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1 Introduction

Conventional wisdom on type IIB compactifications with 7-branes offers a nice geometric

hierarchy for the various ingredients that make up the four-dimensional effective theory:

gravity propagates along all of spacetime, gauge fields are localized on divisors of the

internal manifold, matter fields are localized on Riemann surfaces, and Yukawa couplings

are point-like.

However, this geometric intuition is amenable to drastic modifications once one allows

worldvolume scalars to acquire non-trivial vev’s. For instance, on a stack of n D-branes

we expect to see the spectrum of a U(n) gluon. On D7-branes, the worldvolume theory

also carries an adjoint-valued complex scalar. If this scalar acquires a vev along a Cartan

generator, it comes as no surprise that the gauge group gets broken to some subgroup. E.g.

〈Φ〉 = diag(φ1, φ2, . . . , φn) U(n)→ U(1)n . (1.1)

After all, such a vev has the geometric interpretation of separating the branes onto the

positions z = φi, for the complex transverse coordinate z, thereby making part of the

spectrum massive.

However, in [1], new vev’s were explored that do not alter the geometry of the stack

of D-branes, yet they drastically alter the gauge group. These bound states were later
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analyzed in more generality in [2] and [3]. In the latter, they were dubbed ‘T-branes’, and

were later analyzed in the F-theory context in [4]. The ‘T’ stands for ‘triangular’, meaning

the Higgs can be given a nilpotent, strictly triangular vev. For example, the vev

Φ =

(
0 1

0 0

)
(1.2)

breaks U(2) to the overall decoupled U(1).

General 7-brane vacua can host a number of other surprising effects. Several were

listed in section 7.2 of [3]. The most surprising is perhaps the fact that charged matter can

sometimes be absent at the intersection of two branes, or conversely, there can be matter

localized along a Riemann surface that has nothing to do with brane intersections. Finally,

matter can also localize at points. An example of such enigmatic behavior was studied in

detail in [3] from the worldvolume gauge theory point of view, but, as the authors claimed,

the physical meaning remained obscure.

In this paper, we recast T-branes in Sen’s tachyon condensation picture [5]. More

precisely, we describe perturbative type IIB D7-branes in the language of the derived

category of coherent sheaves [6], which is the most natural one for describing B-branes.

This move drastically simplifies the analysis.

First of all, by using this picture, one can almost trivially read off the unbroken gauge

group of a system by diagonalizing the tachyon field. Unlike the 7-brane worldvolume Higgs,

which cannot be diagonalized when a T-brane background is switched on, the tachyon field

does allow this under a wide class of circumstances.

In the cases with non-diagonalizable tachyon, we find matter fields that localize at

unexpected locations, or unexpected dimensions. By using our picture, we elucidate this

mysterious behavior: in all cases analyzed, the cause always turns out to be that there is

a bound state with a lower-dimensional brane that is causing the localization.

We will focus on B-branes in the B-model. In other words, we will mainly set aside

the issue of stability, and study only the holomorphic data. Physically speaking, this is of

course an oversimplification of the models we will discuss. It will allow us to focus on what

we consider to be the salient features of T-branes: unexpected gauge symmetry breaking

patterns, and unexpected localization of chiral matter. The issue of stability is of course

important, as it decides whether a T-brane bound state is possible or forced upon us.

In short, the holomorphic analysis we will emphasize determines what is ‘kinematically’

possible, whereas stability determines what is ‘dynamically’ allowed.

This paper is organized as follows. In section 2 we review the tachyon condensation

description of D7-branes and introduce the mathematical toolkit needed later. In section 3

we discuss four different instances of T-brane backgrounds in type IIB string theory, elu-

cidating their peculiar behavior. In all cases, we compare our approach to the standard

analysis based on the study of the worldvolume Higgs profile. In section 4 we focus on

general T-brane backgrounds of U(n) gauge theories and study their spectrum of fluctu-

ations. In section 5 we will present some compact examples, where Π-stability is taken

into account. Finally, in section 6 we speculate about generalizations of our description of

T-branes to non-perturbative F-theory configurations.
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. . . . . .

(b) General complex

Figure 1. Figure (a) depicts a system where the tachyon field is realized by strings going from

the anti-D9’s to the D9’s. Figure (b) depicts a more general situation with strings going back and

forth between D9 and anti-D9. The data is unfolded into a complex.

2 D7-branes as D9/anti-D9 tachyon condensates

It has been known for a while that all physically consistent D-branes in type IIB can be

described as the by-product of tachyon condensation between D9’s and anti-D9’s [5]. This

idea gave rise to the K-theory treatment of branes [7–9], and eventually to the program of

using the derived category of coherent sheaves [6, 10]. In this chapter, we will briefly review

this picture (see [11] and [12] for more detailed introductions). Introducing this formalism

will payoff in two ways: it will significantly simplify the treatment of T-branes, and it will

pave the way for a companion paper [13], in which we will describe general F-theory setups

through a related formalism known as matrix factorizations.

For D7-branes, the realization is very simple. Suppose we want to describe a D7-brane

located at P = 0, where P is some polynomial. Define a D9-brane with a gauge line-bundle

L1, and an anti-D9-brane with L2. This system will be unstable, with a bifundamental

tachyonic string represented by a field T , with

T ∈ Γ(L1 ⊗ L∗2) . (2.1)

If this tachyon has a profile given literally by the very polynomial 〈T 〉 = P , then the

brane/anti-brane annihilation will only be partial, leaving behind a D7-brane at P = 0.

This is summarized by the following short exact sequence:

0 −→ L2
·P−→ L1 −→ S −→ 0 . (2.2)

Here, the cokernel of the map ·P is a sheaf denoted by S with support only over P = 0.

Everywhere else, the map is invertible, and so the cokernel is empty.

To create a non-Abelian stack of D7-branes, we start with a non-Abelian stack of D9’s

with gauge bundle F , and a stack of anti-D9’s of equal rank with gauge bundle E, as

depicted in figure 1a. The tachyonic string going from the anti-branes to the branes is a

– 3 –
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bundle map T :

E F .T (2.3)

As a field, T transforms in the bifundamental w.r.t. to the gauge groups on the D9’s and

anti-D9’s

E F =⇒ T gD9 T g
−1
D9

T

gD9 gD9 (2.4)

If T assumes a nowhere singular (i.e. everywhere invertible) profile, then there will

be perfect brane/anti-brane annihilation, leaving nothing behind. However, if T is a non-

trivial section of E∗ ⊗ F , then the annihilation will fail whenever T is non-invertible.

For instance, consider an U(2) stack of D7-branes at z = 0 in C×R1,7. We will suppress

the irrelevant eight-dimensional factor. Let S ≡ C[z] be the polynomial ring of C, which is

essentially the trivial line bundle of holomorphic functions over C. Then the exact sequence

of interest is the following:

0 S⊕2 S⊕2 SU(2) 0 ,T (2.5)

where T is the tachyon with profile

T =

(
z 0

0 z

)
. (2.6)

Here, the first two terms correspond to a stack of two anti-D9’s, and a stack of two D9’s,

respectively. The last object is a sheaf corresponding to a rank-two bundle with support

over z = 0. To see the residual gauge group on the D7-brane, we start by noting that

the D9-stack and the anti-D9-stack have each an U(2) gauge group of their own. The

tachyon field transforms in the bi-fundamental of these two U(2)’s, as in (2.4). The residual

gauge group after the tachyon condenses is the one that leaves its form invariant. For the

background (2.6) only the diagonal U(2) survives, i.e. gD9 = gD9.

