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Simple Summary: Immunoproteasome plays a key role in the generation of antigenic peptides.
Immune checkpoints therapy is a front-line treatment of advanced/metastatic tumors, and to improve
its efficacy, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is
mandatory. The scope of this review is to offer a picture of the role of immunoproteasome in antigen
presentation to fuel the hypothesis of novel therapeutic interventions based on the modulation of
this proteolytic complex and immune checkpoints.

Abstract: Immunoproteasome is a noncanonical form of proteasome with enzymological properties
optimized for the generation of antigenic peptides presented in complex with class I MHC molecules.
This enzymatic property makes the modulation of its activity a promising area of research. Neverthe-
less, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing
outstanding improvement of life expectancy, even though not all patients achieve a long-lasting
clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the
development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing
by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in
antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on
the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could
provide novel perspectives and an unexplored treatment option for a variety of cancers.

Keywords: immunoproteasome; ubiquitin–proteasome system; immune checkpoints; proteasome
inhibitors; immunotherapy

1. Introduction

Cancer immunotherapy is conceptually based on therapeutic stimulation of cancer
immunosurveillance, a theory that states that tumor cells, mostly through the phenotypic
alteration and the repertoire of tumor-associated neoantigens they often present, can be rec-
ognized and targeted by the immune system in the attempt to prevent disease progression.
Nowadays, the dynamics of cancer and immune system crosstalk have been unequivocally
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unveiled to be extremely complex and has been renamed as cancer immunoediting. Ac-
cording to the three Es theory, this process comprises three defined phases: elimination
of cancer cells by the immune system; equilibrium between tumor growth and control by
the immune system; escape of neoplastic cells from immunosurveillance. The first two
phases in some way coincide with the concepts described by the former theory, but the
second phase can last long, running asymptomatically, until it is overrun by the third one,
which results in tumor growth and dissemination. In an immunocompetent host, this
breakthrough results from a positive selection of tumor clones that are able to evade the
inhibitory control of the immune system by downregulating/masking antigen epitopes or
by increasing the immunosuppressive properties of the tumor microenvironment [1,2].

Modern approaches of cancer immunotherapy, designed to restore a robust degree of
immune activity against tumor cells, encompass immune checkpoint blockade, adoptive
cellular therapies, and cancer vaccines [1–5]. Among these therapeutic interventions, im-
mune checkpoint inhibitors (ICKi) have substantially revolutionized the oncology field by
prolonging the survival of patients affected by highly aggressive/advanced stage cancers,
such as metastatic melanoma and non-small-cell lung cancer (NSCLC). This approach is
currently based on the use of monoclonal antibodies targeting inhibitory ICKs, such as
CTLA4 (cytotoxic T lymphocyte antigen 4) and PD-1 (programmed cell death 1) or PD-L1
(programmed cell death 1 ligand) that regulate activated T lymphocytes function, switching
off the immune response. A number of preclinical and clinical studies have revealed that an-
tibodies raised against the immune checkpoint molecules enhance the antitumor immunity
through not completely identified mechanisms of action, which differ depending on the
target and specificity of the monoclonal antibody used (see Appendix A) [1,3–5]. Despite
the undoubtful clinical success of ICK blockade, the on-field experimentation has opened
several tasks that are worth being addressed: organ involvement and cohorts of signs and
symptoms; second, the clinical efficacy is limited to subgroups of responder patients or, in
many other subjects, after an initial response, drug resistance takes over. The latter event
is generally due to the genetic and phenotypic heterogeneity of cancer cells and/or to
tumor microenvironment remodeling during disease progression and dissemination [5–7].
Nonetheless, the overall efficacy of ICKi is affected by multiple factors, spanning from the
expression and distribution of the target within the tumor microenvironment, the tumor
mutational rate, and alterations of antigen presentation [8–10]. In this context, a crucial role
is played by components of the host microenvironment that infiltrate the tumor and exert
immunosuppressive effects, thus counteracting ICKi activity (i.e., infiltration by T regu-
latory cells (Tregs), dendritic cells, immunosuppressive myeloid cells, cancer-associated
fibroblasts) [11].

Cancer cell immunogenicity is a key determinant for ICKi efficacy: malignancies which
do not express tumor-specific antigens are not potentially susceptible to this approach.
This is somewhat strengthened by the evidence that an immunotherapy-non-responsive
cancer can turn into an immunotherapy-responsive one upon enhancement of tumor
immunogenicity [8–10,12].

Hence, a better knowledge of the “immunopeptidome” (the repertoire of peptides
bound to and presented by MHC molecules) and how tumor-specific antigen repertoire
change during tumor progression is expected to improve the current therapeutic strategies;
thus, a challenging issue is the identification and characterization of the MHC-I-presented
peptides that modulate T cell-based tumor response [12–14].

At the molecular level, the generation of effective T cells that fight cancer requires a
functional and efficient machinery for the multistep and multicellular mediated process, in-
cluding antigen processing and presentation. The intracellular antigen processing pathway
almost exclusively deals with the ubiquitin proteasome system (UPS) activity by which
proteins are first ubiquitinated and then degraded. Indeed, the UPS carries out multiple
functions in cells and in the onset and progression of different human pathologies spanning
from neurodegeneration to cancer [15]. A major role in antigen processing is covered by
a specialized and inducible form of proteasome (i.e., the multi-catalytic machine which
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degrades ubiquitinated proteins) named “immunoproteasome” [16]. This review focuses
on immunoproteasome, its involvement in antigen generation, and on the therapeutic
implications of its modulation to halt cancer progression. Finally, the potential crosstalk
between proteasome modulators and immune checkpoint inhibitors is discussed.

2. Ubiquitin–Proteasome System: Cellular Biocomputing Machinery

In living cells, the proteome is constantly tuned through a complex, entwined, and
multi-subcellular compartments network which coordinates the synthesis, folding, confor-
mational upkeep and degradation of individual proteins [1]. The removal of undesired
proteins is carried out by two main intracellular proteolytic systems, namely the ubiquitin–
proteasome system (UPS) and autophagy [17–20]. The UPS is the major actor in the turnover
of more than half of intracellular proteins that play fundamental roles in several facets
of cell life, such as cell cycle, apoptosis, DNA repair, antigen presentation, inflammation,
cellular response to environmental stress, and morphogenesis of neuronal networks [21–23].
The UPS’s hierarchical organization includes two intertwined and consecutive steps, i.e.,
the covalent ATP-dependent attachment of ubiquitin (Ub) polymers to a given substrate
(target protein conjugation cascade), which is catalyzed by three classes of ubiquitin ligases,
E1 (Ub-activating enzyme), E2 (Ub-conjugating enzyme), and E3 ligase, and its degradation
by the 26S proteasome, followed by recycling of ubiquitin moieties along with the release
of cleared protein oligopeptides (Figure 1) [15,24–28]. In the final step of ubiquitination, the
E3 ligase, which is committed with substrate specificity [25–27,29,30] (Figure 1), mediates
the formation of an isopeptide bond between the carboxyl C-terminal group of Ub and the
ε-amino group of the lysine residue of the target protein. Thereafter, the reaction can be
repeated multiple times, allowing the polyubiquitin chain to increase by 6 Ub moieties in
average, in which each subsequent Ub monomer is connected to the previous one through
an isopeptide covalent bond similar to that of the first Ub–substrate bond [30–35]. The
process of ubiquitylation is a highly dynamic and reversible equilibrium; in fact, deubiquiti-
nases or deubiquitinating enzymes (DUBs) can reverse the effect of E3 ligases by removing
ubiquitin from target proteins. Furthermore, they mediate the polyubiquitin chain release
during the hydrolysis of substrates by the proteasome [36,37].

