
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

The indentation test performed by means of a flat-ended indenter is a valuable non-destructive method for assessment of metals at a local scale.  
Particularly, from the indentation curves it is possible to achieve several mechanical properties. The aim of this paper is the implementation of 
an artificial neural network for the prediction of the indentation load as a function of the penetration depth for an aluminium substrate. In 
particular, the neural network is addressed to the mechanical characterization of the bulk in function of temperature and indentation rate. The 
results obtained showed a high accuracy in curves prediction. 
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Engineering. 
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1. Introduction 

Within the industrial manufacturing field, the ability of 
evaluate the mechanical feature of a given component is 
crucial. In particular, it is of great interest the opportunity to 
perform test that leaves the specimen intact. Several 
methodologies have been developed with this purpose and 
presented in the literature [1,2]. Among this methodologies, 
the indentation tests have been reported to be useful for the 
determination of several mechanical properties [3–7]. 
Recently, a new typology of indentation test for metallic 
materials has been developed, which is performed with a flat-
ended indenter [8], and applied for the characterization of 
materials in several previous works [9–12]. The indentation 
test allows to identify load versus penetration depth trend 
defining an elastic stage and successively different plastic 
stages (Figure 1). In particular, it is possible to achieve a 
correlation between the yield stress metals and the load at the 
end of the first plastic stage, as reported in [13]. Anyway, the 
correlation between indentation curves load-penetration depth 

and yield stress was valuated only for a penetration rate of 0.1 
mm/min.      
 
 
 

 
Fig.1 Example of indentation curve achieved by means of flat-ended tips [8]. 
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The need to evaluate the mechanical properties of material 
without destructive tests is an interesting requirement for 
different design aspects. In this context, Artificial Neural 
Networks (ANNs) are included, which are valuable tools for 
the prediction of complex and difficult to model phenomena. 
A neural network is a computational structure, consisting of a 
number of highly interconnected processing units called 
neurons [14–16]. The neurons sum weighted inputs applies a 
linear or nonlinear function to determine the output, then this 
output is passed to the following neurons, which are arranged 
in layers and are combined through excessive connectivity 
[17–19]. The process of training neural networks is the most 
challenging part of using the technique in general and is by far 
the most time consuming, both in terms of effort required to 
configure the process and computational complexity required 
to execute the process [19–21]. Neural networks are effective 
and efficient alternative to conventional methods, such as: 
numerical modelling methods, which could be highly 
computationally expensive; analytical methods, which could 
be difficult to obtain for newly achieved devices; and 
empirical modelling solutions, due to huge range and limited 
accuracy [22–24]. ANNs are information processing systems 
with their design inspired by studies of the ability of the 
human brain to learn from observations and to generalize by 
abstraction. In particular, ANNs learn from an empiric survey 
to give response when unknown examples are analysed. They 
have been widely accepted as a technology offering an 
alternative way to simulate complex and ill-defined problems. 
ANNs have been used in many applications, such as: control, 
robotics, pattern recognition, forecasting, power systems, 
manufacturing, optimization, signal processing, etc., and there 
are particularly useful in system modelling [25–32]. In 
particular, ANNs have already been used to predict the trend 
of the penetration load curves in a duplex steel, depending on 
the indentation conditions and the secondary phases involved 
in the microstructure. In this work, two feedforward neural 
networks have been developed to model the flat indentation 
test on Aluminium alloy 6082 T6 in order to predict the 
curves load penetration depth and the value of load relatively 
at the end of the first plastic stage. In a first phase, indentation 
tests were carried out at different temperatures and 
penetration rates. Subsequently, experimental data were used 
for the training and validation of the two artificial neural 
networks described. 

2. Materials and methods 

In order to characterize aluminium by means of indentation 
tests performed with a flat–ended indenter, samples of Al6082 
T6 were cut in a cylindrical specimens of 40 mm diameter and 
15 mm height. The characteristic of the aluminium alloy 
chosen for this work are briefly reported in Table 1. 
 

Table 1 Al6082 mechanical properties. 