The matter on this system is given by the fluctuations δT of the tachyon modulo

linearized gauge transformations g = 1 + g:

δT ∼ δT + gD9 T − T gD9 . (2.7)

To see this, let us make our description of branes slightly more complete. So far, we only

considered a tachyonic string going from the anti-D9’s to the D9’s, but there can also be

tachyons going in the opposite direction. It turns out that one can ‘unfold’ this information

into a complex of bundles as depicted in figure 1b:

C• : Cn Cn−1 . . . C0 .
cn cn−1 c1 (2.8)

Here, each Ci is a spacetime filling D9-brane or anti-D9-brane if i is even or odd, respec-

tively. So, in terms of the previous description

E =
⊕
odd

Ci , and F =
⊕
even

Ci . (2.9)
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The maps ci are pieces of the full tachyonic spectrum of the system, organized such that

they compose to zero

ci−1 ◦ ci = 0 ∀i . (2.10)

One can perform gauge transformations on each constituent brane or antibrane, i.e. au-

tomorphisms on each of the Ci, as long as one transforms the maps accordingly as

bifundamentals

Cn Cn−1 . . . C0 with ci gi−1ci gi
−1 ∀i

cn cn−1 c1

gn gn−1 g0

(2.11)

The adjoint matter is given by the so-called Ext1(C•, C•), defined as the set of vertical

maps {mk} in the following commutative diagram

Cn Cn−1 . . . C1 C0

Cn Cn−1 Cn−2 . . . C0

mn

cn

mn−1

cn−1 c2

m1

c1

cn cn−1 cn−2 c1

(2.12)

i.e. such that ci−1 ◦ mi = mi−1 ◦ ci ∀i. Such a collection of maps is referred to as a

morphism between two complexes. We actually want to mod out by morphisms that are

gauge equivalent to zero. Those are morphisms equivalent to homotopies, i.e. diagonal

maps {dk} in

Cn Cn−1 . . . C1 C0

Cn Cn−1 Cn−2 . . . C0

dn mn

cn

mn−1
dn−1

cn−1 c2

dn−2 m1d1

c1

d0

cn cn−1 cn−2 c1

(2.13)

such that mi = ci ◦ di + di−1 ◦ ci ∀i.
In our running example, our brane SU(2) is represented by the two-term complex

SU(2) : S⊕2 S⊕2 .T (2.14)

Therefore, the adjoint matter is given by the vector space of vertical maps in the following

diagram:

S⊕2 S⊕2

S⊕2S⊕2

T

T

δT
−gD9

gD9

(2.15)
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Here we have used suggestive notation to recognize the physical meaning of the various

elements in the diagram. The two rows are copies of the same two-term complex. The

vertical map goes from the anti-D9-stack on top to the D9-stack below, and hence is ‘of

the same species’ as the tachyon T itself. This lends intuition to the idea that δT can be

thought of as a deformation of T . The left and right homotopy maps are easily recognized

as automorphisms of the anti-D9 and D9 stacks, respectively.

Now let us compute the spectrum in this language. First of all, any dependence on

the coordinate z in δT can be easily eliminated via a suitable homotopy. Given

δT = zM , (2.16)

for some matrix M , we can always define

gD9 = −gD9 =
1

2
M , (2.17)

such that

δT = gD9 T − T gD9 ∼ 0 . (2.18)

This just tells us that the spectrum of fluctuations of the tachyon is localized on the brane

at z = 0. Hence, we can identify δT with the Higgs field Φ mentioned in the introduction.

Now we can study z-independent fluctuations modulo homotopies with gD9 = +gD9, which

reduces to looking for adjoint matter in the U(2) theory.

Given two branes represented by complexes A• and B•, we can compute the chiral and

anti-chiral bifundamental spectrum as Ext1(A•, B•) and Ext1(B•, A•), respectively.

Finally, let us introduce one more concept: the cone construction. Just as we can

define objects as kernels or cokernels of maps between sheaves, so can we use morphisms

between complexes of sheaves to define other objects. This will allow us to bind a bigger

variety of branes together, as we will see later on. Given two complexes (A•, B•), and a

morphism m• between them

· · ·

· · ·

· · ·

· · ·

Ai−1 Ai Ai+1

Bi−1 Bi Bi+1

dAi dAi+1

dBi−1 dBi

mi−1 mi mi+1

(2.19)

we define a third complex C•, called the mapping cone of m• as the following complex

· · ·

· · ·

· · ·

· · ·

Ai Ai+1 Ai+2

⊕ ⊕ ⊕

Bi−1 Bi Bi+1

−dAi −dAi+1

dBi−1 dBi

mi mi+1 (2.20)

By introducing more notions, one can make sense of the notion that C• is the cokernel of

A•
m•−→ B•, i.e. C• ≡ B•/m•(A•). This construction allows one to create a brane as the

difference between two other branes.

– 6 –
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3 T-branes as coherent sheaves

In this section, we will introduce coincident as well as intersecting D7-branes that form

bound states via the condensation of open strings with unequal Chan Paton labels at their

extremities. For coincident branes, such setups were introduced in [1, 14]. Later on, in [15]

and [2], more general bound states were discovered that included intersecting branes, and

in [3] a systematic analysis of such systems was carried out. The term “T-branes” was

coined to describe 7-brane systems where the worldvolume adjoint Higgs field is given a

vev that cannot be entirely captured by its characteristic polynomial.

The purpose of this chapter is to recast the treatment of T-branes into the language of

coherent sheaves. We will present a few basic examples exhibiting unexpected behavior. We

will first use the standard language, in terms of a background Higgs field on the worldvolume

of the D7-branes. We will then rewrite everything in terms of tachyon condensation of

D9/anti-D9-brane pairs. This point of view not only drastically simplifies the information,

but also clarifies the apparently unusual behavior of systems described as T-branes.

3.1 Gauge group breaking via nilpotent Higgsing

Higgs picture. The following is the simplest example of a T-brane [3]. Take two co-

incident, flat D7-branes: the theory has a U(2) gauge symmetry with a complex adjoint

scalar Φ, which parametrizes the two transverse directions to the brane. Denoting by σi,

for i = 1, 2 or 3, the standard Pauli matrices, switching on a vev along any σi corresponds

to separating the two branes in this transverse space. One way to see this is to realize that

the algebraic equation describing the brane system is given by the characteristic equation

of the adjoint scalar. Denoting by ‘z’ the complex transverse coordinate, the equation is

then given by:

det(1z − Φ) = z2 + det(Φ) = 0 , (3.1)

whereby we used the tracelessness of Φ. The point is that any vev of Φ that admits a

diagonalization, i.e. Φ = σi, will amount to separating the branes, and breaking the gauge

group down to U(1)×U(1). However, since Φ is complex, we can switch on a vev along a

nilpotent direction, such as

Φ =

(
0 1

0 0

)
. (3.2)

The characteristic equation is unaffected by this, but the gauge group that leaves this vev

invariant is the overall U(1). The stack of branes behaves as a bound state, with only

a ‘center of mass’ U(1). Note, that this system is not onshell as an eight-dimensional

background as it violates the equation of motion [Φ,Φ†] = 0. Nevertheless, the example

exhibits properties that are universal, hence its interest.

One might wonder how this data is encoded in an F-theory, or dual M-theory picture.

