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This article explores the possibility of cointegration existing between processes integrated at different frequencies. Using the
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frequencies is proposed, with a Monte Carlo study and an application showing that the testing approach works well.
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1. INTRODUCTION

To date, the vast literature on cointegration has focused primarily on the long-run characteristics of economic time
series through the analysis of zero frequency unit roots. Nevertheless, economic and financial time series may
exhibit unit roots at other frequencies; in particular, Engle et al. (1993), Johansen and Schaumburg (1999), Ahn
and Reinsel (1994) and Bauer and Wagner (2012) analyze the seasonal case, while Bierens (2001) and Caporale
et al. (2013) consider unit roots associated with the business cycle. However, such analyses typically examine a
specific frequency, without allowing the possibility that the responses of economic agents may vary in relation to
the seasonal or business cycle.

The current article studies long-run linkages between time series with unit roots at different frequencies. Thus,
for example, we consider the nature of any cointegration between two series integrated at different harmonic fre-
quencies, or where one series is integrated at the zero frequency and the other at a business cycle or seasonal
frequency. To our knowledge, no previous study has examined the possibility or nature of such cointegration.
Succinctly stating our main result, we show that cointegration can exist between time series that are integrated
at different frequencies, with this being a specific type of time-varying polynomial cointegration. More specifi-
cally, the cointegrating relationship is dynamic with coefficients that exhibit cyclical variation, so that a long-run
relationship can vary over the seasonal or business cycle.

Polynomial cointegration is discussed in the literature in the contexts of (so-called) seasonal cointegration
and multi-cointegration (see Granger and Lee, 1989; Hylleberg et al., 1990, respectively), while Gregoir (1999a,
1999b) undertakes a general analysis of these cases. Cubadda (2001) provides an alternative representation of the
polynomial cointegration arising in the seasonal case in terms of complex-valued cointegration, which is developed
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further by Cubadda and Omtzigt (2005), and Gregoir (2006, 2010). Although we take a similar approach to these
latter authors, we relax the restrictions that cointegration applies only at a single frequency and that cointegrating
vectors are time invariant.

As examined by Park and Hahn (1999) and Bierens and Martins (2010), time-varying cointegration allows
the relevant coefficients to change smoothly over time in any direction. Such a general specification is, however,
problematic in that it raises the question of what underlying mechanism drives these changes and hence it is not
surprising that other authors place some economic structure on the nature of the temporal variation exhibited by
the long-run relationship; for example, Hall et al. (1997) allow the cointegrating relationship to change with the
economic environment through the use of a Markov-switching specification. In a seasonal context, Birchenhall
et al. (1989) develop a periodic cointegration model for income and non-durable consumption, arguing that sea-
sonal preferences may lead to long-run coefficients that vary with the time of the year. This article has a different
focus, namely to consider the possibility of cross-frequency cointegration. If seasonal preferences lead to seasonal
unit roots in consumption, then the evolution of seasonal demand could be driven by (cointegrated with) the level
of income; for example, higher income could be associated with a greater concentration of foreign holidays in
summer.

The present article generalizes periodic cointegration to show that temporal variation in the coefficients of a
long-run relationship, with this variation being of a cyclic nature, can deliver cointegration between variables that
are individually integrated at different frequencies. This approach encompasses not only variation associated with
the seasons, but also over a cycle at a business cycle frequency. Some of our results are implicit in analyses of peri-
odic cointegration (see, in particular, Ghysels and Osborn, 2001; Franses and Paap, 2004), but the cross-frequency
cointegration implications have not previously been drawn out.

In our analysis, a central role is played by the complex demodulator operator, which transforms a real valued
process integrated at a frequency different from zero to a complex-valued process that is integrated at frequency
zero. The idea of complex demodulation has a long history in time series analysis (see, e.g. Bloomfield, 1976,
chapter 6, and the references therein) but, to the best of our knowledge, it has not been previously used to investigate
the presence of cointegration among series that are integrated at different frequencies.

This article is organized as follows. Section 2 reviews the notions of integration at a given frequency and the
demodulator operator. Section 3 presents our theoretical results. First, we show that two complex valued pro-
cesses integrated at different frequencies can cointegrate and the connection of this with the demodulator operator.
Second, we examine in detail the various forms of cointegration that may exist between real valued time series
integrated at different frequencies. Third, we tackle inferential issues. Some formal results are presented in an
Appendix, with proofs of the lemmas stated there available as an additional Appendix S1 (Supporting Information).
In Section 4, a Monte Carlo simulation exercise documents the finite sample properties of the tests that we suggest.
Section 5 presents an empirical application to illustrate concepts and methods. Finally, Section 6 concludes.

It is useful to introduce some notation at this stage. Our analysis is concerned with a cyclical process which has N
observations per cycle; for example, N = 4 for quarterly seasonal data or N = 6 for annual data following a six year
business cycle. The analysis of the Appendix uses the vector of seasons (or, more generally, cycles) representation
that indicates a specific observation within the cycle. This double subscript notation is also sometimes used below
and it is important to appreciate that, in this vector notation, xn𝜏 indicates the nth observation within the 𝜏th cycle;
for example with quarterly data xn𝜏 is the nth quarter of year 𝜏 within the available sample. Assuming that t = 1
represents the first period within a cycle, the identity t = N(𝜏 − 1) + n provides the link between the usual time
index and the vector notation.

2. INTEGRATION AT A FREQUENCY

It is useful to have a notation for the operator that removes a single unit root at a spectral frequency 𝜔 ∈ [0, 𝜋]. To
this end, and following Gregoir (1999a) and Cubadda (1999), we adopt the notation

Δ𝜔 =
{

1 − e−i𝜔L, 𝜔 = 0, 𝜋
1 − 2 cos𝜔L + L2 = (1 − e−i𝜔L)(1 − ei𝜔L), 𝜔 ∈ (0, 𝜋) (1)
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414 T. DEL BARRIO CASTRO ET AL.

where L is the conventional lag operator. Special cases include the conventional first difference operatorΔ0 = 1−L,
while Δ𝜋 = 1 + L and Δ𝜋∕2 = 1 + L2 remove unit roots at the semi-annual and annual frequencies, respectively,
for a seasonally integrated quarterly process (Hylleberg et al., 1990), and Δ𝜋∕3 = 1 − L + L2 removes a unit root
corresponding to a cycle of six year (month) duration in annual (monthly) data.

To pin down the concept of integration at some frequency 𝜔, we adopt the following definition, used by Gregoir
(1999a):

Definition 1. A purely non-deterministic real-valued random process xt is integrated of order d, for non-negative
integer d, at frequency 𝜔 ∈ [0, 𝜋] if Δd

𝜔
xt is a covariance stationary process such that, for zero mean white noise

𝜀t, its Wold representation

Δd
𝜔

xt = c(L)𝜀t =
∞∑

j=0

cj𝜀t−j

satisfies
∑∞

i=0 c2
j < ∞,

∑∞
j=1 j |||cj

||| < ∞ and c(ei𝜔) ≠ 0.

Following Hylleberg et al. (1990) and Gregoir (1999a), a process xt satisfying Definition 1 is denoted xt ∼ I𝜔(d).
Although some authors, including Gray et al. (1989) and Caporale et al. (2013), allow fractional d, which is
particularly relevant for financial time series, we are interested in cointegration for unit root economic time series
which are typically I𝜔(1) after taking account of deterministic effects. Obviously, xt ∼ I0(1) corresponds to a
conventional (single) unit root process integrated at the zero frequency.

Although the differencing operator Δ𝜔 of (1) is defined for a real valued series, it is useful for the analysis that
follows to consider complex-valued processes. Specifically, when xt ∼ I𝜔(1) we consider individually each of the
two factors

(
1 − e±i𝜔L

)
of Δ𝜔 for 𝜔 ∈ (0, 𝜋). Then, for

xt = 2 cos(𝜔) xt−1 − xt−2 + 𝜈t, (2)

with real-valued 𝜈t ∼ I𝜔(0), define the complex-valued process

x−t = xt − ei𝜔xt−1. (3)

It is then straightforward to see that

x−t = e−i𝜔x−t−1 + 𝜈t. (4)

Successive substitution from (4) yields

x−t = e−i𝜔tx−0 +
t−1∑
s=0

e−i𝜔s𝜈t−s

= e−i𝜔t

[
x−0 +

t∑
𝓁=1

ei𝜔𝓁𝜈𝓁

]
(5)

where e−i𝜔t is the demodulator operator and x−0 is assumed to be Op (1) (with x−0 been part of the starting value of
x−t that is, e−i𝜔tx−0 ).

As noted by Gregoir (1999a, 2006) and del Barrio Castro et al. (2018, 2019), (5) is equivalent to

x−t = e−i𝜔tx(0)−t (6)

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 43: 412–435 (2022)
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where1

x(0)−t = x−0 +
t∑

𝓁=1

ei𝜔𝓁𝜈𝓁 ∼ I0 (1) .

Note that, here it is clearly shown that x−0 is the starting value of x(0)−t and that e−i𝜔tx−0 is the starting value of x−t .

The demodulator operator of (5) therefore shifts the zero frequency peak of the complex-valued process x(0)−t to
frequency 𝜔, leading to a complex-valued x−t ∼ I𝜔(1). The demodulator operator provides the key to cointegration
between processes integrated at different frequencies, examined in subsequent sections.2 Further note that, using
the identity e±i𝜔𝓁 = cos (𝜔𝓁) ± i sin (𝜔𝓁) , (5) can also be written as

x−t = e−i𝜔t

[
x−0 +

t∑
𝓁=1

cos (𝜔𝓁) 𝜈𝓁 + i
t∑

𝓁=1

sin (𝜔𝓁) 𝜈𝓁

]
. (7)

Following an analogous line of argument, the complex-valued process x+t ∼ I𝜔(1) can also be constructed, where

x+t = ei𝜔x+t−1 + 𝜈t = ei𝜔tx(0)+t (8)

and x(0)+t = x+0 +
∑t

𝓁=1 e−i𝜔𝓁𝜈𝓁 ∼ I0 (1). It is also clear that

x+t = ei𝜔t

[
x+0 +

t∑
𝓁=1

cos (𝜔𝓁) 𝜈𝓁 − i
t∑

𝓁=1

sin (𝜔𝓁) 𝜈𝓁

]
, (9)

where the starting value x+0 is the complex conjugate of x−0 in (5). Hence x−t and x+t form a complex conjugate pair
of processes.

Lemma 1 in the Appendix summarizes the stochastic characteristics of (4) at the frequency 𝜔j = 2𝜋j∕N, j =

1,… , (N − 1) ∕2, corresponding to a cycle of N∕j periods. In particular, when appropriately scaled,
t∑

𝓁=1

cos (𝜔𝓁) 𝜈𝓁

and
t∑

𝓁=1

sin (𝜔𝓁) 𝜈𝓁 converge to the independent Brownian motions w𝜈

R (r) and w𝜈

I (r) respectively of Lemma 1;

see also Gregoir (2006) and del Barrio Castro et al. (2012, Remark 7). In Lemma 1 and in all the lemmas in the
Appendix we assume for simplicity and to focus on the main ideas of the article that 𝜈t ∼ i.i.d.

