
JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.1 (1-18)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Parallel Load Balancing on constrained client-server 

topologies ✩

Andrea Clementi a,∗,1, Emanuele Natale b, Isabella Ziccardi c,∗
a Università di Roma Tor Vergata, Rome, Italy
b Université Côte d’Azur, CNRS, INRIA, Sophia Antipolis, France
c Università dell’Aquila, L’Aquila, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 September 2020
Received in revised form 7 July 2021
Accepted 18 September 2021
Available online xxxx
Communicated by C. Kaklamanis

Keywords:
Parallel balanced allocations
Balls-into-bins processes
Randomized algorithms

We study parallel Load Balancing protocols for the client-server distributed model defined 
as follows. There is a set C of n clients and a set S of n servers where each client has 
(at most) a constant number d � 1 of requests that must be assigned to some server. The 
client set and the server one are connected to each other via a fixed bipartite graph: the 
requests of client v can only be sent to the servers in its neighborhood N(v). The goal is 
to assign every client request so as to minimize the maximum load of the servers.
In this setting, efficient parallel protocols are available only for dense topologies. In 
particular, a simple protocol, named raes, has been recently introduced by Becchetti et 
al. [1] for regular dense bipartite graphs. They show that this symmetric, non-adaptive 
protocol achieves constant maximum load with parallel completion time O(log n) and 
overall work O(n), w.h.p.
Motivated by proximity constraints arising in some client-server systems, we analyze raes

over almost-regular bipartite graphs where nodes may have neighborhoods of small size. 
In detail, we prove that, w.h.p., the raes protocol keeps the same performances as above 
(in terms of maximum load, completion time, and work complexity, respectively) on any 
almost-regular bipartite graph with degree �(log2 n).
Our analysis significantly departs from that in [1] since it requires to cope with non-trivial 
stochastic-dependence issues on the random choices of the algorithmic process which are 
due to the worst-case, sparse topology of the underlying graph.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

1.1. The framework and our goal

We study parallel Load Balancing allocation in client-server distributed systems. We have a client-server bipartite graph 
G(V = (C, S), E) where: C is the set of clients, each one having a number of requests which is bounded by some constant 

✩ This work has been presented at the 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’20).

* Corresponding authors.
E-mail addresses: clementi@mat.uniroma2.it (A. Clementi), natale@unice.fr (E. Natale), isabella.ziccardi@graduate.univaq.it (I. Ziccardi).

1 AC work on this project was partially supported by the ALBLOTECH project n. E89C20000620005 under the University of Rome Tor Vergata Programme 
“Beyond Borders”.
https://doi.org/10.1016/j.tcs.2021.09.026
0304-3975/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2021.09.026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:clementi@mat.uniroma2.it
mailto:natale@unice.fr
mailto:isabella.ziccardi@graduate.univaq.it
https://doi.org/10.1016/j.tcs.2021.09.026


JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.2 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
d � 1; S is the set of servers; the edge set E represents the client-server assignments which are considered admissible 
because of proximity constraints (a client can send a request only to the servers in its neighborhood).

The algorithmic goal of the entities is to assign the requests in parallel so as to minimize the maximum server load.2

To analyze the performance of the proposed protocol for the above distributed task, we adopt the standard synchronous 
distributed model introduced for parallel balls-into-bins processes by Adler et al. in [2]: here, clients and servers are au-
tonomous computing entities that can exchange information (only) over the edges of G . Adler et al. introduce the class of 
symmetric, non-adaptive protocols and show several tight bounds on the trade-offs between the maximum load and the 
complexity (i.e. completion time and work complexity3) of the proposed solutions. Informally, a protocol is said to be sym-
metric if the entities are anonymous, so all the clients (servers) act in the same way and, moreover, all possible request 
destinations are chosen independently and uniformly at random. The protocol is said to be non-adaptive if each client re-
stricts itself to a fixed number of (possibly random) candidate servers in its neighborhood before communication starts. 
Symmetric, non-adaptive protocols have the practical merits to be easy to implement and more flexible [2]. Such solutions 
have interesting applications, such as Load Balancing in communication networks, request scheduling and hashing [3–6].

We notice that efficient symmetric, non-adaptive protocols are known (only) for dense regular bipartite graphs and 
almost-tight lower bounds are known for this important class of parallel protocols [2,1,7] (see also Subsection 1.3 for a 
short description of such results).

The main goal of this paper does not consist of improving previous solutions with respect to specific complexity mea-
sures. Rather, still aiming at efficient solutions that achieve bounded maximum load,4 we focus on symmetric, non-adaptive 
Load Balancing protocols that work over restricted, non dense graph topologies. This natural extension of previous work is 
inspired by possible network applications where: i) based on previous experiences, a client (a server) may decide to send 
(accept) the requests only to (from) a fixed subset of trusted servers (clients) and/or ii) clients and servers are placed over 
a metric space so that only non-random client-servers interactions turn out to be feasible because of proximity constraints. 
Such possible scenarios motivated previous important studies on sequential Load Balancing algorithms [8–10]. To the best 
of our knowledge, efficient solutions for non-dense graphs are in fact available only for the classic sequential model. Here, 
each client request is scheduled once at time so that, for instance, the well-known best-of-k-choices strategy [11] can be 
applied: the loads of the servers are updated at each assignment and the new considered request is assigned to a server 
that has the current minimal load out of k servers chosen independently and uniformly at random [8–10].

The RAES Algorithm. As for the parallel distributed model we adopt in this paper, in [1] Becchetti et al. propose a symmetric, 
non-adaptive algorithm, named raes (for Request a link, then Accept if Enough Space), which is based on the well-known 
Threshold criterion [2]. This approach has been adopted in the context of simulation of PRAM algorithms over the Distributed 
Memory Machine (DMM) under the name of c-collision process [12]. Informally, raes works in rounds, each consisting of two 
phases. Initially, each client has d = �(1) balls.5 In the first phase of each round, if client u has d′ � 1 alive balls (i.e. to 
be still accepted by some server), u selects d′ servers independently and uniformly at random (with replacement) from 
N(u). It then submits each of the d′ balls to each selected client. In the second phase of the round, each server accepts all 
requests received in the first phase of the current round, unless doing so would cause it to exceed the limit of cd accepted 
balls, where the parameter c is a suitable large constant; if this is the case, the server is said to be saturated and rejects all 
requests it received in the first phase of the current round. The algorithm completes when every client has no further balls 
to be submitted.

We observe that servers only give back Boolean answers to the clients requests and, moreover, if the algorithm termi-
nates, the maximum load of the servers will be at most cd. Becchetti et al. prove6 that, over any �-regular bipartite graph 
with � = �(n), raes terminates within O (log n) rounds and the total work is �(n), with high probability7 (for short, w.h.p.).

1.2. Our contribution

We analyze the raes algorithm on every bipartite graph G(V = (C, S), E) of degree � = �(log2 n) (recall that |C| = |S| =
n) that satisfies the following almost-regularity property: the ratio between the maximal degree of the servers and the 
minimal degree of the client is bounded by some absolute constant.

Under this setting, we prove it is possible to set the algorithm parameter c as a sufficiently large constant, such that, for 
every constant request number d, the raes process terminates within O (log n) rounds and requires �(n) work, w.h.p.

The formal definition of almost-regular graphs and the formal statement of the above result are given in Theorem 1, 
while we here remark that the considered notion of almost regularity allows a certain variance of the degrees of entities 
of the same type. Just as a (“non-extremal”) example, we may consider a bipartite graph where: most of the clients have 

2 The load of a server is the overall number of requests which have been assigned to it.
3 The work complexity is the overall number of exchanged messages performed by the protocol.
4 According to our parameter setting, the maximum load is clearly at least d and we aim at keeping an O (d) bound for it.
5 The terms ball and request will be used interchangeably.
6 Even though, not related to our context, we remark that Becchetti et al. shows that raes can be used to efficiently construct a bounded-degree expander 

subgraph of G [1].
7 As usual, we say that an event E holds with high probability if a constant γ > 0 exists such that P(E) � 1 − n−γ .
2



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.3 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
(minimal) degree �(log2 n), while few of them have degree �(
√

n); most of the servers have (maximal) degree �(log2 n), 
while few of them have degree o(log n).

Algorithm analysis: an overview. In the case of dense graphs, the key-fact exploited by Becchetti et al.’s analysis of the raes

algorithm [1] is the following. Since each client has �(n) servers in its neighborhood, it is possible to fix a sufficiently large 
constant c, such that, at every round, the fraction of non-saturated8 servers in the neighborhood N(v) of every client v is 
always at least 1/2. Thanks to a basic counting argument, this fact holds deterministically and independently of the previous 
load configurations yielded by the process. So, every alive client request has probability at least 1/2 to be accepted at each 
round: this allows to get a logarithmic completion time of raes on dense graphs.

In the case of non-dense graphs (i.e. for node degree o(n)), the key property above does not hold deterministically: 
the fraction of non-saturated servers in a fixed neighborhood is a random variable that can even take value 1 and, very 
importantly, it depends on the graph topology and on the random choices performed by the nodes during the previous 
rounds. This scenario makes the analysis considerably harder than that of the dense case.

To cope with the issues above, we consider a variant of raes, called saer (Stop Accepting if Exceeding Requests) that works 
like raes with the exception that, whenever a server v , in the second phase of a given round, gets an overall load larger 
than cd, then v rejects all requests arrived in the first phase of the current round and it becomes burnt. Once a server gets 
burnt, it will never accept any further request for all successive rounds (see Algorithm 2 in Section 3).

