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Abstract: We study e↵ective actions for simultaneous breaking of space-time and in-

ternal symmetries. Novel features arise due to the mixing of Goldstone modes under the

broken symmetries which, in contrast to the usual Adler’s zero, leads to non-vanishing

soft limits. Such scenarios are common for spontaneously broken SCFT’s. We explicitly

test these soft theorems for N = 4 sYM in the Coulomb branch both perturbatively and

non-perturbatively. We explore the soft constraints systematically utilizing recursion re-

lations. In the pure dilaton sector of a general CFT, we show that all amplitudes up to

order sn ⇠ @2n are completely determined in terms of the k-point amplitudes at order

sk with k  n. Terms with at most one derivative acting on each dilaton insertion are

completely fixed and coincide with those appearing in the conformal DBI, i.e. DBI in

AdS. With maximal supersymmetry, the e↵ective actions are further constrained, leading

to new non-renormalization theorems. In particular, the e↵ective action is fixed up to eight

derivatives in terms of just one unknown four-point coe�cient and one more coe�cient for

ten-derivative terms. Finally, we also study the interplay between scale and conformal

invariance in this context.ar
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1 Introduction

E↵ective actions in general contain an infinite number of higher dimensional operators

whose precise coe�cients require detailed understanding of their ultra-violet (UV) com-

pletion. In particular, except for low energy global symmetries and some positivity con-

straints [1], these coe�cients are in principle arbitrary. On the other hand for e↵ective

theories associated with spontaneous symmetry breaking, it has long been known that

soft theorems associated with the broken symmetries can be exploited to constrain the

S-matrix, and in turn the e↵ective action. Famous examples include Adler’s zero for single

U(1) Goldstone boson (GB) [2], as well as its non-abelian extension [3]. Recently it has

been shown that a class of e↵ective field theories, including non-linear sigma models, Dirac

Born-Infeld (DBI) and a special Galileon, can be completely determined through the use

soft theorems [4].

When spacetime, or both spacetime and internal symmetries are spontaneously broken,

the soft-limits of GB’s in general will no-longer vanish and are proportional to lower point
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amplitudes.1 This is due to the fact that there are multiple GB’s that mix under the broken

symmetries. That this is true can be understood from the Ward identity of the broken

generator:

@
µ

hJµ(x)�(x
1

) · · ·�(x
n�1

)i = �
n�1X

i=1

�(x� x
i

)h�(x
1

) · · · ��(x
i

) · · ·�(x
n�1

)i . (1.1)

If �� leads to a state in the physical spectrum, then the RHS can lead to a non-vanishing

result upon LSZ reduction and thus a non-vanishing soft limit. The conventional vanishing

soft-pion limits simply reflect the fact that pions shift under the broken symmetry, and

hence �� does not lead to a physical state under infinitesimal transformations.

For broken conformal symmetry, the Goldstone modes that arise from dilatation and

conformal boost are not independent, leading to a single dilaton [5]. This implies that

the soft-dilaton limit can be non-vanishing, as the broken symmetries relate the dilaton

to itself. Indeed the plurality of broken generators is reflected in the universality of the

single soft dilaton behaviour. In particular expanding the n-pt amplitude involving one

dilaton in terms of its soft momentum leads to leading and sub-leading terms that are

simply proportional to the (n�1)-point amplitude [6, 7]. In the presence of other global

symmetries, the broken generators can rotate the dilaton into the new GB’s and vice

versa. This is a common situation for super conformal field theories on the Coulomb or

Higgs branch, where both conformal and R-symmetry are broken. Consider for example

D = 4, N = 4 super Yang-Mills (SYM) in the Coulomb branch, where the massless scalars

comprise one dilaton and 5 GB’s for R-symmetry breaking SO(6)!SO(5). As the broken

R-symmetry generators mix the GB’s and the dilaton, we will find non-vanishing soft limits.

In this perspective, the Coulomb branch e↵ective action of maximal SCFTs not only enjoys

maximal supersymmetry but also exposes “maximal broken symmetry”.

Note that these soft theorems must be respected both in the UV where massive degrees

of freedom are present, and in the infrared (IR) where they are integrated out. In this paper

we verify this perturbatively by computing the one-loop e↵ective action of N = 4 SYM

up to six fields. This is done by considering the one-loop amplitude of maximal SYM in

higher dimensions with the extra component of loop momenta identified as the mass of

the massive multiplet. Expanding the integrand around the large mass limit, the integral

yields the matrix element of the e↵ective action. For non-perturbative tests, we examine

the amplitudes from the instanton e↵ective action obtained in [8]. We have verified the

validity of the new soft theorems to order s5 at six points and s10 at five points for one-loop

amplitudes, where s generically denotes Mandelstam invariants s
ij

= 2k
i

·k
j

. While for the

amplitudes generated from the one-instanon e↵ective action [8] are always of order s4 for

the scalar sector, we have confirmed the soft theorems for pure-dilaton amplitudes to nine

points and for dilaton and pion mixed amplitudes up to seven points. In [9, 10] leading

and sub-leading soft theorems have also been checked against the amplitudes generated

by the dilaton e↵ective action, related to the trace anomaly in the recent study of the

a-theorem [11–17].

1Flat space DBI action has vanishing soft limits due to the vanishing of amplitudes with odd number of

external legs.
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Soft theorems provide additional information on the analytic structure of scattering

amplitudes, which can be combined with factorization constraints to recursively construct

higher multiplicity results. Armed with the dilaton soft theorems, one can show that the

matrix elements of the pure dilaton e↵ective action are fully determined by a subset of

operators via on-shell recursion [10]. In particular, at 2n-derivative order, the S-matrix for

any multiplicity, i.e. any number of dilaton insertions, is completely determined in terms

of operators of the form @2k'k for k  n. For maximal susy, the dilaton e↵ective action for

arbitrary number of dilatons are fixed up to ten derivatives in terms of three parameters:

the coe�cients of four-point operators at orders s2, s4 and s5. For D = 4, N = 4, we find

that the dilaton amplitude at s2 and s3 are one and two-loop exact respectively for arbitrary

multiplicity. At orders s4 and s5, amplitudes with arbitrary multiplicity are completely

determined in terms of the four-point coe�cient. Beyond s5 higher point coe�cients are

necessary to determine the n-point amplitude.

Dilaton soft theorem is separated in two pieces, reflecting the fact that there are two

kinds of generators being broken, scale and conformal boost. A theory endowed with only

scale invariance will satisfy the leading soft theorem but not the sub-leading one. Thus the

question of scale vs conformal symmetry becomes to which extent sub-leading soft theorem

follows from leading. We study this question beginning with five-point amplitudes to very

high order in s (until s11), and show that amplitudes satisfying the leading soft theorems

automatically satisfy sub-leading soft theorem. Similar statements hold if one considers

the amplitudes determined by recursion relations using the leading soft behaviour alone,

for which we have verified the statements with many non-trivial examples. This can be

viewed as supporting evidence for the equivalence of scale and conformal symmetry.

This paper is organized as follows: in section 2, we give a review of soft theorems

for spontaneous symmetry breaking, and show that the mixing of GB modes under the

broken symmetry can lead to non-vanishing soft limits, in contrast to the usual Adler’s

zero. Explicit tests for the new soft theorems were conducted in subsection 2.1 on the

one-loop and 2.2 for the instanton e↵ective action. In section 3, we consider to which

extent the matrix element of the dilaton e↵ective action is fixed via soft and factorization

constraints. In section 4, we consider further constraints from maximal supersymmetry.

In section 5, we study scale vs conformal symmetry in the context of soft-theorems. We

conclude in section 6.

2 Soft theorems

Soft behaviour of amplitudes with massless particles are often dictated by Ward identities

of the underlying symmetries. Here we follow the discussion in [18], and clarify where

one departs from the usual Adler’s zero. Spontaneous broken symmetry implies that the

current associated with the broken generators excite GBs from the vacuum:

h⇡a(q)|Jbµ(x)|0i = if
⇡

qµeiqx�ab (2.1)
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Figure 1. Contributions to the soft limit

where a, b label the generators. Inserting the current between a set of incoming and out

going asymptotic states (↵,�), one finds, with qµ = pµ
↵

� pµ
�

h↵|Jµ(0)|�i = qµ

q2
A(⇡,↵,�) +Nµ (2.2)

where the RHS is understood as an expansion in q and we’ve separated out the pole term

for the emission of a GB, which corresponds to fig.1(a), and A is the transition amplitude.

