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Abstract: Buoyancy-induced convection from a pair of staggered heated vertical plates suspended
in free air is studied numerically with the main scope to investigate the basic heat and momentum
transfer features and to determine in what measure any independent variable affects the thermal
performance of each plate and both plates. A computational code based on the SIMPLE-C algorithm
for pressure-velocity coupling is used to solve the system of the governing conservation equations
of mass, momentum and energy. Numerical simulations are carried out for different values of the
Rayleigh number based on the plate length, as well as of the horizontal separation distance between
the plates and their vertical alignment, which are both normalized by the plate length. It is observed
that an optimal separation distance between the plates for the maximum heat transfer rate related
to the Rayleigh number and the vertical alignment of the plates does exist. Based on the results
obtained, suitable dimensionless heat transfer correlations are developed for each plate and for the
entire system.

Keywords: natural convection in free air; vertical staggered plates; buoyancy-induced convection;
dimensionless correlations

1. Introduction

Buoyancy-induced convection in air from heated vertical parallel plates is of much
interest for a number of thermal engineering applications, such as the electronic equipment
cooling and the solar energy capture to name a few.

The first documented work dealing with this subject was executed experimentally
by Elenbaas [1], who, by using a pair of square plates suspended face to face in free air,
obtained the optimal plate spacing for the dissipation of the maximum amount of heat.
Investigations aimed at determining the optimal plate spacing for vertical parallel plate
channels subjected to uniform wall temperature and uniform heat flux conditions were
subsequently conducted theoretically by Bodoia and Osterle [2], Levy [3], Anand et al. [4]
and Bar-Cohen and Rohsenow [5], as well as both experimentally and theoretically by
Onur et al. [6,7] and Baskaya et al. [8] for channels consisting of a heated plate and an
unheated plate insulated at the rear.

Other studies dealing with natural convection in vertical parallel plate channels, which
were mostly performed experimentally, were carried out by Aung et al. [9], Carpenter et al. [10],
Sparrow and Bahrami [11], Wirtz and Stutzman [12], Azevedo and Sparrow [13],
Webb and Hill [14], Martin et al. [15], Straatman et al. [16], Qing et al. [17] and
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Lewandowski et al. [18] for both conditions of symmetric and asymmetric heating, with the
aim to obtain heat transfer correlations rather than to determine the optimal plate spacing.

While in some engineering applications the plates could be staggered rather than
positioned face to face, only two studies are readily available in the literature on buoyancy-
driven convection from a pair of staggered vertical parallel plates. One was performed
numerically by Acharya and Jang [19] and the other was executed experimentally by
Tanda [20]. Their common conclusion was that for any assigned plate spacing, an optimal
plate staggering for maximum overall heat transfer rate does exist. In particular, they found
that the staggering of the plates resulted in a considerable enhancement of the thermal
performance of the lower plate and a relatively moderate degradation of the thermal
performance of the upper plate. However, no correlation was developed and this was
mainly due to the limited number of investigated configurations. Other works with a
bearing on the subject are those executed for arrays of fully staggered plates, such as those
authored by Sparrow and Prakash [21,22], Guglielmini et al. [23], Tanda [24] and Ledezma
and Bejan [25].

Framed in this general background, which points out a meaningful lack of data, a
comprehensive investigation of natural convection from pairs of staggered vertical plates
heated at the same uniform temperature and suspended in free air is performed numerically.
The study is conducted using the Rayleigh number based on the plate length, the horizontal
plate spacing normalized by the plate length and the vertical plate staggering normalized
by the plate length as controlling parameters. The main scope of the paper is to scrutinize
the basic heat and momentum transfer features and to analyze how the independent
variables affects the thermal performance of each plate and the pair of plates. Furthermore,
the study also aims to develop dimensionless heat transfer correlating equations that will
be useful for thermal engineering applications.

2. Materials and Methods
2.1. Mathematical Formulation

A pair of thin staggered vertical plates of length H and infinite width are suspended
in free air at a distance W to form a duct, as sketched in Figure 1, where the reference
Cartesian coordinate system is also indicated. The edges of the plates are misaligned
so that L is the portion of one plate facing the other, which means that when L = H
the plates are located face to face and when L = 0 the plates are completely staggered.
The front side of each plate is heated at a uniform temperature th and the surrounding
undisturbed fluid reservoir is maintained at a lower uniform temperature t∞. The rear side
of each plate is assumed to be perfectly insulated. The resulting buoyancy-induced flow
is considered to be two-dimensional, laminar and incompressible, with constant physical
properties. Additionally, the buoyancy effects on the momentum transfer are taken into
account through the customary Boussinesq approximation, whereas viscous dissipation
and pressure work are neglected.