We consider this variant of raes since the notion of burnt server is more restrictive and somewhat more “static” w.r.t. 
that of saturated servers used in raes: this allows us to analyze the number of burnt servers and that of alive requests in a 
rigorous way. Moreover, being a natural alternative, its analysis may have a per se interest.

We then show a simple coupling between raes and saer that implies that both the completion time and the work of the 
former cannot be stochastically larger than those of the latter. Thanks to this result, we can thus focus on the analysis of 
the saer algorithm. Similarly to raes, if this new version terminates, then each server will have load at most cd and, hence, 
the main technical issue is to provide a bound (if any) on the number of rounds required by saer to let every client ball 
assigned to some server. For an arbitrary client v , we look at its server neighborhood N(v) and we establish a clean recursive 
formula that describes the expected decreasing rate of the overall number rt(N(v)) of requests that the neighborhood of 
v receives at round t . This expectation is derived for round t by conditioning on the sequence of the maximum fractions 
of burnt servers in any client’s neighborhood produced by the algorithmic process at rounds 1, 2, . . . , t − 1. It turns out 
that, for a sufficiently large c, the conditional expected decreasing rate of rt(N(v)) is exponential. Then, using a coupling 
argument, we derive a concentration bound for this rate that holds as long as the conditional expectation of rt (N(v)) keeps 
of magnitude �(log n). To complete our argument, we consider a further (and final) stage of the process9 that starts when 
rt(N(v)) = O (log n): here, we do not look anymore at the decreasing rate of rt(N(v)), rather we show that, w.h.p., the 
fraction of burnt servers in N(v) can increase, along a time window of length �(log n), by an overall additive factor of 
magnitude at most O (1/c). Thanks to this fact, we can then show that the O (log n) requests that survived the first stage 
have high chances to be assigned during this last stage if the latter lasts �(log n) additional rounds.

1.3. Previous work

Load Balancing algorithms have been the subject of a long and extremely active line of research with important appli-
cations in several topics of Computer Science such as hashing, PRAM simulation, and scheduling. A well-established and 
effective way to model such problems is by using the classic balls-into-bins processes. In such processes, there are typically 
m balls that must be assigned to n bins. In what follows, we use this framework to describe those previous results which 
are more related to the setting of this work.

Sequential algorithms on the complete bipartite graph. It is well-known that if n balls are thrown independently and 
uniformly at random into n bins, the maximum load of a bin is bounded by �(log n/ log logn), w.h.p. (see for instance [13]). 
Azar et al. [11] proved the following breakthrough result. Assume the balls are assigned sequentially, one at a time and, for 
each ball, k � 1 bins are chosen independently and uniformly at random, and the ball is assigned to the least full bin (with 
ties broken arbitrarily). This greedy strategy is also known as “best of k choices”. Then, they prove that the final maximum 
load is �(log log n/ log k + 1), w.h.p. A similar result was also derived in a different version of the model by Karp et al. in 
[14]. Berenbrink et al. extended the analysis of the greedy algorithm for the heavily-loaded case m >> n [15]. Then, several 
versions of this sequential algorithm have been studied by considering, for instance, non-uniform choices in the assignment 
process [16–18]. Moreover, several works addressed weighted balls [19–21], while the case of heterogeneous bins was 
studied in [18]. Recently, balls-into-bins processes have also been analyzed over game theoretic frameworks [22,23].

Sequential algorithms on restricted bipartite graphs. Sequential algorithms for restricted balls-bins (i.e. client-server) 
topologies have been considered in [24,9,10]: here, each ball u = 1, . . . , m comes with its admissible cluster of bins and 
decides its strategy according to the current loads in its cluster determined by the choices of the previous balls u′ < u. In 
this setting, Kenthapadi and Panigrahy [10] analyze the well-known sequential greedy algorithm [11]: each client u, in turn, 

8 Recall that a server is saturated at round t if its load is larger than cd.
9 Notice that this stage is only in our analysis and not on the protocol, the latter being symmetric and non-adaptive.
3



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.4 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
chooses a pair of servers uniformly at random from N(u) and assigns the ball to the server having the current minimum 
load. They prove that, if the size of every N(u) is at least n�(1/ log logn) , then the greedy algorithm achieves maximum load 
�(log log n), w.h.p. In [9], Godfrey analyzed the sequential greedy algorithm on the input model where a random cluster 
of servers N(u) is assigned to each client u before the algorithm starts. In more detail, each client u places its ball in a 
uniform-random server among those in N(u) with the current fewest number of balls. He proves that, if the random sub-
sets N(u) are chosen according to any fixed almost-uniform distribution over the server set S and the subsets N(u) have 
size �(log n), then the greedy algorithm achieves optimal maximum load, w.h.p. The overall work is �(n�max(C)), where 
�max(C) = max{|N(u)| : u ∈ C}. Further bounds are determined when the overall number m of balls is smaller than the size 
of the server set |S| = n. Berenbrink et al. [24] consider the sequential framework adopted in [9] and improve the analysis 
of the greedy algorithm along different directions. In detail, they consider weaker notions of almost-uniform distributions 
for the random server clusters assigned to the clients and, moreover, they also consider an input framework formed by 
deterministic, worst-case server clusters of size β log n. In the case where the overall number of balls is n < αm, with any 
α < 1/12 and β > 18, they show that a suitable version of the sequential greedy algorithm achieves maximum load 1, w.h.p. 
Notice that the greedy algorithm adopted in [10,9] does require every server to give information to their clients about its 
current load: in some applications, this feature of the algorithm might yield critical issues in terms of privacy and security 
of the involved entities [25,26]. On the other hand, we notice that, the simple threshold approach adopted by both raes

and saer can be implemented in a fully decentralized fashion so that the clients cannot get a good approximation about the 
current load of the servers (see also the remarks after Algorithm 2 in Section 3).

Parallel algorithms on the complete bipartite graph. Inspired by applications arising from parallel distributed systems, a 
rich and active research has been focused on computational entities which are able to communicate with each other (with 
some constraints that depend on the specific version of the model). Then, protocols operate in synchronous rounds, in 
each of which balls and bins exchange messages once. In [2], Adler et al. consider some non-adaptive symmetric protocols 
and analyze their performances in terms of maximum load, number of rounds, and message complexity. For instance, 
they introduce a parallelization of the greedy algorithm [11] and show that for any constant number r rounds and for 
any constant number of random choices k, it achieves maximum load O((log n/ log logn)1/r), w.h.p. They also give a more 
complex greedy algorithm that works in log log n/ log k +2k +O(1) rounds and achieves log log n/ log k +2k + O (1) maximum 
load, w.h.p. Interestingly enough, they prove that the above performance trade-offs are essentially optimal for the restricted 
class of non-adaptive, symmetric algorithms. This class also includes the Threshold algorithms where, informally speaking, 
at every round, every bin, that receives more than a fixed threshold T of balls, re-throws the excess balls in the next 
round (such rejected balls can be chosen in an arbitrary “fair” way). Parallel Threshold algorithms have been introduced by 
Lenzen et al. in [7] for the heavily-loaded case, i.e. when m >> n. Finally, we mention some adaptive and/or non-symmetric 
protocols on the complete graph that have been presented in recent work (e.g. [27,28,7,29]) that achieve significantly better 
performances than symmetric and/or non-adaptive ones [2]. Such strategies are rather complex and so their setting is far 
from the aim of this paper (as discussed in the previous subsection, this being the analysis of basic, non-adaptive symmetric 
protocols over restricted client-server topologies).

Parallel algorithms on restricted bipartite graphs. The only rigorous analysis of parallel protocols for restricted client-server 
topologies we are aware of is that in [1] by Becchetti et al. for the raes protocol which has been discussed in the previous 
part of this introduction.

2. Preliminaries

In the Load Balancing problem we have a system formed by a client-server bipartite graph G(V = (C, S), E) where:

• the subset C = {v1, . . . , vn} represents the set of clients;
• the subset S = {u1, . . . , un} represents the set of servers;
• the edge set E determines, for each client v , the subset N(v) of servers the client v can make a request to (i.e. it can 

send a ball10). For any node (client or server) w ∈ V = (C, S), we denote its degree in G as �(w), i.e. �(w) = |N(w)|
and we define

�min(C) = min{�(v) : v ∈ C} and �max(S) = max{�(u) : u ∈ S} .

At the beginning, each client has (at most d) balls where d � 1 is an arbitrary constant (w.r.t. n) that, in the sequel, we 
call request number, and the goal is to design a parallel distributed protocol that assigns each ball of every client v ∈ C to 
one server in N(v).

According to previous work [2,29], we study the Load Balancing problem over the fully-decentralized computational 
model M where bi-directional node communications take place only along the edges in E , in synchronous rounds. In more 
detail, each round consists of two phases: in the first phase, each client v sends its unsettled (i.e. alive) balls to a selection 
of servers in N(v). Then, in the second phase, servers answer to each of the received balls by either accepting or rejecting.

10 Recall that the terms ball and request will be used interchangeably.
4



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.5 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
We remark that our considered algorithms work under the following further model constrains: clients may only send 
the ball IDs11; servers may only answer each ball request with one bit (accept/reject); moreover, there is no global labeling 
of the nodes of G , each node v just keeps a local labeling of its links.

We analyze the cost of the proposed algorithmic solution with respect to two fundamental complexity measures:

• the completion time which is defined as the number of rounds required by the protocol to successfully assign all the 
client balls to the servers;

• the (overall) work which is defined as the overall number of exchanged messages among the nodes of the network 
during the protocol’s execution.