Contracting q
µ

on both sides of eq.(2.2), the LHS vanishes since the current is con-

served:

0 = h↵|@
µ

Jµ(x)|�i = h↵|@
µ

eiqxJµ(0)|�i = eiqxq
µ

h↵|Jµ(0)|�i . (2.3)

This implies that

A(⇡,↵,�) = �qµN
µ

. (2.4)

Thus in the limit where q ! 0, the soft limit of the amplitudes involving a GB would vanish

unless qµN
µ

is finite. This requires non-vanishing contributions from diagrams associated

with fig.1(b). Note that for the latter to yield non-trivial contribution, there must be more

than one massless state in the spectrum that is charged under the current, and thus form

the necessary three-point vertex.2 In other words, the broken symmetry must transform a

physical state to another.

The explicit form of qµN
µ

can be directly read o↵ from the Ward identity:

@
µ

hJµ(x)�(x
1

) · · ·�(x
n�1

)i = �
n�1X

i=1

�(x� x
i

)h�(x
1

) · · · ��(x
i

) · · ·�(x
n�1

)i . (2.5)

Fourier transform on both sides leads to

� q
µ

hJ̃µ(q)�̃(p
1

) · · · �̃(p
n�1

)i = �
n�1X

i=1

h�̃(p
1

) · · · ��̃(p
i

+ q) · · · �̃(p
n�1

)i , (2.6)

where �̃ represents Fourier transformed field. We now perform LSZ reduction on legs

1, · · · , n�1 on both sides by multiplying
Q

i

p2
i

and taking the momenta on-shell. The

2A vector current cannot couple to two identical particles.
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RHS vanishes for generic q, due to one uncanceled inverse propagator from the reduction.

Taking the limit q ! 0, the RHS develops the requisite inverse propagator if ��̃ yields

a physical state in the spectrum. At the same time, the LHS is simply the amplitude

with one soft GB. Thus we see that if ��̃ does not correspond to another particle in the

spectrum, then the RHS will not survive the LSZ reduction and hence vanishes. This is the

Adler’s zero for soft pion emission [2]. Indeed in these classical examples, the Goldstone

bosons transforms non-linearly under the broken symmetry, and hence its infinitesimal

transformation (a shift) does not yield a particle in the spectrum. On the other hand, if

�� does produce a particle in the spectrum then the RHS is non-zero, and is given by the

sum of Fourier transformed amplitude with the i-th field transformed under the generator

of the broken generator. This would be q ·N .

For broken conformal symmetry, one has the latter case. The broken dilatation sym-

metry constrains the leading term whilst the conformal boost generators constrain the

sub-leading term in the soft momentum expansion. Thus amplitudes with single soft dila-

ton (') satisfy the following universal soft theorem [6, 7]:

vA
n

��
pn!0

=
⇣
S(0)

n

+ S(1)

n

⌘
A

n�1

+O(p2
n

) , (2.7)

where the superscript indicates the degree in p
n

and v is the vacuum expectation value of

the dilaton field. The explicit form of S(0)

n

,S(1)

n

are given by3

S(0)

n

= �
n�1X

i=1

✓
p
i

· @

@p
i

+
D � 2

2

◆
+D ,

S(1)

n

= �pµ
n

n�1X

i=1


p⌫
i

@2

@p⌫
i

@pµ
i

� p
iµ

2

@2

@p
i

⌫

@p⌫
i

+
D � 2

2

@

@pµ
i

�
. (2.8)

where D is the space-time dimension.

For spontaneously broken superconformal theories, the set of massless scalars comprise

the dilaton as well as the GB’s for the spontaneous breaking of R-symmetry. If the dilaton

is identified with one of the scalars that transforms non-trivially under the broken R-

symmetry generator, following the above discussion the soft limit of the R-symmetry GB is

non-vanishing. For instance, in N = 4 SYM, the scalars form a 6 of SO(6), any one of the

scalars taking a vev (say �6) breaks R-symmetry down to SO(5), with 5 GB’s associated

with the broken rotation generators R6I with I = 1, · · · , 5. Under this broken generator,

the GB’s �I is rotated into �6 ⌘ ', while ' is rotated into �I with a relative minus sign

due to the antisymmetry of R6I . Thus the soft limit of R-symmetry GB’s are given as:

v A
n

(�
1

, · · ·,�I

n

)
��
pn!0

=
X

i

A
n�1

(· · ·, �
I

�
i

, · · ·) +O(p1
n

) , (2.9)

where �
i

represents either a dilaton ' or �I , with �I' = �I and �
I

�J = ��
I

J'. In

the following subsections we will verify the soft theorems by explicitly computations of

3Note that one should replace pn�1 in the n�1 point amplitude by its solution to the momentum

conservation pn�1 = �(
Pn�2

i=1 pi).
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scattering amplitudes one-loop and one-instaton e↵ective action of N = 4 SYM in the

Coulomb branch.

We should add a comment at this point. In N = 4 SYM one can define a di↵erent

dilaton '̂ =
qP

I

�2

I

that represents the radial direction in holographic contexts and co-

incides with the above ' = �
6

(up to a sign) if the other GB’s are set to zero. Moreover,

the orthogonal ‘angular’ directions of S5 = SO(6)/SO(5) would behave as bona fide pions

and satisfy Adler’s theorem, since they would transform non-linearly into one another and

would not mix with the radial dilaton, that is a singlet of SO(6). While this is not particu-

larly useful in the N = 4 SYM context, since it would spoil the beautiful symmetry among

the various scalars, for SCFT’s with lower supersymmetry, such as theories holographically

dual to D3-branes at Calabi-Yau singularities (CY cones), the reduced R-symmetry would

not allow such a ‘linear’ representation of the dilaton and pions as above but only the

standard non-linear one, whereby the dilaton is an R-symmetry singlet (radial direction)

and the pions are the angular directions of the Sasaki-Einstein base of the CY cone.

2.1 The one-loop verification

As discussed in the introduction, soft theorems hold both in the presence of the mas-

sive states and in the low energy limit where the massive states are integrated away. To

verify this, we construct the one-loop e↵ective action of N = 4 SYM on the Coulomb

branch.4 Integrands for the Coulomb branch theory can be obtained by compactifying

higher-dimensional SYM theory, with the extra components of momenta identified with

mass induced by scalar vev v5. We rely both on the D = 10 SYM integrand constructed

in [19] as well as on six-dimensional generalized unitarity methods for (1, 1) SYM [20, 21]

as a cross-check. At four and five points, the one-loop amplitudes of N = 4 SYM on the

Coulomb branch are relatively simple, and have been obtained in [22],6

A
4

= g4N �8(Q)
[12]2

h34i2 ⇥
X

S4/Z4

I
4

(1, 2, 3, 4;m) ,

A
5

= vg4N �8(Q)
m

(1)

1,2,3

m
(2)

1,2,3

+m
(3)

1,2,3

m
(4)

1,2,3

h45i2 ⇥
X

S5/Z5

I
5

(1, 2, 3, 4, 5;m) , (2.11)

with the super charge Q↵A =
P

i

�↵

i

⌘A
i

. Notice that the prefactors containing fermionic ⌘’s

in both four and five points are permutation symmetric. The integrals I
4

(1, 2, 3, 4;m) and

I
5

(1, 2, 3, 4, 5;m) are scalar one-loop box and pentagon integrals with massive propagators

and we sum over non-cyclic permutations, and

m
(A)

i,j,k

= [i j]⌘A
k

+ [j k]⌘A
i

+ [k i]⌘A
j

. (2.12)

4The one-loop e↵ective action has been constructed in the constant field strength limit [23, 24]. Here

we consider terms involving derivatives.
5Obtaining spontaneously-broken SYM via a dimensional compactification was recently also studied

in [25]
6Hereon we exploit the spinor-helicity formalism, whereby p↵↵̇

i = �↵
i �̃

↵̇
i , and scalar products read

�↵
i �

�
j ✏↵� = hiji , �̃i↵̇�̃j�̇✏

↵̇�̇ = [ij] , sij = hiji[ji] . (2.10)
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In the above formulae the breaking of SU(4) to Sp(4) is manifest in the choice of R-

symmetry indices in m
(A)

1,2,3

, which correspond to taking the anti-symmetric 4 ⇥ 4 Sp(4)

metric to be ⌦12 = �⌦21 = ⌦34 = �⌦43 = 1. In this notation, the dilaton ⌦
AB

�AB

represents fluctuations around the vev v = m/g = ⌦
AB

vAB. With this choice the dilaton

is ' = �12 + �34 and the other five real scalars corresponding to the pions of R-symmetry

breaking are

{�1,�2,�3,�4,�5} = {i(�12��34),�13+�24, i(�13��24),�14+�23, i(�14��23)} . (2.13)

One can straightforwardly verify that five and four-point amplitudes do satisfy the

soft theorems. Six-point amplitudes are more involved, we utilize the integrand of 10D

YM obtained in [19] (especially equation (5.10) in the reference) and campactify to 4D. In

particular, to distinguish the dilaton from other five scalars, we set ` ·e
i

= m if e
i

is dilaton

and `·e
i

= 0 if e
i

is one of the R-symmetry pions, here ` denotes the loop momentum and e
i

is the 10D polarization vector which becomes a scalar after compactification. We computed

six-point amplitudes up to the order s5 from the integrands by performing the integrals in

the large-mass expansion, and checked the six-point amplitudes also obey the soft theorems.