Figure 1. Sketch of the geometry, coordinate system and computational domain.
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Upon incorporating these hypotheses into the equations of continuity, momentum
and energy, the following set of governing equations expressed in dimensionless form
is obtained:

∇ ·V = 0 (1)
∂V
∂τ

+ (V · ∇)V = −∇P +∇2V− Ra
Pr

T
g
g

(2)

∂T
∂τ

+ (V · ∇)T =
1

Pr
∇2T (3)

where τ is the dimensionless time normalized by H2/ν, V is the dimensionless velocity
vector possessing horizontal and vertical components U and V normalized by ν/H, T is
the dimensionless temperature excess over the uniform temperature of the undisturbed
fluid reservoir normalized by the temperature difference (th − t∞), P is the dimensionless
sum of the thermodynamic and hydrostatic pressures normalized by ρν2/H2, g is the
gravity vector, Pr = ν/α is the Prandtl number and RaH is the Rayleigh number defined
as the following:

RaH =
gβ(th − t∞)H3

αν
(4)

in which ν is the kinematic viscosity, ρ is the mass density, α is the thermal diffusivity and
β is the coefficient of volumetric thermal expansion of the fluid.

The related boundary conditions are V = 0 and T = 1 at the heated side of any plate
and V = 0 and ∂T/∂n = 0 at the thermally insulated rear side of any plate. n denotes the
normal direction relative to the plate surface and V = 0 and T = 0 at very large distance
from the plates.

The integration domain is taken as a two-dimensional square ABCD containing the
plates and extending sufficiently far from them. Such an integration domain is filled with a
non-uniform Cartesian grid possessing a higher concentration of grid lines near the plates
and a lower concentration of grid lines far away from the plates. Notice that due to the
infinitesimal thickness assumed for the plates, each grid node situated on any plate acutally
consists of a pair of coincident yet distinct grid nodes. One belongs to one side of the plate
and the other belongs to the opposite side of the plate such that the same spatial location is
permitted to possess simultaneously two different temperatures, with one for each side of
the plate.

The boundary conditions required for the numerical solution of the governing
Equations (1)–(3) have to be specified at each of the boundary lines that enclose the
two-dimensional integration domain defined above. Once these lines are set sufficiently
far away from the plates, the motion of the fluid which enters or leaves the computational
domain can be reasonably assumed to normally occur relative to them. The entering fluid is
assumed to be at the undisturbed free stream temperature. In contrast, due to the fact that
the temperature of the outgoing fluid is not known a priori, a zero temperature gradient
along the normal to the boundary line is assumed and thus implies that the local heat
transfer is dominated by convection rather than by conduction, provided that the outflow
velocity is sufficiently large.

Accordingly, the following boundary conditions are applied:

(a) At the heated side of any plate, U = 0, V = 0 and T = 1;
(b) At the thermally insulated rear side of any plate, U = 0, V = 0 and ∂T/∂X = 0;
(c) At the left boundary line A–B, ∂U/∂X = 0, V = 0 and T = 0 if U > 0 or ∂T/∂X = 0

if U < 0;
(d) At the top boundary line B–C, U = 0, ∂V/∂Y = 0 and T = 0 if V < 0 or ∂T/∂Y = 0

if V > 0;
(e) At the right boundary line C–D, ∂U/∂X = 0, V = 0 and T = 0 if U < 0 or ∂T/∂X = 0

if U > 0;
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(f) At the bottom boundary line A–D, U = 0, ∂V/∂Y = 0 and T = 0 if V > 0 or
∂T/∂Y = 0 if V < 0;

in which X and Y stand for the dimensionless Cartesian coordinates normalized by H.
The initial conditions assumed throughout the integration domain are fluid at rest,

i.e., U = V = 0, and uniform temperature T = 0.

2.2. Computational Procedure

The system of the governing equations defined by Equations (1)–(3), in combination
with the boundary and initial conditions stated earlier, is solved through a control-volume
formulation of the finite-difference method using an in-house developed computer code.
The pressure-velocity coupling is handled using the SIMPLE-C algorithm introduced by
Van Doormaal and Raithby [26], which is essentially a more implicit variant of the SIMPLE
algorithm developed by Patankar and Spalding [27]. The convective terms are approx-
imated through the QUICK discretization scheme proposed by Leonard [28], whereas
a second-order backward scheme is applied for time integration. Time discretization is
chosen uniformly.