(
0, 𝜎2

)
.

3. COINTEGRATION FOR PROCESSES INTEGRATED AT DIFFERENT FREQUENCIES

We initially focus on the long run relationships between complex-valued processes with unit roots at different
frequencies, showing that long-run (cointegrating) relationships between such processes can exist. Cointegration
is then discussed for real-valued processes, with these long-run relationships generally polynomial in form with
periodically (seasonally or cyclically) varying coefficients. The final subsection considers econometric approaches
to testing for cointegration. To ensure distinct frequencies, we consider xt ∼ I𝜔j

(1) and yt ∼ I𝜔k
(1) where 𝜔j =

2𝜋j∕N and 𝜔k = 2𝜋k∕N with j ≠ k.
Most of the analysis of this section and also the Appendix assumes that xt and yt each have unit roots at a single

frequency. Section 3.3 on econometric strategies includes a discussion of the situation where one series has unit
roots at multiple frequencies, a case which arises in our empirical application.

1 Note that as 𝜈t ∼ I𝜔(0) is the 𝜔-frequency first difference of the real valued I𝜔(1) process (2), ei𝜔t𝜈t acts as the complex-valued increment
of the I0(1) process x(0)−t .
2 The demodulator operator is also used in Theorem 4 of Johansen and Schaumburg (1999) in a multi-variate setting.
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416 T. DEL BARRIO CASTRO ET AL.

3.1. Cointegration Between Complex-valued Processes

Based on the results of the previous section, define the following triangular system with a long-run relationship
(cointegration) at the zero frequency between two complex-valued processes:

y(0)−t = 𝛽x(0)−t + ut (10)

x(0)−t = x(0)−t−1 + ei𝜔j t𝜈t

where both the cointegrating coefficient 𝛽 and the process ut ∼ I (0) are generally complex-valued. Since x(0)−t =
ei𝜔j tx−t from (6), (10) can also be written as

y(0)−t = 𝛽ei𝜔j tx−t + ut (11)

x−t = e−i𝜔j x−t−1 + 𝜈t.

Note that multiplying the first line of (11) by e−i𝜔j t leads to the triangular system of Gregoir (2010, p. 1499).
The system (11) exhibits a long-run (cointegrating) relationship between y(0)−t ∼ I0(1), a complex-valued pro-

cess integrated at the zero frequency, and x−t ∼ I𝜔j
(1), a complex-valued process integrated at the frequency 𝜔j. It

is also important to note that the relationship between y(0)−t and x−t is a form of periodic cointegration, since the
cointegrating coefficient 𝛽ei𝜔j t = 𝛽ei𝜔j(N(𝜏−1)+n) = 𝛽ei𝜔jn is cyclically varying.3 Lemma 5 in the Appendix summa-
rizes the stochastic behavior of the triangular system (11) using the vector of seasons notation and, in particular,
(A3) shows that y(0)−t and x−t share a single common complex-valued stochastic trend; hence there are 2N − 1
cointegrating relationships between the two series across the N observations of a complete cycle.

Premultiplying (11) by the demodulator operator e−i𝜔kt shifts the complex-valued process y(0)−t from the zero
frequency to frequency 𝜔k = 2𝜋k∕N with k = 0, 1,… , ⌊N∕2⌋ , where ⌊N∕2⌋ is the integer part of N∕2. With j ≠ k
we then have:

e−i𝜔kty(0)−t = 𝛽ei[𝜔j−𝜔k]tx−t + e−i𝜔ktut.

Since, analogously to (6), y−t = e−i𝜔kty(0)−t , clearly y−t is a complex-valued process integrated at frequency 𝜔k that
shares a single common stochastic trend with x−t , a complex-valued process integrated at frequency 𝜔j. Hence the
bivariate system

y−t = 𝛽e−i[𝜔k−𝜔j]tx−t + e−i𝜔ktut (12)

x−t = e−i𝜔j x−t−1 + 𝜈t

links y−t ∼ I𝜔k
(1) and x−t ∼ I𝜔j

(1) through the periodic cointegration relationship
[
1,−𝛽ei[𝜔j−𝜔k]t

]′
with a

different coefficient for each observation within the cycle of N observations. Lemma 6 in the Appendix for-
malizes this result and summarizes the stochastic behavior of the triangular system (12) using the vector of
seasons notation, with (A4) writing this system in terms of the same complex-valued common trend as for the
system (11).

To summarize, (11) and (12), together with (A3) and (A4) of the Appendix, show that a unique
long-run cointegrating relationship can exist between complex-valued processes integrated at different
frequencies.

The next subsection discusses the implications of such cointegration for real-valued processes. For this purpose,
it will be convenient to explicitly indicate the complex-valued nature of the cointegration by writing 𝛽 = 𝛽R + i𝛽I

3 As 𝜔j = 2𝜋j∕N it is evident that 𝜔j (N(𝜏 − 1) + n) is periodic and hence the identity 𝛽ei𝜔j(N(𝜏−1)+n) = 𝛽ei𝜔jn holds.

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. 43: 412–435 (2022)
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and ut = Re(ut) + i Im(ut), so that (10) becomes

y(0)−t =
[
𝛽R + i𝛽I

]
x(0)−t + Re(ut) + i Im(ut) (13)

x(0)−t = x(0)−t−1 + ei𝜔j t𝜈t.

Furthermore, there also exists the system

y(0)+t =
[
𝛽R − i𝛽I

]
x(0)+t + Re(ut) − i Im(ut) (14)

x(0)+t = x(0)+t−1 + e−i𝜔j t𝜈t

which forms the complex conjugate system to (10). Since, clearly,

Re(x(0)−t ) = Re(x(0)+t ), Im(x(0)−t ) = − Im(x(0)+t ) (15)

and

Re(y(0)−t ) = Re(y(0)+t ), Im(y(0)−t ) = − Im(y(0)+t ), (16)

cointegration can be equivalently considered using either y(0)−t and x(0)−t or y(0)+t and x(0)+t .

Finally, note also that 𝜔k = 𝜔N∕2 = 𝜋 in (12) leads to a long-run relationship between a process integrated at a
harmonic frequency 𝜔j = 2𝜋j∕N and a process integrated at the Nyquist frequency (𝜋). Similarly, 𝜔k = 0 leads to
cointegration between a process integrated at a harmonic frequency and a zero frequency unit root process. These
special cases and their implications are also discussed in the next subsection.

3.2. Cointegration Between Real-valued Processes

This subsection extends the analysis to examine the implications of cointegration at different frequencies for
real-valued processes, which enables inference to be applied to observed time series. Since slightly different con-
siderations arise when one process is integrated at the zero or Nyquist frequency, four cases are considered: namely
𝜔k, 𝜔j ∈ (0, 𝜋); 𝜔k = 0, 𝜔j ∈ (0, 𝜋); 𝜔k = 𝜋, 𝜔j ∈ (0, 𝜋); 𝜔k = 0, 𝜔j = 𝜋.

3.2.1. I𝜔k
(1) and I𝜔j

(1) processes with 𝜔k, 𝜔j ∈ (0, 𝜋)
One approach to cointegration is to transform one variable (say xt ∼ I𝜔j

(1)) so that its unit root is shifted to the
frequency of the unit root in the other (yt ∼ I𝜔k

(1)). This is achieved in the cointegrating relation of the first line
of (12) in which ei(𝜔j−𝜔k)tx−t ∼ I𝜔k

(1) and e−i𝜔ktut ∼ I𝜔k
(0). It is tedious but not difficult to see that taking the real

and imaginary parts of this equation leads to

yt = cos(𝜔k)yt−1 + 𝛽0,txt + [𝛽1,t sin(𝜔j) − 𝛽0,t cos(𝜔j)]xt−1 + zR,t (17)

sin(𝜔k)yt−1 = −𝛽1,txt + [𝛽1,t cos(𝜔j) + 𝛽0,t sin(𝜔j)]xt−1 − zI,t (18)

where

𝛽0,t = 𝛽R cos[(𝜔j − 𝜔k)t] − 𝛽I sin[(𝜔j − 𝜔k)t)], (19)

𝛽1,t = 𝛽R sin[(𝜔j − 𝜔k)t] + 𝛽I cos[(𝜔j − 𝜔k)t]

and

zR,t = Re(e−i𝜔ktut) = cos(𝜔kt)Re(ut) + sin(𝜔kt) Im(ut)
zI,t = Im(e−i𝜔ktut) = cos(𝜔kt) Im(ut) − sin(𝜔kt)Re(ut).

J. Time Ser. Anal. 43: 412–435 (2022) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
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418 T. DEL BARRIO CASTRO ET AL.

Given that zR,t, zI,t ∼ I𝜔k
(0), the system (17) and (18) provides two cointegrating relationships at frequency 𝜔k

between time series that are integrated at different harmonic frequencies, both of which are implied by the single
complex-valued cointegration relationship of (12). The relationships of (17) and (18) are polynomial, because
lags of yt and xt are involved, and time-evolving, because their coefficients vary in a periodic fashion. For the
special case of 𝜔k = 𝜔j, the system (17) and (18) reduces to the result reported in Gregoir (2010). Lemma 9 of
the Appendix, specifically, (A6) summarizes the stochastic behavior of the triangular system (17 ) and (18) with
xt = 2 cos(𝜔j)xt−1 − xt−2 + 𝜈t and establishes that the combined 2N ×1 vector of processes for yt and xt over a cycle
of N observations is driven by two common trends.

Also note that (17) and (18) can be summarized in a single expression involving the observed series by taking
(17 )+ cot(𝜔k)(18), yielding

yt =
[
𝛽0,t − cot

(
𝜔k

)
𝛽1,t

]
xt

+
[
𝛽1,t

(
sin(𝜔j) + cot

(
𝜔k

)
cos(𝜔j)

)
− 𝛽0,t

(
cos(𝜔j) − cot

(
𝜔k

)
sin(𝜔j)

)]
xt−1 (20)

+ zR,t − cot
(
𝜔k

)
zI,t.

Using (19) and trigonometric identities for the cosine and sine of the sum of two angles, (20) can also be expressed

yt =
{
𝛽R

[
cos

([
𝜔j − 𝜔k

]
t
)
− cot

(
𝜔k

)
sin

([
𝜔j − 𝜔k

]
t
)]

−𝛽I

[
sin

([
𝜔j − 𝜔k

]
t
)
+ cot

(
𝜔k

)
cos

([
𝜔j − 𝜔k

]
t
)]}

xt

−
{
𝛽R

[
cos

(
𝜔j [t + 1] − 𝜔kt

)
− cot

(
𝜔k

)
sin

(
𝜔j [t + 1] − 𝜔kt

)]
(21)

−𝛽I

[
sin

(
𝜔j [t + 1] − 𝜔kt

)
+ cot

(
𝜔k

)
cos

(
𝜔j [t + 1] − 𝜔kt

)]}
xt−1

+ zR,t − cot
(
𝜔k

)
zI,t.

The relationship of (21) is used in Lemma 9 and also for generating simulated series in the Monte Carlo analysis
of Section 4.