3. Two simple protocols for Load Balancing and their performances

We analyze two simple protocols for Load Balancing, the first one is called raes (Request a link, then Accept if Enough Space) 
and it is the one introduced in [1], while the second one is a variant of raes and it is named saer (Stop Accepting if Exceeding 
Request). They are both based on a simple, non-adaptive threshold criterion the servers use to accept or reject the incoming 
balls. The protocol is organized in rounds and, in turn, each round consists of two phases. For the sake of readability, we 
consider the case where every client has exactly d balls, where the request number d is an arbitrary fixed constant: the 
analysis of the general case (� d) is in fact similar.

The raes protocol was informally described in the introduction, a more formal description is given in Algorithm 1.

Algorithm 1 Protocol raes(c, d).
1: Phase 1: � dout

v : current number of the balls v ∈ C which have been accepted by some server
2: for v ∈ C do
3: v picks d − dout

v neighbors in G independently and uniformly at random (with replacement)
4: v submits a ball request to each of them
5: end for
6: Phase 2: � din

u : current number of the balls accepted by u ∈S
7: for u ∈ S do
8: if u received � cd − din

u ball requests in the previous phase then
9: u accepts all of the balls received in Phase 1 and updates din

u
10: else
11: u rejects all the balls received in Phase 1 of the current round
12: end if
13: end for
14: for v ∈ C do
15: v updates its value dout

v
16: if dout

v = 0 then
17: v gets into the final state done and terminates.
18: end if
19: end for

To analyze the performance of raes we consider its variant, the saer protocol, that adopts a more restrictive way to 
assign balls to the servers: informally, once a server has received a certain overall number (i.e. a threshold) of balls, it will 
reject the new balls for all the next steps of the process. The formal description of saer is given in Algorithm 2.

Remarks. Some simple facts easily follow from the protocol description above. (i) The protocols complete at round T � 1 if 
and only if every client has successfully placed all its d balls within round T . If this happens, then the maximum load of the 
servers is clearly bounded by cd. The main technical question is thus to provide bounds in concentration on the completion 
time of the protocols and on their performed work. This issue will be the subject of the next section.
As for the decentralized implementation, we observe that the knowledge of the parameter c (which, in turn, depends on 
the degree of the underlying almost-regular bipartite graph - see Theorem 1 in the next subsection) is required only by the 
servers while clients need no knowledge of global parameters. Interestingly enough, this fact implies that, for reasons of 
security and/or privacy, the servers may suitably choose c so that the clients cannot get any good approximation of their 
current load.

3.1. The main theorem

According to the definition of client-server bipartite graphs and those of the two protocols raes and saer(c, d) we gave 
above, we can state our main technical contribution as follows.

11 It suffices that each client keeps a local labeling of its ball set.
5



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.6 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
Algorithm 2 Protocol saer(c, d).
1: Phase 1: � dout

v : current number of the balls of v ∈ C which have been accepted by some server
2: for v ∈ C do
3: v picks d − dout

v neighbors in G , independently and uniformly at random (with replacement)
4: v submits a ball request to each of them
5: end for
6: Phase 2: � din

u : current number of the balls accepted by u ∈S
7: for u ∈ S do
8: if u is burnt then
9: u rejects all the balls received in Phase 1 of the current round

10: else
11: if u received > cd balls since the start of the process then
12: u rejects all the balls received in Phase 1 of the current round and becomes burnt

13: else
14: u accepts all of the balls received in Phase 1 and updates din

u
15: end if
16: end if
17: end for
18: for v ∈ C do
19: v updates its value dout

v
20: if dout

v = 0 then
21: v gets into the final state done and terminates.
22: end if
23: end for

Theorem 1 (Performances of saer and raes processes). For any constants η, ρ ∈R+ with ρ � 1, and for any sufficiently large n ∈N , 
let G((C, S), E) be any bipartite graph such that: |C| = |S| = n, �min(C) � η log2 n, and �max(S)/�min(C) � ρ . For any constant 
d ∈ N , consider the Load Balancing problem on G with request number d. Then, for any sufficiently large constant c > 0,12 both the 
protocols raes(c, d) and saer(c, d) have completion time O (log n) and their work is �(n), w.h.p.

A simple counting argument implies that �min(C) � �max(S) for every bipartite graph while Theorem 1 requires the 
“almost-regularity” hypothesis �max(S)/�min(C) = �(1). We remark that this condition allows a relative-large variance of 
the node degree. For instance, the theorem holds for a topology where: the minimum client degree and the maximum 
server degree are �(log2 n), some clients have degree �(

√
n), while some servers have (minimal) degree �(1).

4. Proof of Theorem 1 for SAER

To prove the claim of Theorem 1 for the saer process, in Subsection 4.1, we provide an upper bound on the fraction of 
burnt servers that holds for each round of a time window of logarithmic length. In Subsection 4.2, we first show how to 
easily get the logarithmic bound on the completion time and, then, we derive a linear bound on the work performed by 
this protocol.

4.1. On the fraction of burnt servers

In this section, we prove the claim of Theorem 1 for saer on any bipartite graph G(V = (C, S), E) that satisfies the 
conditions: �min(C) � η log2 n and �max(S)/�min(C) � ρ . Since the protocol saer makes a crucial use of burnt servers, in 
what follows, we define this notion and some important random variables of the algorithmic process which are related to 
it. For every round t � 1 and every server u ∈ S , let rt(u) be the random variable indicating the number of balls that server 
u receives at round t .

Definition 2 (Burnt servers). For every integer t � 1, we say that a server u ∈ S is burnt at round t of the process saer if

t∑
i=1

ri(u) > cd .

Moreover, for every client v ∈ C , define Bt(v) as the fraction of burnt servers in the neighborhood of v at time t , i.e.,

Bt(v) = {u ∈ S : u ∈ N(v) and
∑t

i=1 ri(u) > cd}
�(v)

.

We also define Bt as the maximum fraction of burnt nodes in any client’s neighborhood at round t, i.e., Bt = maxv∈C Bt(v).

12 Our analysis will show that the value of c depends (only) on the constants η and ρ .
6



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.7 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
The proof of Theorem 1 relies on the following upper bound on the fraction of burnt servers that holds for a time 
window of logarithmic length.

Lemma 3 (On the fraction of burnt servers). Under the hypothesis of Theorem 1, for any constant c � max(32ρ, 288/(ηd)), it 
holds

Pr

⎛
⎝ ⋂

1�t�3 log n

{
Bt � 1

2

}⎞⎠� 1 − 1

n2
. (1)

The next subsection is devoted to the proof of Lemma 3.

4.1.1. Proof of Lemma 3
We start by defining the random variables that describe the saer process.

Definition 4. For every round t � 1 and for every client v ∈ C , let rt(N(v)) be the overall number of balls that all the 
servers in the neighborhood N(v) ⊆ S receive at round t; moreover, let rt be the maximum number of balls that every 
server neighborhood receives at round t . Formally,

rt(N(v)) =
∑

u∈N(v)

rt(u) and rt = max
v∈C rt(N(v)) .

We observe that since a burnt server at round t has received more than cd balls since the start of the process, for every 
v ∈ C and every t � 1,

Bt(v) � 1

cd�(v)

t∑
i=1

ri(N(v)) . (2)

We also name the expression in the r.h.s. of the inequality above since it will be often used in our analysis.

Definition 5. For every round t � 1 and every client v ∈ C , let

Kt(v) = 1

cd�(v)

t∑
i=1

ri(N(v)) and Kt = max
v∈C Kt(v) .

Notice that the above definitions and (2) easily imply that, for every v ∈ C and every t � 1,

Bt � Kt and Kt(v) = Kt−1(v) + 1

cd�(v)
rt(N(v)) . (3)

We next write the random variable rt(N(v)) in terms of more “elementary” random variables.

Definition 6. For every round t � 1, client v ∈ C and ball i ∈ [d], let a(i)
t (v) be the binary random variable indicating whether 

the v ’s i-th ball is still alive at round t in the saer process, i.e., it has still not been accepted by some server at the beginning 
of round t . Let ã(i)

t (v) be the equivalent random variable in the raes process.

Definition 7. For every round t � 1, client v ∈ C , server u ∈ N(v) ⊆ S and ball i ∈ [d], let z(i)
t (v, u) be the binary random 

variable indicating whether the (random) contacted server for the v ’s i-th ball at round t is u in the saer process. Let 
z̃(i)

t (v, u) be the equivalent random variable in the raes process.

Notice that, according to the above definitions, if a ball i is not alive at round t , the corresponding value of the random 
variables z(i)

t (v, u) is not relevant for the evolution of the process and, thus, they will not be considered.
Then, for every fixed client v ∈ C and t � 1, we can write

rt (N (v)) =
∑

u∈N(v)

rt(u) =
∑

u∈N(v)

∑
w∈N(u)

d∑
i=1

a(i)
t (w) · z(i)

t (w, u) . (4)

The above random variables have the following useful properties.
7



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.8 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
Lemma 8.

1. For every t � 1, i ∈ [d], v ∈ C and u ∈ S , the random variables z(i)
t (v, u) and a(i)

t (v) are mutually independent.
2. For every v ∈ C and every choice of positive reals b j � 1 for j = 1, . . . , t − 1, it holds

Pr
(

a(i)
t (v) = 1 | B1 � b1, . . . , Bt−1 � bt−1

)
�

t−1∏
j=1

b j .