Starting from the assigned initial fields of the dependent variables, at each time-step
the system of the discretized algebraic governing equations is solved iteratively by the
method of a line-by-line application of the Thomas algorithm. A standard under-relaxation
technique is enforced in all steps of the computational procedure to ensure an adequate
convergence. Within each time-step, the spatial numerical solution of the velocity and
temperature fields is considered to be converged when the maximum absolute value of
the mass source and the relative changes of the dependent variables at any grid-node
between two consecutive iterations are smaller than the pre-specified values of 10−6 and
10−7, respectively. Time-integration is stopped once steady state is reached. This means
that the simulation procedure ends when the relative changes of the time-derivatives of
the dependent variables at any grid-node between two consecutive time-steps is smaller
than the pre-set value of 10−8.

After convergence of the velocity and temperature fields is satisfactorily attained, the
pair of average Nusselt numbers for the lower plate, NuL, and for the upper plate, NuU,
are calculated as follows:

NuL =
∫ + H

2

− H
2

− ∂T
∂X

∣∣∣∣
h
dY (5)

NuU =
∫ + H

2

− H
2

− ∂T
∂X

∣∣∣∣
h
dY (6)

where subscript h denotes the heated side of each plate. The temperature gradient is
evaluated by a second-order temperature profile embracing the wall-node and the two
adjacent fluid-nodes, whereas the integral is calculated numerically by means of the
trapezoidal rule. Additionally, the average Nusselt number of the whole system, which is
identified as Nu, is calculated as the arithmetic mean of the average Nusselt numbers of
both plates and is defined as follows.

Nu =
NuL + NuU

2
(7)

Numerical tests on the dependence of the results obtained on the mesh spacing and
time stepping, as well as on the extent of the computational domain, have been methodically
performed for several combinations of the independent variables, namely RaH, W/H and
L/H. Accordingly, the grid-spacings and time-steps used for computations in combination
with assigned extents of the integration domain are chosen in such a manner that further
grid and time stepping refinements or extensions of the integration domain do not produce
noticeable modifications either in the flow field or in the heat transfer rates, with percentage
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changes smaller than the pre-established accuracy value of 1%. The typical number of
nodal points used for simulations lies in the ranges between 100× 100 and 200× 200,
whilst the horizontal and vertical extents of the whole integration domain span between
5 and 10 times the plates length H. Moreover, typical dimensionless time-steps used for
simulations lie in the range between 10−4 and 10−5. Selected results of the grid-size and
time-stepping sensitivity analysis are presented in Tables 1 and 2.

Table 1. Grid sensitivity analysis for W/H = 0.5, L/H = 0 and 1, RaH = 104 and 105.

W /H L/H RaH Mesh Size NuL % NuU %

0.5 1 104

80× 80 6.18 – 6.18 –

100× 100 6.32 2.27 6.32 2.27

120× 120 6.40 1.27 6.40 1.27

140× 140 6.45 0.78 6.45 0.78

0.5 0 104

100× 100 5.78 – 5.44 –

120× 120 5.91 2.25 5.56 2.21

140× 140 6.01 1.69 5.56 1.62

160× 160 6.06 0.83 5.70 0.88

0.5 0 105

120× 120 9.57 – 9.24 –

140× 140 9.81 2.51 9.41 1.81

160× 160 9.93 1.22 9.52 1.16

180× 180 10.03 0.71 9.59 0.73

Table 2. Time-step sensitivity analysis for W/H = 0.5, L/H = 0 and RaH = 105.

Mesh Size ∆τ NuL % NuU %

160× 160

10−2 10.24 – 9.84 –

10−3 10.07 −1.66 9.65 −1.93

10−4 9.93 −1.39 9.52 −1.35

10−5 9.89 −0.40 9.51 −0.11

Finally, with the scope of this study including the validation of both the numerical
code and the discretization grid scheme, three different tests have been carried out. In
the first test, the average Nusselt numbers obtained for a single vertical plate suspended
in free air at several Rayleigh numbers have been compared with the predictions of the
Churchill–Chu correlation [29]. In the second test, the average Nusselt numbers obtained
for a pair of face-to-face vertical plates have been compared with the predictions of the
correlating equation developed by Bar-Cohen and Rosenhow [5]. In the third test, the
optimal distance between pairs of face-to-face vertical plates calculated at different Rayleigh
numbers have been compared with the numerical results obtained by Olsson [30]. It is
apparent that a satisfactory degree of agreement between our numerical results and the
literature data was achieved in any validation test carried out; this is shown in Figure 2
and in Tables 3 and 4.
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Figure 2. Comparison between present numerical data and Bar-Choen and Rohsenow correlation [5]
for two vertical parallel plates suspended in free air.

Table 3. Comparison between the present numerical data and the predictions of the Churchill-Chu
correlation [29] for a heated vertical plate suspended in free air.

