in normal and globally ischemic
rat brain, and followed its diffusion in ECS with dedicated
19F MRI strategy [26]. For these two studies, volume-localized
diffusion spectroscopy sequences were chosen, leading to
relatively poor spatial resolution.

In this Perspective article, we illustrate how a different
MRI approach, which relies on the dynamic mapping of
Gadolinium (Gd)-based contrast agent concentrations [27],
could be complementary to RTI and IOI methods for studying
the ECS diffusion properties in extended brain regions.

OUR APPROACH TO ASSESS BRAIN
TORTUOSITY WITH MRI

In 2013, we introduced a different approach to assess brain
tortuosity with MRI: a specific Gd-based contrast agent was
delivered in the striatum of rat brains and its diffusion through

the ECS was quantified thanks to the dynamic mapping of MRI
probe concentrations using a dedicated T1 quantification strategy
[27]. Interestingly, Hagberg et al. also relied on T1 mapping
sequences to measure ECS diffusion properties from voxel-wise
measurements of the temporal pharmacokinetic curve obtained
after an intracerebral injection of Gd-based probe [28]. One
difference between the two approaches is that ECS diffusion
estimation comes from the spatial evolution of MRI signal in
Marty et al. [27], rather than on the temporal one inHagberg et al.
[28]. Both studies succeeded in estimatingD∗ for several contrast
agents and providing brain tortuosity values, thanks to sensitive
quantification strategies.

MRI TORTUOSITY PROBE

As already explained, the choice of MRI probe used for
λ measurements is key. We selected a clinically approved
Gd-chelate named Dotarem R© (Guerbet, France) that presents
several advantages. It is nontoxic for brain tissue compared to
other MRI contrast agents [29]. Its size (dH< 1 nm) is close to
the one of TMA+ (dH∼0.6 nm) and small compared to the ECS
typical width. Furthermore, Dotarem R©is known to not cross cell
membranes and thus remain into the extracellular compartment.

Finally, Dotarem R© has a relatively good relaxivity (r1 =

3.4 mM−1.s−1) at high magnetic field (7T). This ensures to
detect relatively low local concentrations (down to a few µM),
while maintaining sufficient spatial and temporal resolutions
for detecting molecules spreading in the brain. Noticeably,
Dotarem R© is known to be a stable molecule that maintains its
relaxivity unchanged in plasma and in several tissues [30].

MRI QUANTIFICATION STRATEGY

Quantitative techniques are requested to precisely map the
distribution of MRI probe after its delivery to the brain
and then estimate its D∗ value. Therefore, instead of relying
on T1-weighted images which contrast may saturate at high
Gd concentration, we implemented one T1 mapping strategy
based on the Inversion Recovery Fast Gradient Echo sequence
presented in Figure 1A [31]. The sequence parameters were
chosen to ensure a high sampling rate of the longitudinal
magnetization recovery curve over a long time (Figures 1B,C):
60 images are acquired with inversion times between 45 and
5060ms spaced by 85ms [27]. Thus, a very accurate estimation
of T1 values for a large range of T1 can be achieved. For example,
it allows to detect in vitro Gd concentrations lower than 2.5µM
(Figure 1D). From T1 maps acquired before and after Dotarem R©

injection, and knowing its r1 value at 7T and 37◦C, one can
estimate in vivo concentration maps as illustrated on Figure 1E,
with the addition of a dedicated realignment procedure if needed.
Finally, we verified that our quantification strategy follows a
linear behavior with the injected dose, while the T1-weighted
signal saturates at high concentrations as expected (Figure 1F).

The choice of spatial resolution is also key for a precise
quantification of D∗. Indeed, low spatial resolution implies
large partial volume effects leading to drastic errors in Gd
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FIGURE 1 | MRI quantification of Gadolinium-based contrast agent concentration. (A) The T1 mapping strategy is based on one Inversion Recovery Fast Gradient

Echo sequence: it consists of a segmented series of fast gradient echo images (B) acquired at different time points after magnetization inversion. (C) The recovery of

(Continued)
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FIGURE 1 | the longitudinal magnetization is fitted voxel-by-voxel as a function of the inversion time to produce a quantitative T1 map [31]. (D) The sensitivity of this