Property Value Unit 

Density 2.70 gꞏcm-3 

Hardness 95 Vickers 
Ultimate Tensile Strength 290 MPa 

Yield Strength 250 MPa 
Thermal conductivity 170 Wꞏm-1ꞏK-1 

The indentation tests were performed exploiting a tungsten 
carbide flat head tip with a diameter of 1 mm. It was 
connected with the crosshead of a “MTS 50 Insight” tensile 
test machine, used to perform the indentation test, by means 
of a steel shaft. In order to perform tests at high temperature, 
the samples were placed in oven heated by means of electrical 
resistance, which dimensions were 250x250x200 mm. It was 
isolated from the environment by means of a layer of 
refractory material of 50 mm and the temperature was 
measured by means of a thermocouple placed on the sample 
surface. The upper side of the device had a rectangular 
opening of 40x40 mm to perform the test. The experimental 
setup is reported in Figure 2. To evaluate the load at the end 
of the linear portion of the load-penetration depth curves 
acquired, which is correlated to the material’s yield stress, a 
MATLAB model was developed. First step of the model was 
the fitting of the experimental point acquired during the 
indentation test to find the best approximating function. It was 
effectuated by means of a 9th grade polynomial equation. 
Once the function was find, the derivative was calculated. The 
model developed consider the midpoint of the linear section 
as the penetration depth value where the maximum value of 
the derivative is reached. As the middle of the linear 
behaviour was calculated, a linear fitting of the experimental 
point was performed considering growing range around the 
midpoint of the linear section. The penetration depth interval 
considered for the fitting was increased until an R2 value of 
less than 0.999 was reached. The schematization of the model 
developed is reported in Figure 3. 
 
 

 
Fig. 2 Experimental setup with a) MTS50 insight b) steel shaft c) oven. 

 

 
Fig. 3 Schematization of the model for the evaluation of the load at the end of 

the linear region. 
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For the Al6082 aluminium alloy characterization the variables 
considered were indentation rate and substrate temperature. In 
particular, 5 indentation speed and 3 temperatures were 
considered for the experimental plan designed, as reported in 
Table 2. For each condition three different tests were 
performed, up to a penetration depth of 0.3 mm. 
 

Table 2 Variables considered for the Al6082 characterization. 

Property Value 

Temperature 25-100-200 (°C) 
Indentation rate 0.1-0.2-0.5-1.0-1.5 (mm/min) 

The experimental data acquired were finally exploited for the 
development of two artificial neural networks.  A first 
network, NET1, was aimed at the prediction of the load-
penetration depth curves. The input variables considered are 
substrate temperature, indentation rate and penetration depth, 
considered as discrete intervals of 0.01 mm. Therefore, each 
curves give 30 input examples for the training. The output 
variable is the indentation load, which was plotted in function 
of the penetration depth. On 15 curves acquired, 12 were 
exploited for the network training while 3 for the validation. 
This means that the training was performed with 360 example 
the validation with 90 example. In particular, the curves 
exploited in the validation were obtained at 25, 100 and 200 
°C with an indentation rate of 0.5 mm/min. 
The ANNs structure which gave the best fit is reported in 
Figure 4. It features 3 hidden layers of 4 neurons each, an 
input layer composed of 3 neurons and an output layer with a 
single neuron. The transfer function connecting input and first 
hidden layer was the log-sigmoidal transfer function. The 
transfer function between the last hidden layer and the output 
layer was the purelin transfer function. The connection among 
the hidden layers were created with the tan-sigmoidal transfer 
function. The training algorithm set was the Scaled Conjugate 
Gradient. 
A second artificial neural network, NET2, was developed for 
the prediction of the load at the end of the first plastic stage. 
The artificial neural network architecture designed counts two 
hidden layers respectively of 40 and 10 neurons for a 
2:40:10:1 scheme, as depicted in Figure 5.  
  
 

 
Fig. 4 NET1 structure. 

 
 

 
Fig. 5 NET2 structure. 

 
 

The neurons of the input layer are representative of the two 
input variables while the output neurons represent the load at 
the end of the first plastic stage. The connection between the 
input and the first hidden layer was the log-sigmoidal function 
whereas the other connections were realized by means of a 
tan-sigmoidal transfer function.  
The training was performed exploiting the Scaled Conjugate 
Gradient algorithm and 12 on 15 of the experimental data 
acquired.  
 