3. For every t � 1, the random variables 
{

z(i)
t (v, u)

}
v∈C,u∈N(v),i∈[d] are negatively associated.13

Proof. Claim 1 follows from the observation that saer is non-adaptive and symmetric and, hence, at each round, each client 
v ∈ C chooses the (random) destination of its i-th request regardless of the value of a(i)

t (v) while the latter determines 
whether the request is really sent or not.
As for Claim 2, notice that a(i)

t (v) = 1 iff v ’s i-th request has been rejected at each previous round, and this happens iff the 
destination of the i-th request is a burnt server.
Finally, Claim 3 follows from the fact that, for each v ∈ C , if z(i)

t (v, u) = 1 for u ∈ N(v) then, for every u′ ∈ C with u′ �= u, it 
holds that z(i)

t (v, u′) = 0. Moreover, for each fixed u ∈ S the random variables {z(i)
t (v, u), v ∈ C, i ∈ [d]} are independent. �

Step-by-step analysis via induction. We first consider the first round of the process and give the following bound on the 
maximum number of balls a client neighborhood can receive.

Lemma 9 (First round). Under the hypothesis of Theorem 1, for every v ∈ C , with probability at least 1 − 1/n3 , it holds

r1(N(v)) � 2d�(v)
�max(S)

�min(C)

and

K1 � 2

c

�max(S)

�min(C)
. (5)

Proof. The random variable r1(N(v)) can be written as in (4). Then, since for each w ∈ C and u ∈ N(v), z(i)
1 (w, u) is a 

Bernoulli random variable of parameter 1/�(w), we get

E [r1(N(v))] = d
∑

u∈N(v)

∑
w∈N(u)

1

�(w)
� d�(v)

�max(S)

�min(C)
.

From Claim 3 of Lemma 8, we can apply the Chernoff bound for negatively associated random variables with ε = 1 (Theo-
rem 23) thus obtaining

Pr
(

r1(N(v)) � 2d�(v)
�max(S)

�min(C)

)
� e

− 1
3 d�(v)

�max(S)
�min(C) � e− 1

3 d�max(S) � 1

n3
. (6)

Observe that the last inequality holds for every sufficiently large n since, in every bipartite graph, we have �max(S) �
�min(C) � η log2 n. Finally, from Definition 5, (6) and from a union bound, we get (5). �

The next result is a key step of the proof of Lemma 3. We look at every fixed round t � 2 of the random process and 
derive, for every client v ∈ C , an upper bound in concentration on the random variable rt(N(v)), assuming some fixed bound 
on the variable Kt−1. This bound shows that, conditional on the bound sequence above, the number of alive balls in N(v)

decreases, at each round t , by a factor that explicit depends on the fraction of burnt servers at round t − 1. For every v ∈ C
we give an upper bound on E [rt(N(v))] conditional to some fixed upper bound on Kt−1.

Lemma 10 (Round t � 2 by induction). Under the hypothesis of Theorem 1, for every client v ∈ C and every real k1, . . . , kt−1

E [rt(N(v)) | K1 � k1, . . . , Kt−1 � kt−1] � d�(v)
�max(S)

�min(C)

t−1∏
i=1

ki . (7)

13 The definition of negative association is given in Definition 22 in Appendix A. This property allows to apply concentration bounds (see Theorem 23 in 
Appendix A).
8



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.9 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
Moreover, for every μ � d�(v) · (�max(S)/�min(C)) ·∏t−1
i=1 ki ,

Pr (rt(N(v)) � 2μ | K1 � k1, . . . , Kt−1 � kt−1) � e− μ
3 .

Proof. By expressing rt(N(v)) as the sum in (4), we can apply the first two claims in Lemma 8 and get

E [rt(N(v)) | K1 � k1, . . . , Kt−1 � kt−1] � d�(v)
�max(S)

�min(C)

t−1∏
i=1

ki .

In order to get the claimed bound in concentration, we need to apply the Chernoff bound to the sum of random variables of 
the form a(i)

t (w) · z(i)
t (w, u). To this aim, we know that for every u ∈ S and every w ∈ N(u), z(i)

t (w, u) is a Bernoulli random 
variable of parameter 1/�(w). However, the distributions of a(i)

t (w) · z(i)
t (w, u) are rather difficult to analyze since there are 

several correlations among the random variables in {a(i)
t (w) : w ∈ C, i ∈ [d]}. To cope with this issue, we exploit Claim 2 of 

Lemma 8 and construct nd ad-hoc independent Bernoulli random variables, 
(

X (i)
t (w)

)
w∈C,i∈[d] for which:

Pr
(

X (i)
t (w) = 1 | K1 � k1, . . . , Kt−1 � kt−1

)
=

t−1∏
i=1

ki (8)

and such that each X (i)
t (w) stochastically dominates a(i)

t (w). Formally, thanks to (8) and Claim 2 of Lemma 8, we can define 
a coupling14 between a(i)

t (w) and X (i)
t (w) such that

Pr
( ⋂

i∈[d],w∈C

{
a(i)

t (w) � X (i)
t (w)

}
| K1 � k1, . . . , Kt−1 � kt−1

)= 1. (9)

To define the coupling, we consider nd uniform and independent random variables in [0, 1], U (i)
w with i ∈ [d] and w ∈ C . 

Given t � 1, w ∈ C and i ∈ [d], we define the following set of random variables:

At,i,w = {a( j)
t (v) : j < i for v = w and j ∈ [d] for v < w}

which is nothing but the previous random variables of a(i)
t (w) according to the following sorting (w = vh for some h):

a(1)
t (v1),a(2)

t (v1), . . . ,a(d)
t (v1)

a(1)
t (v2),a(2)

t (v2), . . . ,a(d)
t (v2)

. . .

a(1)
t (vn),a(2)

t (vn), . . . ,a(d)
t (vn).

In the next definition, we will improperly use the term At,i,w to denote the event in which the random variables a( j)
t (v)

of subset At,i,w take any fixed values in {0, 1}. For every i ∈ [d] and w ∈ C , given {K1 � k1, . . . , Kt−1 � kt−1} we define the 
following two events

Ht,i,w = {U (i)
w �

t−1∏
j=0

k j}

Kt,i,w = {U (i)
w � Pr

(
a(i)

t (w) = 1 | At,i,w , K1 � k1, . . . , Kt−1 � kt−1

)
} .

Now we can define the coupling. For hi,w , ki,w ∈ {0, 1}

Pr
( ⋂

i∈[d],w∈C

{(
X (i)

t (w),a(i)
t (w)

)= (hi,w ,ki,w)
} | K1 � k1, . . . , Kt−1 � kt−1

)
=

Pr
( ⋂

i∈[d],w∈C

{(
�Ht,i,w ,�Kt,i,w

)= (hi,w ,ki,w)
} | K1 � k1, . . . , Kt−1 � kt−1

)
.

Now we show that the coupling is well defined, i.e. the marginal laws are the same of X (i)
t (w) and a(i)

t (w). It’s trivial that

14 See for instance Chapter 05 of [30].
9



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.10 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
Pr
( ⋂

i∈[d],w∈C

{
X (i)

t (w) = hi,w
} | K1 � k1, . . . , Kt−1 � kt−1

)=
Pr
( ⋂

i∈[d],w∈C

{
�Ht,i,w = hi,w

} | K1 � k1, . . . , Kt−1 � kt−1
)
.

We have also that

Pr
( ⋂

i∈[d],w∈C

{
�Kt,i,w = ki,w

} | K1 � k1, . . . , Kt−1 � kt−1
)

=
∏

i,w:ki,w=1

Pr
(

Kt,i,w | K1 � k1, . . . , Kt−1 � kt−1
) ·

∏
i,w:ki,w=0

Pr
(

K C
t,i,w | K1 � k1, . . . , Kt−1 � kt−1

)
(10)

=
∏

i,w:ki,w=1

Pr
(

a(i)
t (w) = 1 | At,i,w , K1 � k1, . . . , Kt−1 � kt−1

)
·

∏
i,w:ki,w=0

Pr
(

a(i)
t (w) = 0 | At,i,w , K1 � k1, . . . , Kt−1 � kt−1

)

=
∏
i,w

Pr
(
a(i)

t (w) = ki,w | At,i,w , K1 � k1, . . . , Kt−1 � kt−1
)

= Pr
( ⋂

i∈[d],w∈C

{
a(i)

t (w) = ki,w
} | K1 � k1, . . . , Kt−1 � kt−1

)
. (11)

(10) follows by the independence of the random variables U (i)
w with i ∈ [d] and w ∈ C . (11) follows by the chain rule with 

the same sorting adopted in the definition of At,i,w . It’s easy to see that the coupling satisfies (9). Indeed

Pr
( ⋂

i∈[d],w∈C

{
a(i)

t (w) � X (i)
t (w)

} | K1 � k1, . . . , Kt−1 � kt−1
)=

Pr
( ⋂

i∈[d],w∈C

{
�Kt,i,w ��Ht,i,w

} | K1 � k1, . . . , Kt−1 � kt−1
)= 1.

Indeed, for every i ∈ [d] and w ∈ C ,{
Kt,i,w

}⊆ {Ht,i,w
}
,

since for every w ∈ C

Pr
(

a(i)
t (w) = 1 | At,i,w , K1 � k1, . . . , Kt−1 � kt−1

)
�

t−1∏
j=0

k j ,

and we can derive the last inequality from the fact that

Pr
(

a(i)
t (w) = 1 | At,i,w , B1(w) = b1(w), . . . , Bt−1(w) = bt−1(w)

)
=

t−1∏
j=0

b j(w) .