We have done the same computation by obtaining the corresponding integrand for (1, 1)

SYM using the generalized unitary cuts. Some of the results will be summarized in what

follows in the form of the e↵ective action.

Although the SU(4) R-symmetry is broken down to Sp(4) on the Coulomb branch, the

e↵ective action can be conveniently decomposed into SU(4) singlet and non-singlet sectors.

The one-loop e↵ective action up to six field strengths reads

Lsinglet

1�loop

=
g4N

32m4⇡2

✓
O

F

4 +
O

D

4
F

4

23⇥15m4

� 2O
D

2
F

6

15m6

+
O

D

4
F

6

23⇥21m8

� O
D

6
F

6

2⇥152m10

+O(m�12)

◆

(2.14)

where O
D

m
F

n represents super-local operators that contain DmFn. In the Coulomb branch

D = @. Including an overall �8(Q), the explicit form of the superfunctions reads

O
F

4 : �8(Q)
[12]2

h34i2 , O
D

4
F

4 : �8(Q)
[12]2

2h34i2 (
X

i<j

s2
ij

) , O
D

2
F

6 :
��8(Q)

8

X

S6/S3⇥S3

⌅2

123

⌅2

456

O
D

4
F

6 : �8(Q)
X

S6/Z6

Y

i

[ii+1], O
D

6
F

6 : �8(Q)
X

S6/Z6

(
Y

i

[ii+ 1])s
24

.

The Grassmann odd parameters ⌘A appear in the super-polynomials

⌅2

123

⌅2

456

=
✏ABCDm

(A)

123

m
(B)

123

m
(C)

456

m
(D)

456

4!
. (2.15)

For the non-singlet part, we will only list the results of scalar operators which are relevant

for the soft theorems we will discuss momentarily. Note that since the SO(5)⇠Sp(4) sub-

group of R-symmetry is preserved, the �I pion fields must come with even multiplicity. In

the following we list the result of one-loop e↵ective action with mixed dilaton and pions,

LSp(4)

1�loop

=
g4N

4⇡2m4


@4'4

4
+

@8'4

210 ⇥ 15m4

+
@10'4

25 ⇥ 32 ⇥ 35m6

+
@12'4

213 ⇥ 33 ⇥ 35m8

� @4'5

m2
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� @8'5

27 ⇥ 135m6

� 5 @10'5

26 ⇥ 34m8

� @12'5

26 ⇥ 35 ⇥ 35m10

+
5@4'6

m4

+
@8'6

120m8

+
5 @10'6

2835m10

+
@12'6

2932m12

+
@4'2�2

2
� 5@4'2�4

m2

+
@4'4�2

m2

�
+ . . . (2.16)

where the on-shell matrix elements corresponding to the higher-dimensional operators are

given by

@4'm :
X

i<j

s2
ij

, @8'4 :
�
s2
12

+ P
4

�
2

, @10'4 :
�
s5
12

+ P
4

�
, @12'4 :

�
s2
12

+ P
4

�
3

,

@8'5 :
�
s2
12

+ P
5

�
2

, @10'5 :
a
(5)

1

5
+

3 a(5)
2

7
, @12'5 :

a
(6)

1

96
+ a

(6)

2

,

@8'6 : �b
(4)

1

6
+

5 b(4)
2

768
� 3 b(4)

3

2
+

b
(4)

4

36
,

@10'6 :
114

35
b
(5)

1

+
60

7
b
(5)

2

� 48 b(5)
3

7
+

108

7
b
(5)

4

+
36

35
b
(5)

5

,

@12'6 :
433

1350
b
(6)

1

� 58

2025
b
(6)

2

+
20

9
b
(6)

3

+
117

35
b
(6)

4

� 184

945
b
(6)

5

,

�74

45
b
(6)

6

+
334

315
b
(6)

7

+
73

35
b
(6)

8

� 64

63
b
(6)

9

+
104

105
b
(6)

10

@4'2�2 : s2
12

� s2
13

� s2
23

, @4'2�4 : b
(2)

1,S2⇥S4
� b

(2)

2,S2⇥S4
+ b

(2)

3,S2⇥S4
� 8

5
b
(2)

4,S2⇥S4
,

@4'4�2 : b
(2)

1,S2⇥S4
� b

(2)

2,S2⇥S4
+ b

(2)

3,S2⇥S4
+ 8b(2)

4,S2⇥S4
(2.17)

and the b’s are independent symmetric polynomials, they are given by

a
(5)

1

= s5
12

+ P
5

, a
(5)

2

= s2
12

s3
34

+ P
5

, a
(6)

1

= (s2
12

+ P
5

)3 , a
(6)

2

= s2
12

s4
34

+ P
5

,

b
(4)

1

= s4
12

+ P
6

, b
(4)

2

= (s2
12

+ P
6

)2 , b
(4)

3

= s2
12

s2
13

+ P
6

, b
(4)

4

= s4
123

+ P
6

,

b
(5)

1

= s5
12

+ P
6

, b
(5)

2

= s2
12

s3
123

+ P
6

,

b
(5)

3

= s2
12

s3
23

+ P
6

, b
(5)

4

= s2
12

s2
34

+ P
6

, b
(5)

5

= s5
123

+ P
6

(2.18)

b
(6)

1

= s6
12

+ P
6

, b
(6)

2

= s6
123

+ P
6

, b
(6)

3

= s4
12

s2
13

+ P
6

,

b
(6)

4

= s4
12

s2
34

+ P
6

, b
(6)

5

= s3
12

s3
13

+ P
6

, b
(6)

6

= s3
12

s3
34

+ P
6

,

b
(6)

7

= s2
12

s4
123

+ P
6

, b
(6)

8

= s2
14

s4
123

+ P
6

, b
(6)

9

= s4
14

s2
123

+ P
6

,

b
(6)

10

= s2
123

s2
124

s2
135

+ P
6

, b
(2)

1,S2⇥S4
= s2

12

+ P{12|3456} , b
(2)

2,S2⇥S4
= s2

13

+ P{12|3456} ,

b
(2)

3,S2⇥S4
= s2

34

+ P{12|3456} , b
(2)

4,S2⇥S4
= s

12

s
13

+ P{12|3456} ,

here P
n

denotes summing over permutations of n elements, while P{n|m} denotes summing

over permutations of n and m elements.

2.2 Non-perturbative checks

Relying on (unoriented) open strings and D-brane instantons7, the one-instanton correc-

tions to the e↵ective action of N = 4 SYM in the Coulomb branch have been computed

in [8]. For Sp(2N) the integration over (super)moduli space can be performed, and the

7See e.g. [26–28] for recent reviews.
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resulting e↵ective action can be written in a very compact and elegant form

S1�inst

e↵

= c0
g4

⇡6

e2⇡i⌧
Z d4x d8✓

q
det

4N

2�̄
Au,Bv

r
det

2N

⇣
�AB�̄

AB

+ 1

g

F̄ + 1p
2g

⇤̄
A

(��1)AB⇤̄
B

⌘

↵̇u,

˙

�v

, (2.19)

where ⌧ = (#/2⇡)+(4⇡i/g2) is the complexified coupling and theN = 4 on-shell superfields

can be expanded in terms of the component fields {�AB,�A

↵

, F�
↵�

} and their conjugate

according to

�̄
AB

= �̄
AB

+ "
ABCD

✓C↵�D

↵

+
1

2
"
ABCD

✓C↵F�
↵�

✓D� (2.20)