To obtain an alternative representation to (17) and (18) that is more suitable for inference purposes, note that
the complex-valued cointegrating relationship of (13) can be written as

Re(y(0)−t ) + i Im(y(0)−t ) = 𝛽R Re(x(0)−t ) − 𝛽I Im(x(0)−t ) + i
[
𝛽I Re(x(0)−t ) + 𝛽R Im(x(0)−t )

]
+ Re(ut) + i Im(ut). (22)

Equating the respective real and imaginary parts on both sides, (22) immediately leads to

Re(y(0)−t ) = 𝛽R Re(x(0)−t ) − 𝛽I Im(x(0)−t ) + Re(ut) (23)

Im(y(0)−t ) = 𝛽R Im(x(0)−t ) + 𝛽I Re(x(0)−t ) + Im(ut) (24)

where Re(y(0)−t ), Im(y(0)−t ) ∼ I0(1), and Re(ut), Im(ut) ∼ I0(0). The system (23 ) and (24) suggests a straightforward
way to make inference on the presence of a long-run relationship between series yt and xt is to search for two
cointegrating relationships among the real and imaginary parts of the demodulated series y(0)−t and x(0)−t . Notice
that, to achieve full statistical efficiency, the cross-equation restrictions between (23) and (24) should be imposed
in estimation.

Equivalently, for the complex conjugate system (14), we have

Re(y(0)+t ) − i Im(y(0)+t ) = 𝛽R Re(x(0)+t ) − 𝛽I Im(x(0)+t ) − i
[
𝛽I Re(x(0)+t ) + 𝛽R Im(x(0)+t )

]
+ Re

[
ut

]
− i Im

[
ut

]
(25)

which also leads to (23) and (24), noting that (16) and (15) apply.
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Therefore, cointegration analysis can be carried out using either the demodulated series y(0)−t and x(0)−t in the
complex-valued representation (10) or the real-valued series Re(y(0)−t ), Im(y(0)−t ), Re(x(0)−t ) and Im(x(0)−t ) in the sys-
tem (23) and (24). Comparing the results given in Lemma 9 and Lemma 6 of the Appendix, namely (A6) and (A4)
respectively, it can be seen that the non-stationary behavior in each case is driven by the pair of complex-valued
conjugate Brownian motions wv

R (r) ± iwv
I (r), together with the demodulator operators e∓i𝜔j and e∓i𝜔k in the vec-

tors v∓
j and v∓

k respectively. This leads to the econometric strategy exposed in Section 3.3 to test for cointegration
based on either the complex-valued demodulated time series or the real-valued real and imaginary parts.

3.2.2. I0(1) and I𝜔j
(1) processes with 𝜔j ∈ (0, 𝜋)

Since yt ∼ I0(1), only the process xt ∼ I𝜔j
(1) needs to be demodulated and the triangular system of (10) becomes

yt = 𝛽x(0)−t + ut = 𝛽ei𝜔j tx−t + ut (26)

x−t = e−i𝜔j x−t−1 + 𝜈t.

Noting that yt is real, taking the real part of the right-hand side of the cointegrating relationship in (26) leads to
the following representation in terms of the original variables:

yt = 𝛽0,txt + [𝛽1,t sin(𝜔j) − 𝛽0,t cos(𝜔j)]xt−1 + zR,t (27)

where

𝛽0,t = [𝛽R cos(𝜔jt) − 𝛽I sin(𝜔jt)], (28)

𝛽1,t = [𝛽R sin(𝜔jt) + 𝛽I cos(𝜔jt)]

and zR,t = Re(ut). Clearly (27) is a polynomial and periodic cointegrating relationship between the processes yt ∼
I0(1) and xt ∼ I𝜔j

(1) for 𝜔j ∈ (0, 𝜋). The stochastic behavior of the system given by (27) with xt = 2 cos(𝜔j)xt−1 −
xt−2 + 𝜈t is summarized in Lemma 8 of the Appendix, where (A5) shows that the 2N × 1 combined vector for yt

and xt over a cycle is driven by two common trends, as in the case where both processes are integrated at different
harmonic frequencies 𝜔k, 𝜔j ∈ (0, 𝜋). However, unlike this previous case, (27) shows there is one cointegrating
relationship involving the two observed time series and their lags.

To obtain an alternate representation for inference purposes, sum (22) and (25), to yield

Re(y(0)−t ) + Re(y(0)+t ) = 𝛽R

[
Re(x(0)−t ) + Re(x(0)+t )

]
− 𝛽I

[
Im(x(0)−t ) + Im(x(0)+t )

]
+ 2Re(ut).

Since Re(x(0)−t ) = Re(x(0)+t ) and noting that Re(y(0)−t ) = Re(y(0)+t ) = yt, this implies that the single cointegrating
relationship between the two variables can be represented as

yt = 𝛽R Re(x(0)−t ) − 𝛽I Im(x(0)−t ) + Re(ut). (29)

Therefore, cointegration between yt ∼ I0(1) and xt ∼ I𝜔j
(1) implies the existence of a single cointegrating relation-

ship between yt, Re(x
(0)−
t ) and Im(x(0)−t ). Clearly, this cointegrating relationship can also be equivalently expressed

in terms of yt, Re(x
(0)+
t ) and Im(x(0)+t ).

3.2.3. I𝜋(1) and I𝜔j
(1) processes with 𝜔j ∈ (0, 𝜋)

The case yt ∼ I𝜋(1) is essentially analogous to the previous one, hence the main results are briefly reported. By
premultiplying both sides of the first equation of (10) by e−i𝜋t = cos(𝜋t) yields the triangular system,

yt = 𝛽ei(𝜔j−𝜋)tx−t + cos(𝜋t)ut (30)

x−t = e−i𝜔j x−t−1 + 𝜈t
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where cos(𝜋t)ut ∼ I𝜋(0). Taking the real part of the cointegrating relationship leads to

yt = 𝛽0,txt + [𝛽1,t sin(𝜔j) − 𝛽0,t cos(𝜔j)]xt−1 + zR,t (31)

which provides a representation in terms of the original variables, where

𝛽0,t = [𝛽R cos((𝜔j − 𝜋)t) − 𝛽I sin((𝜔j − 𝜋)t)], (32)

𝛽1,t = [𝛽R sin((𝜔j − 𝜋)t) + 𝛽I cos((𝜔j − 𝜋)t)]

and zR,t = cos(𝜋t)Re(ut). Since zR,t ∼ I0(0), (31) represents a single polynomial and periodic cointegrating rela-
tionship between the processes yt ∼ I𝜋(1) and xt ∼ I𝜔j

(1) with 𝜔j ∈ (0, 𝜋). It can be noted that although (31) has the
same form as (27), their time-varying coefficients of (32) and (28) respectively differ, reflecting the frequency at
which yt is integrated in each case. Lemma 10 of the Appendix summarizes the stochastic behavior of the system
(31) or (32) with xt = 2 cos(𝜔j)xt−1−xt−2+𝜈t, with (A7) showing that the series yt and xt share two common trends.

Noting that y(0)−t = y(0)+t = cos(𝜋t)yt, summing (22) and (25) leads to

cos(𝜋t)yt = 𝛽R Re(x(0)−t ) − 𝛽I Im(x(0)−t ) + Re(ut) (33)

which represents the single cointegrating relationship between yt and xt in terms of the series cos(𝜋t)yt, Re(x
(0)−
t ),

and Im(x(0)−t ). Once again, the relationship can be equivalently expressed in terms of cos(𝜋t)yt, Re(x
(0)+
t ) and

Im(x(0)+t ).

3.2.4. I0(1) and I𝜋(1) processes
Finally, yt ∼ I0(1) and xt ∼ I𝜋(1) is the simplest case, because the demodulated process x(0)−t , in addition to yt, is
real-valued. Indeed, (10) for this case reduces to

yt = 𝛽 cos(𝜋t)xt + ut (34)

where 𝛽 is real-valued and ut ∼ I0(0). It is then clear that (34) represents the unique cointegrating relationship
between the series. Lemma 11 of the Appendix summarizes the stochastic behavior of (34) when xt = −xt−1 + 𝜈t,
with (A8) establishing that yt and xt share a single common trend over the cycle of N observations.

3.3. Econometric Strategies

Having shown that long-run relationships can exist between processes integrated at different frequencies, an
econometric strategy is required to detect such cointegration. Here we discuss possible approaches to such
inference.

The first and perhaps simplest approach consists of testing the cointegration rank in a VAR model applied to
a system of 2N variables formed from the vector of seasons representation for each of the two individual time
series4, which treats the intra-cycle observations n = 1,… ,N as distinct time series. This approach is discussed
by, for example, Ghysels and Osborn (2001, Chapter 6) in the context of contemporaneous periodic cointegration.
If two non-stationary processes are integrated at different harmonic frequencies (i.e. yt ∼ I𝜔k

(1), xt ∼ I𝜔j
(1), with

𝜔k, 𝜔j ∈ (0, 𝜋) and 𝜔k ≠ 𝜔j), each series has two common trends across its N intra-cycle series and hence no
cointegration implies four common trends or 2N − 4 cointegrating relationships in the 2N × 1 vector of seasons
for the two time series. However, as discussed in Section 3.2.1, the presence of cross-series cointegration implies

4 In the case of k variables the system will be of kN where each of the time series is treated as N × 1 vector of seasons.
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two cointegrating relationships of the periodic polynomial form (17) and (18); hence, overall, the 2N × 1 vector
contains two common trends or 2N − 2 cointegrating relationships.

When either yt ∼ I0(1) or yt ∼ I𝜋(1) while xt ∼ I𝜔j
(1), 𝜔j ∈ (0, 𝜋), the N observations for yt over a cycle share

one common trend while those for xt have two, so that no cointegration implies the presence of three common
trends and 2N − 3 cointegrating relationships. However, the 2N observations share two common trends when the
processes are cointegrated, implying that the combined 2N × 1 vector contains 2N − 2 cointegrating relationships.
Finally, for yt ∼ I0(1) and xt ∼ I𝜋(1) then (because the N intra-cycle series for each of yt and xt is driven by its own
common trend), no cointegration implies the presence of two common trends or 2N−2 cointegrating relationships
between the elements of the 2N × 1 vector formed from the vector of seasons of the two time series. On the other
hand, cointegration between the series implies that the same common trend drives both series and hence there are
2N − 1 cointegrating relationships between the elements of the combined 2N × 1 system.

