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Abstract: The mechanical efficiency is a computed value for comparing the performance of the
multi degrees-of-freedom geared transmissions of hybrid vehicles. Most of the current methods for
estimating gear trains mechanical efficiency require the decomposition of gear transmissions in basic
structural elements or planetary gear units (PGU). These are two degrees-of-freedom components
whose mechanical efficiency has a deep influence on the overall device. The authors (E.L.E., E.P.)
already evidenced that, under certain kinematic conditions, the classic Radzimovsky’s formulas,
widely accepted for computing the mechanical efficiency of PGUs, are not adequate. In this paper,
more general and reliable formulas for computing the mechanical efficiency are deduced. The pro-
posed formulas herein, exploiting the concept of potential or virtual power, evidence the dependency
between kinematics and efficiency. A numerical example compares our results with previous work
on the subject.

Keywords: planetary gear trains; mechanical efficiency; power-flow; hybrid vehicles

1. Introduction

The multi degrees-of-freedom gear drive is a key component in hybrid vehicles. Its
capability of managing power flows from different sources is of paramount importance for
energy saving. For these reasons, the mechanical efficiency of planetary multi degrees-of-
freedom planetary gear trains is a topic that received many contributions in recent times
(e.g., [1–14]).

The analysis carried out herein offers a reliable approach toward a synthetic descrip-
tion of the relationship between kinematics conditions and gear train mechanical efficiency.

In this paper, the kinematic conditions governing the relationship between the alge-
braic signs of actual and virtual or potential powers are elucidated for the first time. Such
an analysis has a significant influence on the casting of physically reliable and consistent
formulas for the computation of mechanical efficiency in a two dof PGU (Planetary Gear
Unit). Subsequently, two general formulas for mechanical efficiency computation in a two
dof PGU are proposed. The differential unit is the building block of more complex plane-
tary gear trains. Thus, the understanding of the two dof PGU basic mechanics influences
the design of the entire planetary gear drive [15].

The approach adopted herein is based on the concept of virtual or potential power,
at the base of thoughtful contributions on the mechanical efficiency of planetary gear
trains [5,16–22]. The virtual power, a term coined by Chen and Angeles [17], or potential
power, coined by Esmail [5], is the power measured by an observer on any arbitrary moving
frame [23,24]. However, the use of kinematic inversion for torque and efficiency analysis
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on gear trains dates back to Macmillan [16]. In particular, he recognized that the torques
acting on the PGU links and power losses are independent of the observer’s motion. The
following quote is taken from [16]:

...our analysis is based upon an important principle relating to torques and the power lost
in friction; this is the fact that magnitudes of the torques acting upon the various members
of the gear are quite independent of the motion of the observer who measures them. In
addition, the power lost, being determined solely by the internal torques and the relative
motions of the wheels within the gear, is also independent of the observer’s motion.

Although Macmillan’s analysis was limited to one dof PGU, the importance of kine-
matic inversion in the gear trains mechanical efficiency analysis is well represented.

The present paper was stimulated by the discovery that, under certain kinematic
conditions, the classic Radzimovsky formulas [15,25–27] for the computation of mechanical
efficiency in a two dof gear unit are not valid anymore [28]. This situation may lead to an
estimation of the overall mechanical efficiency flawed by errors.

As discussed by Pennestrì & Valentini [15], the Radzimovsky formulas consider the
two dof epicyclic gear train as two single dof devices in parallel and crossed by a power-
flow. These formulas are deduced after application of the general mechanical efficiency
formula of a mechanical system composed of two parallel devices with a given mechanical
efficiency and power-flow direction. However, with the introduction of the concept of
virtual or potential power, the mechanical efficiency of an epicyclic gear train is reduced to
that of an ordinary gear train. For this purpose, a kinematic inversion is introduced such
that the observed motion of the gear carrier is canceled.

The orientation of power flow observed under such kinematic inversion may not be
the same as one of epicyclic arrangement. This situation requires special attention and
the algebraic expression of the overall mechanical efficiency should be set in a consistent
manner. The new proposed formulas herein are of a general nature and do not suffer any
of the mentioned pitfalls.

In this paper, the concept of virtual or potential power was applied to deduce two
new general mechanical efficiency formulas that cover all the working modes of a two
dof PGU:

- Two driving members (i.e., those with positive powers) and one driven member (i.e.,
the one with negative power);

- Two driven members and one driving member.