This particular vev corresponds to a coherent state of strings stretching from one brane to

the other, and hence we expect it to lift to a coherent state of light M2-branes in the dual

M-theory picture, as opposed to some geometric modulus of the Calabi-Yau (CY). Indeed,

we can easily construct the relevant patch of the elliptically fibered CY manifold for this

– 7 –
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setup. Since both branes are mutually local, there are only T-monodromies, no S-dualities

around. Hence, only one 1-cycle of the elliptic fiber will collapse, and the other 1-cycle will

never mix with it. Hence, we can focus on a patch of the torus in the shape of a cylinder.

More precisely, consider the following geometry:

uv = det(1z − Φ) in C3 × R1,7 , (3.3)

with the C3 parametrized by u, v, z. For Φ = 0, we have uv = z2. Over each point away

from z = 0, we have a C∗-fiber, and over z = 0, the fiber degenerates to the union of two

lines. The whole fibration is in the shape of an A1 surface singularity. The key point here

is that, if we would turn on a vev for Φ along the Cartan of SU(2) ⊂ U(2), the surface

singularity would get smoothed by deformation.

uv = z2 −→ uv = z2 + ε2 , (3.4)

for Φ = diag(ε,−ε). On the other hand, for the nilpotent choice (3.2), the equation remains

unaffected. Hence, this Higgs branch does not correspond to a geometric modulus of the

F/M-theory compactification. Rather, it corresponds to a coherent state of M2-branes

wrapped on the vanishing sphere of the A1 singularity. This point of view will be further

developed in our companion paper [13].

Tachyon condensation picture. We are now ready to study our first T-brane using

the tachyon condensation picture. Set the background tachyon to the value

T =

(
z 1

0 z

)
. (3.5)

This is equivalent to taking an U(2) stack of D7-branes, and turning on a nilpotent Higgs as

in (3.2). However, now our efforts will pay off, and we will see that the tachyon condensation

picture makes the problem trivial. By performing a finite gauge transformation on the

stack of anti-D9’s and another one on the stack of D9’s, we can bring our tachyon to a

diagonal form:

T −→ T̃ =

(
z −1

1 0

)
T

(
1 0

−z 1

)
=

(
z2 0

0 1

)
. (3.6)

Note that these transformations have constant non-zero determinant, which is why they

are automorphisms. The crucial reason why this maneuver is possible is that the off-

diagonal entry of the tachyon is constant. From the U(2) Higgs point of view, Φ cannot be

diagonalized. There, the only available gauge transformations are in the adjoint of U(2).

From the tachyon condensation point of view, the crucial advantage is that there are two

independent gauge transformations one can perform on the left and right, and these need

not be each other’s inverses.

Now let us interpret our new tachyon T̃ : it is reducible, which means it represents

two decoupled D7-branes. However, the (2, 2) entry, being invertible, represents an empty

brane. In other words, the complex

S S ,·1 (3.7)

– 8 –
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has no cokernel. Physically, a constant non-zero tachyon implies total D9/anti-D9 annihi-

lation, leaving no D7 behind. Hence, this whole system is simply equivalent to

S S .z2 (3.8)

We can simply say that T ∼= T̃ ∼= z2. This is a bound state of two coincident branes. It is

now manifest that the system just has an overall decoupled U(1) gauge symmetry inherited

from the D9 and anti-D9 gauge symmetries:

S S
z2

gU(1) g̃U(1) (3.9)

with gU(1) = g̃U(1).

3.2 Phantom curve

Higgs picture. Another slightly more interesting example is that of two intersecting

branes. Two intersecting branes can be written as a ‘Higgsed’ U(2) theory. Take two

coincident D7-branes at z = 0, and switch on a position dependent vev along, say, σ3:

Φ0 = xσ3 , (3.10)

where x is a longitudinal worldvolume coordinate on the D7-stack. This breaks the SU(2) ⊂
U(2) down to a ‘relative’ U(1) ⊂ SU(2). This relative group is generated by the difference

of the generators of the U(1)’s of the two intersecting branes.

Nevertheless, at the ‘matter’ curve z = x = 0, the gauge group enhances back to

U(2). At this locus, there is trapped matter that can be analyzed by decomposing the

adjoint of U(2) in terms of the Cartan ‘relative’ U(1). The interesting states are the

off-diagonal fluctuations of this Higgs, which are charged ±2 w.r.t. to it. These are the

bifundamental strings stretching from one brane to the other. The characteristic equation

is simply (z + x) (z − x), which clearly shows the reducible geometry of the total system.

It is interesting to keep track of the F/M-theory lift of this system. A particular patch

of the corresponding elliptic fibration is the following

uv = (z + x) (z − x) . (3.11)

This is a family of conifold singularities fibered over the ‘matter curve’ at z = x = 0.

By performing a small resolution, we detect a vanishing P1. An M2 wrapping this sphere

corresponds to the M-theory lift of a bifundamental string of charge +2, and an anti-M2

corresponds to an oppositely oriented string of charge −2. Note, that by insisting on a

smooth F-theory manifold, we are forced to choose one of the two small resolutions in a

very unnatural way. The two choices are related by a flop transition. From the 3d gauge

theory point of view, this transition corresponds to a Weyl reflection on the enhanced

U(2) which exchanges the two Coulomb branches of the theory [16–19]. In our companion

paper [13], we will propose a language for describing the F-theory uplifts of intersecting

branes in the singular phase. This will facilitate the exploration of T-brane backgrounds,

which would otherwise be prohibited once a desingularization has taken place.

– 9 –
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Now, let us turn on a more interesting background on this intersecting brane system:

Φ =

(
x 1

0 −x

)
. (3.12)

The characteristic equation and therefore the F-theory uplift of this background is exactly

the same as before. However, the gauge group is now completely broken. By switching

on the off-diagonal term, we have condensed a bifundamental string, and now the two D7-

branes are bound together and behave as one brane. There are no charged states because

there is only a decoupled ‘center of mass’ U(1). Hence, all degrees of freedom are center of

mass displacements of this brane. The fact that the geometry of the total system falsely

displays a matter curve at z = x = 0, even though no matter is localized there, was dubbed

‘phantom curve’ in [3].

Tachyon condensation picture. Describing the system with phantom curve in the

tachyon condensation picture is remarkably simple. The tachyon corresponding to (3.12)

is simply: (
z + x 1

0 z − x

)
. (3.13)

We will now easily see that this is a bound state, with just a ‘center of mass’ U(1), and

therefore no charged localized matter. We simply perform independent gauge transforma-

tions on the D9’s and anti-D9’s as follows:

T −→ T̃ =

(
z − x −1

1 0

)
T

(
1 0

−z − x 1

)
=

(
z2 − x2 0

0 1

)
. (3.14)

Just as in the previous case, the ‘1’ in the (2, 2) entry corresponds to an empty brane,

so all we are left with is a bound state of two D7-branes at z2 − x2 = 0 behaving as a

single brane. The string that has condensed in order to bind these two branes changed the

nature of the coherent sheaf, but did not displace its support. Such degrees of freedom

were studied extensively in [2].

The standard tools to describe F-theory cannot handle this type of situation. See [4],

however, for an alternate proposal. If one can only specify a geometry, and a C3-form,

one will not see this ‘gluing data’. One must pass to the M-theory picture, and include a

coherent state of charged M2-branes wrapped on a vanishing cycle. The main objective of

our follow-up paper [13] is to provide a framework in which this extra information can be

naturally and practically integrated into the F-theory picture.