Canonical 26S proteasome holoenzyme is a multifunctional proteolytic machine com-
posed by the 20S proteasome core particle (CP), which features the proteolytic activity,
capped by the 19S regulatory subunit (RP, also known as PA700), which carries out the
ATP-dependent recognition, unfolding, and translocation into the 20S of the polyubiqui-
tinated substrate [4,6,20]. The 20S core particle is a cylinder-like packed particle which
contains four axial stacking heptameric rings arranged into two outer α rings and two
inner β rings (i.e., α1–7β1–7α1–7β1–7) [38–40]. Eukaryotic 20S has a central channel, which
houses six catalytically active β subunits, three for each β ring: the chymotryptic-like (β5
subunit, which hydrolyses at the C-terminus of hydrophobic residues), the trypsin-like
(β2, which hydrolyses at the C-terminus of basic residues), and caspase-like (β1, which
hydrolyses at the C-terminus of acidic residues) sites [40,41]. In the free 20S not engaged
with a regulatory particle, the N-terminal tails of the α subunits point inwards to the center
of the ring and the neighboring tails form an intricate network of inter-subunit interactions,
constituting “the gate” of 20S, which regulates the substrate access through a 13 Å entry
pore: the insertion of the substrate through this “N-terminal gate” is the rate-limiting step
of proteasome activity [39,42,43]. Since “gate opening” is a key step in inducing the 20S
function during evolution, cells have evolved different regulators (see also Section 2) which
control this process and adapt proteasome functionality to the metabolic condition [44]. In
fact, within the proteasome architecture, the outer α rings of the 20S make a nearly flat sur-
face that binds the 19S and other alternative regulatory particles (i.e., PA28, see Section 3.2).
The best known 20S activator is indeed the 19S which interacts, in the presence of ATP,
with one or both ends of the 20S to form proteasome holocomplexes: the 26S, referred to as
“single-capped”, and the 30S, named “doubly-capped” [44,45]. Once bound over the axial
20S pores, the 19S RP binding induces the displacement of the 20S α subunits’ N-terminal
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tails, thus opening the gate and promoting substrate access and translocation into the
catalytic chamber [42,46,47]. From the structural point of view, the 19S is composed by two
main elements, the lower “base” which directly binds to the 20S and the upper “lid”, thus
forming a conformational dynamic complex [42,48]. The base consists of six structurally
different subunits with ATPase activity (Rpt1–6), the structural subunits Rpn1 and Rpn2,
and two ubiquitin-binding subunits, Rpn10 and Rpn13. The energy of ATP hydrolysis is
spent to unfold the protein substrate and pull it down into the catalytic chamber of the 20S.
Five ATPases (Rpt1–3; Rpt5 and Rpt6) present a hydrophobic tyrosine HbYX motif at the
C-termini that insert into the α subunits pocket to induce gate opening.
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Figure 1. Ubiquitin–proteasome system. (A) General UPS organization. The Ub target protein conjugation cascade consists
of three classes of ubiquitin ligases: E1, E2, and E3. Ub is activated by E1, forming a high-energy thioester bond; then,
activated Ub is transferred to E2, and then E3 attaches Ub to a specific polypeptide substrate. At the end stage, the substrates
are recognized and subjected to ATP-dependent degradation by the 26S proteasome. (B) Structural heterogeneity of the
proteasome core particle; 20S constitutive proteasome contains the standard catalytic subunits β1 (caspase-like activity), β2
(trypsin-like activity), and β5 (chymotrypsin-like activity). The immunoproteasome incorporates the inducible catalytic
subunits β1i, β2i, and β5i, which have different catalytic specificities. The thymoproteasome is expressed only by cortical
thymic epithelial cells and is characterized by the presence of β1i-β2i, and β5t subunits. Finally, intermediate proteasomes
contain a mix of constitutive and inducible subunits: β1i,-β2-β5i and β1-β2, and β5i, respectively.

Conversely, the peripheral lid consists of nine non-ATPase subunits: Rpn 3, 5–9, 11,
12, and 15, whose main functions are the strengthening of the 20S–19S interaction and deu-
biquitination of substrates before their processing by the ATPases [49–51]. Therefore, the
19S carries out different and fundamental functions: the recognition and unfolding of ubiq-
uitinated substrates, the opening of the 20S pore, the entry of substrates into the catalytic
chamber, and the release of ubiquitin moieties during substrate degradation [15,44,52].
Recently, the structure, function, and biogenesis of the 20S and 19S as well as the struc-
tural conformation of the proteasome holoenzyme have been extensively reviewed [6,20].
Emerging evidence shows that a protein tagged with at least four ubiquitin molecules is not
the unique signal for proteasome degradation by 26S: in fact, multiple or single monoubiq-
uitination appears to be sufficient to label a substrate for proteasomal degradation [53,54].
Additionally, a series of proteins has been reported to be degraded by the 26S regardless of
ubiquitination [20,55,56], implying the existence of alternative molecular signals, such as a
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specific amino acidic sequence or structural elements (also called “degrons”), that mediate
substrate recognition and degradation [19,56–58]. An additional topic that underlines the
complexity of proteasome degradation pathway is the ubiquitin-independent degradation
of macromolecular substrates by the uncapped 20S: several studies demonstrate that the
20S degrades natively unfolded and oxidative stress-damaged proteins [15,59–61]. The
exact biological meaning and the molecular basis of these different degradation pathways
are unclear and deserve additional investigations.

3. Hats off to Proteasome Variability

Since the UPS catalyzes the degradation of the majority of intracellular proteins and
its organization is tuned on the cellular metabolic demands, the maintenance of an ad-
equate activity is essential for cell homeostasis as much as an appropriate plasticity, in
terms of structural and functional organization, is required for cells to adapt to the stimuli
they experience [15]. Thus, the proteasome machine is a highly dynamic complex whose
structural and conformational composition, substrate specificity is regulated at multiple
steps encompassing transcriptional regulation, kinetics of assembly, post-synthetic modifi-
cations, and the interaction with a number of proteasome-interacting proteins (PIPs) which
act as regulatory factors [40,62–65]. Focusing on the proteasome structural composition,
two main elements of proteasome plasticity and variability are represented by (1) the
interchangeability between constitutive and inducible catalytic subunits of the 20S; (2) the
presence of different regulatory particles which can associate to just one or both free ends
of the 20S. This allows generating different subtypes of proteasome that can coexist in a
single cell and whose ratios may change among tissues. The metabolic and pathological
stimuli that allow these canonical and noncanonical particles to form have been partially
described, but to unequivocally address the interconnected, sometimes overlapping, or
specific biological functions they carry out in vivo is a challenging task [62,66,67]. Note-
worthily, in vertebrates, proteasome has gained considerable tissue specificity, as indicated
by the existence of alternative forms of proteasome: immunoproteasome, also known as
inducible 20S (i20S), thymoproteasome (Appendix B), and spermatoproteasome, in which
the constitutive catalytic subunits of the 20S are replaced by inducible/tissue-specific ho-
mologs [62,68–70]. Immunoproteasome and thymoproteasome serve critical roles in the
immunity, whereas spermatoproteasome is a testis-specific and chronologically-defined
form of proteasome, exclusively identified in spermatocytes, spermatids, and sperm. It is
characterized by the presence of a specific α4 subunit (α4s) (PMSA8 gene) that replaces
the constitutive α4: the incorporation of this subunit into a newly formed 20S is mutually
exclusive with wild-type α4 and seems not to alter the constitutive catalytic specificity of
the 20S [69,70]. Nevertheless, α4s incorporation seems to promote the association of the
20S with an alternative regulatory particle named PA200, a nuclear-specific proteasome
activator expressed in all mammalian tissues, but particularly abundant in the testis, where
it plays a crucial role in spermatogenesis [71–75]. Remarkably, an increase of PSMA8
expression has been reported in different tumors, such as large B cell lymphoma, thy-
momas, and testicular germ cell tumors, even though its pathophysiological meaning
and relevance as a novel therapeutic target have not been investigated yet [69,76,77]. As
mentioned above, the reversible binding of activators (i.e., 19S and PA200) to either one
or both α subunit rings of the 20S is another important level of proteasome organization
that contributes to the overall heterogeneity of proteasomes (Figure 1) [15]. Besides the
19S, the best-characterized regulatory particle is PA28 (i.e., 11S regulatory particle), which
preferentially binds the immunoproteasome, forming the PA28/i20S complex as discussed
further (see Section 3.2) [16,78]. The binding of activators increases the proteolytic activity
of the catalytic core, promoting the α-gate opening, influencing the substrate specificity
of the complex, and, more importantly, affecting the repertoire of cleavage products [15].
Hybrid proteasomes (i.e., 19S–20S 11S, 19S–20S-PA200) have also been identified. Their
biological function remains obscure, but their identification underlies how the cells edit the
proteasome repertoire in relation to their specific needs [79–81].
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3.1. Immunoproteasome as a Specialized Apparatus of Self-Target Designation