⇤̄
↵̇A

= �̄
↵̇A

+ i ✓B↵@
↵↵̇

�̄
AB

+
i

2
"
ABCD

✓B�✓C�@{�↵̇�
D

�} +
i

6
"
ABCD

✓B↵✓C�✓D�@{↵↵̇F
�
��}

(2.21)

F̄
↵̇

˙

�

= F+

↵̇

˙

�

� i ✓A↵@
↵{↵̇�̄

A

˙

�} +
1

2
✓A↵✓B�@

↵↵̇

@
�

˙

�

�̄
AB

+
1

6
"
ABCD

✓A↵✓B�✓C�@
↵↵̇

@
�

˙

�

�D

�

� 1

24
"
ABCD

✓A↵✓B�✓C�✓D�@
↵↵̇

@
�

˙

�

F�
��

. (2.22)

For the study of soft-dilaton and soft-pion theorems, we will turn on just the scalar fields

so that

�̄
AB

= �̄
AB

, ⇤̄
A↵̇

= i ✓B↵@
↵↵̇

�̄
AB

, F̄
↵̇

˙

�

=
1

2
✓A↵✓B�@

↵↵̇

@
�

˙

�

�̄
AB

, (2.23)

and8 (�̄�1)AB = �AB/�2. As a result the one-instanton e↵ective action drastically simpli-

fies and takes the following form

S1�inst

e↵

= c0
g4

⇡6

e2⇡i⌧
Z

d4x d8✓
1

1�H
↵̇

˙

�

H ↵̇

˙

�

= c0
g4

⇡6

e2⇡i⌧
Z

d4x d8✓ (H
↵̇

˙

�

H ↵̇

˙

�)2, (2.24)

where

H
↵̇

˙

�

=
1

g�2

✓
F̄
↵̇

˙

�

+
1p
2
⇤̄
A↵̇

(�̄�1)AB⇤̄
B

˙

�

◆
. (2.25)

In the last step we have expanded the denominator and only kept the term which is non-

vanishing after Grassman integration if one takes into account that the super-field H
↵̇

˙

�

becomes

H
↵̇

˙

�

=
1

4 g �2

 
1

2
@
↵↵̇

@
�

˙

�

�
AB

�
�CD@

↵↵̇

�
AC

@
�

˙

�

�
DB

�2

!
✓A↵✓B� = K

↵↵̇�

˙

�,AB

✓A↵✓B� ,

(2.26)

when only scalars are turned on as in the case of interest here. Switching to 4-vector

indices K
↵↵̇�

˙

�,AB

may be decomposed into a symmetric traceless tensor S
(µ⌫)

[AB]

in the 6

of SU(4)⇠SO(6) and an anti-symmetric tensor B
[µ⌫]

(AB)

in the 10

⇤ of SU(4)⇠SO(6). For

8�̄AB = 1
2"ABCD�CD, �2 =

P
i �

2
i = 1

4 �̄AB�
AB
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instance, for pure dilaton sector only symmetric tensor S
(µ⌫)

[AB]

contributes, and after per-

forming the fermionic integration the action is given as,

S
dilaton

=

Z
d4x

⇥
(S

µ⌫

Sµ⌫)2 � S
µ⌫

S⌫⇢S
⇢�

S�µ

⇤
. (2.27)

where

S
µ⌫

=
@
µ

@
⌫

'

'2

� 2
@
µ

'@
⌫

'

'3

� 1

4
⌘
µ⌫

@2'

'2

+
1

2
⌘
µ⌫

@
⇢

'@⇢'

'3

, (2.28)

and the dilaton ' has a non-vanishing vev ' ! '+v.With the one-instanton action at hand,

we have computed amplitudes up to seven points for dilaton and pion mixed amplitudes

and pure-dilaton amplitudes up to nine points. We find that they indeed satisfy all the soft

theorems. Here we list a few pure dilaton amplitudes9, which are degree-four symmetric

polynomials in s
ij

,

v8Ainst

4

=
1

32

�
s2
12

+ P
4

�
2

, v9Ainst

5

= � 1

36

�
s2
12

+ P
5

�
2

, (2.29)

v10Ainst

6

= �2

3
b
(4)

1

+
5

192
b
(4)

2

� 6 b(4)
3

+
1

9
b
(4)

4

,

v11Ainst

7

= 4 b(4)
1,7

+ 40 b(4)
2,7

� 5

3
b
(4)

3,7

� 25 b(4)
4,7

,

v12Ainst

8

= �809

144
b
(4)

1,8

� 395

8
b
(4)

2,8

+
1339

576
b
(4)

3,8

+
595

32
b
(4)

4,8

+
535

32
b
(4)

5,8

,

v13Ainst

9

=
3935

294
b
(4)

1,9

+
846

7
b
(4)

2,9

� 475

126
b
(4)

3,9

� 491

14
b
(4)

4,9

� 535

14
b
(4)

5,9

,

where the six-point amplitude Ainst

6

is expanded in the basis given by eq.(2.18), while for

the higher-point amplitudes

b
(4)

1,7

= s4
12

+ P
7

, b
(4)

2,7

= s2
12

s2
23

+ P
7

, b
(4)

3,7

= s4
123

+ P
7

, b
(4)

4,7

= s2
123

s2
124

+ P
7

,

b
(4)

1,8

= s4
12

+ P
8

, b
(4)

2,8

= s2
12

s2
23

+ P
8

, b
(4)

3,8

= s4
123

+ P
8

, b
(4)

4,8

= s2
123

s2
124

+ P
8

,

b
(4)

5,8

= s2
123

s2
145

+ P
8

,

b
(4)

1,9

= s4
12

+ P
9

, b
(4)

2,9

= s2
12

s2
23

+ P
9

, b
(4)

3,9

= s4
123

+ P
9

, b
(4)

4,9

= s2
123

s2
124

+ P
9

,

b
(4)

5,9

= s2
123

s2
145

+ P
9

. (2.30)

In appendix A, we have also listed the higher-dimensional vertices that generate the above

amplitudes. As we mentioned we have verified that all these amplitudes indeed satisfy

the soft theorems. In fact, as we will discuss in section 4.1, at four, five and six points,

amplitudes (with both dilatons and pions) at order s4 are fully fixed by N = 4 SUSY

and the soft theorems. Furthermore, for the pure-dilaton amplitudes all the higher-point

amplitudes at this order are fully determined by the soft-dilaton theorems from the knowl-

edge of the five-point amplitude, as we will discuss in the next section. Thus consistency

with the conformal symmetry and N = 4 SUSY (which fixes the form of the five-point

amplitude), the pure-dilaton amplitudes in fact must take the unique form given in (2.29),

and the same holds true for higher-point ones.

9The overall coupling dependence such as e2⇡i⌧ is understood.
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3 Constraining the e↵ective actions by means of soft theorems

An immediate consequence of the dilaton soft theorem is its constraint on the e↵ective

action. A systematic way to explore soft constraints is the recently constructed on-shell

recursion relations [4, 10]. On-shell recursive methods are constructed using the fact that

under complex deformation of the momenta, the only allowed singularities are propagator

singularities whose residues are determined by lower point data. Using the fact that S-

matrix elements are analytic functions, we start with [29, 30]:

A
n

(0) =
1

2⇡i

I

C0
dz

A
n

(z)

z
, (3.1)

where the contour C
0

encircles the origin, and A
n

(z) is the n-point amplitude with deformed

momenta and A
n

(0) is the undeformed amplitude which we would like to compute. If A
n

(z)

is meromorphic, via the residue theorem, we can recast the amplitude as a sum over residues

at finite values in the complex plane plus the one at infinity. The poles at finite values

in the complex plane are simply due to factorization and their residues are determined by

lower-point amplitudes. The usefulness of the recursion then relies on whether one can

avoid contributions from the point at infinity or one can determine that contribution a

priori. E↵ective theories in general do receive contributions at infinity. In [4, 10], it was

shown that if it is known that the amplitude has universal behaviour in some kinematic

regime, then one can instead consider

A
n

(0) =
1

2⇡i

I

C0
dz

A
n

(z)

zF (z)
, (3.2)

where F (z) is a polynomial in z with F (0) = 1, and its zeroes correspond to the special

kinematic configurations. At large z, F (z) ⇠ zd with some positive d. The function F (z)

introduces extra power of suppression at large z, allowing for non-vanishing boundary

contributions from A(z) of higher mass dimension. The amplitude A(0) is then determined

by the residues of the factorisation pole as well as the contributions from the poles in

1/F (z) which are given by the universal behaviour of the amplitudes.