This approach has the obvious disadvantage of typically requiring the use of high dimensional systems. For
example, with quarterly seasonal data, the combined vector of seasons for the two variables has 8 elements, while
it has 24 elements with monthly data. As shown by Franses (1994), the vector of seasons approach lacks power
even for the analysis of seasonal unit roots in a univariate quarterly time series. Furthermore, the ‘counting’ of
common trends above depends on each series containing unit roots at a single frequency only. Should, say, xt have
unit roots at two distinct frequencies and yt unit roots at only one frequency, then this will need to be taken into
account when considering the number of unit roots and common trends implied by any cointegration between xt

and yt.
These problems can be avoided by transforming one or both of the original series so that the unit roots under

examination apply at the same frequency for the two series. An intuitively straightforward method is to apply test-
ing after any necessary transformation so that both are I0(1). For processes integrated at different harmonic frequen-
cies (𝜔k, 𝜔j ∈ (0, 𝜋), 𝜔k ≠ 𝜔j), and as noted above, the complex reduced-rank regression approach by Cubadda

(2001) can be applied to the demodulated time series y(0)−t and x(0)−t in search of a single cointegration vector.
An alternative to dealing with complex-valued processes is to use the real-valued representations discussed in

the preceding subsection. For two series integrated at different harmonic frequencies 𝜔k and 𝜔j, the usual Johansen

(1996) method can be applied to the 4 × 1 vector consisting of Re(y(0)−t ), Im(y(0)−t ), Re(x(0)−t ), and Im(x(0)−t ), with
cointegration requiring two cointegrating relationships, which are given by(23) and (24). For processes yt ∼ I0(1)
and xt ∼ I𝜔j

(1) having, respectively, a zero-frequency unit real and complex unit root, the Johansen (1996) method
can be applied to test for the existence of a single cointegrating relationship among yt and the real and imaginary
parts of x(0)−t , as indicated by (27). Finally, for processes yt ∼ I0(1) and xt ∼ I𝜋(1), the Johansen method can be
applied to test for the existence of cointegration between yt and cos(𝜋t)xt in (34).

For all cases except yt ∼ I0(1) and xt ∼ I𝜋(1), applying the tests just described requires computing the demod-
ulated series from the observed series. For yt ∼ I𝜔k

(1), xt ∼ I𝜔j
(1), with 𝜔k, 𝜔j ∈ (0, 𝜋), using definitions

corresponding to (3) and (6) it is easily seen that

x(0)−t = ei𝜔j tx−t = ei𝜔j t(1 − ei𝜔j L)xt (35)

y(0)−t = ei𝜔kty−t = ei𝜔kt(1 − ei𝜔k L)yt (36)

where L is the conventional lag operator. The real and imaginary parts of x(0)−t and y(0)−t can then be obtained using
the identity ei𝜔 = cos (𝜔)+i sin (𝜔). As noted in the discussion above, and due to the relationship between complex
conjugate pairs, numerically identical results will be obtained using x(0)+t and y(0)+t as those from employing x(0)−t

and y(0)−t .
As mentioned above, it is possible that one, or possibly both, series may contain unit roots at more than one

frequency. Remarkably, when conducting cross-frequency cointegration analysis by means of the usual Johansen
procedure, the limit distribution of the tests statistics will not be affected by the possible presence of unit roots at
frequencies different from 0 since processes that are I(1) at different frequencies are asymptotically uncorrelated,
see Corollary 7 in Johansen and Schaumburg (1999). This implies that it is not required to filter out unit roots
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at frequencies different from those of interest before applying the complex demodulator operator. Clearly, it is
theoretically possible to remove those unit roots but in empirical applications this way of proceeding is prone
to the risk of overdiffencing the series at some frequency, thus making invalid inference based on the vector
autoregressive representation.

To implement our methodology we need to know the frequency (or frequencies) at which each time series is
integrated. In the case of seasonal time series, the frequencies of interest are known a priori and, with the help of
seasonal unit roots tests, it is possible to obtain evidence about which frequencies present non-stationary behavior.
In the case of cyclical non-seasonal behavior, frequencies associated with non-stationary oscillations are not known
a priori, but the methodology proposed in this article can be applied following Bierens (2001). That is, relevant
frequencies can be identified empirically by examining the maxima of the estimated spectra of the time series of
interest and testing for the presence of pairs of complex unit roots at these frequencies; see for example Bierens
(2001) or Gregoir (2006).

Finally, note that the effect of the demodulator operator e−i𝜔j t on the deterministic part of the relationship
can be seen following the lines of chapter 7 in Bloomfield (1976). For example, seasonal dummy variables
have a one-to-one correspondence with their trigonometric representations written in terms of cos

(
𝜔jt

)
and

sin
(
𝜔jt

)
. Since cos

(
𝜔jt

)
=

(
e−i𝜔j t + ei𝜔j t

)
∕2, hence (1 − e−i𝜔j L) cos

(
𝜔jt

)
=

(
ei𝜔j t − ei𝜔j(t−2)) ∕2 and e−i𝜔j t(1 −

e−i𝜔j L) cos
(
𝜔jt

)
=

(
1 − e−i𝜔j2

)
∕2 are constants once demodulated.

4. MONTE CARLO ANALYSIS

This section provides the results of a Monte Carlo experiment to illustrate the nature of long-run relationships
between processes that are integrated at different frequencies and to examine the performance of the approaches
to testing discussed in Section 3.3. We consider an overall cycle of N = 6 observations (the smallest N which
has two distinct harmonic frequencies) and sample sizes with 200, 100 and 50 complete cycles; hence the total
number of observations considered is T = 1200, 600 and 300. Cointegration is examined using three approaches,
namely applying the Johansen (1996) rank test to the combined 2N × 1 = 12 × 1 vector of seasons for the two
series, applying the Johansen procedure to the appropriate real-valued system and applying the complex-valued
test of Cubadda (2001) to the demodulated time series y(0)−t and x(0)−t . As discussed in Section 3.3, the demodu-
lated series are obtained as in (35) and (36), with the Cubadda (2001) test applied to a bivariate system for these
series. Application of the Johansen (1996) test to a real-valued system implies that cointegration is tested in a
system consisting of between two and four variables, depending on the frequencies for which cointegration is
being investigated (see Section 3.3). In each case, the procedure is applied using a VAR(1) specification with the
inclusion of a constant in each equation.

The Monte Carlo results are based on 5000 replications and all tests are conducted at a nominal 5% level of sig-
nificance using asymptotic critical values. Those provided by Hamilton (1994, Table B.2, Case 2) are employed
when testing for cointegration for up to five series, with critical values obtained by simulation using the same condi-
tions as Hamilton (1994) when testing involves a larger number of series (namely up to 12 for the vector of seasons).
The complex-valued test uses the critical values of Cubadda (2001, Table I). The first subsection considers sit-
uations where no cointegration applies, with the second subsection examining situations with cross-frequency
cointegration. The results are collected in Tables I–V and each reports the proportion of times that the relevant null
hypothesis is rejected. Reflecting the situations of Section 3.2, where both time series are integrated at different
frequencies, we consider the following four cases5:

• Case I: yt ∼ I𝜋∕3(1) and xt ∼ I2𝜋∕3(1).
• Case II: yt ∼ I0(1) and xt ∼ I2𝜋∕3(1).
• Case III: yt ∼ I𝜋(1) and xt ∼ I2𝜋∕3(1).
• Case IV: yt ∼ I0(1) and xt ∼ I𝜋(1).

5 We also calculated results interchanging the roles of xt and yt, and also for Cases II and III with xt ∼ I𝜋∕3(1) in place of xt ∼ I2𝜋∕3(1). For all
of these, the results are effectively the same as those reported in Tables I–V.
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Table I. Monte Carlo test rejection frequencies for processes with no cointegration

Panel A. Johansen test vector of seasons approach

T r0 = 0 r0 = 1 r0 = 2 r0 = 3 r0 = 4 r0 = 5 r0 = 6 r0 = 7 r0 = 8 r0 = 9 r0 = 10 r0 = 11

Case I: xt ∼ I2𝜋∕3(1), yt ∼ I𝜋∕3(1)
1200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0. 9998 0.0912 0.0076 0.0012 0.0000
600 1.0000 1.0000 1.0000 1.0000 1.0000 0.9982 0.9290 0. 5898 0.0940 0.0118 0.0006 0.0004
300 1.0000 0.9998 0.9968 0.9626 0.8246 0.5328 0.2512 0. 1486 0.0518 0.0128 0.0032 0.0012
Case II: xt ∼ I2𝜋∕3(1), yt ∼ I0(1)
1200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 0.0650 0.0044 0.0006
600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9984 0. 9822 0.6208 0.0582 0.0062 0.0004
300 1.0000 1.0000 0.9966 0.9586 0.8206 0.5646 0.2888 0. 1866 0.0636 0.0152 0.0040 0.0018
Case III: xt ∼ I2𝜋∕3(1), yt ∼ I𝜋(1)
1200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 0.0654 0.0058 0.0008
600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 0. 9870 0.6510 0.0656 0.0056 0.0010
300 1.0000 1.0000 0.9966 0.9540 0.8096 0.5478 0.2862 0. 1870 0.0664 0.0184 0.0030 0.0010
Case IV: xt ∼ I𝜋(1), yt ∼ I0(1)
1200 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0580 0.0054
600 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9976 0.7998 0.0468 0.0048
300 1.0000 1.0000 0.9960 0.9568 0.8416 0.6224 0.3650 0. 2730 0.1196 0.0362 0.0098 0.0022

Panel B: Johansen test real and imaginary parts approach

Case I Case II Case III Case IV

T r0 = 0 r0 = 1 r0 = 2 r0 = 3 r0 = 0 r0 = 1 r0 = 2 r0 = 0 r0 = 1 r0 = 2 r0 = 0 r0 = 1

1200 0.0670 0.0056 0.0004 0.0002 0.0600 0.0030 0.0008 0.0594 0.0056 0.0000 0.0528 0.0050
600 0.0786 0.0056 0.0004 0.0000 0.0644 0.0028 0.0006 0.0712 0.0038 0.0008 0.0570 0.0038
300 0.0780 0.0054 0.0010 0.0004 0.0644 0.0030 0.0006 0.0682 0.0060 0.0000 0.0518 0.0040

Panel C: Cubadda complex-valued regression test

Case I Case II Case III Case IV

T r0 = 0 r0 = 1 r0 = 0 r0 = 1 r0 = 0 r0 = 1 r0 = 0 r0 = 1

1200 0.0512 0.0032 0.0724 0.0048 0.0698 0.0050 0.1134 0.0154
600 0.0546 0.0054 0.0726 0.0062 0.0774 0.0042 0.1172 0.0160
300 0.0564 0.0046 0.0766 0.0068 0.0714 0.0070 0.1170 0.0162

Notes: The DGPs are defined in Section 4.1 while the tests are described in Section 3.3; r0 is the number of cointegrating vectors under the
null hypothesis. All tests are conducted at a nominal 5% level of significance; for further details see Section 4.1.