In the early nineties, proteasome was discovered as the crucial player for the class I
MHC-restricted antigen processing pathway and two proteasome genes, namely PSMB9
(LMP2) and PSMB8 (LMP7), which encode two alternative subunits of the 20S, β1 and
β5, respectively, were identified in close proximity of the transporter associated with the
antigen-processing (TAP) gene in the MHC class II genomic region [82,83]. Concurrently, it
was shown that synthesis and incorporation of these subunits into the 20S was driven by
interferon γ (IFNγ) [84–87] (Figure 2). Thus, immunoproteasome, also known as inducible
proteasome, is a specialized form of the 20S with a prominent role in immunity. Immuno-
proteasome preferentially and cooperatively incorporates three immune subunits, β1i, β2i
(MECL-1), and β5i, to replace the constitutive catalytic subunits into the β ring of the 20S
within its biogenesis pathway. The preferential assembly of inducible subunits is likely
due to the higher affinity of β5i than of β5c for the proteasome maturation protein (POMP)
which mediates the β ring formation [15,88,89]. The i20S assembly is four times faster
than c20S, clearly reflecting the need for a rapid and transient response upon exposure
to a proinflammatory stimulus. In fact, IFNγ induces, via the JAK/STAT signaling, the
transcription of immune catalytic subunits, the MHC-I and TAP genes, thus enhancing the
entire class I antigen presentation machinery [62,82,84,90]. Immunoproteasome is constitu-
tively expressed at the basal level in hematopoietic cells and has a shorter half-life than
c20S (average 27 h for immunoproteasome and 133 h for constitutive proteasome). Such a
rapid turnover has the purpose of efficiently adapting to the environmental changes [91,92].
It has been shown that during the course of viral, bacterial, and fungal infections, immuno-
proteasome replaces up to 90% of the c20S pool [93,94]. As a matter of fact, besides the
pioneering contribution of IFNγ, immunoproteasome was shown to be further transcrip-
tionally induced by a plethora of inflammatory stimuli, such as IFNα and IFNβ, tumor
necrosis factor α (TNF-α), lipopolysaccharides (LPS), as well as by redox unbalance [95–98].
It is important to recall that the different forms of proteasome particles can coexist inside
the cells as well as the different peptide antigens generated. Anyway, in dependence to the
different stimuli the cells are exposed to, the relative abundance of antigens generated by
each specific subpopulation can be adapted [99].

A side-by-side comparison of the three different substrate-binding pockets of the c20S
and i20S points out the enzymological differences of the two complexes [100]. In general,
the i20S is characterized by increased chymotrypsin-like and trypsin-like activities, but a
lower caspase activity [101]. In detail, the caspase-like subunit β1 accommodates peptides
with an acidic residue in the P1 position, whereas β1i binds to peptides with a hydrophobic
residue in the same position, exerting a branched-chain amino acid-preferring activity.

The folded trimeric complex formed by a given peptide and the MHC-I ligand cleft is
exposed to the cell surface for presentation to the immune cells. The requisites for tight
peptide MHC class I binding are essentially two: (1) the length of 8–9 amino acids and
(2) an anchor of basic or hydrophobic residues located at the C-terminus or within the
peptide sequence [68]. MHC-I does not accept C-termini with acidic anchor residues; thus,
the substitution of β1c with β1i produces antigenic peptides with hydrophobic C-termini
that can efficiently bind to MHC-1 molecules. Additionally, the structural properties of β5i
also contribute to generating peptides with preferred C-terminal anchor amino acids for
MHC-I molecules. In fact, the β5i S1 pocket accommodates larger hydrophobic amino acids
chains than β5c (which presents, instead, a “small neutral amino acids-preferring activity”)
and is characterized by a more hydrophilic environment around the catalytic threonine
favoring the chymotryptic-like catalytic properties of the inducible subunit. Despite the β5
and β1 subunits, the active sites of β2c and β2i seem to be structurally identical, rendering
this substitution more enigmatic, even though several studies reported an increase in
trypsin-like activity of i20S with respect to c20S [68,100].
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tion, particularly the production of IFNγ and other inflammatory cytokines, induces the expression
of the proteasome immune subunits in target cells and leads to efficient production of peptides
beneficial in terms of presentation on the MHC class I and recognizable by CD8+ CTLs. Further
elevation of the immunoproteasome (in red) mediated by increased production of inflammatory
cytokines and subsequent generation of immunodominant peptides may function as a positive
feedback loop, enhancing T cell-mediated cytotoxicity.

Additional forms of proteasome bearing a mix of standard and inducible subunits
were identified. These intermediate proteasomes, which represent from one third to
one half of the overall proteasome content in different tissues, such as liver, colon, and
kidney, contain these triads of subunits, β1/β2/β5i or β1i/β2/β5i. Remarkably, a recently
discovered mechanism of antigen generation through which proteasome increases the
repertoire of antigens for presentation to the immune system is the “proteasome-catalyzed
peptide splicing”: spliced peptides, which are made by two not contiguous fragments of
parental proteins, are produced efficiently both by immunoproteasome and constitutive
particles [102–105]. The existence of these mechanisms along with the copresence of
different proteasome populations beyond the constitutive proteasome involved in antigen–
peptide generation broadens the repertoire of antigens produced by a cell [92,106,107]
(Figure 3). However, whether the incorporation of immune subunits triggers qualitative
or quantitative effects on peptide repertoire generation is still not resolved since different
studies report somewhat controversial results. In fact, a number of studies highlighted the
positive role of immunoproteasome mainly against viral and bacterial antigens, whereas
some studies reported that immunoproteasome expression can abrogate the presentation
of some tumor epitopes [106–113].