For theories with universal soft theorems, one deforms the amplitude by shifting each

momentum as p
i

! (1 � za
i

)p
i

, such that z ! 1/a
i

one approaches the soft limit. This

leads to the choice of F (z) given in [4, 10]

F
n

(z) =
nY

i=1

(1� za
i

)di , (3.3)

where
P

i

a
i

p
i

= 0 to ensure momentum conservation for A(z), and the positive integer

d
i

depends on the soft theorem for the particle species of external leg i: particle i enjoys

universal soft theorem up order qdi�1 in the soft momentum (q) expansion. That is because

otherwise F
n

(z) would introduce poles whose residues would be unknown.

Let us first consider the dilaton e↵ective action. Since the dilaton soft theorem is

universal up toO(q1), this implies that all the d
i

can be mostly taken to be 2, and thus F
n

(z)

behaves as z2n in the large z limit. Simple power counting shows that for an amplitude at
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sn \ # of points 4 5 6 7 8 · · ·
2 ⇥ X X X X X
3 ⇥ X X X X X
4 ⇥ X X X X X
5 X ⇥ X X X X
6 X X ⇥ X X X
7 X X X ⇥ X X
8 X X X X ⇥ X
... · · · · · · · · · · · · · · · · · ·

Table 1. The table is to show that the knowledge of the k-point amplitude at order sk with
k  n allows one to determine all the amplitudes up to the order sn. The ⇥ is to indicate the
amplitudes that have to compute by other means, then all other amplitudes marked with Xare
completely determined by the soft theorems as well as the soft-BCFW. One should note that the
soft-BCFW recursion relation can only apply to amplitudes in a D-dimensional theory with at least
D+2 external legs.

order sk, the recursion formula is valid for A
n

if n > k. Thus the pure dilaton sector is

completely determined if the n-point amplitude at order sn is known, as the higher-point

amplitudes are uniquely determined via recursion, while lower-point amplitudes can simply

be obtained through leading soft theorems by taking a soft particle away. Therefore if the k-

point amplitude at order sk with all k  n are given, one can determine all the amplitudes

up to the order sn. One should also take into account that the soft BCFW recursion

relation is only applicable in D-dimensions for at least D+2 external legs. For instance,

in D = 4, at order s4, knowing the four-point amplitude is not enough to completely fix

all higher-point amplitudes. Instead the five-point amplitude is required to fully determine

all amplitudes at this order. This general discussion is summarized in table 1. For general

superconformal theories, one can consider mixed amplitudes with n
1

dilatons and n
2

R-

symmetry Goldstone bosons. Since the R-symmetry soft theorem is only leading, the

requisite bound for valid recursion is n
1

+ 1

2

n
2

> k for order-sk amplitudes.

In some special cases, all the terms marked with “⇥” in table 1, except the one of order

s2, may simply vanish. For instance, this is indeed the case if each scalar insertion carries

at most one derivative, namely analogous to the “constant field-strength approximation”.

Thus at 2n or (2n+1) points, amplitudes go as sn at most. Let us normalize the four-point

amplitude at order s2 as

A
(2)

4

= c
(2)

4

�
s2 + t2 + u2

�
, (3.4)

then all the amplitudes are completely determined by the soft theorems in terms of the

factor c(2)
4

, which must be non-zero and positive for a non-trivial interacting theory [1]. In

other words, the theory in the “constant field-strength approximation” is uniquely fixed by

soft theorems of the (broken) conformal symmetry, which turns out to be the conformal

DBI, i.e. the DBI action in the AdS background, with an appropriate choice of the overall

coe�cient c
(2)

4

. This conclusion is in the analog of the analysis of [31], where the usual
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flat-space DBI (namely DBI action in the flat-space background) are uniquely determined

by the so-called enhanced soft limits. We remark that the flat-space DBI is a special limit

of the conformal DBI. The scattering amplitudes in flat-space DBI are in a subset of those

in conformal DBI, in particular the highest-derivative amplitudes with even number of

external legs.

4 Constraints from supersymmetry

Supersymmetry imposes further constraint by relating coe�cients of higher dimension op-

erators with di↵erent dimensions. More precisely, one considers matrix elements of a susy

invariant local operator of a given dimension and multiplicity. If one can conclude that

such an operator does not exist, then the contribution of local operators must be propor-

tional to the one produced by factorization channels. This leads to non-renormalization

conditions. Indeed recently a whole set of new non-renormalization theorems have been

obtained for the e↵ective action of supersymmetric gauge and gravity theories in diverse

dimensions [22, 32–34]. Here we will consider the consequences of combining constraints

from maximal SUSY and soft theorems.

4.1 4D N = 4 supersymmetry

4.1.1 Pure dilaton sectors

Already for N = 4 SYM, it was shown that operators of the form F 2

�F
2`

+

is `-loop exact [22],

with the coe�cient recursively determined by that of the four-point F 2

�F
2

+

operator, which

was known to be one-loop exact [35]. As already shown at one-loop order, generally SUSY

invariant local operators for four and five points take the form:10

A
4

= �8(Q)
[12]2

h34i2
X

k

P
(k)

4

(s
ij

) , (4.1)

A
5

= v �8(Q)
m

(1)

1,2,3

m
(2)

1,2,3

+m
(3)

1,2,3

m
(4)

1,2,3

h45i2
X

k

P
(k)

5

(s
ij

) , (4.2)

where P
(k)

n

(s
ij

) represents n-point degree-k symmetric polynomials of s
ij

. As well-known,

for high enough k, the polynomials may have diverse structures. In particular P
(k)

4

(s
ij

)

starts to have two independent structures at k = 6, and P
(k)

5

(s
ij

) has two structures at

k = 4. Maximal SUSY relates purely gluonic operators @kFn to operators with scalars

@k+n�n. As one can see, at least for four and five points, due to maximal SUSY, a degree

k operator in s is determined by a polynomial of degree k�2 which generally has fewer

degrees of freedom. This is crucial for mixed operators with both pions and dilaton, which

would otherwise not even have the full permutation symmetry. As we will see, this simple

fact leads to further non-renormalization theorems: the dilaton e↵ective action up to 10

derivatives is completely determined by two unknown coe�cients of the four-point operator

at s4 and s5.
10Note four- and five-point amplitudes admit no factorization channels.
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For the four-point amplitudes of order s2, the four-point result is one-loop exact,

namely it does not receive higher-loop and non-perturbative corrections [35]:

P
(0)

4

(s
ij

) = c
(0)

4

(g,N)⇥ 1 , (4.3)

where the one-loop exact coe�cient c(0)
4

(g,N) = g

4
N

32⇡

2
m

4 . By knowing the four-point ampli-

tude of order s2, the dilaton soft theorems allow us to determine all higher-point amplitudes

at this order. Since there are no factorization contributions in the recursion, all coe�cients

are determined by the four-point amplitude and hence one-loop exact. One can easily see

that these higher-point amplitudes are identical to that derived from DBI action in AdS

background, that we dubbed conformal DBI earlier on.

For amplitudes at s3, the four and five-point matrix element is simply zero due to the

fact that P (1)

5

(s
ij

) = 0 from momentum conservation. Thus the first non-trivial amplitude

starts at six-point which is constructible via soft-dilaton recursion. The six-point amplitude

receives contributions from local operator @6�6 as well as from factorization, which can be

parametrized as

A
(3)

6

= a
1

(s3
12

+ P
6

) + a
2

(s3
123

+ P
6

)

+

✓
g4N

8⇡2m4

◆
2

✓
(s2

12

+ s2
13

+ s2
23

)
1

s
123

(s2
45

+ s2
46

+ s2
56

) + P
6

◆
, (4.4)

where we have used the result of (4.3). The soft theorems then fix

a
1

= 0 , a
2

= �
✓

g4N

8⇡2m4

◆
2

. (4.5)

We see that the soft theorems fix the coe�cient of the local 6-point operator to be the

square of that of the 4-point operator of order s2. Since the latter is one-loop exact, the

six-derivative operator @6�6 as well as the amplitude A
(3)

6

are two-loop exact. The same

analysis applies to amplitudes beyond six points, and the recursion implies that order s3

amplitudes for arbitrary multiplicity are two-loop exact. In terms of higher-dimensional

operators, the soft theorems fix all the four and six-derivative operators (@4�n and @6�n)

completely, and they are in fact identical to the conformal DBI.