RaH NuH (Present Study) NuH [29]

103 3.26 3.43

104 5.43 5.43

105 9.33 9.21

106 17.05 16.56

Table 4. Comparison between the numerical data obtained for (W/H)opt and the values derived by
Olsson [30] for RaH = 104 − 106.

RaH (W /H)opt(Present Study) (W /H)opt [30]

106 0.18 0.17

105 0.32 0.31

104 0.57 0.52

3. Results

Numerical simulations have been carried out for different values of (a) the Rayleigh
number RaH in the range between 104 and 106; (b) the dimensionless horizontal spacing
between the plates W/H in the range between 0.1 and 1; and (c) the dimensionless vertical
alignment of the plates L/H in the range between 0 (plates fully staggered) and 1 (plates
located face to face). In all the simulations executed, the value of the Prandtl number has
been set equal to 0.7, which corresponds to air.

Based on the collection of computed velocity and temperature fields, the main local
and overall heat transfer features will be analyzed first. Subsequently, adequate sets of
correlations for the average Nusselt numbers will be constructed and discussed.

A selection of typical local results at steady state, displayed in the form of isotherm
contour plots, is reported in Figures 3–5 for the following combinations of the independent
variables: (a) RaH = 105, W/H = 0.25 and L/H = 1, 0.75, 0.5, 0.25 and 0; (b) RaH = 105,
L/H = 0.5 and W/H = 0.25, 0.5, 0.75 and 1; and (c) L/H = 0.5, W/H = 0.25 and
RaH = 104, 105, and 106.
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Figure 3. Isotherm contour plots for RaH = 105, W/H = 0.25 and L/H = 1, 0.75, 0.5, 0.25, 0 using a
scale from blue (T = 0) to red (T = 1).

Figure 4. Isotherm contour plots for RaH = 105, L/H = 0.5 and W/H = 0.25, 0.5, 0.75, 1 using a
scale from blue (T = 0) to red (T = 1).

It can be observed that when the plates are either located face to face or moderately
staggered, the temperature distribution is typical for the channel flow and the thermal
performance of both plates is influenced by the well-known chimney effect provided that
the separation distance between the plates is neither too small to limit the fluid flow rate
due to the marked friction effects and not too large to cause both plates to behave as a
single plate. Of course, the chimney effect decreases drastically as the plates are more
and more staggered; the effect could vanish when the plates are considerably or fully
staggered. In such a case, two distinct boundary layers tend to form along the heated
side of each plate. However, while the lower plate tends to actually behave as a single
plate, at short separation distances the thermal performance of the upper plate is affected
by the concurrence of the two opposite effects which originate from the warm plume
spawned by the lower plate. In fact, the hot buoyant flow from the lower plate acts as
a forced convection field wherein the upper plate is embedded, which tends to enhance
the heat transfer rate at the upper plate surface; on the other hand, the upward-moving
warm plume causes a decrease in the temperature difference between the upper plate
and the adjacent fluid, which tends to decrease the heat transfer rate at the upper plate
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surface. Accordingly, for any vertical alignment configuration, the existence of an optimal
dimensionless separation distance between the plates related to the Rayleigh number has
to be envisioned, such that the flow rate enhancement due to the chimney effect is large
enough and, at the same time, the temperature of the fluid stream rising along the upper
plate is close enough to that of the undisturbed fluid reservoir. Of course, such an optimal
separation distance also depends on the fact that the maximum heat transfer rate has to be
attained for the lower plate or for the upper plate or for the pair of staggered plates.

Figure 5. Isotherm contour plots for W/H = 0.25, L/H = 0.5 and RaH = 104, 105, 106 using a scale
from blue (T = 0) to red (T = 1).

This is clearly shown in Figures 6–8 and in Figures 9–11, where the distributions
of the average Nusselt numbers NuL and NuU for the lower and upper plates and the
distributions of the average Nusselt number Nu for the whole system, respectively, are
depicted for the same combinations of independent variables used earlier to delineate
the local solutions. In Figures 6–8, the Nusselt numbers for a single vertical plate at the
same Rayleigh number listed in Table 3 are also reported for comparison purposes using
dashed lines.
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Figure 6. Nu vs. W/H for L/H = 1 (face-to-face plates) using RaH as the parameter.
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Figure 7. Nu vs. W/H for L/H = 0.5 using RaH as the parameter.
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Figure 11. Nu vs. W/H for RaH = 106 using L/H as the parameter.