3.3 Nilpotent matter

In this section we will study a case where the characteristic polynomial of the Higgs field

completely misses massless modes. We will see that there are localized modes that can

be explained by analyzing the D7-branes as coherent sheaves, and by discovering that

they are in effect bound to an anti-D5-brane. The localized modes are remnants of the

D5/D5 strings.
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Higgs picture. Consider the following Higgs field

Φ =

(
0 x

0 0

)
. (3.15)

Let us first perform the standard analysis of the matter spectrum by parametrizing all

possible Higgs fluctuations

δΦ =

(
φ0 φ+
φ− −φ0

)
(3.16)

modulo linearized gauge transformations:

δΦ ∼ δΦ + [Φ, χ] (3.17)

for some 2× 2 matrix χ

χ =

(
χ0 χ+

χ− −χ0

)
. (3.18)

The most general commutator gives(
xχ− −2xχ0

0 −xχ−

)
. (3.19)

From this we deduce two modes localized on the curve {x = 0}. In other words, if (x, y)

are longitudinal coordinates on the stack at z = 0, then

φ+, φ0 ∈ C[x, y]/(x) . (3.20)

The system looks geometrically like a single stack of two D7-branes wrapping a surface,

yet there appears matter localized on a curve.

Tachyon condensation picture. Let us now use the tachyon condensation picture to

demystify this peculiar behavior. We will find that the localized modes are due to an

anti-D5-brane wrapping the locus {x = 0} inside the stack. The tachyon profile for the

background in question looks like

T =

(
z x

0 z

)
. (3.21)

Defining the coordinate ring of the internal space S = C[x, y, z], we remind the reader that

the 7-brane configuration is given by the cokernel sheaf in the sequence:

0 S⊕2 S⊕2 coker(T ) 0 .T (3.22)

To understand the sheaf coker(T ), it suffices to study how the rank of the tachyon matrix

T varies along the internal space. For instance, at a generic point in the ‘internal’ C3, T

has rank two. Hence, the cokernel of T as a linear map is zero. In physical terms, after

tachyon condensation, there is no D-brane at this locus. At a slightly less generic locus,

where z = 0, but x 6= 0, T will have rank one. Hence, its cokernel jumps up to rank one.
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This means that there is a D-brane at this locus. Since the codimension is one, we interpret

this as a D7-brane. In this case, it is a bound state of two coincident D7-branes as in 3.1

Finally, at the even less generic locus where z = 0 and x = 0, the tachyon is zero,

hence the cokernel has rank two. At this locus, we deduce that there is an object sitting

on top of the D7-brane, raising the rank from one to two. Given that this is happening on

an internal curve, this object must be either a D5 or an anti-D5. We will prove that is is

actually an anti-D5-brane. The situation is summarized as follows:

ideal rank(coker(T)) D-brane

(0) 0 none

(z) 1 D7

(x, z) 2 D7 + D5

This heuristic picture based on analyzing the rank of the tachyon matrix tells us

roughly what to expect. But in order to get a more precise picture, we must now describe

this system in terms of complexes. We will rewrite the complex describing our system

S⊕2 S⊕2

z x
0 z


(3.23)

as a bound state of a pure D7 system and an anti-D5. The D7 will be a bound state given by

S⊕2 S⊕2

z 1

0 z


(3.24)

which has no localized matter whatsoever. The complex for an anti-D5 is given by

S S⊕2 S .

−x
z

 (
z x
)

(3.25)

Note, that in a complex, the zeroth position is a matter of convention. In this case, we have

underlined the objects in position zero. This choice fixes which objects are to be thought

of as D9’s, and which as anti-D9’s. Our particular choice is such that the first complex

corresponds to a D7-brane, and the second complex to an anti-D5-brane.

Consider the following morphism in Ext1(D7, D5) between these two objects

S⊕2 S⊕2

S S⊕2 S

D7

D5

(
−z −1
0 −z

)

(
−x
z

) (
z x
)

(
0 1

0 0

) (
0 1
)

(3.26)
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The upper complex represents a bound state of two D7-branes. The lower complex is

an anti-D5 shifted by one to the left. Note that this morphism is constant along the

worldvolume of the D7-brane, so it does not generate any vortices. Now, in order to form

a bound state, we will take a mapping cone w.r.t. the morphism. Remember that the

mapping cone w.r.t. a morphism between two complexes A• → B• means creating an

object that is roughly a difference between these two objects. In this case, the cone has

the following form

S⊕2 S⊕2

S S⊕2 S

⊕ ⊕

(
z 1

0 z

)

(
−x
z

) (
z x
)

(
0 1

0 0

) (
0 1
)

(3.27)

This whole system can be written as the following complex

S⊕3 S⊕4 S


z 1 0

0 z 0

0 1 −x
0 0 z

 (
0 1 z x

)
(3.28)

By performing appropriate automorphisms on the various terms of the sequence and elimi-

nating parts with trivial cohomology, i.e. things of the form S
·1−→ S, we arrive at the form

S⊕2 S⊕2 ,

z x
0 z


(3.29)

which is the system we wanted. Now the origin of the strange matter curve at z = x = 0 is

elucidated: there is no second D7-brane intersecting our system on the curve; on the other

hand, there was an anti-D5 situated precisely at that curve. The localized nilpotent matter

are the remnants of the D5/D5 strings that are still localized after the D5 has formed a

bound state with the D7.

Note, that if we take D-terms into account, the anti-D5 will dissolve over the world-

volume of the D7, and the wave function of this matter will spread out. This can only be

seen by passing to unitary frame.

3.4 Point-like matter

Finally, let us introduce another peculiar phenomenon that can occur when non-Abelian

degrees of freedom are turned on. The standard picture in IIB string theory has a clearly

established hierarchy of gauge theory structures arranged according to codimension: gauge

– 13 –



J
H
E
P
0
9
(
2
0
1
5
)
1
6
1

groups reside on divisors, matter on intersection curves, and Yukawa couplings on triple

intersections of 7-branes. In [3], a case was found where the matter seems to be localized

on a point as opposed to a curve, which defies usual intuition. In this section, we will treat

a simpler setup that captures the same behavior, and through the tachyon condensation

picture, we will demystify the origin of the point-like matter.

Higgs picture. Let us start again with an U(2) stack of D7-branes at z = 0 with longi-

tudinal complex coordinates (x, y), and switch on the following vev for the adjoint Higgs:

Φ =

(
x y

0 −x

)
. (3.30)

This Higgs cannot be diagonalized. It breaks the U(2) down to the overall U(1) everywhere

outside the locus y = 0. On the curve y = 0, it enhances to a U(1) × U(1). At the

intersection of the curves x = 0 and y = 0, it enhances all the way back to U(2). This

tells us that there might be trapped matter at the various enhancement loci. The way to

analyze this is by parametrizing all possible fluctuations of the Higgs field

δΦ =

(
φ0 φ+
φ− −φ0

)
(3.31)

modulo linearized gauge transformations:

δΦ ∼ δΦ + [Φ, χ] (3.32)

for some 2× 2 matrix χ

χ =

(
χ0 χ+

χ− −χ0

)
. (3.33)

The most general commutator gives(
y χ− 2xχ+ − 2y χ0

2xχ− −y χ−

)
. (3.34)

Choosing only χ+ and χ0 non-zero, we discover that the fluctuation φ+ is entirely localized

at the point x = y = 0. More precisely, φ+ is a polynomial in x and y modulo the

ideal (x, y)

φ+ ∈ C[x, y]/(x, y) . (3.35)

This is a simple instance of point-like matter. The system looks geometrically like a pair of

intersecting branes, yet there is a field localized at a point, defying common expectation.