T1 mapping strategy is estimated on a gallery of tubes filled with different concentrations of Dotarem® (0 / 2.5 / 5 / 10µM). (E) From T1 parametric maps acquired

before and after Gd-based contrast agent injection, and knowing the longitudinal relaxivity r1 of the agent, one can estimate in vivo concentration map [32], with the

addition of a realignment procedure if the animal is removed from the scanner between pre- and post-injection scans. (F) The concentration maps estimated with this

T1 mapping strategy are proportional to the injected dose, whereas the signal in standard T1-weighted images saturates at high injected doses (Figure adapted from

Marty et al. [33]: J Cereb Blood Flow Metab (2012) 32:1948–1958).

concentration mapping, while high resolution will result in poor
signal-to-noise ratio and increased errors inD∗ estimation. In our
case, Marty et al demonstrated from tortuosity values obtained by
Thorne et al. [10] that an in-plane resolution of about 200µm
was a good compromise given our sensitivity threshold. Slice
thickness could be larger since our delivery method enables us
to neglect the concentration gradient along depth (Figure 2D).

FREE DIFFUSION COEFFICIENT
MEASUREMENT

The Dfree coefficient of Dotarem R© was estimated by injecting a
5 µL aliquot with a Hamilton syringe in a tube filled with dilute
agar gel (0.3% w/w) maintained at 37◦C (Figure 2A). According
to Nicholson et al., this gel can be considered as an essentially
free medium for diffusion [22]. The diffusion of Dotarem R© was
followed during 1 h by acquiring T1 maps as described above. A
T10 map acquired before injection was used as a reference for
estimating Gd concentration as follows [32]:

[Gd] =
1

r1

(

1

T1
−

1

T10

)

COMPARISON OF TWO IN VIVO DELIVERY
TECHNIQUES FOR TORTUOSITY
ASSESSMENT IN RAT STRIATUM

Dotarem R© was delivered in vivo in the striatum of Sprague
Dawley rats to estimate D∗. Two delivery protocols were
compared. First, a direct intracranial injection was performed
using a Hamilton syringe (Figure 2D). Second, a more complex
but less invasive method was used (Figure 2E): an ultrasound-
induced BBB permeabilization protocol [33] was combined with
an intravenous injection of Dotarem R© to ensure a precise
delivery where the ultrasound beam was focused [34, 35].
For both delivery methods, Dotarem R© concentration maps
were dynamically acquired for 1 hour as described before
(Figures 2F,G).

DATA PROCESSING

Data analysis was performed using homemade Matlab routines
(MathWorks, USA). MRI images were first reconstructed from
raw K-space data, then T1 maps were obtained using the
approach proposed in Deichmann et al. [31] and Deichmann
and Haase [36]. 3D Gd concentration maps were calculated from
the T1 maps acquired before and after injection (Figure 1E).
On each slice of those maps and at every time point, the

Gd spatial distribution was fitted by a 2D Gaussian function
(Figures 2B,F,G). As illustrated on Figures 2C,H,I, the diffusion
coefficients along X and Y were computed as:

DX =
σ
2
X

2t
DY =

σ
2
Y

2t

where t is the acquisition time, σX and σY are the Gaussian
spreads along X and Y main axes. D∗ (resp. Dfree) was taken as
the average value along main axes obtained with in vivo (resp.
in vitro) diffusion data.

RESULTS

The ECS tortuosity value obtained after direct intracerebral
injection of Dotarem R© was found equal to 3.25 ± 0.40 (n = 2
rats), while being equal to 1.70 ± 0.11 (n = 3 rats) if the
probe diffuses within ECS after a local ultrasound-induced
BBB permeabilization. The over-estimation of λ value observed
with the first delivery method probably comes from two major
drawbacks of the intracerebral injection: (i) the tip diameter
of the Hamilton syringe is rather large (0.5mm) which is
unfortunately expected to induce tissue inflammation along
the needle pathway and thus locally increase the hindrance
of molecular diffusion; (ii) 2 µL of Dotarem R© solution is
injected as a bolus which induces significant changes of
interstitial pressure at the injection site. For comparison, the
RTI-TMA+ technique uses micropipettes and microelectrodes
of 2–12µm diameter and nanoliters only are injected at
slow speed.

On the other hand, the local ultrasound-induced BBB
permeabilization does not modify the ECS diffusion properties.
Indeed, the λ values obtained with this delivery method are in
good agreement with the ones obtained in the striatum of healthy
brain with other techniques (λ = 1.59–1.60) [37, 38].