Our approach is based only on the application of mechanics first principles, namely,
Willis’ formula, torque equilibrium, kinematic inversion, power balance and definition of
mechanical efficiency. As a byproduct, general formulas of the power-flow ratios, for the
case of a gear unit without power losses, are also deduced.

For the mechanical efficiency analysis, members with constant velocities and meshing
losses only are considered. A constant mechanical efficiency is assumed for the unit
working as an ordinary gear train. Moreover, the algebraic sign of the power-flow is not
altered by friction.

On the basis of the previous hypotheses, two new compact formulas for the mechanical
efficiency analysis of two dof PGU are deduced herein. The formulas can be adapted to
any power flow arrangement within the PGU.

2. Power-Flow Ratios in a PGU

The PGU (see Figure 1) is composed of two mating gears and the gear carrier. Let us
denote by x, y and z the three links of the PGU.
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Figure 1. Example of planetary gear unit (PGU) with internally meshing gears.

Angular speeds, torques and powers in a GPU are governed, respectively, by the
well-known analytical conditions from Willis’ equation, torque equilibrium and power
balance:

ωz + τ1ωx + τ2ωy = 0 (1a)

Tx + Ty + Tz = 0 (1b)

Txωx + Tyωy + Tzωz = 0 (1c)

where τ1 and τ2 depend on the number of teeth ratio.
The readers will readily recognize (1a) as the Willis’ equation. In fact, setting z and x

as the subscripts denoting the meshing gears and y the gear carrier, then

ωz −ωy

ωx −ωy
= Nx,z = ±

No. of Teeth of gear x
No. of Teeth of gear z

(2)

The comparison of (1a) with (2), yields τ1 = −Nx,z and τ2 = Nx,z− 1. Obviously, other
subscript combinations are possible, with corresponding different analytical expressions
of τ1 and τ2. The choice x, y and z for the initial indistinct labeling all the moving bodies
composing the PGU is justified by the advantage of condensing all possible cases for
mechanical efficiency computation in two formulas only. In other words, what is lost in
apparent initial abstraction is later gained in the results’ generality.

After some algebraic manipulation of (1) one obtains the following:

Px

Py
= −

(1 + τ2) + τ1
ωx

ωy

(1 + τ1) + τ2
ωy

ωx

(3)

Py

Pz
= −

(1 + τ1) + τ2
ωy

ωz

(τ1 + τ2) +
ωz

ωy

(4)

where Px = Txωx, Py = Tyωy and Pz = Tzωz are the powers sustained by links x, y and z,
respectively. The power ratios deduced by Pennestrì & Freudenstein [29] are particular
cases of the previous equations.

Under ideal conditions, in a PGU, the sign of powers is established prescribing the
following: two angular speeds and one torque (kinematically driven PGU) or, alternatively,
one angular speed and two torques (torque driven PGU) [30].

In a two dof PGU we distinguish the following working modes:

- Two driving links (namely x and y, Px > 0 and Py > 0) and one driving link (namely z,
Pz < 0);
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- Two driving links (namely x and y, Px < 0 and Py < 0) and one driving link (namely z,
Pz > 0).

In the current analysis, it is assumed that the presence of meshing losses does not alter
the algebraic sign of actual power flows.

3. The Algebraic Sign of Virtual Power Flows

In a previous paper [28], the authors (E.L.E. and E.P. ) demonstrated that, under certain
kinematic conditions, the Radzimovsky’s formulas do not hold. An analysis of power-flows
algebraic signs is required to explain the limits for the Radzimovsky’s formulas and offer a
more general alternative.

The following analysis will ascertain the algebraic sign correlation between the actual
powers Px = Txωx and Py = Tyωy and the virtual [17] or potential [5] powers, such as
Py

x = Tx
(
ωx −ωy

)
and Px

y = Ty
(
ωy −ωx

)
. For instance, the potential power corresponds to

the power which would be transmitted by the gear unit, operating in a rotating reference
frame at which link j appears relatively fixed and at relative angular velocity ωu −ωj, for
link u. Therefore, the carrier potential power is measured under a kinematic inversion,
making fixed the planet-carrier in the observer frame of reference. The potential power is
the most important and basic principle of the mechanical efficiency analysis of differential
devices).