By using the coupling, from (9), we get

Pr (rt (N (v)) � 2μ | K1 � k1, . . . , Kt−1 � kt−1)

� Pr
( d∑

i=1

∑
u∈N(v)

∑
w∈N(u)

X (i)
t (w) · z(i)

t (w, u) � 2μ | K1 � k1, . . . , Kt−1 � kt−1

)

� e− μ
3 , (12)

where μ > 0 is every positive real that satisfies μ � d�(v)(�max(S)/�min(C)) ·∏t−1
i=1 ki . In detail, (12) follows from (9) and, 

moreover, to get (12) we apply the Chernoff bound with ε = 1 for negatively associated random variables (see Theorem 23
in Appendix A). Indeed, Claim 3 of Lemma 8 and (8) imply that the random variables
10



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.11 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••

(

X (i)
t (w) · z(i)

t (w, u)
)

i∈[d],u∈N(v),w∈N(u)
,

conditioning on the event {K1 � k1, . . . , Kt−1 � kt−1}, are distributed as Bernoulli ones of parameter 
∏t−1

i=1 ki/�(w) and they 
are negatively associated (see Definition 22 in Appendix A). �
Wrapping up: process analysis in two time stages. Lemmas 9 and 10 provide the decreasing rate of the number of alive 
balls in every fixed N(v), conditioning on the events “K j � k j ”.

We now need to derive the specific sequence of k j that effectively works for our process and that leads to Lemma 3. 
Moreover, we notice that (7) in Lemma 10 (only) allows a sufficiently strong concentration as long as the bound μ we can 
use on the expectation of rt(N(v)) keeps of order �(logn), while we clearly need to get an effective concentration bound 
until this value reaches 0.

To address the issues above, we split our analysis in two time stages. Roughly speaking, the first stage proceeds as long 
as the expectation of rt(N(v)) is �(log n) and we show it is characterized by an exponential decreasing of rt(N(v)) (see 
Lemma 11 and Lemma 12). In the second stage, our technical goal is instead to show that the fraction of burnt nodes 
in N(v) keeps bounded by some constant < 1, while neglecting the decreasing rate of the balls received by N(v) (since 
we cannot anymore get strong concentration bounds on this random variable). Essentially, our analysis shows that: i) the 
process starts this second stage when the expectation of rt (N(v)) is �(log n); ii) during a subsequent window of O(log n)

rounds, the fraction of burnt nodes in N(v) keeps bounded by some constant < 1 and, hence, all the alive requests will be 
successfully assigned, w.h.p.

As for the first stage, we consider the sequence {γt }t∈N defined by the following recurrence{
γt = γt−1 + 2

c
�max(S)
�min(C)

∏t−1
i=1 γi if t � 2 ;

γ1 = 2
c

�max(S)
�min(C)

.
(13)

In Appendix B, we will prove the following properties.

Lemma 11. For every c � 1, let {γt}t�0 be the sequence defined by the recurrence (13). Then, for every c � 32ρ , the following facts 
hold:

• {γt}t∈N is increasing;
• for all t � 1, γt � 1

4 .

The next lemma provides some useful concentration bounds on the random variables Kt and rt(N(v)) for the first stage.

Lemma 12 (Stage I: fast decreasing of the active balls). Under the hypothesis of Theorem 1, an integer T = O (log(d�max(S)/ log n))

exists such that, for every 0 � t < T ,

Pr

(⋂
v∈C

{
rt(N(v)) � 2d�(v)

�max(S)

�min(C)

t−1∏
i=1

γi

}
| K1 � γ1, . . . , Kt−1 � γt−1

)
� 1 − 1

n3
(14)

and

Pr (Kt � γt | K1 � γ1, . . . , Kt−1 � γt−1) � 1 − 1

n3
. (15)

Proof. We consider γt as in (13) and apply Lemma 10 for every v ∈ C , with

μ = d�(v)
�max(S)

�min(C)

t−1∏
i=1

γi .

We get, for every v ∈ C ,

Pr

(
rt(N(v)) � 2d�(v)

�max(S)

�min(C)

t−1∏
i=1

γi | K1 � γ1, . . . , Kt−1 � γt−1

)

� e
− 1

3 d�(v)
�max(S)
�min(C)

∏t−1
i=1 γi � e− 1

3 d�max(S)
∏t−1

i=1 γi , (16)

where the last inequality in (16) holds because, for every v ∈ C , �(v)/�min(C) � 1. From (3), we know that Kt(v) �
Kt−1 + 1 rt(N(v)), so, using a union bound over all clients v , we get
cd�(v)

11



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.12 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
Pr (Kt � γt | K1 � γ1, . . . , Kt−1 � γt−1)

� Pr

(⋂
v∈C

{
Kt(v) � γt−1 + 2

c

�max(C)

�min(C)

t−1∏
i=1

γi

}
| K1 � γ1, . . . , Kt−1 � γt−1

)

� Pr

(⋂
v∈C

{
rt(N(v)) � 2d�(v)

�max(S)

�min(C)

t−1∏
i=1

γi

}
| K1 � γ1, . . . , Kt−1 � γt−1

)

� 1 − ne− 1
3 d�max(S)

∏t−1
i=1 γi , (17)

where in the first inequality we also used the definition of γt given in (13). We now establish when (17) turns to be a 
“high probability”. Since c � 32ρ , Lemma 11 and the fact that �max(S) � η log2 n ensure that for a sufficiently large n we 
can take T � 1 as the smallest integer for which

d�max(S)

T −1∏
i=1

γi � 12 logn (18)

and, hence,

d�max(S)

t−1∏
i=1

γi > 12 logn for every t < T . (19)

Indeed, from of Lemma 11, since c � 32ρ , then 
∏T −1

i=1 γi � (γT −1)
T −1 � (1/4)T −1 and so, from (18), we can say that T

verifies

T � 1

2
log

d�max(S)

12 logn
+ 1 .

Finally, by using (19) in (17), we get (14) and (15) for every t < T . �
Lemma 13 (Stage II: the fraction of burnt servers keeps small). Under the hypothesis of Theorem 1, there exists T � 1 (it can be the 
same stated in the previous lemma) such that, for every t in the range [T , . . . , 3 log n],

Pr

(⋂
v∈C

{
rt(N(v)) � 24�(v) logn

�min(C)
} | ET ,t

)
� 1 − 1

n3

and

Pr
(

Kt � δt | ET ,t
)
� 1 − 1

n3
,

where

ET ,t = {K1 � γ1, . . . , KT −1 � γT −1, KT � δT , . . . , Kt−1 � δt−1}
and γt is defined in (13) and δt is defined by the recurrence{

δt = δt−1 + 24 logn
cd�min(C)

if t � T ;
δT −1 = γT −1.

(20)

Proof. At first, we analyze some properties of the sequence δt in (20). We notice that the sequence is increasing and that, 
for every t ∈ [T , . . . , 3 log n] and c � 288/(ηd),

δt = δt−1 + 24 logn

cd�min(C)
= γT −1 + 24 log n(t − T )

cd�min(C)
� 1

4
+ 72 log2 n

cd · η log2 n
� 1

2
.

As in the proof of the previous lemma, we take T as the first integer such that

d�max(S)

T −1∏
i=1

γi � 12 logn . (21)

So, for every t such that T � t � 3 log n, (21) and Lemma 10 imply that
12



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.13 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
E
[
rt(N(v)) | ET ,t

]
� d�(v)

�max(S)

�min(C)

T −1∏
i=1

γi

t∏
j=T

δ j

� d�max(S)

T −1∏
i=1

γi · �(v)

�min(C)
� 12 logn · �(v)

�min(C)
.

Taking μ = 12 log n · �(v)
�min(C)

, for Lemma 10 we get

Pr
(

rt(N(v)) � 24�(v) logn

�min(C)
| ET ,t

)
� 1 − e

−4 �(v) logn
�min(C) � 1 − 1

n4
.

By a union bound over all the clients v ∈ C , from (3) and from the definition of δt in (20),

Pr
(

Kt � δt | ET ,t
)
� Pr

(⋂
v∈C

{
Kt(v) � δt−1 + 24 logn

cd · �min(C)

}
| ET ,t

)

� Pr

(⋂
v∈C

{
rt(N(v)) � 24�(v)

�min(C)
logn

} | ET ,t

)
� 1 − 1

n3
. �

Remark. The analysis given in the above proof is the key point in which the density hypothesis �min(C) = �(log2 n)

is required. More in detail, we use this hypothesis to keep δt constant. In fact, we would need the weaker condition 
log n/�min(C) = o(1), however, we consider here a stronger hypothesis to make the argument simpler.

Lemma 12 and 13 imply Lemma 3. Indeed, for the chain rule, taking T ′ = 	3 log n
 and c � max(32ρ, 288/(ηd)) we get

Pr
(
∩T −1

t=1 {Kt � γt}
⋂

∩T ′
t=T {Kt � δt}

)
=
(

1 − 1

n3

)T ′

� 1 − T ′ 1

n3
� 1 − 1

n2
, (22)

where in the first inequality of (22) we used the chain rule, Lemma 12 and 13, while the second last inequality of (22)
follows from the binomial inequality, i.e., for every x � −1 and for every m ∈ N , (1 + x)m � 1 + mx. Concluding, we have 
shown that Kt � γt for every t � T , and Kt � δt for all t such that T � t � 3 log n, with probability at least 1 − 1/n2. Since 
c � max{32ρ, 288/(ηd)}, we have that δt � 1/2 and γt � 1/2 and, whereas Bt � Kt , we have that, with probability at least 
1 − 1/n2, Bt � 1/2 for every t such that t � 3 log n.