Tachyon condensation picture. In this section, we will use the tachyon condensation

picture to understand why the background (3.30) exhibits such peculiar behavior. We

will discover that there is actually an anti-D3-brane lurking, giving rise to modes localized

at a point.
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The tachyon profile corresponding to (3.30) is

T =

(
z + x y

0 z − x

)
. (3.36)

Defining the coordinate ring of the internal space S = C[x, y, z], we remind the reader that

the 7-brane configuration is given by the cokernel sheaf in the sequence:

0 S⊕2 S⊕2 coker(T ) 0 .T (3.37)

To get a heuristic picture of what the sheaf coker(T ) is made of, it suffices to study how

the rank of the tachyon matrix T varies in the internal space. For instance, at a generic

point in C3, T has rank two. This means that the cokernel of T as a linear map is zero.

The physical interpretation is that, after tachyon condensation, there is no D-brane at this

locus. At a slightly less generic locus, where (z + x) (z − x) = 0, but y 6= 0, T will have

rank one. Hence, its cokernel jumps up to rank one. This means that there is a D-brane

at this locus. Since the codimension is one, we interpret this as a (reducible) D7-brane.

Finally, at the locus z = x = y = 0, T has rank zero, bumping up the cokernel to rank

two. Therefore, there is point-like brane on top of the D7-brane at this point, which we

will show is an anti-D3-brane. We summarize this below:

ideal rank(coker(T)) D-brane

(0) 0 none

(z + x) 1 D7+

(z − x) 1 D7−

(x, y, z) 2 D7 + D3

This clarifies the origin of the point-like matter: it corresponds to remnants of the

D3/D3 strings.

Let us show this embedded anti-D3-brane more explicitly by actually creating a bound

state between the two D7’s at z + x = 0 and z − x = 0, and the anti-D3 at x = y = z = 0.

Since we are working on an affine space, the homotopy category is equivalent to the derived

category of coherent sheaves, so we only need to worry about homotopies. A string from

the D7+ at z + x = 0 to the anti-D3 binds these two together, while a string from the

anti-D3 to the other D7− at z − x = 0 binds these two together. More precisely, consider

the following two morphisms in Ext1(D7+, D3) and Ext1(D3, D7−), respectively:

S S D7+

S S⊕3 S⊕3 S D3

S S D7−

(z + x)

−X2 −X1 −X0

(z − x)

1−

1

0

1



1
(
−1 0 1

)

(3.38)
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where

X0 ≡
(
x y z

)
, X1 ≡

−y −z 0

x 0 −z
0 x y

 , X2 ≡

 z

−y
x

 .

The top complex represents the D7+, the middle complex is an anti-D3 shifted by one to

the left, and the bottom complex is the D7− shifted two places to the left. The rightmost

column schematically summarizes the idea.

Now, in order to create a bound state which corresponds to ‘condensing’ the blue

D7+/D3 strings, and the red D3/D7− strings, we take the mapping cones with respect to

both morphisms. The result is the following:

S S

⊕ ⊕

S S⊕3 S⊕3 S

⊕ ⊕

S S

(z + x)

X2 X1 X0

(z − x)

−1

1

0

1



1
(
−1 0 1

)

(3.39)

We have chosen the zero position of the complex (displayed by the underlined objects),

such that we have two D7-branes and one anti-D3-brane. After performing appropriate

automorphisms on the various objects, we arrive at the desired complex:

S⊕2 S⊕2 .

z+x y

0 z−x


(3.40)

This completely elucidates the origin of the mysterious point-like matter. There is an

embedded anti-D3 bound to the D7-stack. The point-like matter corresponds to D7/D7

strings, whose origin are the D3/D3-strings, before the D3 was bound to the D7. It is

natural to expect that, whenever T-branes display such peculiar behavior, there will be an

explanation in terms of embedded lower D-branes present in the system.

4 Spectrum of T-brane backgrounds

In this section we discuss other peculiar features of the matter spectrum of T-brane back-

grounds not related to lower-dimensional branes. Using the tachyon condensation picture,

we will analyze fluctuations around various backgrounds, as reviewed in section 2. This

method will allow us to easily visualize the gauge symmetry breaking patterns induced by

gluing data.
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Let us work in affine space, with S = C[z] the ring of functions in one complex variable.

In other words, we consider eight-dimensional theories. A stack of n D7-branes carrying

an unbroken U(n) gauge symmetry is described by the following tachyon background

S⊕n S⊕n .
z1n (4.1)

Starting from this system, one can create several T-brane configurations, corresponding to

turning on vevs for the various open strings with unequal Chan-Paton factors. Because

the branes of the stack are all indistinguishable, we can limit ourselves, without loss of

generality, to tachyons of the following form

T =


z ∗
z ∗ 0

. . .
. . .

0 z ∗
z

 . (4.2)

In other words, we can focus on just the open strings stretching between two consecutive

D7-branes. Moreover, any z-dependence in their vevs can be gauged away. This means that

the ∗’s in (4.2) are all constants, and we can take them to be either 0 or 1. We thus see that

the possible Jordan block structures of the n × n tachyon give us all inequivalent ways of

binding together two or more D7-branes in the stack. Tachyons differing by permutations

of Jordan blocks are gauge equivalent. Therefore we can classify the inequivalent T-brane

backgrounds of a U(n) system just by a set of integers, {mi}i=1,...,n, where mi is defined

to be the multiplicity with which the i × i Jordan block appears in (4.2). Having no T-

brane corresponds to m1 = n and all others equal to zero. This classification is well-known

in group theory under the name of ‘nilpotent orbits’, and it extends to groups of the D

and E types [20]. According to the general theory, starting from U(n), the gauge group

left unbroken by a T-brane configuration corresponding to the set {mi} is ΠiU(mi). To

simplify computations, every time a i× i Jordan block appears, we can make D9/anti-D9

independent gauge transformations of the type (3.6) and throw away empty summands, in

order to reduce the whole block to the 1 × 1 matrix zi.

The aim is now to find the massless fluctuations about a given T-brane background.

For concreteness, let us work in the n = 4 case, which already shows all the interesting

features of T-branes of U(n) systems. There are four inequivalent T-brane backgrounds we

can construct:

{2, 1, 0, 0} : T =


z 1 0 0

0 z 0 0

0 0 z 0

0 0 0 z

 '
z2 0 0

0 z 0

0 0 z

 U(1)×U(2) , (4.3a)

{0, 2, 0, 0} : T =


z 1 0 0

0 z 0 0

0 0 z 1

0 0 0 z

 '
(
z2 0

0 z2

)
U(2) , (4.3b)
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{1, 0, 1, 0} : T =


z 1 0 0

0 z 1 0

0 0 z 0

0 0 0 z

 '
(
z3 0

0 z

)
U(1)2 , (4.3c)

{0, 0, 0, 1} : T =


z 1 0 0

0 z 1 0

0 0 z 1

0 0 0 z

 ' z4 U(1) , (4.3d)

where the left-most column indicates the set of integers {mi} labeling each T-brane config-

uration and the right-most one shows the corresponding residual gauge group. For each of

these configurations, we would now like to analyze the adjoint spectrum δT by computing

Ext1(cokT, cokT ). Let us discuss all cases in turn.