Powers Px and Py
x have the same algebraic sign only if the following is true:

Py
x

Px
=

ωx −ωy

ωx
> 0 (5)

or
ωy

ωx
< 1 (6)

Similarly, Py and Px
y have the same algebraic sign only if the following are true:

Px
y

Py
=

ωy −ωx

ωy
> 0 (7)

or
ωx

ωy
< 1 (8)

There are two ranges consistent with inequality (6):

1.
ωy

ωx
< 0

2. 0 <
ωy

ωx
< 1

Moreover, we observe the following:

- If
ωy

ωx
< 0, then

ωx

ωy
is also negative.

- If 0 <
ωy

ωx
< 1, then

ωx

ωy
must be greater than one.

Case 1: ωx and ωy have opposite algebraic signs.
In this case, Equations (6) and (8) are both simultaneously valid. Py

x and Px, Px
y and Py

have the same algebraic sign for any working mode, as depicted in the PGU block schemes
shown in Figure 2 (1st working mode).
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1st working mode: 2 driving links and 1 driven link

2nd working mode: 1 driving link and 2 driven link

Figure 2. Virtual power flow directions Kinematic condition: sign
(

ωx

ωy

)
= −1.

Case 2: ωx and ωy have the same algebraic sign, or sign
(

ωy

ωx

)
= +1.

Under this hypothesis, Equations (6) and (8) cannot hold simultaneously.

Subcase 2a: When
ωy

ωx
< 1, then Py

x and Px have the same algebraic sign. The described

situation is depicted in Figure 3, 1st working mode.

Subcase 2b: When
ωx

ωy
< 1, then Px

y and Py will have the same algebraic sign. The described

situation is depicted in Figure 4, 1st working mode.
The previous analysis can be summarized as follows:

1. When ωx and ωy do not have the same algebraic sign, the power ratios
Py

x
Px

and
Px

y

Py
will have simultaneously the same algebraic sign. For all the links, the direction of
the virtual power-flow is the same as the actual power flow (see Figure 2).

2. When ωx and ωy have the same algebraic sign, power ratios
Py

x
Px

and
Px

y

Py
cannot have

simultaneously the same algebraic sign. In particular, the condition
Py

x
Px

> 0 is fulfilled

when
ωy

ωx
> 1 (See Figure 3). Conversely, the condition

Px
y

Py
> 0 is fulfilled when

ωx

ωy
> 1.
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1st working mode: 2 driving links and 1 driven link

2nd working mode: 1 driving link and 2 driven link

Figure 3. Virtual power-flow directions for subcase 2a. Kinematic condition: sign
(

ωy

ωx

)
= +1 and

ωy

ωx
< 1.

1st working mode: 2 driving links and 1 driven link

2nd working mode: 1 driving link and 2 driven link

Figure 4. Virtual power flow directions for subcase 2b. Kinematic condition: sign
(

ωy

ωx

)
= +1 and

ωx

ωy
< 1.

4. The Modified Radzimovsky Formulas
4.1. Case x and y as Driving Links and z Driven Link

Let us consider the case of a two dof gear train with x and y as driving links (i.e.,
Px = Txωx > 0, Py = Tyωy > 0 and Pz = Tzωz < 0).

Case 1: sign
(

ωx

ωy

)
= −1 (see Figure 2, 1st working mode)
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Under kinematic inversions that fix links x and y, respectively, assuming without loss
of generality Py

x > 0, the following relations hold (see 1st working mode of Figure 2):

Txωxyηy(x−z) + Tzωzy = 0 (9a)

Tyωyxηx(y−z) + Tzωzx = 0 (9b)

The overall power balance condition is as follows:

η(x,y−z) =
|Tzωz|

Txωx + Tyωy
(9c)

Solving the system composed of the Equations (9), one obtains the following:

η(x,y−z) =

∣∣∣∣∣∣∣∣
ωzωyxηy(x−z)

ωxωzy −
ηy(x−z)

ηx(y−z)
ωyωzx

∣∣∣∣∣∣∣∣ (10)

Subcase 2a:
ωy

ωx
< 1 or sgn

(
ωx

ωy

)
= +1 (see Figure 3, 1st working mode)

Under kinematic inversions that fix links x and y, respectively, assuming without loss
of generality Py

x > 0, the following relations hold:

Txωxyηy(x−z) + Tzωzy = 0 (11a)

Tyωyx + Tzωzxηx(z−y) = 0 (11b)

Solving the system composed of the Equations (9c) and (11), one obtains the following:

η(x,y−z) =

∣∣∣∣∣ ωzωyxηy(x−z)

ωxωzy − ηx(z−y)ηy(x−z)ωyωzx

∣∣∣∣∣ (12)

The analytical Expression (10) can be combined into the following formula:

η(x,y−z) =

∣∣∣∣ ωzωyxηy(x−z)

ωxωzy − Aωyωzx

∣∣∣∣ (13)

with

A =


ηy(x−z)

ηx(y−z)
when sign

(
ωx

ωy

)
= −1

ηx(z−y)ηy(x−z) when
(

ωy

ωx

)
< 1 and sign

(
ωx

ωy

)
= +1

(14)

The proposed formula is more general than the one proposed by Radzimovsky (see
Equation (11) of [26]).

When ωx = ωy = ωz, the Equations (9b) and (11) are identically satisfied and
Formula (13) is not valid. However, under these kinematic conditions, there is no meshing
power loss. Under our hypotheses, the mechanical efficiency is equal to one.

4.2. Case x and y as Driven Links and z Driving Link

Let us consider the case of a two dof gear train with x and y as driven links (i.e.,
Px = Txωx < 0, Py = Tyωy < 0 and Pz = Tzωz > 0), as shown in Figure 2, 2nd working
mode. In this case the overall power balance equation is the following:

η(z−x,y) =

∣∣Txωx + Tyωy
∣∣

Tzωz
(15)
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Case 1: sign
(

ωx

ωy

)
= −1 (see Figure 2, 2nd working mode)

The following relations hold:

Tzωzyηy(z−x) + Txωxy = 0 (16a)

Tzωzxηx(z−y) + Tyωyx = 0 (16b)

Solving the system composed of the Equations (15) and (16), one obtains the following:

η(z−x,y) =

∣∣∣∣ηx(z−y)ωyωzx − ηy(z−x)ωxωzy

ωyxωz

∣∣∣∣ (17)

Subcase 2a:
ωy

ωx
< 1 and sgn

(
ωx

ωy

)
= +1 (see Figure 3, 2nd working mode)

The following relations hold:

Tzωzyηy(z−x) + Txωxy = 0 (18a)

Tzωzx + Tyωyxηx(y−z) = 0 (18b)

Solving the system composed of the Equations (15) and (18), one obtains the following:

η(z−x,y) =

∣∣∣∣∣ωyωzx − ηx(y−z)ηy(z−x)ωxωzy

ηx(y−z)ωyxωz

∣∣∣∣∣ (19)

The analytical Expressions (18) and (19) can be combined into the following formula:

η(z−x,y) =

∣∣∣∣Bωyωzx − ηy−(z−x)ωxωzy

ωyxωz

∣∣∣∣ (20)

with

B =


ηx(z−y) when sign

(
ωx

ωy

)
= −1

1
ηx(y−z)

when
(

ωy

ωx

)
< 1 and sign

(
ωx

ωy

)
= +1

(21)

The proposed formula is more general than the one proposed by Radzimovsky (see
Equation (25) of [26]).

The expressions of ηx(y−z) and ηy(x−z), for all possible combinations of x, y and z, are
listed in Table 1 of reference [1] (see also Appendix A).

5. Numerical Example

We consider the case of the gear unit, shown in Figure 5, with x and y driving links
and the z-driven link. In particular, ωx = 8000 rpm and ωy = 7966.6 rpm.

For a planet gear ratio Nj,i = −1.5,

τ1 = − 1
1− Nj,i

= −0.4

and

τ2 = −
Nj,i

Nj,i − 1
= −0.6

Consequently, from Willis’ equation, follows ωz = 7980 rpm.
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Since 0 <
ωx

ωy
< 1, the Formula (13) is applied. Considering the current value of Nj,i,

and assuming
ηz(x−y) = 0.900

the entries 3a and 5a of Table A1 of the Appendix A give, respectively, the following:

ηy(x−z) =
Nj,iηz(x−y) − 1

Nj,i − 1
= 0.940

ηx(y−z) =
Nj,i − ηz(x−y)

Nj,i − 1
= 0.960

For the prescribed numerical data, the Formula (13) yields the following:

η(x,y−z) =

∣∣∣∣∣∣∣∣
ωzωyxηy(x−z)

ωxωzy −
ηy(x−z)

ηx(y−z)
ωyωzx

∣∣∣∣∣∣∣∣ = 0.998

Figure 5. Kinematic structure of the PGU analyzed.