4.2. On the performance of saer

To complete the proof of Theorem 1, we show the following consequence of Lemma 3.

Corollary 14. Under the assumptions of Theorem 1, the protocol saer(c, d) has completion time O (log n) and its work is �(n), w.h.p.

Proof. Consider every fixed ball of a client v ∈ C . By choosing15 the parameter c as indicated by Lemma 3, (1) implies 
that the probability the ball is not accepted for all rounds t � 3 log n, conditioning on the bound given in Lemma 3, is 
(1/2)3 logn = (1/n)3. Then, by applying a union bound for all balls and all clients, and considering the probability of the 
conditioning event, we get that saer(c, d) completes in 3 log n rounds, with probability at least 1 − O (1/n2).

To analyze the overall work performed by saer we proceed using an approach similar to that in the analysis of the 
Becchetti et al.’s algorithm raes. For every v ∈ C and every ball i ∈ [d], recall the random variable a(i)

t (v) introduced in 
Definition 6. Then, the random variable counting the total number of requests performed by the clients (plus the relative 
answers by the servers) to assign the nd balls can be easily bounded by

W = 2 ·
∞∑

t=1

d∑
i=1

∑
v∈C

a(i)
t (v) .

To prove that W =O(dn) w.h.p., we show that, for every fixed t � 3 log n and every k � nd/ log n, it holds

Pr

(
d∑

i=1

∑
v∈C

a(i)
t (v) >

4

5
k |

d∑
i=1

∑
v∈C

a(i)
t−1(v) = k

)
� e− k

25cd . (23)

15 Since d � 1, the suitable value for c can be fixed by the servers by looking only at η. We also remark our analysis does not optimize several aspects 
such as the bound on c and its relation with η.
13



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.14 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
To this aim, we use the method of bounded differences (see Theorem 24 in Appendix A). We notice that the random variable ∑d
i=1
∑

v∈C a(i)
t (v), conditioning on a number k of alive balls at the end of round t − 1, can be written as a function of 

k independent random variables that satisfies the Lipschitz condition with coefficient 2cd (see definition in Theorem 24). 
Indeed, we define the random variables w(t−1) as the set of alive balls at the end of round t and the random variables 
{Yi}i∈w(t−1) , taking values in S = [n], indicating the server-destination in S the alive ball tries to connect to at round t . The 
random variables Yi with i ∈ w(t−1) are mutually independent, and we can write, given the number k of alive balls at round 
t − 1,

d∑
i=1

∑
v∈C

a(i)
t (v) = f (Yi1 , . . . , Yik ) .

The function f satisfies the Lipschitz condition with coefficient 2cd because, if we change one of the values Yi , we are 
changing the destination of a ball from some u1 ∈ S to some u2 ∈ S . If u2 has received fewer than cd requests since the 
start of the process, the change of the destination of the i-th ball from u1 to u2 would not have any impact. On the other 
hand, in the worst case, at most cd balls that try to settle in u2 switch from settled to not settled. A symmetric argument 
holds for u1 and so if

Y = (vi1 , . . . , vi j , . . . , vik ) and Y′ = (vi1 , . . . , v ′
i j
, . . . , vik )

then

| f (Y) − f (Y′)| � 2cd .

Lemma 3 implies that at every round t � 3 log n the fraction of burnt nodes in any node’s neighborhood remains bounded 
by 1/2 with probability at least 1 − 1/n2. Therefore, for every t � 3 log n holds

E

[
d∑

i=1

∑
v∈C

a(i)
t (v) |

d∑
i=1

∑
v∈C

a(i)
t−1(v) = k

]
� k

2
+ 1

n2

and we can apply Theorem 24 with μ = 3k/5 (since k � nd/ log n) and M = k/5, obtaining (23).
From (23) and the chain rule, it follows that for T = � (log logn) rounds the number of alive balls decreases at each 

round by a factor 4/5, w.h.p. Hence, at the end of the T -th round, the number of alive balls is smaller than O (nd/ log n), 
w.h.p. From Theorem 1, we know that the remaining nd/ log n alive balls are assigned within O(log n) round: this implies 
an additional work of O(nd). Observe that the work until round T is nd 

∑T
t=1(4/5)t = O(nd). Hence, for any integer d � 0, 

we get the claimed linear bound for the work complexity of saer(c, d). �
5. Proof of Theorem 1 for RAES

Our analysis of the raes process proving Theorem 1 proceeds as follows. We first introduce a suitable coupling between 
the saer process and the raes one. We then show that this coupling implies an upper bound on the fraction of saturated 
nodes in the raes process which is similar to that on the number of burnt servers for the saer process we proved in 
Lemma 3. Then, we apply (in a way similar to what we did for saer) the obtained bound to derive the performance bounds 
on the raes process.

To analyze the raes process we first need to introduce the following random variables.

Definition 15. Let us consider the raes process. For every u ∈ S and every t � 1, let r̃t(u) be the number of balls the server 
u receives at round t , and let acct(u) be the total number of balls the server u accepts within round t .

In the raes process, like the saer process, the server never accepts more than cd balls, but in a different and more 
natural way: a server u ∈ S rejects the received balls at round t if it gets saturated at round t .

Definition 16. For every integer t � 1, we say that a server u ∈ S is saturated at round t of the process raes if

acct(u) + r̃t(u) > cd .

Moreover, for every client v ∈ C , let St(v) be the fraction of saturated servers in the neighborhood of v at round t , i.e.,

St(v) = {u ∈ S : u ∈ N(v) and acct(u) + r̃t(u) > cd}
�(v)

.

We also define St as the maximum fraction of saturated nodes in any client’s neighborhood at round t , i.e. St =
maxv∈C St(v).
14



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.15 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
To establish an upper bound on the fraction of saturated servers in the raes process, we introduce a suitable coupling 
between the saer process and the raes one.

The coupling between SAER and RAES. Let us consider the raes and saer processes on the same client-server graph 
G((C, S), E) and with the same initial client’s requests. Then, informally speaking, our next aim is to show that the max-
imum fraction of saturated servers St , according to the saer process, can be “probabilistically” bounded by the maximum 
fraction of burnt servers Bt , according to the raes process. To make this argument rigorous, we use the notion of stochastic 
domination, denoted as St � Bt , that we recall in Definition 25 in Appendix A. This will allow us to prove a result equiva-
lent to that in Lemma 3 for the raes process. To show that St � Bt , we construct a coupling (Bt,C , St,C ) between the two 
random variables such that Pr

(
Bt,C � St,C

)= 1. The simple coupling forces, at any round t , any non-settled ball i of a client 
v ∈ C to choose the same server destination in the two processes. Essentially, according to this coupling, we easily get that 
the number of alive balls in the raes process turns out to be never larger than that in the saer process.

Definition 17. For every t � 1, v ∈ C and i ∈ [d], let Y (i)
t (v) be the random variables taking values in S indicating the 

contacted server for the v ’s i-th ball at round t in the saer process. Let Ỹ (i)
t (v) the equivalent random variable in the raes

process.

We observe that the random variables {Y (i)
t (v), v ∈ C, i ∈ [d], t � 1} are independent, since each server’s ball chooses the 

server destination independently from the other balls. We observe also that, from Definition 7, we have that Y (i)
t (v) = u if 

and only if z(i)
t (v, u) = 1.

We remark that both processes at each round t are completely described by the random variables {Y (i)
t (v), i ∈ [d], v ∈

C, t � 1}. Indeed, if we know the destination of each server’s ball at each round, we can derive which is the set of satu-
rated/burnt nodes, which balls have been rejected and which requests are still active at each round t . So, we can define the 
coupling between the two processes thanks to such random variables.

To define the coupling, we introduce the following random variables.

Definition 18. For every t � 1, client v ∈ C and ball i ∈ [d], let W (i)
t (v) be the random variable indicating the destination of 

the i-th’s ball of v . Since it is chosen uniformly at random in N(v), it holds that⎧⎨
⎩

Pr
(

W (i)
t (v) = u

)
= 1

�(v)
if u ∈ N(v);

Pr
(

W (i)
t (v) = u

)
= 0 if u /∈ N(v).

Definition 19 (Coupling between saer and raes). For every t � 1, every client v ∈ C , and every ball i ∈ [d], we define the 
coupling (X (i)

t,C (v), X̃ (i)
t,C (v)) between X (i)

t (v) and X̃ (i)
t (v) such that

Pr
(
(Y (i)

t,C (v), Ỹ (i)
t,C (v)) = (W (i)

t (v), W (i)
t (v))

)
= 1 .

So, in the coupling, each ball i ∈ [d] of a client v ∈ C at each round t � 1 chooses the same server destination in both 
processes raes and saer.

In what follows we will make use of the subscript C to indicate random variables that are defined over the joint proba-
bility space the coupling is defined over.

On the fraction of saturated servers. We now use the above coupling to show the analogousness of Lemma 3 for raes.

Lemma 20 (On the fraction of saturated servers). Under the hypothesis of Theorem 1, for any c � max(32ρ, 288/(ηd)), with proba-
bility at least 1 − 1/n2 , it holds that, for every t � 3 log n, the fraction of saturated nodes in raes(c, d) satisfies

St � 1

2
.