In the background (4.3a), we have turned on a vev for the 1→ 2 string of the original

system. The new system has less degrees of freedom: intuitively, it has lost the fluctuations

associated to all open strings whose decomposition in terms of k → k + 1 strings contain

the 1 → 2 string, i.e. 1 → 3 (which can be written as 1 → 2 → 3), 4 → 2 (which can

be written as 4 → 1 → 2), and also 1 → 4 and 3 → 2.1 It is interesting to zoom into

the newly formed bound state between the first and the second D7-brane, and analyze its

fluctuations. By going to the diagonal basis, we find two degrees of freedom in the tachyon

variation δT

Ext1
(
cok(z2), cok(z2)

)
=⇒ δT = 2αz − β α, β ∈ C . (4.4)

Their distinct roles are actually more manifest in the old basis, with the 2 × 2 tachyon,

where we find:

Ext1

(
cok

(
z 1

0 z

)
, cok

(
z 1

0 z

))
=⇒ δT =

(
α 0

β α

)
α, β ∈ C . (4.5)

Using (3.6) and getting rid of the trivial summand, one can verify that (4.4) and (4.5) are

indeed equivalent, modulo higher orders in the fluctuation. In (4.5), however, we clearly

see that α is naturally associated to normal displacements of the bound state’s center

of mass, whereas β shows up as a nilpotent fluctuation and corresponds to the former

2 → 1 string. This fluctuation may be given the interpretation of a ‘smoothing’ degree

of freedom of the support of the bound state. Since the bound state enjoys only a U(1)

gauge symmetry, the fact that we find two complex scalars seems to be incompatible with

minimal supersymmetry in eight dimensions, which requires just one complex scalar in an

abelian vector multiplet. However, we have to remember that T-branes in eight dimensions

are not onshell, as they are constant and violate the BPS equation [Φ,Φ†] = 0.

Such constraint can instead be fulfilled in six or lower dimensions by including a suit-

able worldvolume flux. Therefore, we have a theory with at most eight supercharges, where

1They are easy to visualize in the tachyon matrix: they correspond to all entries which have a 1 either

in their row or in their column.
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vector multiplets do not have scalars. The fluctuations we are now discussing will fall in a

number of adjoint-valued hypermultiplets (or chiral multiplets for the case of four super-

charges), whose quantity will of course depend on the topology of the internal worldvolume

of the bound state. The remaining fluctuations of the background (4.3a) correspond to the

adjoint of the U(2) system and a pair of bifundamental fields (i.e. strings stretching between

the bound state and the U(2) system).

The background (4.3b) is characterized by the independent formation of two bound

states of the same nature, one between the first and the second brane and the other between

the third and the fourth brane. Such a situation enjoys an enhancement of gauge symmetry

from U(1)×U(1) to U(2). The spectrum of fluctuations thus comprises the adjoint of U(2),

and in addition includes the smoothing degrees of freedom of the two bound states.

In the background (4.3c) a bound state of different nature is formed, namely one involv-

ing three branes, leaving apart a single brane of the original stack. Hence we have a system

with two U(1)’s, and the spectrum includes their normal displacements together with a pair

of bifundamental fields. These degrees of freedom are easily seen in the diagonal basis. Let

us now zoom in on the 3 by 3 bound state. Here, we discover two additional fluctuations

in the massless spectrum, which are associated to the former 3 → 1 string, i.e. the only

string involving neither of the two turned on. Again these can be thought of as smoothing

degrees of freedom, and are best identified in the basis with the non-diagonal tachyon:

Ext1

cok

z 1 0

0 z 1

0 0 z

 , cok

z 1 0

0 z 1

0 0 z


 =⇒ δT =

 0 0 0

0 0 0

βz + γ 0 0

 β, γ ∈ C , (4.6)

where we have omitted the center of mass (diagonal) fluctuation, already accounted for.

Finally, in the background (4.3d), all of the four branes of the original stack are bound

together, thus breaking the gauge group all the way down to the U(1) associated to their

center of mass. With a computation similar to (4.5) and (4.6), we find

δT =


α 0 0 0

0 α 0 0

0 0 α 0

βz2 + γz + δ 0 0 α

 α, β, γ, δ ∈ C , (4.7)

where α represents the normal movements of the bound state, whereas β, γ, δ are its smooth-

ing degrees of freedom.

Note that, for a bound state zk, none of the δT ’s we find yield a deformation propor-

tional to zk−1. The reason is that this type of fluctuation can be killed at first order by a

change of coordinate. Indeed, suppose we have zk + εzk−1, with ε� 1. Define z̃ = z + ε/k.

Then, in the new coordinate, we get z̃k +O(ε2), as claimed. The class of smoothings which

our computation captures are non-trivial in this sense, and are known as ‘versal’ deforma-

tions. Roughly speaking, they are defined as those hypersurface deformations which are

not in the ideal of the gradient of the defining polynomial (the Jacobian ideal).

The same type of deformations shows up in the spectrum of fluctuations of the bound

state of two intersecting D7-branes discussed in section 3.2. Indeed, for a bound state
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wrapping the locus {z2 − x2 = 0}, with the usual Ext1 computation in the 2 × 2 basis

one finds

T =

(
z + x 1

0 z − x

)
=⇒ δT =

(
C[z − x] 0

ε C[z + x]

)
ε ∈ C , (4.8)

where we see that the only smoothing degree of freedom appearing corresponds to the only

possible versal deformation of the singular geometry, namely z2 − x2 + ε.

5 Stability in compactifications

So far in this paper, we have dealt only with topological B-branes, thereby ignoring any form

of stability conditions. In doing this, we were able to effectively study the most peculiar

features of T-branes, at the cost of ignoring conditions for the actual existence of such T-

branes. Simply put, two D-branes will not bind together unless there is a tachyonic string

stretched between them. Computing Ext groups allows one to determine the presence of

stretched strings, but does not determine whether these are massive, massless or tachyonic.

5.1 Review of Π-stability for D-particles

We will briefly review the notion of Π-stability, which allows one to determine which B-

branes can form bound states in the context of CY threefolds. The language we will

employ is actually borrowed from a different setting, where one describes BPS D-particles

in N = 2, d = 4 compactifications of IIA on a CY threefold X3. To access that setting,

we simply get rid of the three spatial worldvolume dimensions of our branes. For instance,

instead of thinking of two spacetime filling D7-branes that wrap four-cycles, one thinks of

two D4-branes wrapping four-cycles, giving rise to two particles in four dimensions.

IIA compactified on X3 gives us a N = 2, d = 4 effective theory. A Dp-brane wrapping

an internal p-cycle can manifest itself as a 4d 1/2-BPS particle that breaks the super-

symmetry to an N = 1ξ ⊂ N = 2. Here, ξ parametrizes the relative phase of the linear

combination of N = 2 generators that is preserved.

To a given D-brane with RR-charge vector Γ = (qD6, qD4, qD2, qD0), we can attribute

a ‘central charge’ function Z(Γ, t), where t = B + iJ is the complexified Kähler modulus.