Anyway, a defect in antigen presentation was found in the triple-inducible-subunit
KO mice, and this alteration is now reported to be much broader qualitatively and quan-
titatively than that previously described in any of the β1i, β2i, or β5i single-subunit KO
mice and still far greater than the sum of the defects these single-subunit KO animals
were reported to bear [92,114,115]. Moreover, analysis of MHC class I-bound peptides
shows that the antigen repertoire of KO mice differs from that of WT mice, reinforcing
the hypothesis that immunoproteasomes generate peptides that, apparently, cannot be
produced by constitutive proteasomes [108,116,117]. On the other hand, other studies
suggest that immunoproteasomes affect the quantity rather than the quality of the given
generated peptides, influencing also in this case the immune response [112,118,119]. Thus,
some antigens are exclusively produced by the immunoproteasome or the constitutive
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proteasome, while others can be processed by both, and some others can be preferentially
processed by intermediate-type proteasomes [120,121]. Of note, this distinction between
the quantitative and qualitative effects of the antigen repertoire depending on the expres-
sion rate of immune–constitutive or mixed proteasome is not simply semantic. In fact, it is
of basic significance not only to better understand the enzymatic properties of the different
proteasome populations, but also to better define the MHC class I-dependent CD8+ T cell
response in the context of specific physiopathological conditions [122].
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As mentioned above, there is now extensive evidence that the UPS generates MHC
class I-presented peptides; however, the source of the presented peptides is far less
clear [123–125]. In this framework, the DRIP (defective ribosomal product) hypothesis is a
novel concept about the source of peptides targeted by proteasome for antigen presentation.
A considerable amount of newly synthesized polypeptides does not reach their native
state after leaving the ribosome. It has been suggested that the defective proteins (indeed,
DRiPs) are ubiquitinated and rapidly degraded by the proteasome and DRIPs-derived
peptides may be preferentially loaded on class I MHC molecules through an unknown
mechanism (possibly relying on the preferential uptake into the ER and/or exclusion of
peptides derived from mature proteins) [126,127]. This proposed model challenges the
older one in which MHC I-presented peptides are generated from the turnover of all
cellular proteins. Therefore, further research is required to quantify the relative bulk of
the newly synthesized and mature proteins in generating MHC class I-presented peptides
by proteasome, and it will be important to unveil which proteins immunoproteasome
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shows cleavage preference for and how DRIPs-derived peptides produced by different
proteasome populations are involved in mediating the immune response [124,127].

3.2. Regulatory Particles Which Associate with Immunoproteasome

As mentioned in the previous sections, besides the 19S, the second most common
proteasome regulator is the ATP and ubiquitin-independent PA28 activator family that
includes three highly homologous, ~28 kDa subunits, α, β, and γ, which form a ring-
shaped 200 kDa multimeric complex (i.e., PA28αβ and PA28γ). This complex binds, in an
ATP-dependent manner, to the two free ends of the 20S or associates with a single-capped
26S (19S:20S), forming the hybrid proteasome 19S–20S–PA28 [16,128–131]. This hybrid
assembly hydrolyses tri- and tetra-peptides at a higher rate than constitutive 26S. The
structure, function, and mechanism through which it induces the 20S gate opening was
recently extensively and more competently reviewed [16]. PA28α and PA28β, which show
a prevalent cytosolic localization, are upregulated by IFNγ and other proinflammatory
cytokines. Consistently with this, their biological function is related to MHC-I antigen
processing. Conversely, PA28γ is a primary nuclear homoheptamer, and its expression is
not significantly upregulated by inflammatory stimuli. Thus, the role of PA28γ in antigenic
processing is controversial, even though some studies have reported that alteration of
PA28γ expression influences the bioavailability of epitopes derived from the pioneer
translation products (PTPs)—polypeptides produced in the nucleus by a nonstandard
translation process which occurs prior to mRNA splicing [78,120,132]. Interestingly, these
epitopes show increased abundance in different cancers and are of key relevance in eliciting
effective antitumor responses [133]. Remarkably, PA28γ binding to the i20S seems to
mediate the ubiquitin-independent degradation of the key regulatory proteins and, thus, it
is involved in different biological processes (besides the antigenic processing), spanning
from cell growth and angiogenesis to apoptosis [79]. PA28αβ, a heteroheptamer assembled
from four α (PSME1) and three β (PSME2) subunits, is constitutively expressed in lymphoid
organs, but it can also be detected in tissues that lack immunoproteasome, where it likely
exerts its biological functions also in association with the c20S. PA28αβ levels dramatically
increase virtually in any other tissues in response to inflammatory stimuli, concomitant
with the increase in other components of the MHC-I antigen processing pathway [120,134].
The i20S in association with PA28αβmediates Ub-independent hydrolysis of the myelin
basic protein during autoimmune neurodegeneration, accomplished through a novel class
of charge-dependent proteasomal degrons [19,59].

Although several lines of evidence indicate the role of PA28αβ in MHC-I processing,
its precise function and molecular mechanism of action are still poorly understood [78]. In
59fact, it has been reported that PA28αβ reduces the size and increases the hydrophilicity
of peptides generated by i20S catalysis, thus producing peptides potentially suitable for
MHC-I binding [62,129]. However, its genetic ablation does not lead to severe abnormal-
ities in immune response against infections and causes the loss of only certain antigens.
Nevertheless, this activator seems to stimulate the antigen production for some MHC-I
alleles, but does not alter or downregulate the generation of other ones [78,110,135].

3.3. Immunoproteasome: Beyond Antigen Processing

In addition to the role in MHC-I antigen processing discussed above, immunopro-
teasome carries out other important functions in the dynamics of the immune system.
In fact, its involvement in the molecular onset of autoimmune diseases has been pro-
posed [136,137].

T cells knocked out for β2i, β5i, and, to a lesser extent, β1i show impaired prolif-
eration and survival when transferred into virus-infected wild-type mice, suggesting a
role in T cell expansion [138,139]. Moreover, ablation of the β5i activity (by either enzy-
matic inhibition or genetic depletion) suppresses the differentiation of Th-1 and Th-17
lineages and promotes the development of T regulatory cells (Tregs). The molecular basis
of this intriguing β5i role remains to be determined: a major working hypothesis is that
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it may be involved in the turnover of factors that promotes Th1 and Th17 differentiation.
This evidence about immunoproteasome involvement in T cells maturation and differen-
tiation has fueled the hypothesis that the selective inhibition of β5i could be a suitable
strategy in autoimmune disease therapy [114,116,140,141]. In this regard, a β5i selective
inhibitor, ONX0914 (also called PR-957) has been shown to prevent the progression of
rheumatoid arthritis in preclinical mouse models [141]. Moreover, β5i inhibition blocks
the induction of experimental colitis, the development of lupus erythematosus-like dis-
ease, Hashimoto’s thyroiditis, and other autoimmune diseases [141–146]. Furthermore,
the first selective inhibitor that targets all three proteolytically active immunoproteasome
subunits (LU-005) has recently shown therapeutic efficacy against autoimmunity [124].
The UPS is well-known to cover a broad range of functions in immune cells of myeloid
origin, being involved in the regulation of key crucial cell signaling pathways, such as
NF-kB and IFN regulatory factors (IRFs), that mediate the production of inflammatory
cytokines [15,113,147,148]. Interestingly, it has been reported that the natural inhibitor
of NF-kB, IkBα, which is a prototypical proteasome substrate, is degraded by immuno-
proteasome faster than canonical proteasome and immunoproteasome asymmetrically
capped with the 19S and PA28 (see also Section 3.2) [149–153]. Since immunoproteasome
is constitutively expressed in myeloid cells, these results provide an intriguing hypothesis
to explain the exceedingly rapid production of proinflammatory cytokines in response to
various stimuli these cells are known to trigger [113,147]. However, the role of immunopro-
teasome in the myeloid maturation process is not completely understood. Despite this, the
question whether immunoproteasome subunits affect NF-kB signal transduction differently
from constitutive particles is still debated. In fact, studies concerning the effect of immuno-
proteasome subunits on NF-kB activation yielded contradictory results [154–156]. As a
matter of fact, it has been recently reported that neither the kinetics of nuclear translocation
nor the DNA-binding activity of NF-kB as well as the production of NF-kB-dependent
proinflammatory cytokines differed between immunoproteasome-deficient (LMP2 KO and
LMP7/MECL-1 double KO) and proficient cells [157].