Proof. To prove the lemma, we use the coupling in Definition 19, to show that, for every round t � 1, the random variable 
St is stochastically dominated by Bt , i.e.,

St � Bt . (24)

Then, thanks to Lemma 3, we can derive that, for every t � 1, it holds Pr
(

St � 1
2

)
� 1 − 1/n2.

We next prove that the considered coupling satisfies (24): in more detail, thanks to Lemma 26 in Appendix A, it suffices 
to prove that, according to the coupling, for every t � 1, it holds
15



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.16 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
Pr
(

St,C � Bt,C
)= 1. (25)

We first prove, by induction on t , that, at each round t � 1, if a fixed server u ∈ S is saturated in raes, then it is also 
burnt in saer.

As for the first round, we notice that every ball of the clients is alive, and, moreover, a node is saturated iff it is burnt 
since, at the first round, for each server u, it holds acc1(u) = 0 (see Definition 16). Then, by the definition of the coupling, 
we can state that the two processes are identical, and get the claim for t = 1.

As for t > 1, we can assume that, for every round j < t , if a server is saturated in raes at round j, it is also burnt in saer

at round j and we want to prove the same holds at round t . Notice that, by definition of the coupling, each ball chooses the 
same destination in both processes. Thus, by induction hypothesis, we have that each ball which is alive in the raes process 
at round j � t is also alive in the saer process at round j � t , i.e. for every round j � t , for every client v ∈ C , and for every 
ball i ∈ [d],

ã(i)
j,C (v) � a(i)

j,C (v) .

The above equation implies that, for every round j � t and for every server u ∈ S , r̃ j,C (u) � r j,C (u). Indeed we have

r̃ j,C (u) =
∑

v∈N(u)

d∑
i=1

ã(i)
j,C (v) · z̃(i)

j,C (v, u) �
∑

v∈N(u)

d∑
i=1

a(i)
j,C (v) · z(i)

j,C (v, u) = r j,C (u) , (26)

and, moreover, from the coupling, at every round j � t , for every u ∈ C and v ∈ N(v), z̃(i)
j,C (u, v) = z(i)

j,C (u, v).
Now, we get that if a server u ∈ S is saturated in raes at round t , then it is also burnt in saer at round t . Indeed, if u is 

saturated at round t , it holds

acct,C (u) + r̃t,C (u) > cd , (27)

and, since acct,C (u) �
∑t−1

i=1 r̃t,C (u), from (26) and (27),

t∑
i=1

ri,C (u) �
t∑

i=1

r̃i,C (u) � acct,C (u) + r̃t,C (u) > cd .

It thus follows that the server u is also burnt in the saer process.
This fact implies that for all v ∈ C and each t � 1, the fraction of saturated server in the neighborhood of v in raes is 

dominated by the fraction of burnt server in raes, i.e.

Pr

(⋂
v∈C

{St,C (v) � Bt,C (v)}
)

= 1

and so (25) holds. �
Performance analysis of RAES. Theorem 1 is a consequence of Lemma 20: its formal proof proceeds in the same way to that 
for the saer process in Subsection 4.2 and, thus, it is omitted.

Corollary 21. Under the assumptions of Theorem 1, the protocol raes(c, d) has completion time O (log n) and its work is �(n), w.h.p.

6. Conclusions and future work

We studied two simple parallel Load Balancing protocol and we give a probabilistic analysis of their performances. The 
main novelty of this paper lies in considering client-server bipartite graphs that are much more sparse than those considered 
in previous work. This new setting can model important network scenarios where proximity and/or trust issues force very 
restricted sets of admissible client-server assignments. From a technical point of view, such sparse topologies yield new 
probabilistic issues that make our analysis more challenging than that for the dense case and rather different from the 
previous ones.

Several interesting open questions are left open by our paper. In particular, we are intrigued by the analysis of the 
protocols (or simple variants of them) over graphs with o(log2 n) degree and/or in the presence of a dynamic framework 
where, for instance, the client requests arrive on line and some random topology change may happen during the protocol 
execution. We discussed the former question in the remark after Lemma 13. As for the latter, we believe that the simple 
structure of the two considered protocols can well manage such a dynamic scenario and achieves a metastable regime with 
good performances.
16



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.17 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Appendix A. Mathematical tools

Definition 22 (Negative association, [31]). The random variables Xi , i ∈ [n] are negatively associated if for all disjoint subsets 
I, J ⊆ [n] and all nondecreasing functions f and g ,

E
[

f (Xi, i ∈ I)g(X j, j ∈ J )
]
� E [ f (Xi, i ∈ I)] E

[
g(X j, j ∈ J )

]
.

Theorem 23 (Chernoff for negatively associated random variables, [31]). Let X1, . . . , Xn a family of random variables in {0, 1} nega-
tively associated and X = X1 + · · · + Xn. Let pi = E [Xi] and define μ = E [X] = p1 + · · · + pn. Then, for any reals ε ∈ (0, 1]

Pr (X � (1 + ε)μ) � e− ε2
3 μ .

Theorem 24 (Method of bounded differences, [31]). Let Y = (Y1, . . . , Ym) be independent random variables, with Y j taking values in 
the set A j . Suppose the real-valued function f defined on 

∏
j A j satisfies the Lipschitz condition with coefficients β j , i.e.

| f (y) − f (y′)| � β j

whenever vectors y y′ differs only in the j-th coordinate. Let μ an upper bound to the expected value of r.v. f (Y). Then, for any M > 0, 
it holds that

Pr ( f (Y) − μ � M) � e
− 2M2∑m

j=1 β j .

Definition 25 (Stochastic domination). A random variable Y stochastically dominates a random variable X (X � Y ) if the 
inequality

Pr (X > x) � Pr (Y > x)

holds for all x ∈R.

Lemma 26 ([32], Theorem 3.1). A random variable Y stochastically dominates a random variable X if and only if there exists a coupling 
(XC , YC ) of X and Y such that Pr (XC � YC ) = 1.

Appendix B. Proof of Lemma 11

Since, from (13), for every t > 1

γt = γt−1 + 2

c

�max(S)

�min(C)

t−1∏
i=1

γi, (B.1)

the sequence is increasing. Now we want to prove, by induction, that each term of the sequence verifies γt � 1
4 − 1

4t+1 for 
every t � 1. From that, the lemma clearly follows. We notice that the hypothesis holds for γ1, since �max(C)/�min(C) � ρ

and c � 32ρ

γ1 = 2

c

�max(S)

�min(C)
� 2ρ

c
� 1

16
� 1

4
− 1

42
.

Now, assuming that

γt−1 � 1

4
− 1

4t
(B.2)

we will show that γt � 1
4 − 1

4t+1 . From (B.1) and from (B.2) and since �max(S)/�min(C) � ρ and c � 32ρ we get that

γt − γt−1 � 2ρ

c

t−1∏
i=1

γi � 1

16
· 1

4t−1 � 1

4t+1 . (B.3)

Then, we have that from (B.2) and (B.3)

γt � γt−1 + 1
t+1 � 1 − 1

t
+ 1

t+1 � 1 − 1
t+1 .
4 4 4 4 4 4

17



JID:TCS AID:13117 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.309] P.18 (1-18)

A. Clementi, E. Natale and I. Ziccardi Theoretical Computer Science ••• (••••) •••–•••
References

[1] L. Becchetti, A.E.F. Clementi, E. Natale, F. Pasquale, L. Trevisan, Finding a bounded-degree expander inside a dense one, in: Proceedings of SODA 2020: 
the 31st ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, SIAM, 2020, pp. 1320–1336.

[2] M. Adler, S. Chakrabarti, M. Mitzenmacher, L.E. Rasmussen, Parallel randomized load balancing, Random Struct. Algorithms 13 (2) (1998) 159–188.
[3] J. Aspnes, Y. Azar, A. Fiat, S.A. Plotkin, O. Waarts, On-line routing of virtual circuits with applications to load balancing and machine scheduling, J. ACM 

44 (3) (1997) 486–504, https://doi .org /10 .1145 /258128 .258201.
[4] B. Awerbuch, M.T. Hajiaghayi, R.D. Kleinberg, T. Leighton, Online client-server load balancing without global information, in: Proceedings of SODA 2005: 

the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2005, pp. 197–206, http://dl .acm .org /citation .cfm ?id =1070432 .1070461.
[5] B. Bosek, D. Leniowski, P. Sankowski, A. Zych, Online bipartite matching in offline time, in: Proceedings of FOCS 2014: the 55th IEEE Annual Symposium 

on Foundations of Computer Science, IEEE Computer Society, 2014, pp. 384–393.
[6] H. Räcke, Minimizing congestion in general networks, in: Proceedings of FOCS 2002: the 43rd Symposium on Foundations of Computer Science, IEEE 

Computer Society, 2002, pp. 43–52.
[7] C. Lenzen, M. Parter, E. Yogev, Parallel balanced allocations: the heavily loaded case, in: Proceedings of SPAA 2019: the 31st ACM on Symposium on 

Parallelism in Algorithms and Architectures, ACM, 2019, pp. 313–322.
[8] P. Berenbrink, A. Brinkmann, T. Friedetzky, L. Nagel, Balls into non-uniform bins, J. Parallel Distrib. Comput. 74 (2) (2014) 2065–2076, https://doi .org /