Two D-branes Γ1 and Γ2 will preserve the same N = 1 if the phases of their respective

central charges are aligned [21]:

Γ1 and Γ2 mutually BPS ⇐⇒ arg (Z(Γ1, t)) = arg (Z(Γ2, t)) . (5.1)

Note, that the property of being mutually BPS depends both on the charges and the com-

plexified Kähler modulus. The N = 1 ⊂ N = 2 preserved by a brane can be parametrized

by the normalized argument2

ξ ≡ 1

π
arg(Z) . (5.2)

2Although ξ is a priori an angular variable, it turns out that we must ‘unfold’ it, and let it run over R
in order to get consistent results. See [11] for an explanation. We will, however, not run into this issue in

our applications.
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The central charge of a D-brane given by a coherent sheaf S, can be computed at large

volume with the following formula3

Z(Γ, t) = −
∫
X3

e−t ch(S)
√

Td(X3) , (5.3)

where all objects in the integrand are to be expanded as power series, and only the top-form

components contribute to the integral. In this language, if we think of Γ as a polyform

Γ = qD6 + qD4
iDi + qD2iC

i + qD0 ω (5.4)

where, Di is a basis for H2(X3,Z), Ci is a basis for H4(X3,Z), and ω is the volume form

of X3, then we can make the identification Γ = ch(S)
√

Td(X3) .

This formula for the central charge receives strong α′ corrections from worldsheet

instantons at generic points in moduli space that have to be computed by solving the

Picard-Fuchs equation. However, we will mainly stay in the large volume regime to avoid

this issue.

Let us now define the so-called Π-stability, in its specialization at large volume. Sup-

pose we have a brane given by a coherent sheaf S that fits in a short exact sequence

0→ S2 −→ S −→ S1 → 0 . (5.5)

Then it is possible for S to decay into S1 and S2 provided the following conditions are met:

1. We are near a locus in Kähler moduli space where the phases of S1 and S2 are aligned

ξ1(t) = ξ2(t) . (5.6)

Typically, this region will be a real codimension one locus in the moduli space. It is

referred to as a wall of marginal stability.

2. On the side of the wall where the open strings connecting S1 and S2 given by

Ext1(S1,S2) are tachyonic, these will acquire a vev, thereby binding the two branes

into a bound state S. This is the ‘stable side’ of the wall. On the side where they

are massive, the ‘unstable side’, the bifundamental string has a vanishing vev, and

the branes S1 and S2 are unbound. In other words, S decays into these two branes,

but the resulting vacuum breaks supersymmetry.

The formula for the mass of an open bifundamental string in Extp(S1,S2) is given by

m1→2
2 =

1

2
(ξ2 − ξ1 + p− 1) . (5.7)

So, in our case, that statement becomes the following:

Near a wall of marginal stability, brane S is stable with respect to decay into S1
and S2 provided ξ1 > ξ2.

The full-fledged statement of Π-stability is essentially the same as what we have just

said, except that we may now deal with general objects of the bounded derived category

of coherent sheaves on X3, D
b(X3), as opposed to just coherent sheaves. This also means

that the notion of short exact sequence gets replaced by that of distinguished triangles.

3We are now using the conventions in [21].
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5.2 Π-stability for O7/D7 systems

Everything in the preceding section was defined to deal with Dp-branes wrapping p-cycles

of a CY threefold. However, the full power of that language can be transposed to the

setting of CY threefold compactifications with spacetime filling D-branes and O-planes,

leading to d = 4,N = 1 theories. All one needs to do is to add three spatial worldvolume

dimensions to the branes. Although the term ‘central charge’ no longer has a clear physical

meaning, the formalism still allows one to decide which branes preserve N = 1. One must

first compute the phase of central charge ξO7 associated to the O7-plane with formula (5.3),

but with an overall minus sign:

ξO7 =
1

π
arg

(∫
X3

e−t (−8 [DO7] +
1

6
χ(DO7)ω )

)
,

largevol−→ ξO7 = 0 . (5.8)

This sets the N = 1 preserved by the O-plane projection, of the original N = 2 preserved

by the CY threefold. Borrowing the language from the previous section, let us compute

the central charge of a D7-brane charge vector:

Γ = qD9 + qD7
iDi + qD5iC

i + qD3 ω (5.9)

with a basis {Di} ∈ H2(X3,Z) of (1, 1) forms, a dual basis of four-forms {Ci} ∈ H4(X3,Z)

such that
∫
X3
Di ∧ Cj = δi

j , and ω the volume form of norm one. Defining the triple

intersection numbers

cijk ≡
∫
X3

Di ∧Dj ∧Dj , (5.10)

we can write down the central charge as a function of t = (Bk + i Jk)Dk as follows

Z = −
∫
X3

exp(−t) ∧ Γ = −1

2
qD7

i tj tk cijk + qD5i t
i − qD3 , (5.11)

where we took qD9 = 0. If we take a large volume limit where all ratios4 Bk/Jk → 0, this

reduces to

Z −→ 1

2
qD7

i J j Jk cijk + i qD5i J
i − qD3 . (5.12)

Hence, the requirement that a D7-brane preserves the same N = 1 boils down to the

constraint ∑
i

qD5i J
i = 0 . (5.13)

Note that, in these conventions, it is anti-D3-branes that are supersymmetric.

In the next section, we will study the stability condition for a D7-brane of charge vector

Γ with respect to decay into two D7-branes Γ→ Γ1 + Γ2 directly in an example.

4There may be other, more subtle ‘large volume limits’ one could take. In the case of O7-plane projections

with h1,1
− = 0, the B-field has a fixed value.
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5.3 Examples of T-branes in a one-modulus compactification

The T-branes we have discussed until now are only to be thought of as local descriptions.

Depending on how the models are compactified, these may or may not satisfy the full set of

equations of motion. The devil is in the D-terms. In order to have a well-defined, normaliz-

able solution that preserves both Poincaré invariance and some fraction of supersymmetry,

the simplest possible scenario requires compactifying the 7-branes on a Riemann surface

of negative sectional curvature, as discussed in [4].

Compactifying the 7-brane on a simply connected complex surface simplifies matters,

as we do not have to deal with Wilson lines in order to define bundles. Hence, in this section,

we will present simple examples of globally well-defined T-branes. We will compactify IIB

on the octic CY threefold given by a degree eight hypersurface in weighted projective space

P4
1,1,1,1,4[8] with homogeneous coordinates [x1 : . . . : x4 : ξ] , (5.14)

where ξ has degree four. This example is particularly nice because it admits the orientifold

involution ξ → −ξ. The O7-plane is defined by ξ = 0. Its Poincaré dual class is DO7 = 4H,

where H is the hyperplane class of the ambient space, defined as the Poincaré dual to, say

x1 = 0. The triple intersection number of this space is
∫
X3
H3 = 2 . There is only one

complexified Kähler modulus tH = (B + iJ)H. However, the orientifold projection sets

B = 0, hence our computations for the central charges simplify drastically.

A generic D7-brane will have a charge vector Γ = qD7H + qD5 (12)H2 + qD3 (12)H3 of

induced charges. The condition that such a brane be supersymmetric is therefore, that its

phase be real. In this case, the large volume limit yields

Z(D7) = J2 qD7 + i J qD5 − qD3 . (5.15)

The requirement, therefore, boils down to having zero induced D5-charge. In this compact-

ification, orientifold-invariant branes already satisfy this, therefore only brane-image-brane

pairs can violate it. This has drastic consequences in this case: No two D7-branes with

a chiral spectrum can be mutually supersymmetric in one-modulus compactifications! Any

such pair will inextricably: a) form a bound state, either as a smooth recombined brane,

or as a T-brane; b) or there will be a non-supersymmetric vacuum.