4.1. No Cointegration

First we examine the performance of the tests proposed in Section 3.2.1 in the absence of cointegration between
processes integrated at different frequencies. The data generating processes for xt is:

xt =
{

2 cos(2𝜋∕3) xt−1 − xt−2 + 𝜀
(x)
t Cases I, II,III

−xt−1 + 𝜀
(x)
t Case IV

(37)

while those for yt are:

yt =
⎧⎪⎨⎪⎩

2 cos(𝜋∕3) yt−1 − yt−2 + 𝜀
(y)
t Case I

yt−1 + 𝜀
(y)
t Cases II, IV

−yt−1 + 𝜀
(y)
t Case III

(38)

where 𝜀(x)t , 𝜀
(y)
t ∼ Ni.i.d.(0, 1) and mutually independent, with pre-sample starting values for both series set to zero.
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Table II. Monte Carlo test rejection frequencies for cointegrated processes, Case I: yt ∼ I𝜋∕3(1), xt ∼ I2𝜋∕3(1)

Panel A: Johansen test vector of seasons approach

T = 1200

DGP r0 = 0 r0 = 1 r0 = 2 r0 = 3 r0 = 4 r0 = 5 r0 = 6 r0 = 7 r0 = 8 r0 = 9 r0 = 10 r0 = 11

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0542 0.0036
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0576 0.0042
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0514 0.0042
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0536 0.0044
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0574 0.0068
T = 600
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9960 0.7548 0.0510 0.0062
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9964 0.7416 0.0520 0.0042
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9968 0.7522 0.0486 0.0040
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9958 0.7494 0.0514 0.0046
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9970 0.7612 0.0504 0.0036
T = 300
1 1.0000 1.0000 0.9948 0.9506 0.8020 0.5506 0.3126 0. 2246 0.0914 0.0290 0.0084 0.0026
2 1.0000 0.9998 0.9934 0.9408 0.7856 0.5324 0.2946 0. 2186 0.0828 0.0242 0.0078 0.0024
3 1.0000 0.9996 0.9950 0.9508 0.8052 0.5548 0.3094 0. 2234 0.1002 0.0318 0.0080 0.0026
4 1.0000 0.9998 0.9928 0.9484 0.7960 0.5452 0.3048 0. 2218 0.0924 0.0268 0.0074 0.0018
5 1.0000 0.9998 0.9932 0.9496 0.8152 0.5742 0.3164 0. 2290 0.0942 0.0294 0.0076 0.0026

Panel B:Johansen test real and imaginary parts approach

T = 1200 T = 600 T = 300

DGP r0 = 0 r0 = 1 r0 = 2 r0 = 3 r0 = 0 r0 = 1 r0 = 2 r0 = 3 r0 = 0 r0 = 1 r0 = 2 r0 = 3

1 1.0000 1.0000 0.0498 0.0032 1.0000 1.0000 0.0510 0. 0066 1.0000 1.0000 0.0540 0.0048
2 1.0000 1.0000 0.0572 0.0044 1.0000 1.0000 0.0584 0. 0034 1.0000 1.0000 0.0622 0.0044
3 1.0000 1.0000 0.0512 0.0040 1.0000 1.0000 0.0594 0. 0038 1.0000 1.0000 0.0586 0.0064
4 1.0000 1.0000 0.0470 0.0038 1.0000 1.0000 0.0608 0. 0038 1.0000 1.0000 0.0542 0.0060
5 1.0000 1.0000 0.0518 0.0044 1.0000 1.0000 0.0528 0. 0026 1.0000 1.0000 0.0550 0.0044

Panel C: Cubadda complex-valued regression test

T = 1200 T = 600 T = 300

DGP r0 = 0 r0 = 1 r0 = 0 r0 = 1 r0 = 0 r0 = 1

1 1.0000 0.0558 1.0000 0.0532 1.0000 0.0552
2 1.0000 0.0544 1.0000 0.0538 1.0000 0.0560
3 1.0000 0.0480 1.0000 0.0552 1.0000 0.0558
4 1.0000 0.0490 1.0000 0.0552 1.0000 0.0574
5 1.0000 0.0506 1.0000 0.0480 1.0000 0.0490

Notes: As for Table I, except that the DGPs are described in Section 4.2 and the processes are cointegrated. The true number of cointegrating
vectors is 10 in Panel A, 2 in Panel B and 1 in Panel C.

The results are shown in Table I. It can be seen that the Johansen (1996) approach applied to the 12×1 vector of
seasons, for which the results are presented in Panel A, reliably (and correctly) detects the presence of four common
trends between the series in Case I (i.e. two separate common trends in each of xt and yt) only for the largest
sample size, with T = 1200 (200 complete cycles of N = 6 observations). For smaller samples the procedure lacks
power. In particular, with T = 300, the null hypothesis of six common trends is rejected against the alternative of
fewer in only around a quarter of the replications. On the other hand, for this case, the Johansen (1996) procedure
applied to the four series formed from the real and imaginary parts of y(0)−t and x(0)−t in Panel B correctly finds
little evidence of cointegration: the initial null hypothesis of no cointegration (four common trends) is rejected
with a frequency only modestly above the nominal 5% level. Finally, the Cubadda (2001) procedure in Panel C
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Table III. Monte Carlo test rejection frequencies for cointegrated processes, Case II: yt ∼ I0(1), xt ∼ I2𝜋∕3(1)

Panel A: Johansen test vector of seasons approach

T = 1200

DGP r0 = 0 r0 = 1 r0 = 2 r0 = 3 r0 = 4 r0 = 5 r0 = 6 r0 = 7 r0 = 8 r0 = 9 r0 = 10 r0 = 11

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0520 0.0056
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0584 0.0044
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0500 0.0052
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0588 0.0048
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0554 0.0040
T = 600
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9960 0.7468 0.0540 0.0058
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9968 0.7468 0.0536 0.0036
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9964 0.7466 0.0490 0.0046
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9958 0.7458 0.0468 0.0040
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9952 0.7410 0.0496 0.0050
T = 300
1 1.0000 1.0000 0.9952 0.9468 0.7932 0.5468 0.3026 0. 2246 0.0928 0.0282 0.0052 0.0022
2 1.0000 1.0000 0.9944 0.9490 0.8082 0.5638 0.3162 0. 2308 0.1016 0.0314 0.0088 0.0022
3 1.0000 1.0000 0.9926 0.9390 0.7880 0.5560 0.3072 0. 2212 0.0950 0.0254 0.0068 0.0008
4 1.0000 1.0000 0.9924 0.9476 0.7972 0.5606 0.3102 0. 2336 0.0978 0.0270 0.0062 0.0018
5 1.0000 1.0000 0.9926 0.9478 0.7998 0.5488 0.3018 0. 2204 0.0968 0.0274 0.0068 0.0014

Panel B: Johansen test real and imaginary parts approach

T = 1200 T = 600 T = 300

DGP r0 = 0 r0 = 1 r0 = 2 r0 = 0 r0 = 1 r0 = 2 r0 = 0 r0 = 1 r0 = 2

1 1.0000 0.0500 0.0030 1.0000 0.0602 0.0056 1.0000 0.0616 0.0044
2 1.0000 0.0536 0.0038 1.0000 0.0554 0.0034 1.0000 0.0578 0.0054
3 1.0000 0.0500 0.0052 1.0000 0.0550 0.0030 1.0000 0.0624 0.0060
4 1.0000 0.0526 0.0066 1.0000 0.0566 0.0038 1.0000 0.0538 0.0026
5 1.0000 0.0530 0.0042 1.0000 0.0530 0.0048 1.0000 0.0528 0.0046

Panel C: Cubadda complex-valued regression test

T = 1200 T = 600 T = 300

DGP r0 = 0 r0 = 1 r0 = 0 r0 = 1 r0 = 0 r0 = 1

1 0.2840 0.0234 0.2942 0.0308 0.2786 0.0264
2 0.2992 0.0246 0.2978 0.0256 0.2802 0.0276
3 0.2956 0.0244 0.2820 0.0248 0.2866 0.0242
4 0.3004 0.0290 0.2840 0.0250 0.2836 0.0240
5 0.2948 0.0234 0.2956 0.0216 0.2874 0.0240

Notes: As for Table II, except that the true number of cointegrating vectors is 1 in Panel B.

performs very well for this case, rejecting the presence of a single complex cointegrating vector at close to the
5% level.

Once again, Table I reveals similar results overall for Cases II and III, when one series is integrated at a harmonic
frequency and the other at the zero (Case II) or Nyquist frequency (Case III). The vector of seasons approach
works well in detecting the presence of three common trends across the 12 × 1 vector, implying no cross-series
cointegration, only for the largest sample size. However, testing for cointegration using yt, Re(x

(0)−
t ), and Im(x(0)−t )

works well overall, rejecting the initial (and correct) null hypothesis of three common trends with a size modestly
larger than the nominal 5%. The rejection rate for (true) null of two common trends is higher when the Cubadda
complex cointegration approach is employed, but as already noted this procedure is not designed for the situation
where one of the two series is real-valued. The pattern of results is largely repeated for Case IV, where both series
are real and not cointegrated, and hence there are two common trends across the 12 × 1 vector of seasons, which
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Table IV. Monte Carlo test rejection frequencies for cointegrated processes, Case III: yt ∼ I𝜋(1), xt ∼ I2𝜋∕3(1)

Panel A: Johansen test vector of seasons approach

T = 1200

DGP r0 = 0 r0 = 1 r0 = 2 r0 = 3 r0 = 4 r0 = 5 r0 = 6 r0 = 7 r0 = 8 r0 = 9 r0 = 10 r0 = 11

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0612 0.0042
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0576 0.0048
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0624 0.0048
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0574 0.0046
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.0480 0.0048
T = 600
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0. 9998 0.9970 0.7430 0.0508 0.0042
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9966 0.7610 0.0498 0.0040
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9972 0.7478 0.0492 0.0042
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9974 0.7550 0.0494 0.0048
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 0.9966 0.7562 0.0434 0.0038
T = 300
1 1.0000 1.0000 0.9932 0.9488 0.8000 0.5438 0.2970 0. 2186 0.0950 0.0264 0.0082 0.0024
2 1.0000 0.9998 0.9948 0.9552 0.8118 0.5676 0.3184 0. 2284 0.0936 0.0270 0.0068 0.0014
3 1.0000 0.9996 0.9942 0.9438 0.7886 0.5418 0.2950 0. 2156 0.0934 0.0282 0.0090 0.0020
4 1.0000 0.9998 0.9968 0.9520 0.8088 0.5622 0.3044 0. 2188 0.0896 0.0258 0.0070 0.0016
5 1.0000 1.0000 0.9942 0.9428 0.7952 0.5448 0.2948 0. 2150 0.0924 0.0304 0.0074 0.0024

Panel B: Johansen test real and imaginary parts approach

T = 1200 T = 600 T = 300

DGP r0 = 0 r0 = 1 r0 = 2 r0 = 0 r0 = 1 r0 = 2 r0 = 0 r0 = 1 r0 = 2

1 1.0000 0.0600 0.0054 1.0000 0.0534 0.0040 1.0000 0. 0610 0.0050
2 1.0000 0.0552 0.0048 1.0000 0.0554 0.0046 1.0000 0. 0526 0.0038
3 1.0000 0.0640 0.0040 1.0000 0.0538 0.0044 1.0000 0. 0622 0.0060
4 1.0000 0.0534 0.0048 1.0000 0.0580 0.0038 1.0000 0. 0568 0.0048
5 1.0000 0.0494 0.0048 1.0000 0.0518 0.0028 1.0000 0. 0574 0.0036

Panel C: Cubadda complex-valued regression test

T = 1200 T = 600 T = 300

DGP r0 = 0 r0 = 1 r0 = 0 r0 = 1 r0 = 0 r0 = 1

1 1.0000 0.0510 0.9996 0.0492 0.9716 0.0496
2 1.0000 0.0476 0.9902 0.0426 0.9242 0.0430
3 0.9858 0.0454 0.9144 0.0416 0.8002 0.0442
4 0.9526 0.0422 0.8498 0.0390 0.6854 0.0348
5 0.9298 0.0398 0.8228 0.0354 0.6830 0.0320

Notes: As for Table II, except that the true number of cointegrating vectors is 1 in Panel B.

is reliably detected only for the largest sample size (Panel A). The performance of the usual Johansen (1996)
approach applied to yt and cos(𝜋t)xt is good in Panel B, while the complex-valued cointegration approach of Panel
C is not appropriate to this case.