6. Conclusions

In this paper, the first novel result concerns the algebraic signs analysis of a virtual
power-flow in a two dof PGU. It was shown that in a PGU, the virtual or potential powers,
Py

x and Px
y , cannot have always the same algebraic sign. On the basis of this observation,

new formulas for the computation of mechanical efficiency in a two dof PGU were deduced.
The proposed formulas maintain their range of validity, also for cases not covered by the
traditional Radzimovsky’s formulas. Therefore, our approach offers a more general and
compact alternative. The results herein can be extended also to other types of differential
devices.
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It must be observed that the current approach is limited to meshing losses only under
a stationary working mode. Future work should embody in the formulas also the bearing
losses. Moreover, the present treatment is based on stationary conditions; however, often,
the efficiency under transient conditions is required. In this case, the time variation of
kinetic energy due to inertia forces needs to be included in the power balance.
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validation, E.L.E., M.C. and E.P.; writing—original draft preparation, E.L.E., M.C. and E.P.; writing—
review and editing, E.L.E., M.C. and E.P. All authors have read and agreed to the published version
of the manuscript.
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Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.
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Nomenclature

dof degree-of-freedom

Ph = Thωh
Power of link (h = x, y, z), greater/less than zero when h is a driving/
driven link in the absolute motion;

Py
x = Tx

(
ωx −ωy

)
Potential or virtual power of link x when link y is considered fixed;

PGU Planetary gear unit;

Nj,i = ±
No. teeth wheel j
No. teeth wheel i

Planet gear ratio (+: internally meshing gears, −: externally meshing
gears)

Tx Torque on link x
ωx Absolute angular velocity of link x
ωxy = ωx −ωy Relative angular velocity of link x with respect to link y

ηx(y−z)
Mechanical efficiency of the one dof PGU when link x is fixed and
links y and z are driving and driven links, respectively.

η(x,y−z)
Mechanical efficiency of the two dof PGU when operating with
links x and y as driving links and z as driven.

η(z−x,y)
Mechanical efficiency of the two dof PGU when operating with
links x and y as driven links and z as driving link.

Appendix A

In Table A1 are reported the efficiencies η of all possible kinematic inversions of a
PGU [1].

The nomenclature of the table variables is as follows:

• i, j and k: subscripts denoting the gears and gear carrier, respectively;
• R = Nj,i: planet gear ratio;

Therefore, assuming x = i (gear driving), y = k (gear carrier driven), z = j (fixed),
Nj,i = R > 1, the mechanical efficiency of this gear arrangement is given by the entry 3a:

ηz(x−y) =
Rηk(i−j) − 1

R− 1

The efficiency of the ordinary gear train can be accurately computed in different ways.
However, for a crude approximation, the Tuplin formula can be used:

ηk(i−j) ≈ ηk(j−i) ≈ 1−
∣∣∣∣∣15
(

1
zi
± 1

zj

)∣∣∣∣∣ (A1)

where the + and − sign applies for external or internal meshing gears, respectively.
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Table A1. Efficiencies of single epicyclic spur-gear trains. R = Nj,i: planet gear ratio.

Case Driving Driven Fixed η

1 i j k ηk(i−j)
2 j i k ηk(j−i)

3a (R < 0)

(R > 1)
i k j Rηk(i−j) − 1

R− 1
3b (0 < R < 1) i k j R− ηk(j−i)

ηk(j−i)(R− 1)

4a (R < 0)

(R > 1)
k i j (R− 1)ηk(j−i)

R− ηk(j−i)
4b (0 < R < 1) k i j R− 1

Rηk(i−j) − 1

5a (R < 1) j k i R− ηk(i−j)
R− 1

5b (R > 1) j k i 1− Rηk(i−j)
ηk(i−j)(1− R)

6a (R < 1) k j i (R− 1)ηk(i−j)
Rηk(i−j) − 1

6b (R > 1) k j i R− 1
R− ηk(j−i)
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