10 .1016 /j .jpdc .2013 .10 .008.
[9] B. Godfrey, Balls and bins with structure: balanced allocations on hypergraphs, in: Proceedings SODA 2008: the 19th Annual ACM-SIAM Symposium 

on Discrete Algorithms, SIAM, 2008, pp. 511–517, http://dl .acm .org /citation .cfm ?id =1347082 .1347138.
[10] K. Kenthapadi, R. Panigrahy, Balanced allocation on graphs, in: Proceedings of SODA 2006: the 17th Annual ACM-SIAM Symposium on Discrete Algo-

rithms, ACM Press, 2006, pp. 434–443, http://dl .acm .org /citation .cfm ?id =1109557.1109606.
[11] Y. Azar, A.Z. Broder, A.R. Karlin, E. Upfal, Balanced allocations (extended abstract), in: Proceedings of STOC 1994: the 26th Annual ACM Symposium on 

Theory of Computing, ACM, 1994, pp. 593–602.
[12] M. Dietzfelbinger, F.M. auf der Heide, Simple, efficient shared memory simulations, in: Proceedings of SPAA 1993: the 5th Annual ACM Symposium on 

Parallel Algorithms and Architectures, ACM, 1993, pp. 110–119.
[13] M. Mitzenmacher, E. Upfal, Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis, 2nd edition, 

Cambridge University Press, 2017.
[14] R.M. Karp, M. Luby, F.M. auf der Heide, Efficient PRAM simulation on a distributed memory machine, Algorithmica 16 (4/5) (1996) 517–542, https://

doi .org /10 .1007 /BF01940878.
[15] P. Berenbrink, A. Czumaj, A. Steger, B. Vöcking, Balanced allocations: the heavily loaded case, SIAM J. Comput. 35 (6) (2006) 1350–1385, https://

doi .org /10 .1137 /S009753970444435X.
[16] J.W. Byers, J. Considine, M. Mitzenmacher, Geometric generalizations of the power of two choices, in: Proceedings of SPAA 2004: the 16th Annual ACM 

Symposium on Parallelism in Algorithms and Architectures, ACM, 2004, pp. 54–63.
[17] B. Vöcking, How asymmetry helps load balancing, J. ACM 50 (4) (2003) 568–589, https://doi .org /10 .1145 /792538 .792546.
[18] U. Wieder, Balanced allocations with heterogenous bins, in: Proceedings of SPAA 2007: the 19th Annual ACM Symposium on Parallelism in Algorithms 

and Architectures, ACM, 2007, pp. 188–193.
[19] P. Berenbrink, T. Friedetzky, Z. Hu, R.A. Martin, On weighted balls-into-bins games, Theor. Comput. Sci. 409 (3) (2008) 511–520, https://doi .org /10 .

1016 /j .tcs .2008 .09 .023.
[20] P. Berenbrink, F.M. auf der Heide, K. Schröder, Allocating weighted jobs in parallel, Theory Comput. Syst. 32 (3) (1999) 281–300, https://doi .org /10 .

1007 /s002240000119.
[21] E. Koutsoupias, M. Mavronicolas, P.G. Spirakis, Approximate equilibria and ball fusion, Theory Comput. Syst. 36 (6) (2003) 683–693, https://doi .org /10 .

1007 /s00224 -003 -1131 -5.
[22] P. Berenbrink, T. Friedetzky, L.A. Goldberg, P.W. Goldberg, Z. Hu, R.A. Martin, Distributed selfish load balancing, SIAM J. Comput. 37 (4) (2007) 

1163–1181, https://doi .org /10 .1137 /060660345.
[23] R. Kleinberg, G. Piliouras, É. Tardos, Load balancing without regret in the bulletin board model, Distrib. Comput. 24 (1) (2011) 21–29, https://doi .org /

10 .1007 /s00446 -011 -0129 -5.
[24] P. Berenbrink, A. Brinkmann, T. Friedetzky, L. Nagel, Balls into bins with related random choices, J. Parallel Distrib. Comput. 72 (2) (2012) 246–253, 

https://doi .org /10 .1016 /j .jpdc .2011.10 .006.
[25] S.D. Gantz, D.R. Philpott, FISMA and the Risk Management Framework: The New Practice of Federal Cyber Security, 1st edition, Syngress Publishing, 

2012.
[26] C. Zhang, J. Sun, X. Zhu, Y. Fang, Privacy and security for online social networks: challenges and opportunities, IEEE Netw. 24 (4) (2010) 13–18, https://

doi .org /10 .1109 /MNET.2010 .5510913.
[27] P. Berenbrink, T. Friedetzy, C. Lammersen, T. Sauwervald, Parallel randomized load balancing, unpublished manuscript.
[28] P. Berenbrink, K. Khodamoradi, T. Sauerwald, A. Stauffer, Balls-into-bins with nearly optimal load distribution, in: Proceedings of SPAA 2013: 25th ACM 

Symposium on Parallelism in Algorithms and Architectures, ACM, 2013, pp. 326–335.
[29] C. Lenzen, R. Wattenhofer, Tight bounds for parallel randomized load balancing: extended abstract, in: Proceedings of STOC 2011: the 43rd ACM 

Symposium on Theory of Computing, ACM, 2011, pp. 11–20.
[30] D.A. Levin, Y. Peres, E.L. Wilmer, Markov Chains and Mixing Times, American Mathematical Society, 2006.
[31] D.P. Dubhashi, A. Panconesi, Concentration of Measure for the Analysis of Randomized Algorithms, Cambridge University Press, 2009, http://www.

cambridge .org /gb /knowledge /isbn /item2327542/.
[32] H. Thorisson, Coupling, Stationarity, and Regeneration, Springer, New York, 2000.
18

http://refhub.elsevier.com/S0304-3975(21)00557-0/bibB949A57BF697565A3059EF579B1EE9F2s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bibB949A57BF697565A3059EF579B1EE9F2s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bibB04EEEC3F81597A96333594E63E49309s1
https://doi.org/10.1145/258128.258201
http://dl.acm.org/citation.cfm?id=1070432.1070461
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib41C4D16B53E0A1BE053A344675F3ECD8s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib41C4D16B53E0A1BE053A344675F3ECD8s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bibBF898DD57BC48E9C92CD05DBC09B7A90s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bibBF898DD57BC48E9C92CD05DBC09B7A90s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib4F1F484357D07AD4031F5B5D9FAF7361s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib4F1F484357D07AD4031F5B5D9FAF7361s1
https://doi.org/10.1016/j.jpdc.2013.10.008
https://doi.org/10.1016/j.jpdc.2013.10.008
http://dl.acm.org/citation.cfm?id=1347082.1347138
http://dl.acm.org/citation.cfm?id=1109557.1109606
http://refhub.elsevier.com/S0304-3975(21)00557-0/bibB2C59C126C4A74F2202337AC7925C990s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bibB2C59C126C4A74F2202337AC7925C990s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib7F9230B2445BB980E9C175BB214B43F6s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib7F9230B2445BB980E9C175BB214B43F6s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib5A897B770EDB80DB18D87D6CAE2AE5F5s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib5A897B770EDB80DB18D87D6CAE2AE5F5s1
https://doi.org/10.1007/BF01940878
https://doi.org/10.1007/BF01940878
https://doi.org/10.1137/S009753970444435X
https://doi.org/10.1137/S009753970444435X
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib249DEF128AA67B309ECF1DEE59EB99CBs1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib249DEF128AA67B309ECF1DEE59EB99CBs1
https://doi.org/10.1145/792538.792546
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib603745AD7354252F45DCC7E7D8C04DD9s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib603745AD7354252F45DCC7E7D8C04DD9s1
https://doi.org/10.1016/j.tcs.2008.09.023
https://doi.org/10.1016/j.tcs.2008.09.023
https://doi.org/10.1007/s002240000119
https://doi.org/10.1007/s002240000119
https://doi.org/10.1007/s00224-003-1131-5
https://doi.org/10.1007/s00224-003-1131-5
https://doi.org/10.1137/060660345
https://doi.org/10.1007/s00446-011-0129-5
https://doi.org/10.1007/s00446-011-0129-5
https://doi.org/10.1016/j.jpdc.2011.10.006
http://refhub.elsevier.com/S0304-3975(21)00557-0/bibF0B263338DCAB475314C416B85F5B7B4s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bibF0B263338DCAB475314C416B85F5B7B4s1
https://doi.org/10.1109/MNET.2010.5510913
https://doi.org/10.1109/MNET.2010.5510913
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib8B8134AED7822C4F69BA8B122B73FD10s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib8B8134AED7822C4F69BA8B122B73FD10s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib0E14F4802A2739D5836C10AEC34F1199s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib0E14F4802A2739D5836C10AEC34F1199s1
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib0E450D5124EFAED93ECC06A6F0C61F2Ds1
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://refhub.elsevier.com/S0304-3975(21)00557-0/bib5086F88D6EE142F4C33BEBB542BD643As1

	Parallel Load Balancing on constrained client-server topologies
	1 Introduction
	1.1 The framework and our goal
	1.2 Our contribution
	1.3 Previous work

	2 Preliminaries
	3 Two simple protocols for Load Balancing and their performances
	3.1 The main theorem

	4 Proof of Theorem 1 for SAER
	4.1 On the fraction of burnt servers
	4.1.1 Proof of Lemma 3

	4.2 On the performance of saer

	5 Proof of Theorem 1 for RAES
	6 Conclusions and future work
	Declaration of competing interest
	Appendix A Mathematical tools
	Appendix B Proof of Lemma 11
	References