At order s4, an n-point amplitude receives contributions from factorization diagrams

at order s3 and s2, as well as the contribution from the local operator @8�n. As the factor-

ization contributions are identical to those of conformal DBI, it is convenient to separate

the contribution from the local operator @8�n into two parts: DBI and non-DBI.11 In this

way, the local DBI part combining with factorization channels reproduces the amplitudes

generated from conformal DBI, which is three-loop exact at order s4. This separates the

amplitude into two independent solutions to the soft equations. The remaining non-DBI

part consists of degree-4 symmetric polynomials in s
ij

. Again since at this order the ampli-

tude is recursively constructible beyond four points, the non-DBI contribution is completely

11Such separation was also used for the operator F 8 ⇠ F 2
�F

6
+ +F 2

+F
6
� +F 4

�F
4
+ in [22, 36], where the first

two “MHV” and “anti-MHV” operators are three-loop exact, and coincide with DBI.
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determined by the coe�cient of the four-point operator, which is unique at this order,12

P
(2)

4

(s
ij

) = c
(2)

4

(g,N)
�
s2
12

+ P
4

�
. (4.6)

Note that non-DBI contributions will be identical to that of the one-loop e↵ective action

(since there is no factorization at one loop) up to an overall normalization, namely c
(2)

4

(g,N)

at one-loop order, thus we denote this part as L`=1

@

8
�

n .

In summary, up to order s4, the dilaton e↵ective action is constrained by N = 4

supersymmetry as well as the soft theorems to take the form

X

k8

L
@

k
�

n = �
k,8

c
(2)

4

(g,N)L`=1

@

8
�

n +
X

k8

LDBI

@

k
�

n , (4.7)

namely when k < 8, the on-shell action is identical to conformal DBI, and at order k = 8

the all-loop and non-perturbative action is fully determined by a single coe�cient c(2)
4

(g,N)

of the four-point amplitude at this order.

For the amplitudes at order s5 there is again a single polynomial both at four and five

points, namely

P
(3)

4

(s
ij

) = c
(3)

4

(g,N)⇥ (s3
12

+ P
4

) , P
(3)

5

(s
ij

) = c
(3)

5

(g,N)⇥ (s3
12

+ P
5

) . (4.8)

First of all, the soft theorems requires c(3)
5

(g,N) = �2c(3)
4

(g,N). From soft-BCFW recur-

sion relations, at order s5 knowing the five-point amplitude allows us to fix the amplitudes

of arbitrary multiplicity. At this order, the factorization contributions come from ampli-

tudes of order s2, s3 as well as s4. As we have argued the amplitudes of order s2, s3 are

one and two-loop exact and coincide with conformal DBI, while order-s4 amplitudes we

separate into DBI and non-DBI parts. So it is again convenient to separate a DBI part

from the ten-derivative operator @10�n, such that it combines with factorization diagrams

from the amplitudes of order s2, s3 as well as DBI part of the order-s4 amplitudes, and

generates the corresponding amplitude of conformal DBI at this order, which is four-loop

exact.

Let us now consider the remaining contributions, which contain the factorization terms

of the non-DBI part of the order-s4 amplitudes with the amplitudes at order s2, as well

as non-DBI part of the local operator @10�n. Due to the fact that amplitudes of order s2

and of non-DBI part of the order-s4 are both in the one-loop form, (4.7), and clearly they

produce the factorization parts that are in the same form as those of two-loop amplitudes.

Thus these factorizations can be conveniently combined with a piece from the non-DBI part

of @10�n to produce the amplitudes as two-loop ones (again up to an overall factor), which

we denote as L`=2

@

10
�

n . The above analysis leads to the following compact representation for

the complete @10 e↵ective action,

L
@

10
�

n = c
(3)

4

(g,N)L`=1

@

10
�

n + c
(0)

4

(g,N)⇥ c
(2)

4

(g,N)L`=2

@

10
�

n + LDBI

@

10
�

n , (4.9)

12c(2)4 (g,N) as well as c(3)4 (g,N) that will appear later at order s5 have been computed at one and two-loop

orders in [8].
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again the kinematics dependences of L`=1

@

10
�

n and L`=2

@

10
�

n are completely fixed, and identical

to those of the e↵ective action at one and two loops, respectively.

Beyond order s5, the symmetric polynomials P
4

(s
ij

) and P
5

(s
ij

) can in general be

expressed in terms of several independent structures, which may di↵er at di↵erent loop

orders and instanton levels. Furthermore, in order to apply the soft-BCFW recursion

relations one eventually requires the knowledge of amplitudes beyond four points. For

instance at order s6, P
4

(s
ij

) and P
5

(s
ij

) are of order s4. At this order, P
4

(s
ij

) still has

only a unique structure, while P
5

(s
ij

) have two independent structures, thus there are three

independent parameters which can be reduced to two using the soft theorems of going from

five points to four points. The six-point amplitude can be generally expressed in terms of

a local polynomial term and terms containing factorization poles which are determined

by lower-point and lower-dimensional amplitudes 13. We find that the polynomial term

has 13 independent structures, and soft theorems can fix 10 of them in terms of those of

five-point amplitudes. However, clearly six-point amplitudes should be further constrained

by supersymmetry, such as the SUSY Ward identity presented in the Appendix B. We

will discuss this more in the following section of computing mixed amplitudes with both

dialtons and pions.

4.1.2 Dilaton and Pion mixed sectors

When R-symmetry pions involved, first of all at four and five points, the amplitudes are

completely determined by the pure-dilaton amplitudes via maximal supersymmetry as

shown in (4.1). As for higher-point amplitudes, due to the fact that the soft-pion theorems

are only leading order the constraints are slightly less powerful. As we discussed, for

mixed amplitudes with n
1

dilatons and n
2

R-symmetry pions the requisite bound for valid

recursion is n
1

+ 1

2

n
2

> k at order sk. Thus at order s3, all the amplitudes are fully

determined (and again are two-loop exact), except the six-point amplitudes with pions

only. Now, N = 4 SUSY imposes further constraints that help to completely fix these

amplitudes. Let us study this exceptional case in details in what follows.

As shown in details in Appendix B, we find that six-point SU(4)-violating component

amplitudes must take the form,

A(�
12

,�
12

,�
34

,�
34

,�
34

,�
34

) = s2
12

P
6

(s
ij

) , (4.10)

where P
6

(s
ij

) is symmetric polynomials with six external legs. At order s3, P
6

(s
ij

) is of

order s1 and vanishes due to the momentum conservation. Thus all the six-point amplitudes

(with or without dilatons) can be expressed as linear combinations of SU(4)-preserving

amplitudes, such as,

A(�
12

,�
12

,�
12

,�
34

,�
34

,�
34

) . (4.11)

A way of determining these amplitudes is to make an ansatz, and fix unknown parameters

using soft theorems. For this particular case, the ansatz can be expressed as a factorization

13At this order only four-point amplitudes of order s2 and s5 contributes since order-s3 four-point am-

plitude vanishes in N = 4 SYM.
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term with (two) four-point amplitudes A
4

(�
12

,�
12

,�
34

,�
34

) as the residue (thus this term

is two-loop exact), as well as a degree s3 polynomial with S
3

⇥ S
3

symmetry which has

7 independent structures. We find in fact in this case the soft-dilaton theorems alone are

enough to determine the amplitudes, and the soft-pion theorems can serve as a consistent

check. Explicitly, we find the amplitude to be given by

A(�
12

,�
12

,�
12

,�
34

,�
34

,�
34

) =

✓
gN2

32⇡2m4

◆
2


s2
12

s2
56

s
124

� 1

6

�
s3
12

+ s3
45

�� �s2
12

s
13

+ s2
45

s
46

�

� 1

3
(s

12

s
13

s
23

+ s
45

s
56

s
46

)

�
+ P{123;456} . (4.12)

From this amplitude and similar ones with di↵erent R-symmetry indices, we can obtain

all mixed amplitudes using the map in (2.13). At order s4, we find the same conclusion

that with the help of the SUSY Ward identity one can fix all six-point amplitudes at

this order, in terms of the four-point one, namely they are fully determined in terms of

a single unknown coe�cient c
(2)

4

(g,N). We then can apply soft-BCFW to determine all

higher-point amplitudes, except a seven-point amplitude with six pions as well as an eight-

point amplitude with eight pions. This obstruction can be understood by a simple large-z

counting. As we discussed in the previous section, supersymmetry should of course impose

further constraints, and we believe they should eventually completely fix all amplitudes at

this order in terms of the lowest-point one, especially given the fact that the pure-dilaton

sector is fully determined. Similarly at order s5, as far as for the constraints we have

used, unlike the pure-dilaton amplitudes not all the mixed amplitudes can be determined

in terms of the four-point one. As we discussed previously for pure-dilaton amplitudes at

higher points, it is certainly of interest to explore systematically the SUSY Ward identity

constraints, which has been very successfully applied to the “MHV” higher-dimensional

operators F 2

�F
2`

+

as well as SU(4)-breaking ones: �nF 2

�F
2`

+

. We will leave this investigation

as a future research direction.