Besides the role in the immune system, immunoproteasome seems to cover key
functions in the regulation of protein homeostasis in the presence of redox unbalance,
maintenance of stem cell pluripotency, neurodegenerative insults, muscle differentiation,
and visual transmission [149,158–161]. Interestingly, concerning this last role, immunopro-
teasome is constitutively highly expressed in photoreceptors and synaptic regions of the
immune-privileged retina, suggesting a role in normal neuronal functions of this highly dif-
ferentiated nervous tissue [158,162]. Moreover, immunoproteasome is expressed in the lens
and the cornea [163,164]. The precise role of immunoproteasome in eye functionality is still
debated, even though it has been reported that its deficiency causes defects in bipolar re-
sponse and abnormalities in retinal development [165,166]. Moreover, immunoproteasome
expression is upregulated in stressed and injured retina, sustaining the investigation of
the therapeutic potential of specific immunoproteasome inhibitors beyond the constitutive
proteasome ones for the treatment of eye diseases [167].

4. Immunoproteasome: An Emerging Target in Cancer

Alterations of different genes belonging to the UPS are a hallmark of cancer. UPS
dysregulation may occur at multiple levels, spanning from genetic modifications (i.e.,
mutations, amplifications, deletions), transcriptional network alterations (i.e., p53; NRF-1
and NRF-2) to epigenetic and post-translational modifications [15,168].

A number of studies underline the role of the i20S in cancer progression, strengthening
its therapeutic potential. The tumor microenvironment is profoundly different from that of
healthy tissues; this is also due to the presence of tumor-infiltrating lymphocytes (TILs) that
release IFNγ and other inflammatory cytokines. Interestingly, immunoproteasome seems to
possess both pro- and antitumorigenic properties, which are associated with the modulation
of cytokine expression and tumor-associated peptide presentation, respectively [121].



Cancers 2021, 13, 4852 11 of 29

Tumor cells can evade recognition by cytotoxic T lymphocytes (CTLs or CD8+ T cells)
through downregulation of MHC-I at the cell surface or, additionally, by reducing immuno-
proteasome subunits expression [121,169] (Figure 4). In fact, non-small-cell lung cancer that
undergoes the epithelial–mesenchymal transition shows a reduced immunoproteasome
subunits expression: this leads to a dramatic drop of heterogeneity of the antigen/peptide
repertoire produced by tumor cells and to poor clinical outcomes [170]. Thus, it has been
proposed that a decrease in immunoproteasome expression might represent a mechanism
of immune escape in tumor cells which present with a mesenchymal phenotype since
this downregulation is associated with a decline in the amount and diversity of MHC-I-
presented peptides [170]. In accordance with these data, transforming growth factor β
(TGF-β)-induced epithelial–mesenchymal transition leads to a decrease in the immunopro-
teasome content [170]. Moreover, in the early stage of NSCLC, low expression of the i20S is
linked to an increased risk of recurrence and metastasis onset [170]. At the molecular level,
one proposed mechanism which links carcinogenesis with immunoproteasome deficiency
is the differential expression of the β5i subunit. Two main β5i variants have been described,
which are both induced by IFNγ: LMP7E2 and LMP7E1. LMP7E2, usually expressed in
normal cells and in certain cancer types, is regularly incorporated into the mature i20S.
However, many cancer cell lines express only the LMP7E1 isoform that does not interact
with the 20S assembly chaperone POMP and thus cannot be integrated into the mature i20S,
leading to a deficiency of functional immunoproteasome [171]. Moreover, a polymorphism
at amino acid 49 of LMP7 (K49 instead of Q49), localized at the pre-sequence of β5i, reduces
the rate of proteasome assembly and is associated with a higher risk of developing colon
carcinoma [154]. On the other hand, overexpression of immunoproteasome subunits due
to an increase in IFNγ production by TILs correlates with a better prognosis in different
tumors, such as melanoma and breast cancer [121,168].
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Immunoproteasome expression is not only triggered by paracrine production of proin-
flammatory cytokines (such as IFNγ) by immune cells, but it is constitutively elevated in
hematological malignancies [155,172]. In myeloid leukemia cells, the i20S increase was
associated with a higher survival rate [156]. Interestingly, the upregulation of immuno-
proteasome by IFNγ overcomes resistance to the proteasome inhibitor bortezomib and
sensitizes hematological malignant cells (such as multiple myeloma and leukemia) to a
selective immunoproteasome inhibitor ONX0914 [173]. This opens up the perspective
of developing therapeutic approaches based on selective inhibition of immunoprotea-
some subunits different from those targeting the constitutive ones. Moreover, some evi-
dence indicates that immunoproteasome alterations can have an impact on the onset of
inflammation-driven carcinogenesis: indeed, β5i inhibition prevents colitis associated with
colon carcinoma [144]. Thus, the emerging complex picture indicates that the altered ex-
pression of immunoproteasome subunits (mainly LMP2 and LMP7) is common in various
tumors, but the extent of the expression and its biological significance vary depending on
cancer type and grading [94,144]. As a matter of fact, the immunopeptidome changes in
the context of tumor microenvironment and depending on the relative abundance of con-
stitutive or inducible proteasome. For example, a number of cancer antigens derived from
members of the melanoma antigen gene protein family (MAGE), whose expression is re-
stricted to reproductive tissues but which are also aberrantly expressed in a wide variety of
cancer types, such as MAGA3(114–122), MAGEC(42–50), and MAGEA2(338–344), are produced
by immunoproteasome but not by the constitutive proteasome [103,174]. Since the identifi-
cation and characterization of neoantigens is of clinical relevance, modern strategies which
combine genomic, proteomic, and immunopeptidomic approaches are a powerful way of
discovering novel presented antigens and tumor-associated antigens, paving the way to the
novel therapeutic potential [175,176]. As mentioned in the previous section, intermediate
proteasomes broaden the repertoire of MHC-I antigenic peptides and, intriguingly, are
involved in the production of unique tumor antigens (Figures 2 and 3). In fact, it has been
reported that some peptides derived from proteins belonging to the melanoma antigen
gene (MAGE) family are generated by intermediate forms. Specifically, the β1i–β2–β5i
intermediate produces the MAGE-A10(254–262) peptide, whereas the β1–β2–β5i intermedi-
ates generate the MAGE-C2(191–200) and MAGE-A3(271–279) peptides. On the other hand,
other antigenic peptides, such as MAGE-A3(114–122) and MAGE-C2(42–50), are produced
with equal efficiency by the i20S and intermediate proteasomes [92,177,178]. Moreover,
intermediate proteasomes were detected in a number of tumor cells, including lung carci-
noma, myeloma, osteosarcoma, and melanoma [66,79,92,177]. Despite this evidence, the
role of these forms of proteasome in cancer onset and development is poorly known.

Immunoproteasome Inhibitors

The discovery and application in clinical practice of proteasome inhibitors have revo-
lutionized the therapeutic approach of multiple myeloma, further improving the survival
rate of patients with refractory or relapsed forms of this devastating tumor. Currently, three
clinically approved proteasome inhibitors are available, namely (i) bortezomib (approved
in 2003 and 2004 by the FDA and the EMA, respectively), (ii) carfilzomib (approved in 2012
and 2015 by the FDA and the EMA, respectively), and (iii) the first oral inhibitor, ixazomib
(approved in 2015 and 2016 by the FDA and the EMA, respectively). As extensively re-
viewed elsewhere [15], proteasome inhibition results in multiple deleterious downstream
effects in cancer cells, including downregulation of NF-κB signaling, alteration of cytokine
secretion, stabilization of p53, and cell cycle arrest. A poorly explored issue that should be
clarified concerns the contribution of proteasome inhibition to PD-L1 degradation and its
impact on cancer immunotherapy [179]. PD-L1 undergoes ubiquitination and proteasome
degradation by different E3 ligases (STUB1, Cullin3, and β-TrCP) [180–182]. Cancer cells
exhibit the ability to inhibit this process with a consequent impairment of T cell activ-
ity. Remarkably, within the tumor microenvironment, TNF-α increase activates NF-kB in
cancer cells, leading to the further increase of deubiquitinase CSN5 (COP9 signalosome
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5) expression which inhibits PD-L1 degradation, facilitating immune escape of cancer
cells. How proteasome inhibitors used in clinical practice impact PD-L1 degradation and,
therefore, immune escape of cancer cells mediated by the PD-1/PD-L1 pathway is unclear
and represents an important aspect to be investigated.