In focusing the attention on the thermal performance of the whole system, it can be
observed that, at large plate spacings, the heat transfer rate is almost independent of the
plate staggering as each plate tends to behave as a single plate, whereas, at intermediate
separation distances, the average Nusselt number increases as the plate staggering is
decreased, which is due to the aiding contribution of the chimney effect. Conversely, at close
spacing between the plates, the average Nusselt number enhances as the plate staggering
is increased due to the larger portion of each plate being exposed to the undisturbed fluid
reservoir. Such a behavior inversion occurs at a plate spacing (W/H)inv, which decreases
with increasing the Rayleigh number.

The distributions of the optimal dimensionless separation distance between the plates
(W/H)opt for the maximum heat transfer rate from the pair of staggered plates, which
are plotted against the Rayleigh number RaH, are displayed in Figure 12 using the di-
mensionless vertical alignment L/H as a parameter. It can be observed that (W/H)opt
decreases both as RaH increases due to the decrease of the boundary layer thickness and
L/H decreases due to the reduced interaction occurring between the bottom portion of
the boundary layer adjacent to the upper plate and the top portion of the boundary layer
adjacent to the lower plate.
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Figure 12. (W/H)opt vs. RaH using L/H as the parameter.

The whole set of numerical results obtained for the optimal distance (W/H)opt and
the corresponding peak-value of the average Nusselt number, denoted as Nuopt, can be
correlated by using the following pair of dimensionless correlating equations obtained
using a multiple regression method:(

W
L

)
opt

= 8 · RaH
−0.23

(
1 +

L
H

)−0.9
(8)

Nuopt = 0.69 · RaH
0.23
(

1 +
L
H

)0.16
(9)

where the former has a 2.4% standard deviation of error and the latter with a 1.9% standard
deviation of error, as shown in Figures 13 and 14, respectively.
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Figure 13. Comparison between Equation (8) and the numerical data obtained for (W/H)opt.
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Figure 14. Comparison between Equation (9) and the numerical data obtained for Nuopt.

In addition, a set of heat transfer dimensionless correlations is developed for predicting
the average Nusselt numbers for the whole system and for each plate and for separation
distances between the plates in the range between (W/H)opt < W/H ≤ 1:

Nu = 0.74 · RaH
0.223

(
W
H

)−0.053(
1 +

L
H

)0.05
(10)

NuL = 0.76 · RaH
0.225

(
W
H

)−0.052(
1 +

L
H

)0.02
(11)

NuU = 0.72 · RaH
0.222

(
W
H

)−0.055(
1 +

L
H

)0.09
(12)

and for separation distances in the range between (W/H)inv < W/H < (W/H)opt:

Nu = 0.53 · RaH
0.26
(

W
H

)0.107(
1 +

L
H

)0.18
(13)

NuL = 0.63 · RaH
0.246

(
W
H

)0.07(
1 +

L
H

)0.16
(14)

NuU = 0.445 · RaH
0.276

(
W
H

)0.147(
1 +

L
H

)0.2
(15)

where, according to our data, (W/H)inv can be easily evaluated as follows.

(W/H)inv = 2.24 · RaH
−0.22 (16)

The standard deviations of the errors are 2.3%, 2.75% and 3.25% for Equations (10)–(12)
and 3.7%, 3.2% and 4.9% for Equations (13)–(15), respectively, as displayed in Figure 15.
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Figure 15. Comparison between Equations (10)–(15) and the numerical data obtained for the Nusselt

numbers of the whole system, the lower plate and the upper plate for W
H 6=

(
W
H

)
opt

.

4. Conclusions

Buoyancy-induced convection from a pair of thin staggered heated vertical plates
suspended in free air has been studied numerically using a control-volume formulation
of the finite-difference method based on the SIMPLE-C algorithm. The investigation
has been performed by using the Rayleigh number based on the plate length, as well
as the horizontal separation distance between the plates and their vertical alignment as
independent variables.

The main results obtained in the present study may be summarized as follows:

(a) The existence of an optimal horizontal spacing for maximum heat transfer rate has
been found at any investigated Rayleigh number and vertical alignment;

(b) The optimal plate spacing decreases when increasing both RaH and L/H;
(c) For high values of W/H, the Nusselt number is independent of L/H since each plate

tends to behave as a single plate;
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(d) For intermediate values of W/H, the Nusselt number increases as L/H is increased
due to the contribution of the chimney effect;

(e) For low values of W/H, the Nusselt number increases as L/H is decreased due to the
larger portion of each plate exposed to free air.
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6. Onur, N.; Sivrioğlu, M.; Aktaş, M.K. An experimental study on the natural convection heat transfer between inclined plates

(Lower plate isothermally heated and the upper plate thermally insulated as well as unheated). Heat Mass Transfer 1997, 32, 471–476.
[CrossRef]
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