4.2. Cointegrated Processes

Corresponding to the discussion of Section 3.2, each series is integrated at one frequency and four cases of
cross-frequency cointegration are considered. As in the preceding subsection, xt is generated using (37), but with
yt now generated from the relevant cointegrating relationship. In particular, the values of yt are generated using the
cointegrating relationship expressed in terms of the real-valued series as in (21) for Case I. From (27) and (28),
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Table V. Monte Carlo test rejection frequencies for cointegrated processes, Case IV: yt ∼ I0(1), xt ∼ I𝜋(1)

Panel A: Johansen test vector of seasons approach

T = 1200

DGP r0 = 0 r0 = 1 r0 = 2 r0 = 3 r0 = 4 r0 = 5 r0 = 6 r0 = 7 r0 = 8 r0 = 9 r0 = 10 r0 = 11

1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 1.0000 0.0560
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 1.0000 0.0528
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 1.0000 0.0510
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 1.0000 0.0546
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 1.0000 0.0496
T = 600
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 0.9998 0.9602 0.0492
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 0.9608 0.0474
3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 0.9634 0.0494
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 0.9570 0.0508
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1. 0000 1.0000 1.0000 1.0000 0.9618 0.0514
T = 300
1 1.0000 1.0000 0.9948 0.9568 0.8346 0.6250 0. 4104 0.3426 0.1948 0.0846 0.0328 0.0092
2 1.0000 1.0000 0.9944 0.9512 0.8274 0.6246 0. 4064 0.3552 0.2070 0.0944 0.0318 0.0104
3 1.0000 1.0000 0.9950 0.9522 0.8264 0.6198 0. 3884 0.3402 0.1914 0.0888 0.0300 0.0086
4 1.0000 1.0000 0.9946 0.9532 0.8276 0.6200 0. 4110 0.3552 0.2012 0.0928 0.0320 0.0118
5 1.0000 0.9996 0.9958 0.9532 0.8314 0.6254 0.4132 0. 3624 0.2118 0.0918 0.0316 0.0096

Panel B: Johansen test, yt & cos(𝜋t)xt

T = 1200 T = 600 T = 300

DGP r0 = 0 r0 = 1 r0 = 0 r0 = 1 r0 = 0 r0 = 1

1 1.0000 0.0518 1.0000 0.0514 1.0000 0.0518
2 1.0000 0.0522 1.0000 0.0562 1.0000 0.0428
3 1.0000 0.0522 1.0000 0.0546 1.0000 0.0546
4 1.0000 0.0556 1.0000 0.0506 1.0000 0.0496
5 1.0000 0.0478 1.0000 0.0544 1.0000 0.0520

Panel C: Cubadda complex-valued regression test

T = 1200 T = 600 T = 300

DGP r0 = 0 r0 = 1 r0 = 0 r0 = 1 r0 = 0 r0 = 1

1 1.0000 0.1040 1.0000 0.1012 1.0000 0.0998
2 1.0000 0.0972 1.0000 0.1070 1.0000 0.0942
3 1.0000 0.1010 1.0000 0.1004 1.0000 0.1006
4 1.0000 0.1032 1.0000 0.1036 1.0000 0.1004
5 1.0000 0.0888 1.0000 0.1008 1.0000 0.0982

Notes ∶ As for Table II, except that the true number of cointegrating vectors is 11 in Panel A and 1 in Panel B.

the cointegrating relationship used between the real-valued series for Case II is

yt =
[
𝛽R cos

(
𝜔jt

)
− 𝛽I sin

(
𝜔jt

)]
xt (39)

−
[
𝛽R cos

(
𝜔j [t + 1]

)
− 𝛽I sin

(
𝜔j [t + 1]

)]
xt−1 + ut.

For Cases III and IV, the cointegrating relationships used are given by (31)–(32) and (34) respectively, with the
coefficient 𝛽 being real-valued in the latter case. For all cases, ut, 𝜀

(x)
t ∼ Ni.i.d.(0, 1) and are mutually independent,

while pre-sample starting values for all series are set to zero.
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To investigate the performance of the testing procedures discussed above, a range of five values6 are considered
for the complex-valued cointegrating coefficient, with real and imaginary parts (𝛽R and 𝛽I) as shown below, except
that only the coefficient 𝛽R is used in Case IV:

DGP 𝛽R 𝛽I

1 cos (𝜋∕3) = 0.5 sin (𝜋∕3) = 0.866

2 cos (2𝜋∕3) = −0.5 sin (2𝜋∕3) = 0.866

3 cos (𝜋∕6) = 0.866 sin (𝜋∕6) = 0.5

4 cos (5𝜋∕6) = −0.866 sin (5𝜋∕6) = 0.5

5 cos (𝜋∕8) = 0.924 sin (𝜋∕8) = 0.383

In line with the analysis of the previous section, we first consider cointegration between two processes each
integrated at different harmonic frequencies, with xt ∼ I2𝜋∕3(1) and yt ∼ I𝜋∕3(1); hence xt and yt have 3- and
6-period cycles, respectively.7 Results are shown in Table II for each cointegrated process considered, with Panel
A providing those obtained from applying the Johansen (1996) procedure to the 12 × 1 vector of observations
formed from the two variables over a cycle of 6 observations, Panel B applies the Johansen procedure to the 4× 1
vector consisting of the real and imaginary parts of x(0)−t and y(0)−t , and, finally, Panel C applies the complex-valued
cointegration test of Cubadda (2001) to x(0)−t and y(0)−t .

As discussed in Section 3.3, cointegration implies the existence of 2N − 2 = 10 cointegrating relations and two
common trends in the 12×1 vector of seasons. Although highly parameterized, the Johansen (1996) procedure per-
forms well in detecting the correct number of cointegrating vectors for the largest sample size of T = 1200 (namely
200 complete cycles of 6 observations), it is less satisfactory for smaller sample sizes. Perhaps not surprisingly, for
T = 300 (50 cycles), ten cointegrating vectors are relatively rarely detected. Even with T = 600 (100 cycles) obser-
vations, the correct number of cointegrating vectors is detected in only about three-quarters of the replications.

However, the much more parsimonious method that applies the Johansen (1996) procedure to the 4 × 1 con-
sisting of Re(y(0)−t ), Im(y(0)−t ), Re(x(0)−t ) and Im(x(0)−t ) performs well in Panel B in detecting the presence of two
cointegrating vectors for all values of T considered. Even for T = 600, one cointegrating relation is always rejected
against two or more, while the test for the null hypothesis of two relations shows an empirical rejection rate only
modestly greater than the nominal 5%. Finally, in Panel C, the Cubadda (2001) test reliably detects the presence
of a single cointegrating vector in x(0)−t and y(0)−t for all three sample sizes.

Turning to the case where cointegration exists between a series integrated at the zero frequency and another at
a harmonic frequency, Table III provides the results for yt ∼ I0(1), xt ∼ I2𝜋∕3 (1). As noted in Section 3.3, and in
common with the case where the series are cointegrated at different harmonic frequencies, there are 2N − 2 = 10
cointegrating relationships and hence two common trends across the 12 × 1 combined vector of seasons. Once
again, the Johansen (1996) procedure applied to the 12 × 1 vector provides reliable results only for largest sam-
ple size of T = 1200; indeed, the results in Panel A of Table III are very similar to those in Table II. The test for
cointegration between yt, Re(x

(0)−
t ) and Im(x(0)−t ), however, works well in Panel B; the null hypothesis of no coin-

tegration is always rejected, while the presence of one vector is rejected against two with a rejection frequency
very close to the nominal 5% level across all three value of T . However, the complex-valued reduced-rank regres-
sion procedure applied at the zero frequency using yt and x(0)−t does not perform well in Panel C. In particular, the
initial null hypothesis of no cointegration is rejected in only 30% (or fewer) of the replications across all DGPs
and different values of T . This finding is not surprising since the procedure is designed by Cubadda (2001) to

6 Further cointegrating coefficients were also examined, with results very close to those shown in Tables II–V.
7 We also computed results for xt ∼ I𝜋∕3(1) and yt ∼ I2𝜋∕3(1), with results effectively the same results as those shown in Table II.
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test for complex-valued cointegration between series at a harmonic frequency. Therefore, the procedure is seeking
cointegration involving the real and imaginary parts of both series, whereas in this case yt is real.

The third situation, for which results are provided in Table IV, examines yt ∼ I𝜋(1), xt ∼ I2𝜋∕3 (1), again using
the five sets of values for 𝛽R and 𝛽I as above. These results are very similar to those where yt ∼ I0(1) in Table III,
and hence each of the methods used to detect the cointegration between yt and xt performs in a equivalent way for
the cases where one series is integrated at the zero or Nyquist frequencies. Note that, for the testing of Panels B
and C of Table IV, yt is demodulated to cos(𝜋t)yt. These results also confirm that the complex-valued approach of
Cubadda is not appropriate because yt and cos(𝜋t)yt are real-valued variables.

Finally, Table V considers cointegration between an I0 (1) process and an I𝜋 (1) process, as in (34). As mentioned
in Section 3.3, the vector of seasons approach implies 11 cointegrating relationships, while the other methods test
for a single long-run relationship between the appropriate series. The results are in line with those of earlier tables.
Both the vector of seasons approach and the direct test applied to yt and cos(𝜋t)xt work well, with the qualification
that the vector of seasons approach is less satisfactory for smaller sample sizes. The approach of Cubadda (2001)
is again not satisfactory (or, more accurately, not applicable) here, as both yt and cos(𝜋t)xt are real-valued time
series.

Overall, therefore, we conclude that the best approach in general is to employ the approach using the appropriate
real and imaginary parts of the demodulated time series. The Cubadda (2001) approach works very well when both
time series are integrated at harmonic frequencies, but is not appropriate when one or both series are real-valued.
However, the Johansen (1996) test applied to the entire vector of seasons requires long time series, with a large
number of years of data for seasonal time series (or, more generally, complete cycles). Hence, from a practical point
of view, we recommend applying the Cubadda (2001) complex-valued test to the demodulated time series when
both time series are integrated at harmonic frequencies, or forming the real and imaginary parts of the complex
demodulated time series and then employing the Johansen (1996) approach.