Despite the beneficial effects, the therapeutic potential of PI is limited by several
drawbacks, including the low potency and specificity, the onset of adverse effects, and de-
velopment of drug resistance [15,183]. Moreover, the main therapeutic benefits are limited
to hematological malignancies since proteasome inhibitors are largely ineffective against
solid tumors [184,185]. Therefore, there is a growing demand for novel inhibitors with dif-
ferent mechanisms of action and more favorable pharmacological profiles. To achieve this
goal, one of the currently explored strategies is the development of selective immunoprotea-
some inhibitors. In fact, by targeting immunoproteasome subunits, it is expected to achieve
a more selective inhibition of proteasomal activity in cancer cells, thereby widening the
therapeutic window. Since immunoproteasome plays pivotal roles in antigen presentation,
participates in a variety of immune processes and, in general, regulates protein homeostasis,
selective inhibitors are expected to bring new therapeutic opportunities for the treatment of
various diseases (beyond cancer), spanning from neurodegeneration to inflammatory and
autoimmune disorders [186,187]. Therefore, several covalent and noncovalent peptidyl in-
hibitors selective for immunoproteasome subunits with different structural and biochemical
properties have been developed and are currently studied. A number of detailed reviews
on immunoproteasome inhibitors are already available [186,188–191]. Of note, ONX0914
was the first developed selective epoxy ketone peptide which showed an improved activity
towards the β5i subunit (IC50 = 5.7 nM) with respect to β5c (IC50 = 54 nM). Starting from
the success of ONX0914, a series of β5i-selective inhibitors with comparable activities and
increased selectivity have been synthesized, such as PR-924, LU-015i, UK-101, LU-002i,
and YU-102 [186]. Importantly, on the ONX0914 backbone, the only immunoproteasome
inhibitor synthesized so far is KZR-616 that has entered the stage of clinical trials. In fact,
several phase 1/2 trials are ongoing with the aim of evaluating the safety, tolerability,
efficacy, pharmacokinetics, and pharmacodynamics of KZR-616 treatment in patients with
autoimmune diseases (such as active polymyositis, dermatomyositis, lupus erythematosus)
(NCT03393013, NCT04628936, NCT04033926) [186,192]. As already mentioned, a number
of preclinical studies evaluated the potential of selective immunoproteasome inhibitors
as anti-cancer therapeutic agents. It is important to note that the currently approved pro-
teasome inhibitors target both constitutive proteasome and immunoproteasome subunits
and this lack of selectivity, and primarily the inhibition of the constitutive proteasome, is
postulated to account for the onset of several severe adverse events [189,193,194]. In fact,
the target tissues of proteasome inhibitor toxicities predominantly express constitutive
proteasomes; thus, selective inhibition of immunoproteasome might reduce or eliminate
most of these toxicities [195,196]. Among the plethora of proposed immunoproteasome
inhibitors for cancer treatment, the most promising ones, at least in preclinical models, are
PR-924, which specifically inhibits the β5i subunit, and UK-101, that targets β1i. Impor-
tantly, both inhibitors reduce the proliferation rate of different tumor types (e.g., leukemia,
multiple myeloma, and prostate cancer), including those resistant to bortezomib. Moreover,
in mouse models, they are characterized by lower toxicities as compared to other thera-
peutic approaches and are generally better tolerated [186,197]. Interestingly, it has been
demonstrated that exposure of multiple myeloma cells to bortezomib before administration
of the immunoproteasome inhibitor ONX914 renders cells more sensitive to i20S inhibition,
providing the biological rationale for using a combination therapy that includes selective
immunoproteasome inhibitors and pan-proteasome inhibitors [198,199]. More recently, a
novel, highly selective i20S inhibitor, M3258, was developed, characterized by a 500-fold
greater specificity for the β5i subunit as compared to other proteasome inhibitors and oral
bioavailability. In a xenograft model of multiple myeloma, M3258 showed strong target
inhibition and in vivo efficacy, with some animals revealing complete tumor eradication. It
also demonstrated an attractive overall profile with regard to physicochemical properties,
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biotransformation, and pharmacokinetics. Daily M3258 administration was associated with
a more durable in vivo efficacy in multiple myeloma models compared with intermittent
schedule, supporting the hypothesis of the need of continuous LMP7 inhibition to sustain
tumor cell apoptosis. Additionally, lower systemic toxicity was observed than for other
inhibitors of constitutive proteasome or immunoproteasome [200–202]. The robust efficacy
of the M3258 inhibitor in preclinical models supported the rationale for a phase 1 clinical
trial (https://clinicaltrials.gov/ct2/show/NCT04075721, accessed date: 25 July 2021) to
determine the safety, tolerability, pharmacokinetics, pharmacodynamics, and early efficacy
signs of this drug as a single agent (dose escalation) and as coadministered with dexam-
ethasone (dose expansion) in patients with relapsed/refractory multiple myeloma [202].
Unfortunately, this trial was discontinued due to the changed therapeutic landscape and
the lack of recruitment (see the ClinicalTrials.gov identifier accessed date: 25 July 2021).
The overall bulk of described data indicate that the development and introduction in clin-
ical practice of an immunoproteasome-specific inhibitor is largely awaited [189,203,204].
However, the onset of side effects and the extent of off-targets as well as the development
of resistance following administration of selective immunoproteasome inhibitors remain
unknown [200].

5. Immunoproteasome and Immune Checkpoint Inhibitors: A Glance to the Future?

As mentioned in the previous sections, the production of tumor-associated antigenic
peptides recognized by CTLs is a process that starts in the cytoplasm with the degradation
of cellular proteins mainly by immunoproteasome (see also Appendix B) [205,206]. Peptide
antigens produced by cancer cells are commonly classified into two main groups, namely
with high and low specificity. Antigens with high tumor specificity are encoded by viral
genes (expressed only in infected cells), mutated genes (generated by the intrinsic insta-
bility of cancer cells and hereafter referred to as neoantigens), and cancer germinal genes
(expressed as a result of genome-wide demethylation occurring in germinal cells) [99,207].
Moreover, it is known that tumorigenesis is strictly related to genetic diversity and high
mutational burden of cancer cells, which increase the possibility of production of neoanti-
gens [168,176,208,209]. This high mutational heterogeneity and neoantigens frequency
positively correlate with the response to ICKi therapy. In fact, ICKi are particularly effec-
tive against cancers that present with a high burden of mutations and are characterized
by DNA mismatch repair deficiency, such as colorectal cancer and NSCLC [210–212].
Thus, neoantigens have been proposed to be a prognostic marker for positive clinical out-
comes [168,176,208,209]. As a matter of fact, one of the main reasons of acquired resistance
to the ICKi therapy seems to be the loss of neoantigens recognized by circulating T cells,
suggesting that tumors are “able” to eliminate some mutations during the acquisition
of a resistant phenotype [212]. Remarkably, despite the approval of the ICK therapy for
cancers characterized by a high mutational burden, a very recent study failed to support
the concept that a high mutational burden is a positive biomarker for the ICKi treatment in
all solid tumors. In fact, a high mutational burden seems to behave as a predictive marker
of response to ICK-based therapies only when the CD8+ infiltration level correlates with
the neoantigen load (such as melanoma, lung, bladder cancers, and colon cancer). On the
other hand, for tumors in which no relationship between CD8+ levels and the neoantigens
load is reported (such as glioma), the high mutational burden failed to predict a positive
response to therapy [213]. Thus, it clearly emerges that additional tumor type-specific
studies should be performed to unveil the role of this biomarker in the ICKi response.
Anyway, the identification of an additional biomarker as well as of non-invasive techniques
that monitor the microenvironment before and during the course of the treatment (e.g.,
imaging-based radiogenomics) are urgently needed for selecting patients who will benefit
from immunotherapy [214,215].