4.2 6D N = (2, 0) supersymmetry

In D = 6, the N = (2, 0) theory contains a self-dual two-form and 5 scalars as its bosonic

field content. It describes the theory of multiple M5-branes, and since it lacks a perturbative

expansion parameter, it is a non-lagrangian theory. Moving on to the Coulomb branch

provides such an expansion parameter.

On the Coulomb branch 4 of the 5 scalars are R-symmetry Goldstone bosons of SO(5)

! SO(4) and the remaining one is the dilaton. The generators of SO(4) ⇠ SU(2) ⇥ SU(2)

are conveniently represented using a pair of Grassmann odd variables (⌘
a

, ⌘̃
a

), with a = 1, 2

being a chiral spinor index of the SU(2) subgroup of the little group14 SO(4) ⇢ SO(5,1):

{J+, Jz, J�} = {⌘·⌘, ⌘·@
⌘

� 1, @
⌘

·@
⌘

}, {J̃ i} = {J i(⌘ ! ⌘̃)} (4.13)

where the inner products are defined via the contraction of the chiral spinor index, i.e.

⌘·⌘ ⌘ ⌘a⌘
a

= 2⌘1⌘2. Note that the additive constant �1 for Jz is required by the com-

mutator [J+, J�] = Jz. When the operator Jz acts on the on-shell matrix elements one

14Not to be confused with the SO(4) residual R-symmetry.
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finds

JzA
n

⌘
X

i

(⌘
i

·@
⌘i � 1)A

n

= 0 (4.14)

and similarly for J̃z. As a result, the n-point amplitude turns out to be a polynomial

of degree (n, n) in the Grassmann variables. Following almost verbatim our discussion of

N = 4 SYM in D = 4, let us try to construct SUSY invariant local building blocks at four

and five-points that are annihilated by the 16 susy operators QA+ = �A·⌘, QA� = �A·@
⌘

and ⌘ ! ⌘̃, with A = 1, . . . 4 a spinor index15 of SO(5, 1). The susy invariant four- and

five- point amplitudes read

A
4

= �4(Q+)�4(Q̃+)
X

k

P
(k)

4

(s
ij

) ,

A
5

= �4(Q+)�4(Q̃+)

 
X

i

⌘
i

·⌘̃
i

!
X

k

P
(k)

5

(s
ij

) . (4.15)

Acting with the derivative susy operators gives zero, since it generates terms that are

proportional to the sum of total momentum or super-momentum, which vanish on the

support of the delta functions. Thus following a similar analysis as in the D=4 case, the

dilaton e↵ective action is again completely fixed up to ten derivatives in terms of the three

coe�cients of the four-point operator.

5 Scale vs Conformal symmetry

The relation between scale invariance and conformal invariance can also be studied for

e↵ective field theories (see e.g. [37] for a recent review). In our language, the question can

be framed as follows: “To what extent does the sub-leading soft theorem, due to broken

conformal boost symmetry, follow from the leading behaviour stemming from broken dila-

tion symmetry?” First of all, we find that any five-point amplitude (which is a polynomial

in s
ij

) constrained by the leading soft theorem automatically satisfy the sub-leading soft

theorem. This fact has been checked up to the very high s11 order. For instance, at this

particular order, four-point amplitudes involve two di↵erent polynomial structures, while

five-point amplitudes depend on eleven parameters associated to as many independent

polynomial structures. The leading soft theorem fixes two out of the eleven parameters in

terms of the rest and those in the four-point amplitudes, and we find that the sub-leading

soft theorem does not impose any further constraints.

More generally at higher points, according to the soft BCFW recursion relation, at

order sn, knowing the 2n-point amplitude is enough to completely fix all the amplitudes

with the same dimension by using the leading soft theorem alone, one may ask whether

these amplitudes satisfy the sub-leading soft theorem automatically. Recall that from soft-

BCFW recursion relations we have

A
2n+1

=
1

2⇡i

I

C0

dz

z

A
2n+1

(z)

F
(1)

2n+1

(z)
. (5.1)

15In D = 6 light-like momenta can be written as P [AB] = Pµ�[AB]
µ = ✏ab�A

a �
B
b .

– 18 –



From the form of the (2n+1)-point in the soft BCFW representation, it is highly non-

trivial that the amplitude also satisfies the sub-leading soft theorem. At order s2, all the

amplitudes are simply

A(2)

n

= c(2)
n

(s2
12

+ P
n

) , (5.2)

and c
(2)

n

for n > 4 are determined in terms of c(2)
4

via the leading soft theorem. With such

c
(2)

n

satisfying the leading soft theorem, in this relatively simple case one can show that

A
(2)

n

also satisfies the sub-leading soft theorem. Beyond order s2, the story becomes more

interesting and non-trivial. We have checked explicitly for many non-trivial examples that

this is indeed the case for amplitudes at orders s3, s4 and s5. Let us take s3 as an example

to illustrate the idea. The inputs are the five-point amplitude at order s3,

A
(3)

5

= c
(3)

5

(s3
12

+ P
5

) , (5.3)

as well as the four-point amplitude at order s2, A(2)

4

. With these inputs one can construct

the six-point amplitude using both leading and sub-leading soft theorems, and find, for

instance in 4D,

A
(3)

6

= �c
(3)

5

(s3
12

+ P
6

)�
 
c
(3)

5

2
+ (c(2)

4

)2
!
(s3

123

+ P
6

)

+ (c(2)
4

)2
✓
(s2

12

+ s2
13

+ s2
23

)
1

s
123

(s2
45

+ s2
46

+ s2
56

) + P
6

◆
. (5.4)

Now, the leading soft theorem alone allows us to determine A
(3)

7

in terms of lower-point

and lower-derivative amplitudes. Explicitly, we find

A
(3)

7

= c
(3)

5

(s3
12

+ P
7

) +
⇣
c
(3)

5

+ 3(c(2)
4

)2
⌘
(s3

123

+ P
7

)� (c(2)
4

)2Afac

7

, (5.5)

where A
fac

is the factorization contribution, defined as

Afac

7

= (s2
12

+ s2
13

+ s2
23

)
1

s
123

⇥
s2
45

+ s2
46

+ s2
47

+ s2
56

+ s2
57

+ s2
67

+ (s
47

+ s
57

+ s
67

)2

+ (s
45

+ s
46

+ s
47

)2 + (s
45

+ s
56

+ s
57

)2 + (s
46

+ s
56

+ s
67

)2
⇤
+ P

7

. (5.6)

It is then straightforward to verify that A(3)

7

with particular parameters fixed by the leading

soft theorem as in (5.5) does satisfy the sub-leading soft theorem automatically. Similar

construction or the use of recursion relations can be carried out for amplitudes of higher

order, as we mentioned we have explicitly checked the statement up to order-s5 local

polynomial terms (namely due to the complication at this order, we set the factorization

terms to vanish), which requires constructing the amplitudes until 10 points using both

leading and sub-leading soft theorems, and finally obtain the 11-point amplitude using the

leading soft theorem alone, and we find this amplitude does further satisfy the sub-leading

soft theorem.
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6 Conclusions

In this paper, we initiate the systematic study of constraints on e↵ective actions due to soft

theorems of spontaneously broken symmetries where multiple GB modes are mixed under

the broken symmetry. Using the one-loop and one-instanton e↵ective action for N = 4

SYM in the Coulomb branch, we demonstrated the validity of the dilaton soft theorems

as well as that of the newly derived R-symmetry pion soft theorems, both perturbatively

and non-perturbatively. We have shown that with maximal susy, the dilaton e↵ective

action is completely determined up to ten derivatives in terms of two unknown coe�cients

parameterising the four-point amplitude.

For CFTs which are non-Lagrangian, the dilaton e↵ective actions are unique in the

sense that the coe�cients of the irrelevant operators are not functions of continuous pa-

rameter such as the coupling constant. However even with maximal SUSY, we’ve seen that

broken and unbroken symmetries leave behind a large number of unknown coe�cients. It

is interesting to explore what are the other possible constraint that leads us to the unique

action. An obvious possibility would be to explore the full implication of UV unitarity.