Let us take two generic D7-branes in our octic compactification, and define the com-

bined system as a coherent sheaf as follows:

0→ O(−d1 + f1)⊕O(−d2 + f2) O(f1)⊕O(f2)→ S1 ⊕ S2 → 0

P1 0

0 P2


. (5.16)

Concretely, each Si is a D7-brane wrapping a divisor Pi of degree di, carrying worldvol-

ume flux F = (fi−di/2)H. Let us simplify this general discussion by choosing d1 = d2 = d,

and impose that the net D5-charge of the combined system be zero, which translates to

f1 + f2 = d.

Any two such branes will intersect along a curve C that will host charged matter. The

latter can be computed via Ext groups either directly, or via a spectral sequence. The
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result is the following for the chiral and anti-chiral matter, respectively:

Ext1(S1,S2)) = H0(C,O(f2 − f1 + d1)) = H0(C,O(2 f2)) , (5.17)

Ext1(S2,S1)) = H0(C,O(f1 − f2 + d2)) = H0(C,O(2 f1)) .

By inspecting the tachyon matrix in (5.16), we see immediately that Ext1(S1,S2)
corresponds to the set of possible (2, 1) entries modulo automorphisms that kill off anything

in the ideal (P1, P2), and, similarly, Ext1(S2,S1) corresponds to the (1, 2) entries. These

fields, call them, χ+
i and χ−

j , respectively, must satisfy the following D-term constraint:∑
i

|χ+
i|2 −

∑
j

|χ−j |2 = µ(ξ1 − ξ2) ≈
2µ

π J
(f1 − f2) , (5.18)

where µ is a positive constant such that, this D-term reproduces the mass formula in (5.7)

correctly for both kinds of fields. Note, that, in principle, vector-like pairs might be lifted

by instanton-generated F-terms. We will assume that such effects are absent or suppressed

in this discussion. If such effects do occur, however, then one would conclude by inspecting

the D-term (5.18), that T-branes are impossible in one-modulus Calabi-Yau’s.

We will now analyze two special cases of interest:

Case 1: constant T-brane. If we choose f2 = 0, f1 = d, then, the (2, 1) entry, the

positively charged matter, is a constant (section of O). The negatively charged matter is

a section of O(2 d). The right-hand-side of the D-term (5.18) is then positive. Here we get

a family of solutions, including one with a tachyon T of the form

T =

(
P1 0

c P2

)
with c = 2 d/J . (5.19)

This can be diagonalized to the following system

O(−d)⊕O O(d)⊕O ∼= O(−d) O(d) .

P1P2/c 0

0 c


P1P2/c

(5.20)

We manifestly see that the brane behaves as a single brane on a reducible divisor, with

the gauge group broken to a single ‘center of mass U(1)’. Because the new brane has zero

D5-charge, it preserves the same supersymmetry as the O7-plane. We emphasize that the

stability conditions force this brane recombination upon us.

Case 2: point-like matter. Let us now choose f2 > 0 and f1 > f2. In this case, there

exists again a family of solutions to the D-term equations, with a special case being that

where the (1, 2) entry is zero, and the (2, 1) entry is a section of O(2 f2).

T =

(
P1 0

ρ P2

)
with ρ ∈ OC(2 f2) . (5.21)

This is a non-diagonalizable T-brane that has point-like matter of the kind discussed in

section 3.4, along the points P1 = P2 = ρ = 0.
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The analog of (3.38) in this case is

O(f2) O(f2 + d) D72

O(f1 − 2 d) E F O(f2 + d) D3

O(f1 − 2 d) O(f1 − d) D71

P2

−X2 −X1 −X0

P1

1

0

0

1



1
(
0 0 1

)

(5.22)

where

X0 ≡
(
ρ −P1 −P2

)
, X1 ≡

P1 0 P2

ρ P2 0

0 −P1 ρ

 , X2 ≡

 P2

−ρ
−P1

 ,

and E = O(f1 − d)⊕O(f2 − d)⊕O(f1 − d), F = O(f1)⊕O(f2)⊕O(f2)

After appropriate automorphisms, this reduces to

O(f1 − d)⊕O(f2 − d) O(f1)⊕O(f2)

P1 0

ρ P2


. (5.23)

Notice that the end result is our T-brane bound state of two D7-branes with fluxes f1−d/2
and f2 − d/2, whereas the initial description is as a bound state of an anti-D3 with two

D7-branes with fluxes f1 − 3
2 d and f2 + d/2. So, this T-brane can be disentangled in two

inequivalent ways. This is only visible in a compact space, where we have gradings to

distinguish these branes.

Let us now study the stability conditions for this T-brane to decay into these three

constituents. There are two possible decay processes:

1. T-brane → D71 + D3/D72 → D71 + D3 + D72.

2. T-brane → D71/D3 + D72 → D71 + D3 + D72.

In either case, the first decay has as the right-hand-side of the D-term constraint

(f2− f1 + 2 d). So, the bound state is stable only if this is positive. Using that f1 + f2 = d

for absence of total D5-brane charge, we see that for both process 1. and 2., the first step

can take place if f2 < −d/2. Let us now discuss the second decay. In process 1., the second

decay can take place if f2 < −d/2, whereas in process 2., the second decay can take place

if f1 > 3d/2, which again is equivalent to f2 < −d/2.

To summarize, assuming absence of total D5-brane charge, the condition of stability

of the T-brane (5.21) against any type of decay is 0 < f2 < d/2. On the other hand,

if f2 > d/2, the T-brane will decay into the two D7-branes defined by (5.16). However,
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the case with f2 < −d/2, for which the T-brane would decay into two D7’s and one anti-

D3 according to either of the processes discussed above, does not exist, since ρ would

be a section of a negative bundle, and hence forbidden from assuming a vev. Therefore,

whenever this T-brane can exist holomorphically, it is also automatically stable against

these two decay channels involving anti-D3’s. This result bolsters our claim that T-branes

with point-like matter can be thought of as bound states of 7-branes with 3-branes.

6 Discussion

In this paper, we have analyzed wide classes of configurations with perturbative IIB D7-

branes. The main conclusion is the following: whenever the tachyon matrix can be diago-

nalized, calculations of gauge groups and spectra become extremely simple. Whenever the

off-diagonal entries are not constant, hence preventing such diagonalizations, matter fields

exhibit strange behavior regarding their localization. In all such cases, we find that there is

a lower-dimensional brane lurking inside the 7-brane underlying the observed localization.

Although our techniques are manifestly perturbative in nature, one cannot help but

speculate that more general F-theory T-branes should also obey this simple principle.

Instead of only D5 and D3-branes, one might expect to also have (p, q) 5-branes around.

From the dual M-theory picture, one would expect to see, along side with M2-branes,

M5-branes that ‘dissolve’ into the background.

The tachyon condensation picture is the most unified framework to describe perturba-

tive IIB D-branes. To date, there is no SL(2,Z)-covariant framework that generalizes it, in

order to describe, say, (p, q) 5-branes or 7-branes. Therefore, although we believe that this

paper simplifies and elucidates the peculiar behavior of perturbative T-branes, F-theory T-

branes will require a new approach. We find the question worth pursuing, and will propose

some ideas on how to go about it in our follow up paper [13]. What we will show there, is

that one can describe the F-theory lift of certain T-branes by placing coherent sheaves on

the F-theory CY fourfold. This has no straightforward physical interpretation, as F-theory

is not a theory of branes with strings attached. Nevertheless, we will find evidence that

such an approach can still capture non-trivial information about the spectrum of F-theory

on singular spaces.
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