In light of the plethora of antigenic peptides produced by the proteasome pathway,
it is not surprising that alterations of the proteasome activity and composition could be
linked to antigen processing and the ICKi response. Of note, the local production of IFNγ
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within the tumor microenvironment by infiltrating T lymphocytes positively correlates
with clinical outcomes to the ICKi therapy and cancer vaccination in tumors like metastatic
melanoma [216,217]. In fact, the upregulation and secretion of chemotactic cytokines (such
as IFNγ and TNF-α) increase the recruitment of additional immune cells and alter the
tumor microenvironment, stimulating the inhibition of immune exclusion of cancer sig-
natures [218]. Interestingly, some studies show that the primary response to anti-CTLA4
antibodies required a high-level exposure of MHC-1 on the surface of cancer cells at base-
line; on the other hand, the response to anti-PD-1 antibodies is linked to a pre-existing
IFNγ transcriptome signature [219]. In a recent study, the transcriptome of baseline and
on-therapy tumor biopsies from a cohort of 101 patients with advanced melanoma included
within the CheckMate 038 study (https://clinicaltrials.gov/ct2/show/NCT01621490, ac-
cessed date: 25 July 2021) and treated with nivolumab alone or in combination with
ipilimumab (see also Appendix A) has been analyzed [220]. These data, together with
in vitro studies, suggest that the immune activation, which follows the administration of
ICKi, is associated with the expression of IFNγ response genes, mediated by the increase
of T cell infiltration. Among the different sets of genes induced by IFNγ, the most rele-
vant in mediating the response to the therapy are those involved in antigen-presenting
machinery [220]. Thus, a combination therapy of ICKi with agents that independently
trigger the intratumoral production of IFNγ could become meaningful [220–223]. Con-
sistently with the role of IFNγ signature in driving ICKi response, it has been proposed
that upregulation of immunoproteasome subunits in tumor cells might be also involved
in this process [216,220]. In fact, the local production of IFNγ induced by ICKi, which are
routinely used in the treatment of advanced/metastatic melanoma, leads to the modulation
of proteasome composition, thus inducing the generation of antigenic peptides [216,217].
Consistent with this observation, the expression of immunoproteasome subunits β1i and
β5i was associated with a better prognosis in the case of tumors with a high mutational bur-
den (i.e., melanoma and NSCLC) and positively correlated with the response to ICKi and
the survival rate of patients [170,216,224]. Thus, it has been proposed that at least in some
tumors the expression level of the β1i and β5i subunits might represent a predictive marker
of response to ICKi [216,225]. As a matter of fact, the overexpression of these subunits is
linked to longer survival and improved response to the ICKi therapy in melanoma patients
and the proposed mechanism underlying this connection consists in enhanced reactivity
of TILs toward melanoma cells as a consequence of an altered repertoire of the presented
antigens [216]. Importantly, it has also been reported that immunoproteasome subunit
overexpression sometimes occurs regardless of IFNγ and T cell infiltration, suggesting that
these subunits should be independent prognostic biomarker with respect to the IFNγ level
and the rate of T cell infiltration in the context of tumor microenvironment [216]. Thus,
this last observation opens up a possible and yet poorly investigated scenario concerning
the role of immunoproteasome in mediating the ICKi response independently of the IFNγ
pathway. Therefore, even though many crucial points deserve to be clarified, it clearly
emerges that immunoproteasome expression seems to be an important predictive marker
in colorectal cancer, melanoma, and NSCLC, for which the ICKi therapy has proven to
be effective. Thus, an intriguing therapeutic strategy that should be explored in the near
future is the combination of ICKi and drugs that directly modulate immunoproteasome
activity and/or induce immunoproteasome expression in order to increase its pool inside
the cells.

6. Conclusions

Cancer cells are often more dependent on a proper integrity and functionality of UPS
than nonmalignant cells due to the rapid proliferation rate, increased metabolic activity,
and continuous exposure to a variety of extrinsic stress perturbations (such as nutrient
deprivation, hypoxia, and acidosis) under which cancer cells live. All these conditions
lead to a decrease in protein quality control and make UPS a suitable target for cancer
therapy [218,219]. Accordingly, a number of proteasome based-strategies have been pro-
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posed, spanning from (i) inhibition of proteasome proteolytic activity, (ii) modulation of
the abundance of proteasome regulatory particles (i.e., 19S or PA28) and of their interac-
tion with the 20S to (iii) modulation of the activity of enzymes involved in proteasome
subunit post-translational modifications and (iv) interference with transport of natural
low-molecular-weight proteasome activators (e.g., spermine) [62,226–232]. Additionally, a
series of strategies targeting the ubiquitination cascade have been studied. One of the most
intriguing and novel therapeutic approaches involves the use of PROTAC (proteolysis-
targeting chimeric molecules), which are hetero-bifunctional molecules that recruit specific
target proteins to the E3 ligase, thus inducing the increase of target ubiquitination and
degradation. This strategy has already been applied to the degradation of a number of
selected targets [233–235]. However, even though promising, it is still in its infancy for
application to immunotherapy. On the other hand, the most deeply investigated strategy
consists in the use of broad-specificity inhibitors of the 20S activity, like bortezomib, carfil-
zomib, and ixazomib that inhibit proteolysis of all the proteasome forms present in different
cells [15,62]. The second approach encompasses the identification of specific inhibitors tar-
geting inducible tissue-specific forms of proteasome, mainly the i20S, which is involved in
the production of antigenic peptides. Though this mechanism is well-known, how such in-
hibitors might either decrease or stimulate cancer cell recognition by T cells is debated (see
Section 4) [62]. As a matter of fact, a challenging but poorly investigated issue is the precise
in vivo impact of broad-specificity 20S proteasome inhibitors commonly used in clinical
practice on antigen presentation by cancer cells [99], and it should deserve more attention.
A key question for improving the efficacy and safety profile of immunotherapy includes the
identification of the most appropriate strategy to optimize the antigenic peptide repertoire
of the tumor required for an efficient immune response [99]. Notably, some recent data
suggest that enhanced immunoproteasome activity might play an important role in the
response of melanoma to ICKi [216]. It seems to indicate that, at least in some tumors, the
more efficient strategy could be to “enhance” immunoproteasome expression and activity.
Thus, the choice of the best strategy whether to inhibit or activate immunoproteasome
should take into consideration the biological features of the specific tumor that has to be
treated. Even though additional in vitro and in vivo investigation needs to be performed,
the current evidence indicates that selective modulation of proteasome activity might have
a role in improving the outcome of the ICKi or other immunotherapeutic approaches.
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Appendix A. Spotlights on Immune Checkpoints

Several negative regulators of T cell activation act as “checkpoint molecules” to finely
tune the immune response and regulate their hyperactivation [1]. CTLA4 and the PD-1–
PD-L1 axis, which exert their biological function at distinct sites and with different timing
during the T cell lifespan, are the most studied and potent examples of immune checkpoint
molecules [1,4]. CTLA4 is operative during the priming phase of T cells activation. In
resting naïve T cells, CTLA4, which is a costimulatory receptor CD28 homolog with a