5. EMPIRICAL APPLICATION

This section explores the presence of cointegrating relationship between processes integrated at different frequen-
cies using quarterly data from the Balearic Islands. The economy of the Balearic Islands is heavily dependent
on tourism and we analyze the relationship between tourist arrivals (arrt) and total employment (empt) from
the first quarter of 1979 to the fourth quarter of 2015.8 Figures 1(a) and 2(a) show the two time series after
taking logarithms and the sample spectra can be found in Figures 1(b) and 2(b), while Table VI investi-
gates unit root properties through the HEGY test (Hylleberg et al., 1990) for seasonal unit roots using the
regression

Δ4yt=𝛼q+𝛽qt+𝜋0y(0)t−1+𝜋
𝛼

1y(1𝛼)t−1 +𝜋
𝛽

1y(1𝛽)t−1 +𝜋2y(2)t−1 (40)

+
p∑

j=1

𝛾jΔ4yt−j+𝜀t,

where 𝛼q and 𝛽q (q = 1, 2, 3, 4) are understood to be the coefficients of quarterly dummy variables for an intercept

and trend, respectively, y(0)t−1 = yt + yt−1 + yt−2 + yt−3, y(1𝛼)t−1 = −yt−1 + yt−3, y(1𝛽)t−1 = −yt−2 + yt−4, y(2)t−1 = −yt−1 + yt−2 −
yt−3 + yt−4, p is the order of augmentation and 𝜀t is uncorrelated over time. Results are obtained using both OLS
and GLS detrending and the MAIC criteria is used to determine the order of augmentation; see del Barrio Castro
et al. (2016) for details. Asymptotic critical values are employed, with these obtained from the quantile functions
in del Barrio Castro et al. (2017). As usual, one-sided t-type tests are employed for the null hypotheses 𝜋0 = 0

8 The data was obtained from the web page of the IBESTAT (Regional Statistical office of the Balearic Islands); in the case of the quarterly
employment data the source is the EPA (Encuesta de Población Activa) of the INE (National Statistical office of Spain), while the source of
passenger arrivals is data provided by AENA.
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Figure 1. Quarterly tourist arrivals in Balearic Islands. Notes: Data are quarterly, 1979Q1–2015Q4. (a) The values after taking
natural logarithms, while (b) shows the sample spectrum of the log values obtained using the Bartlett window

Figure 2. Quarterly employment in Balearic Islands. Notes: As for Figure 1

and 𝜋2 = 0 (associated with the zero and Nyquist frequencies, respectively), together with a joint F-type test for
𝜋𝛼

1 = 𝜋
𝛽

1 = 0 (associated with the frequency 𝜋∕2).
It is evident from Figure 1 that tourist arrivals exhibit a clear seasonal pattern which is associated particu-

larly with the annual frequency 𝜋∕2 (Figure 1(b)). On the other hand, employment in Figure 2 exhibits relatively
little seasonality and its spectrum is dominated by a zero frequency peak. The test results of Table VI are in
line with these visual characteristics: ln

(
arrt

)
is judged to be a seasonally integrated process, with unit roots

at the zero and both seasonal frequencies, 𝜋∕2 and 𝜋, while ln
(
empt

)
apparently has only a zero frequency

unit root.
The different unit root properties for the series imply that conventional zero frequency cointegration is not

the only possibility. In particular, it is of interest to examine whether the evolution of seasonality in tourist
arrivals might be cointegrated with long-run (zero frequency) employment. From an economic perspective, such
cross-frequency cointegration may be a consequence of labor market conditions or practices whereby employment
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Table VI. HEGY test results for Balearic Islands series

ln
(
arrt

)
ln

(
empt

)
GLS detrending OLS detrending GLS detrending OLS detrending

t𝜋0
−1.776 −1.620 −2.053 −2.511

t𝜋2
−1.975 −2.183 −4.769 *** −4.858 ***

F
𝜋𝛼

1 𝜋
𝛽

1
1.958 2.170 17.577 *** 18.236 ***

Notes: The HEGY test regression is (40), for which t𝜋0
and t𝜋2

are t-type statistics for one-sided unit root tests at the zero and Nyquist frequencies,
respectively, while F

𝜋𝛼
1 𝜋

𝛽

1
is a two-sided F-type test for a pair of complex unit roots at the seasonal frequency 𝜋∕2; the order of augmentation p

is 4 for ln
(
arrt

)
and 1 for ln

(
empt

)
. In principle, *, ** and *** indicate significance at the 10%, 5% and 1% levels respectively. For further

details see Section 5.

Table VII. Tests for cointegration between Balearic Islands series

Test results

Frequencies examined Variables in VAR r0 = 0 r0 = 1 r0 = 2

0,0 ln(emp), ln(arr) 12.8791 1.7782
0, 𝜋 ln(emp), cos(𝜋t) ln(arr) 12.7871 0.0052
0, 𝜋

2
ln(emp),Re[ei 𝜋

2
t(1 − ei 𝜋

2 L) ln
(
arrt

)
], Im[ei 𝜋

2
t(1 − ei 𝜋

2 L) ln
(
arrt

)
] 29.8363∗∗ 3.7950 0.2184

Notes: The Johansen trace test is applied to a VAR consisting of the indicated variables to test cointegration between ln(emp) at the zero
frequency and ln(arr) at the zero and each seasonal frequency. Seasonal dummies and 5 lags are included in each VAR; r0 is the number of
cointegrating vectors under the null hypothesis. Significance is indicated as in Table VI. For further details see Section 5.

does not respond to the evolution of seasonality in tourism. Consequently, it is plausible that increased season-
ality in tourist arrivals could result in higher long-run employment and, conversely, reduced seasonality in lower
employment.

Therefore, Table VII examines the possible cointegration between ln
(
empt

)
∼ I0(1) and ln

(
arrt

)
at the

zero, 𝜋∕2 and 𝜋 frequencies.9 In each case, the Johansen approach is applied to a VAR consisting of ln
(
empt

)
and ln

(
arrt

)
after the appropriate demodulation transformation is applied to the latter. As discussed in Section

3.2, the real and imaginary parts of the demodulated series are employed for ln
(
arrt

)
∼ I𝜋∕2(1), leading to

a three equation VAR for this case. A constant and seasonal dummy variables are included in all VARs, with
significance judged using the critical values of Johansen (1996, Table 15.3, unrestricted constants). The lag
length is 5 in each case; this is selected by the Hannan–Quinn criterion for the VAR in ln

(
empt

)
and (untrans-

formed) ln
(
arrt

)
, and employed for each VAR. In line with the discussion of Section 3.3, the appropriate

demodulator operator is applied to ln
(
arrt

)
for the frequency of interest without filtering out unit roots at other

frequencies.
The results indicate the series are not cointegrated at the zero frequency and neither is ln

(
empt

)
at the zero

frequency cointegrated with ln
(
arrt

)
at frequency 𝜋. However, the VAR for ln

(
empt

)
, Re[ei 𝜋

2
t(1− ei 𝜋

2 L) ln
(
arrt

)
]

and Im[ei 𝜋
2

t(1 − ei 𝜋
2 L) ln

(
arrt

)
] indicates the presence of one cointegrating relationship (and hence two common

trends), implying the existence of cointegration between the zero frequency unit root of ln
(
empt

)
and the pair

of annual frequency unit roots in ln
(
arrt

)
. In other words, the results support the existence of cross-frequency

cointegration between long-run employment and the annual seasonal cycle in tourism arrivals for the Balearic
Islands.

9 Note that cointegration can apply for at most one of these three cases, since otherwise there would be cross-frequency cointegration within
the ln(arrt) series and hence that series could not be seasonally integrated.

J. Time Ser. Anal. 43: 412–435 (2022) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12620 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



432 T. DEL BARRIO CASTRO ET AL.

6. CONCLUSIONS

A stochastic process that is I(1) at given frequency is characterized by having an unbounded spectrum at that
frequency. Hence, it is clear that if two stochastic processes are I(1) at different frequencies, no time-invariant
linear combinations of them can remove the unit roots at those frequencies. However, a transformation known as
complex demodulation is capable of shifting a unit root at a non-zero frequency to a unit root at frequency zero.
Hence, it is possible that a common (complex-valued) stochastic trend can exist between demodulated stochastic
processes that are not I(1) at the same frequency.

In terms of the original variables, the form of cointegration under consideration is periodic (i.e. has cyclically
varying coefficients) and generally polynomial. This notwithstanding, statistical inference may be easily conducted
by already available methods for cointegration analysis. Using simulations and an empirical example, the present
article both examines the theory underlying this form of cointegration and documents the practical value of the
proposed approach.
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APPENDIX A

This appendix features the results of asymptotic analysis referred to in Sections 2 and 3. Here we report the
statements of the various lemmas whereas the proofs are included in the Appendix S1 (Supporting Information)
of this article.
For our purposes, it is useful to employ a double subscript notation xn𝜏 where the subscripts n𝜏 indicate the nth
observation within the 𝜏th cycle, where the total number of observations per complete cycle is N. The spectral
frequencies associated with xn𝜏 are then 𝜔j = 2𝜋j∕N where j = 0, 1,… , ⌊N∕2⌋ and ⌊.⌋ denotes the integer part.
Hence for example 𝜔1 = 2𝜋∕N completes a full cycle every N observations. Using the double subscript notation
for an I𝜔j

(1) process, (2) is written as

xn𝜏 = (2 cos𝜔j) xn−1,𝜏 − xn−2,𝜏 + 𝜈n𝜏 , n = 1, 2,… ,N. (A1)

Also note that when using the double subscript notation, it is understood that xn−k,𝜏 = xN−n+k,𝜏−1 for n − k ≤ 0.
Adopting the convention that t = 1 corresponds to n = 𝜏 = 1, then t = N(𝜏 − 1) + n provides the one-to-one
mapping between the notations xt and xn𝜏 .
Defining the N × 1 vector of seasons X−

𝜏
=

[
x−1𝜏 , x

−
2𝜏 , x

−
3𝜏 ,… , x−N𝜏

]′
for the process of (4), the following lemma

summarizes the stochastic characteristics of this process:

Lemma 1. For X−
𝜏
=

[
x−1𝜏 , x

−
2𝜏 , x

−
3𝜏 ,… , x−N𝜏

]′
with x−n𝜏 n = 1, 2,… ,N defined in (4) and with 𝜈n𝜏 ∼ i.i.d.

(
0, 𝜎2

)
then

1√
T

X−⌊Tr⌋ ⇒ 𝜎C−
j W (r) = 𝜎v−

j v+′

j W𝜈 (r) (A2)

= 𝜎 (N∕2)1∕2 v−
j

(
w𝜈

R (r) + iw𝜈

I (r)
)
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where C−
j is the circulant matrix of rank one C−

j = Ci rc
[
1, e−i(N−1)𝜔j , e−i(N−2)𝜔j ,… , e−i𝜔j

]
, the vectors v−

j

and v+
j are defined as v−

j =
[

e−i𝜔j e−i2𝜔j e−i3𝜔j · · · e−iN𝜔j
]′

and v+
j =

[
ei𝜔j ei2𝜔j ei3𝜔j · · · eiN𝜔j

]
, W𝜈 (r) =[

W𝜈

1 (r) W𝜈

2 (r) · · · W𝜈

N (r)
]′

is N×1 vector Brownian motion with w𝜈

R (r) and w𝜈

I (r) two scalar Brownian motions

defined as w𝜈

R (r) = (N∕2)−1∕2 ∑N
k=1 cos

(
k𝜔j

)
W𝜈

k (r) and w𝜈

I (r) = (N∕2)−1∕2 ∑N
k=1 sin

(
k𝜔j

)
W𝜈

k (r) respectively.