DISCUSSION AND CONCLUSION

Characterization of the diffusion in the ECS is of great
importance in order to predict drug biodistribution in the
brain. Our view is that non-invasive imaging technique such
as MRI and non-invasive probe delivery based on ultrasound-
induced BBB permeabilization can be combined to better
probe brain tortuosity in vivo. Our ultrasound-based approach
relies on the intravenous injection of the probe: its diffusion
within brain tissue is thus very little disturbed as compared
to a spontaneous crossing of the BBB through biochemical
engineering.

Taking advantage of high field MRI acquisitions at 7T,
we demonstrated that our T1 quantification strategy reaches
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FIGURE 2 | MRI measurements of Gadolinium-based contrast agent diffusion. (A) The free diffusion coefficient Dfree of Dotarem® is estimated by injecting a 5 µL

aliquot with a Hamilton syringe in a tube filled with dilute agar gel (0.3% w/w) maintained at 37◦C. (B) Concentration maps of Dotarem® (upper row) are acquired at

(Continued)
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FIGURE 2 | different time points after injection with the approach described in Figure 1. Each slice of those maps is fitted with a 2D Gaussian function (middle row).

The result of this fit is also presented for the central line of the slice (lower row). (C) The squares of the 2D Gaussian spreads along X and Y main axes (σ2X and σ2Y ) are

fitted along time in order to estimate the diffusion coefficients DX and DY : Dfree is taken as the average value of DX and DY . The effective diffusion coefficient D* of
Dotarem® is estimated in vivo in the striatum of Sprague Dawley rat for two delivery protocols: a direct intracranial injection of a 2 µL bolus (D) and an

ultrasound-induced BBB permeabilization protocol [34] combined with an intravenous injection (E). (F,G) For both protocols, concentration maps of Dotarem® (upper

row) are acquired at different time points after injection with the approach described in Figure 1. Each slice of those maps is fitted with a 2D Gaussian function (middle

row). The result of this fit is also presented for the central line of the slice (lower row). (H,I) For both protocols, the squares of the 2D Gaussian spreads along X and Y

main axes (σ2X and σ2Y ) are fitted along time in order to estimate the diffusion coefficients DX and DY : D* is taken as the average value of DX and DY .

the requirements in terms of sensitivity detection, spatial and
temporal resolutions, for estimating in vivo tortuosity values in
deep regions of the rat brain. Our diffusionmeasurements are not
based on diffusion-weighted MRI data that probe water diffusion
at a few milliseconds timescale, but rather on the dynamic
acquisition at a few minutes timescale of concentration maps
of a Gd-based contrast agent diffusing in brain tissue. While
optical methods study 2D diffusion processes occurring up to
2–3min, and across distances up to about 300µm, MRI can
assess in 3D long range diffusion processes that evolve over hours
across several millimeters. Both information can complement
each other: a slower timescale should allow for example to
investigate the cellular uptake and transport, as well as the
potential clearance processes related to bulk flow or glymphatic
pathway.

Our method presents the great advantages of not being
restricted to superficial brain structures, of being compatible with
a 3D anisotropic data analysis and of being usable multiple times
on the same animal opening the door to longitudinal follow-
up of tortuosity. This features are particularly relevant to know
more about ECS structure in pathologies such as brain tumors,
during aging, or under various pharmacological conditions.
Indeed, other studies have already shown that this parameter can
change in case of pathologies, such as ischemia and edema [17].
Furthermore, another interest of our approach is that additional
MRI sequences can be added to the protocol for correlating
tortuosity with structural, vascular, morphological, spectroscopic
and functional MRI data. In a clinical context, the estimated
values of tortuosity could be used as additional indicators of the
pathological state.

Further interest in better ways to measure ECS physical
properties has recently been raised by the discovery of major
changes of ECS volume during sleep [15] and its correlation
with the glymphatic pulsation flow that plays a great role in the
cleaning of brain. Ultrafast MRI has recently been shown to be
able to catch the slow flows occurring within the ECS [39]. In this
context, such flow imaging could be combined with tortuosity
measurements at various stages of the day/night cycle to better
understand the clinical implications of the glymphatic pathway.
Finally, Frenkel et al. have recently shown with histology that low
intensity pulsed ultrasound could be used to transiently enlarge

ECS [40]. This could be transferred into clinical applications
for facilitating drug access to targets, and the characterization
of ECS diffusion properties with MRI would be of great
importance to predict the drug biodistribution into the targeted
area.
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