Cancers 2021, 13, 4852 17 of 29

higher affinity for the common ligand B7, expressed by antigen-presenting cells (APC),
localizes primarily in the intracellular compartment. Following antigen activation, CTLA4
is strongly induced, with a peak of expression within 2–3 days from the stimulatory signal,
and translocated from vesicles to the T cell surface. The binding between CTLA4 and
B7 transmits an inhibitory signal inside T cells that reduces the proliferation rate and
survival of activated T cells as well as cytokines production. CTLA4 exerts its inhibitor
effect predominantly into lymphoid organs [126,236–238]. On the other hand, PD-1 acts
during the effector phase, turning off cell activation mainly in the peripheral tissues. It
is absent in naïve T cells, whereas, after TCR stimulation, it is expressed on the T cell
surface, where it binds the B7 homologues PD-L1 and PD-L2, which are constitutively
expressed by APCs. After PD-1–PD-L1/PD-L2 engagement, a negative costimulatory
signal is transmitted, tempering TCR cascade [239–242]. PD-L1 can also be expressed by
tumor cells and its upregulation may represent a possible mechanism of immune evasion.
The two described pathways (CTLA4 and PD-1–PD-L1 axis) cooperate in turning off T
cell activation and antibodies directed against these molecules hamper the inhibitory
signal, favoring T lymphocytes reactivation [1,5]. The recognition of CTLA4 and the
PD-1–PD-L1 axis as a negative regulator of T cell activation gave rise to the idea that
inhibition of their pathways could be useful for cancer treatment. In 2011, ipilimumab
became the first clinically approved monoclonal antibody blocking an immune checkpoint
molecule (CTLA4), followed, starting from 2014, by monoclonal antibodies targeting PD-
1 (pembrolizumab, nivolumab, and cemiplimab) and PD-L1 (atezolizumab, avelumab,
and durvalumab). ICKi are now regarded as the most commonly prescribed anticancer
therapy, as single agents or in combination with chemotherapy, in the first or second line of
treatment of about 50 cancer types [243,244]. Despite the undoubted therapeutic efficacy,
clinical benefit is limited to subsets of patients for each cancer type, and, in responder
patients, acquired resistance may develop [5]. Therefore, there is an increasing interest
in the identification of predictive biomarkers of response and development of add-on
therapies that may enhance ICKi efficacy (see also the main text) [5].

Appendix B. Thymoproteasome

Thymoproteasome is a noncanonical form of proteasome whose expression is re-
stricted to the cortex of the thymus, a primary lymphoid organ that screens out T cell
receptor specificity. Within the mechanisms governing the central tolerance, thymoprotea-
some activity is supposed to generate antigenic peptides required for the positive selection
of T cell clones. This process allows immature CD4 and CD8 double-positive T cells express-
ing T cell receptors (TCRs), which bind with low affinity to HLA molecules loaded with
self-peptides, to differentiate into mature single-positive cells [245,246]. Conversely, the
negative selection that occurs at the cortical–medullary junction of the gland and, concep-
tually, is the reverse process of positive selection, refers to the clearance of double-positive
or single-positive T cells expressing TCRs displaying high affinity for self-peptide–MHC
complexes. However the negative selection appears to be achieved through a repertoire
of self-peptides generated by the proteolytic activity of immunoproteasome and constitu-
tive proteasomes [203,247–251]. From the structural point of view, thymoproteasome is
equipped with the inducible immune subunits β1i and β2i and a distinctive catalytic sub-
unit β5 (designated β5t, where “t” stands for thymus) (PSMB11), which is the homolog of
the constitutive β5 and the inducible β5i [62,252,253] (Figure 1); β5t is selectively expressed
and incorporated together with β1i and β2i into the newly assembling 20S in cortical epithe-
lial cells. In accordance with a less relevant role of thymoproteasome in negative selection,
the epithelial cells populating the thymus medulla do not express appreciable levels of
these specific subunits. The transcription of thymoproteasome subunit genes is carried out
by the Foxn1 transcription factor which is generally involved in the regulation of the key
target genes for T cell development [253–255]. Regarding the enzymological properties,
compared with the c20S and i20S, thymoproteasome is characterized by a robust drop of
chymotrypsin-like activity (60–70% decrease) but not of trypsin-like and caspase-like activi-



Cancers 2021, 13, 4852 18 of 29

ties, at least on specific fluorogenic substrates. In fact, the catalytic properties of β5t seem to
be quite different from those of β5i and β5t. The substrate-binding S1 pocket of β5i and β5t
mainly accommodates hydrophobic amino acids, which are preferred cleavage sites for the
chymotrypsin-like activity, whereas β5t shows preference for hydrophilic residues. This
biochemical feature endows thymoproteasome with a specific pattern of endopeptidase
proteolysis which releases a repertoire of peptide fragments that show weak binding to
class I HLA molecules. Thus, the affinity model for positive selection of T cells assumes
that thymoproteasome produces a unique class of MHC-binding peptides with low affinity
for TCR which is the driving force of the whole process [256]. Accordingly, the repertoire
of self-antigens differs between the cortex and the medulla, where class I-binding peptides
are mainly released by immunoproteasome and constitutive proteasome, as anticipated
before. The fact that different thymic compartments display distinct sets of peptides seems
to increase the number of surviving CD8+ clones, avoiding overlaps in the positive and
negative selection [203,257,258] (Figure A1). In this regard, transgenic mice which express
thymoproteasome both in the cortex and the medulla show an increased rate of negative
selection. Nonetheless, negative selection is almost blocked in the mice expressing only
the c20S [258–260]. Furthermore, β5t−/− mice appear to develop normally and have a
thymus of a typical size, with the cortico–medullary structure undisturbed. However, these
animals express immunoproteasome subunits but not those of thymoproteasome in all
the thymus layers and show aberrant TCR responsiveness, reduction in the CD8+ T cells
number (approximately by 80%), and altered response to infection. Conversely, no defects
in the CD4+ T cells selection have been observed [249,250,259,261]. Additional insights
on thymoproteasome come from studies on β5i−/− mice, which express an aberrant level
of thymoproteasome in antigen-presenting cells (APCs), including dendritic cells and
medullar epithelial cells. These animals develop several metabolic abnormalities (obesity,
hepatic steatosis, increase in the adipose differentiation-related protein). Thus, extracortical
expression of β5t induces autoreactive responsiveness of CD8+ T cells, suggesting that
specific cortical expression is fundamental not only for the correct positive selection, but
also for the maintenance of peripheral tolerance [259,260,262]. Recent studies support the
hypothesis that thymoproteasome alterations are involved in the onset and progression
of human diseases, even though additional preclinical and clinical data are required to
address its specific pathogenic role. Immunohistochemistry analyses show that β5t is
overexpressed in B and AB thymomas, but not in type A thymomas and thymic carcinoma.
Thus, it has been suggested that β5t could be used as a diagnostic biomarker to discriminate
between the different types of thymomas and thymic carcinoma. Moreover, β5t has been
proposed as a reliable marker for rare cervical ectopic thymomas. However, the precise
diagnostic and prognostic value of this marker is still poorly understood [262–265]. Unlike
immunoproteasome and constitutive proteasome, the involvement of thymoproteasome in
extrathymic diseases not related with cancer is poorly exlpored. Recently, it has been shown
that patients with Down syndrome have a decreased β5t expression, which seems to con-
tribute to the elevated susceptibility to infections these subjects suffer from [251,263,266].
Furthermore, a single-nucleotide polymorphism that replaces glycine with serine at the
49th amino acid residue (G49S) is associated with Sjogren’s syndrome. These amino acid
substitutions, which occur at a significantly high frequency in the Japanese population,
partially prevent the carboxyl terminus cleavage that turns the β5t proproteins into the
catalytic active form [267,268].
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