Remark 2. Note that the result in Lemma 1 also applies to x+t in (8), as it is straightforward to see that for X+
𝜏
=[

x+1𝜏 , x
+
2𝜏 , x

+
3𝜏 ,… , x+N𝜏

]′
it follows that T1∕2X+⌊Tr⌋ ⇒ 𝜎C+

j W𝜈 (r) = 𝜎v+
j v−′

j W𝜈 (r) = 𝜎 (N∕2)1∕2 v−
j

(
w𝜈

R (r) − iw𝜈

I (r)
)

with C+
j = Ci rc

[
1, ei(N−1)𝜔j , ei(N−2)𝜔j ,… , ei𝜔j

]
. Hence we have a pair of complex-valued scalar Brownian motions

w𝜈

R (r) ± iw𝜈

I (r) as in Gregoir (2010, p.1494). Note also that del Barrio Castro et al. (2018, eqs. (3.12) and (3.13))
prove a similar result but consider complex-valued near-integrated processes and also allow serial correlation in
the innovations.

Remark 3. From (A2) and (5) it is clear that
(
w𝜈

R (r) + iw𝜈

I (r)
)

provides the behavior of the stochastic trend[
x−0 +

∑t
k=1 e

i𝜔jk

k 𝜈k

]
, the vector v−

j =
[

e−i𝜔j e−i2𝜔j e−i3𝜔j · · · e−iN𝜔j
]′

and the effect of the demodulator operator

e−it𝜔j . Another interesting point from (A2) is that it shows that N processes comprising the elements of X−
𝜏

share
a common stochastic trend, or equivalently that there are N − 1 cointegration relationships between the elements
of X−

𝜏
.

Remark 4. For the process xn𝜏 of (A1), Smith et al. (2009, p. 540, Lemma 1 and Remark) show that for the

circulant matrix of rank 2 Cj = Ci rc
[

sin(𝜔j)
sin(𝜔j) ,

sin(N𝜔j)
sin(𝜔j) ,

sin([N−1]𝜔j)
sin(𝜔j) ,… ,

sin(2𝜔j)
sin(𝜔j)

]
then Cj, C−

j and C+
j satisfy Cj =

e−i𝜔j

e−i𝜔j−ei𝜔j
C−

j + ei𝜔j

ei𝜔j−e−i𝜔j
C+

j .

The following lemmas provide the asymptotic results that underpin the discussion of Section 3.

Lemma 5. For Z(0,𝜔j)−
𝜏 =

[
y(0)−1𝜏 , y(0)−2𝜏 ,… , y(0)−N𝜏

, x−1𝜏 , x
−
2𝜏 ,… , x−N𝜏

]′
, with x−n𝜏 and y(0)−n𝜏 n = 1, 2,… ,N defined in

(11), 𝜈n𝜏 ∼ i.i.d.
(
0, 𝜎2

)
and un𝜏 ∼ i.i.d.

(
0, 𝜎2

u

)
, then

1√
T

Z(0,𝜔j)−⌊Tr⌋ ⇒ 𝜎 (N∕2)1∕2

[
𝛽1
v−

j

] (
w𝜈

R (r) + iw𝜈

I (r)
)

(A3)

with
(
w𝜈

R (r) + iw𝜈

I (r)
)

and v−
j as in Lemma 1, while 1 is an N × 1 vector of ones.

Lemma 6. For Z(𝜔k ,𝜔j)−
𝜏 =

[
y−1𝜏 , y

−
2𝜏 ,… , y−N𝜏

, x−1𝜏 , x
−
2𝜏 ,… , x−N𝜏

]′
with x−n𝜏 and y−n𝜏 , n = 1, 2,… ,N defined in (12)

and with 𝜈n𝜏 ∼ i.i.d.
(
0, 𝜎2

)
and un𝜏 ∼ i.i.d.

(
0, 𝜎2

u

)
, then

1√
T

Z(𝜔k ,𝜔j)−⌊Tr⌋ ⇒ 𝜎 (N∕2)1∕2

[
𝛽v−

k
v−

j

] (
w𝜈

R (r) + iw𝜈

I (r)
)

(A4)

with
(
w𝜈

R (r) + iw𝜈

I (r)
)

and v−
j as in Lemma 1 and finally v−

k =
[

e−i𝜔k e−i2𝜔k e−i3𝜔k · · · e−iN𝜔k
]′

.

Remark 7. As a particular case of (12) and (A4) we can define a triangular system between two complex-valued
integrated processes, one associated with the Nyquist frequency (𝜋) and the other to a harmonic frequency 𝜔j, by
multiplying (11) by e−i𝜋(N(𝜏−1)+n).
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Lemma 8. For Z(0,𝜔j)
𝜏 =

[
y1𝜏 , y2𝜏 ,… , yN𝜏 , x1𝜏 , x2𝜏 ,… , xN𝜏

]′
with yn𝜏 defined by (27) and (28) and xn𝜏 =

2 cos
(
𝜔j

)
xn−1,𝜏 − xn−2,𝜏 + 𝜈n𝜏 (n = 1, 2,… ,N) with 𝜈n𝜏 ∼ i.i.d.

(
0, 𝜎2

)
, un𝜏 ∼ i.i.d.

(
0, 𝜎2

u

)
, and zRn𝜏 = Re

[
un𝜏

]
,

then

1√
T

Z(0,𝜔j)⌊Tr⌋ ⇒ 𝜎 (N∕2)1∕2

[ 1

2

[(
𝛽R + i𝛽I

)
1
(
w𝜈

R (r) + iw𝜈

I (r)
)
+

(
𝛽R − i𝛽I

)
1
(
w𝜈

R (r) − iw𝜈

I (r)
)]

e−i𝜔j

−2i sin(𝜔j)v−
j

(
w𝜈

R (r) + iw𝜈

I (r)
)
+ ei𝜔j

2i sin(𝜔j)v+
j

(
w𝜈

R (r) − iw𝜈

I (r)
) ]

(A5)

with
(
w𝜈

R (r) + iw𝜈

I (r)
)
, v−

j and v+
j as in Lemma 1,

(
w𝜈

R (r) − iw𝜈

I (r)
)

the complex conjugate of
(
w𝜈

R (r) + iw𝜈

I (r)
)

and 1 is an N × 1 vector of ones.

Lemma 9. For Z(𝜔k ,𝜔j)
𝜏 =

[
y1𝜏 , y2𝜏 ,… , yN𝜏 , x1𝜏 , x2𝜏 ,… , xN𝜏

]′
with xn𝜏 and yn𝜏 n = 1, 2,… ,N satisfying (21) with

xn𝜏 = 2 cos
(
𝜔j

)
xn−1,𝜏 − xn−2,𝜏 + 𝜈n𝜏 , 𝜈n𝜏 ∼ i.i.d.

(
0, 𝜎2

)
, it is possible to write:

1√
T

Z(𝜔k ,𝜔j)⌊Tr⌋ ⇒ 𝜎 (N∕2)1∕2

⎡⎢⎢⎢⎢⎣

{ (𝛽R+i𝛽I)
2

v−
k

(
w𝜈

R (r) + iw𝜈

I (r)
)
+ (𝛽R−i𝛽I)

2
v+

k

(
w𝜈

R (r) − iw𝜈

I (r)
)

+ cos(𝜔k)
sin(𝜔k)

[ (𝛽R+i𝛽I)
−2i

v−
k

(
w𝜈

R (r) + iw𝜈

I (r)
)
+ (𝛽R−i𝛽I)

2i
v+

k

(
w𝜈

R (r) − iw𝜈

I (r)
)]}{

e−i𝜔j

−2i sin(𝜔j)v−
j

(
w𝜈

R (r) + iw𝜈

I (r)
)
+ ei𝜔j

2i sin(𝜔j)v+
j

(
w𝜈

R (r) − iw𝜈

I (r)
)}

⎤⎥⎥⎥⎥⎦
(A6)

with
(
w𝜈

R (r) ± iw𝜈

I (r)
)
, v−

j and v+
j as in Lemma 8, and v−

k =
[

e−i𝜔k e−i2𝜔k e−i3𝜔k · · · e−iN𝜔k
]′

and v+
k =[

ei𝜔k ei2𝜔k ei3𝜔k · · · eiN𝜔k
]′

.

Lemma 10. For Z(𝜋,𝜔j)
𝜏 =

[
y1𝜏 , y2𝜏 ,… , yN𝜏 , x1𝜏 , x2𝜏 ,… , xN𝜏

]′
with yn𝜏 n = 1, 2,… ,N defined in (31 ) and (32),

xn𝜏 = 2 cos
(
𝜔j

)
xn−1,𝜏 − xn−2,𝜏 + 𝜈n𝜏 and with 𝜈n𝜏 ∼ i.i.d.

(
0, 𝜎2

)
, un𝜏 ∼ i.i.d.

(
0, 𝜎2

u

)
and zRn𝜏 = cos (𝜋n)Re

[
un𝜏

]
it is possible to write:

1√
T

Z(𝜋,𝜔j)⌊Tr⌋ ⇒ 𝜎 (N∕2)1∕2

[ 1

2

[(
𝛽R + i𝛽I

)
vN∕2

(
w𝜈

R (r) + iw𝜈

I (r)
)
+

(
𝛽R − i𝛽I

)
vN∕2

(
w𝜈

R (r) − iw𝜈

I (r)
)]

e−i𝜔j

−2i sin(𝜔j)v−
j

(
w𝜈

R (r) + iw𝜈

I (r)
)
+ ei𝜔j

2i sin(𝜔j)v+
j

(
w𝜈

R (r) − iw𝜈

I (r)
) ]

(A7)

with
(
w𝜈

R (r) + iw𝜈

I (r)
)
, v−

j and v+
j as in Lemma 1,

(
w𝜈

R (r) − iw𝜈

I (r)
)

the complex conjugate of
(
w𝜈

R (r) + iw𝜈

I (r)
)

and vN∕2 the N × 1 vector vN∕2 =
[
−1, 1,−1,… ,−1N

]
.

Lemma 11. For Z(0,𝜋)
𝜏

=
[
y1𝜏 , y2𝜏 ,… , yN𝜏 , x1𝜏 , x2𝜏 ,… , xN𝜏

]′
with xn𝜏 = −xn−1,𝜏 + 𝜈n𝜏 and yn𝜏 defined in (34),

n = 1, 2,… ,N , and with 𝜈n𝜏 ∼ i.i.d.
(
0, 𝜎2

)
, and ut ∼ I0(0) it is possible to write:

1√
T

Z(0,𝜋)⌊Tr⌋ ⇒ 𝜎 (N∕2)1∕2

[
𝛽R1w𝜈 (r)
vN∕2w𝜈 (r)

]
(A8)

with w𝜈 (r) = (N∕2)−1∕2 ∑N
k=1 (−1)k W𝜈

k (r). being a scalar Brownian motion.
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