At four points, this manifests itself as positivity constraint [1, 38].16 Needless to say that

results beyond four points, while complicated, are desirable as this would be an alternative

approach to gathering information on consistent CFTs.

In D = 4, the maximal supersymmetric theory also enjoys S-duality at finite N .

Furthermore in the large N limit the UV theory on the Coulomb branch enjoys dual

conformal symmetry [40]. It is thus a pressing question to understand to what extent

does this input allow us to further fix the e↵ective action. Also we have already discussed,

it is important to have a better understanding of utilizing supersymmetry constraints at

higher multiplicity, which would certainly reduce the independent parameters of higher-

point amplitudes. In D = 3, the massless degrees of freedom for the maximal theory are all

Goldstone bosons. The eight scalars are identified as 7 Goldstone bosons from the breaking

of SO(8) R-symmetry to SO(7), while the remaining one is the dilaton. Thus it would be

interesting to explore the extent of uniqueness for its e↵ective action when all broken and

unbroken symmetry are taken into account. One may apply similar analysis to the low-

energy expansion of string theories, since the string scattering amplitudes satisfy similar

soft theorems, in particular the soft “dilaton” theorems (for the closed-string dilaton) [7].

We observed and tested many highly non-trivial examples showing that amplitudes

determined by recursion relations only based on the leading soft theorem satisfy the sub-

leading soft theorem automatically. This observation leads to the supporting evidence

that relativistic quantum field theories (under certain assumptions) with scale symmetry

necessarily possess the enhanced conformal symmetry. It would certainly be interesting to

study more on the possible equivalence between scale invariance and conformal invariance

in the context of soft theorems.

Recently it was shown that the soft limit of Born-Infeld theory [41], at order q1 in soft

momentum is proportional to a larger theory involving the higher dimensional operators

16Recently, using unitarity, analyticity and crossing symmetry, [39] shows that amplitudes that are softer

than s2 does not admit a non-trivial UV completion.
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that mixes between the field strengths of Born-Infeld photons and Yang-Mills gluons. Given

that so far a majority of universal soft behaviours can be explained via symmetry, it will

be interesting to study if there exists a hidden symmetry in the larger theory that would

dictate such universal soft limits.
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A Dilaton vertices of one-instanton e↵ective action

After preforming the fermionic ✓-integration and expanding in 1/v, the one-instanton ef-

fective action in (2.19) generates higher-dimensional vertices, from which we can read o↵

scattering amplitudes of interest. Here we list some vertices involving dilatons that produce

– 21 –



scattering amplitudes in (2.29) of the section 2.2,

v8�(4)[']=(@
µ

@
⌫

'@µ@⌫')2� @
µ

@
⌫

'@⌫@⇢'@
⇢

@
�

'@�@µ' ⌘ (@@'·@@')2�(@@'·@@'·@@'·@@')
(A.1)

v9�(5)['] = �8'(@@'·@@')2 + 8'(@@'·@@'·@@'·@@')
� 8(@@'·@@') @'·@@'·@'+ 8 @'·@@'·@@'·@@'·@'� 2(@@'·@@'·@@' @'·@')

(A.2)

v10�(6)['] = 36'2(@@'·@@')2 � 36'2(@@'·@@'·@@'·@@')
+ 72'(@@'·@@'·@@'·@@') @'·@@'·@'� 72'@'·@@'·@@'·@@'·@'
+ 18'(@@'·@@'·@@') + 8(@·@@'·@')2 � 4 @'·@@'·@@'·@'+

9

2
(@@'·@@') (@'@')2

(A.3)

v11�(7)['] = �120'3(@@'·@@')2 + 120'3(@@'·@@'·@@'·@@')
� 360'2(@@'·@@'·@@'·@@') @'·@@'·@'+ 360'2 @'·@@'·@@'·@@'·@'
� 90'2(@@'·@@'·@@')� 80'(@'·@@'·@')2 + 40'@'·@@'·@@'·@'
� 45' (@@'·@@') (@'@')2 � 10 @'·@@'·@' (@'@')2 (A.4)

v12�(8)['] = 330'4(@@'·@@')2 � 330'4(@@'·@@'·@@'·@@')
+ 1320'3(@@'·@@'·@@'·@@') @'·@@'·@'� 1320'3 @'·@@'·@@'·@@'·@'
+ 330'3(@@'·@@'·@@') + 440'2(@·@@'·@')2 � 220'2 @'·@@'·@@'·@'
+

495

2
'2 (@@'·@@') (@'@')2 + 110'@'·@@'·@' (@'@')2 +

15

4
(@'@')4 (A.5)

v13�(9)['] = �792'5(@@'·@@')2 + 792'5(@@'·@@'·@@'·@@')
� 3960'4(@@'·@@'·@@'·@@') @'·@@'·@'+ 3960'4 @'·@@'·@@'·@@'·@'
� 990'4(@@'·@@'·@@')� 1760'3(@·@@'·@')2 + 880'3 @'·@@'·@@'·@'
� 990'3 (@@'·@@') (@'@')2 � 660'2 @'·@@'·@' (@'@')2 � 45' (@'@')4.

(A.6)

B Sp(4) SUSY Ward identity

Choosing the non-vanishing Sp(4) matrix elements to be ⌦12 = ⌦34 = 1, one can have

SU(4) violating amplitudes of the form

A(�
12

,�
12

,�
34

,�
34

,�
34

,�
34

) . (B.1)

They are represented in the following super amplitudes:

A
6

=
�8(Q)

h56i4
1

[34]4
(x

1122

Y
11

Y
22

+ x
1212

Y
12

Y
12

) . (B.2)

The coe�cients x
1122

and x
1212

are linear combination of component amplitudes. Their

explicit form will not be important here. Y
ij

= Y
ji

and is given by

Y
ij

=
⇥
([i3]⌘1

4

+ [34]⌘1
i

+ [4i]⌘1
3

)([i3]⌘2
4

+ [34]⌘2
i

+ [4i]⌘2
3

)

+
⇥
([i3]⌘3

4

+ [34]⌘3
i

+ [4i]⌘3
3

)([i3]⌘4
4

+ [34]⌘4
i

+ [4i]⌘4
3

) + (i ! j)
⇤
/2 . (B.3)
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Note that it is a polynomial in pairs of ⌘1
i

⌘2
j

and ⌘3
i

⌘4
j

. This is due to our choice of having

⌦12 = ⌦34 = 1. The component amplitude A(�
12

,�
12

,�
34

,�
34

,�
34

,�
34

) comes from the

coe�cient of the polynomial (⌘
5

)3(⌘
5

)4(⌘
6

)3(⌘
6

)4(⌘
3

)3(⌘
4

)4(⌘
3

)3(⌘
4

)4(⌘
1

)1(⌘
1

)2(⌘
2

)1(⌘
2

)2 in

the super amplitude:

A(�
12

,�
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,�
34

,�
34

,�
34

,�
34

) =
h12i2[12]2
h56i2[34]2

✓
x
1122

� 1

2
x
1212

◆
(B.4)

This can be compared to the (⌘
5

)3(⌘
5

)4(⌘
6

)3(⌘
6

)4(⌘
1

)3(⌘
1

)4(⌘
2

)3(⌘
2

)4(⌘
3
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3

)2(⌘
4

)1(⌘
4
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coe�cient:
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34
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34

,�
12

,�
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34
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34
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h34i2
h56i2

✓
x
1122

� 1

2
x
1212

◆
(B.5)

Thus by supersymmetry arguments, we find that

A(�
12

,�
12

,�
34

,�
34

,�
34

,�
34

) =
s2
12

s2
34

A(�
34

,�
34

,�
12

,�
12

,�
34

,�
34

) . (B.6)

The above identity shows that the amplitude A(�
12

,�
12

,�
34

,�
34

,�
34

,�
34

) at any order

must take the form,

A(�
12

,�
12

,�
34

,�
34

,�
34

,�
34

) = s2
12

P
6

(s
ij

) , (B.7)

and P
6

(s
ij

) has the full S
6

permutation symmetry. Furthermore, it is easy to see that

A(�
12

,�
12

,�
34

,�
34

,�
34

,�
34

) cannot have any factorization poles, thus P
6

(s
ij

) can mostly

have a pole of 1/s2
12

, but due to the permutation symmetry such a pole is not allowed. So

in conclusion, P
6

(s
ij

) is a symmetric polynomial in s
ij

, whose classification is much simpler

now. Similar analysis applies to other six-point Sp(4) amplitudes, and the same conclusion

can be reached.
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