3. Results and discussion 
 
The experimental curves acquired are reported as follow in 
Figure 6 and 7. Anyway, for the sake of clarity, only a single 
curve for each condition was reported. 
From the curves analysis reported in Figure 6, it is possible to 
notice a nonlinear stage in the very first part of the curves. 
This is due to an imperfect parallelism between tip surface 
and sample surface. The non-linear stage decreases with 
temperature increments since the bulk offers a reduced 
resistance to the indenter. As the contact between indenter and 
substrate is completely established, begins the linear stage of 
the curves until the second plastic stage, where the slope 
slightly decreases. Observing the curves, a trend with the 
indentation rate can be found. Indeed, indentation speed 
increments lead to the shift of the curves to the top. On the 
other hand, the temperature affects the results shifting the 
curves to the bottom as highlighted in Figure 7. The linear 
region of the curves end for minor load values for the whole 
indentation rates considered when the temperature is 
increased, as verified by the MATLAB’s model implemented. 
The loads at the end of the first plastic stage evaluated for the 
different indentation condition are reported as follow in table 
3. Furthermore, the load evaluated with the model described 
were plotted as a function of the test rate in an exponential fit, 
as depicted in Figure 8. 
Analysing the value reported in Table3 it is evident the low 
standard deviation, which means that the method it is highly 
replicable. It is worth to note how the curves at different 
temperature shows similar trends. This means that the load 
evaluated with this method has the same sensitivity to the test 
rate at different temperature, differently from the result 
achieved by a tensile test. 
On the base of the experimental results achieved, an artificial 
neural network was trained for the prediction of the load-
penetration depth curves. The results achieved are reported in 
Figure 9, where the solid line represent the actual curve and 
the dotted line the predicted curve. 
The network NET1 showed a great ability in curves prediction 
as the two curves can be superimposed. For a quantification of 
the network error, the percentage error evaluated at a fixed 
penetration depth. The overall curves were evaluated by 
means of the two norm vector. The results are reported in 
Figure 10. 
Despite NET1 allows the prediction of the indentation curves 
with a great accuracy, an elevated error was committed in the 
early stage of the tests. This is due to the non-linear trend of 
the curve caused by a partial contact between tip and 
substrate. Anyway, the error rapidly decreases and after 
penetration depth of about 0.05 mm, approximatively where 
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Fig. 6 Load-penetration depth curves in function of indentation rate for 

different substrate temperature. 
 

 
Fig. 7 Load-penetration depth curves in function of substrate temperature for 

different indentation rate.  
 

 
Fig. 8 Trend of the load at the end of the linear region as a function of 

penetration rate and temperature. 
 
Table 3 load evaluated at the end of first plastic stage.  

Temperature 
(°C) 

Indentation rate 
(mm/min) 

Load 
(N) 

Standard deviation 
(N) 

25 

0.1 578.68 8.99 
0.2 632.17 15.67 
0.5 699.41 26.36 
1 742.52 18.16 

1.5 769.35 7.04 

100 

0.1 520.04 7.52 
0.2 561.09 9.92 
0.5 612.94 15.37 
1 643.52 21.67 

1.5 657.32 19.73 

200 

0.1 352.57 4.54 
0.2 386.61 8.69 
0.5 443.86 6.87 
1 495.84 27.84 

1.5 523.48 15.2 
 
the linear stage begins, is below the 5%. The overall 
evaluation by means of the 2-norm vector highlights the 
ability of the network in predicting the indentation curves. As 
a matter of fact, there is a high similarity between the actual 
and the predicted curves with a percentage error of about 6% 
for the test performed at 25 and 100 °C and about 4% for the 
test performed at 200 °C. Anyway, these results are heavily 
affected by the initial stage of the curves where the network 
committed error up to 30%. 
Finally, an artificial neural network was developed with the 
aim of predicting the value of the load of the first plastic stage 
under different condition (NET2). The results obtained are 
reported in table 4 in terms of percentage error. 

Table 4 results achieved in the final load of the first plastic stage. 

Validation example Actual 
load 
(N) 

Predicted 
load 
(N) 

Error 
(%) Temperature 

(°C) 
Indentation rate 

(mm/min) 
25 0.5 699.41 727.30 3.99 

100 0.5 612.94 598.35 2.38 
200 0.5 443.86 431.85 2.70 
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Fig. 9 Comparison between actual and predicted curve. 

 
It can be noticed how the error committed in the evaluation of 
the load at the end of the first plastic stage is less than the 
error obtained in curve prediction, despite reduced example 
exploited for the training of this second network. Indeed, 
NET2 produces a hidden model that emulates the load-
penetration rate curves. Being this model characterized by a 
monotonic and smooth trend it is possible to obtain accurate 
predictions, differently from NET1 which performance is 
affected by the initial non-linear trend. 
Anyway, on the light of the results achieved, it is evident how 
it is possible to predict both the load at the end of the first 
plastic stage with an outstanding accuracy, as the mean error 
is equal to 3.02%, and the indentation curves. 
 
4. Conclusion 
 
The indentation tests performed by means of a flat indenter is 
a valuable method for the characterization of materials. The 
load value obtained at the end of the linear stage of 
indentation curves have been proved to be related with the 
result of a classic tensile test. With the present work, the 
analysis of the linear stage of a load-penetration depth curve 
was performed in different condition. As expected, the load of 
the first plastic stage decreases with temperature. On the 
opposite, it increases with test speed up to an asymptotic 
value function of the temperature. 

 
Fig. 10 Percentage error committed in the validation of NET1. 

 
 
From the trend of the load at the end of the linear stage in 
function of the indentation rate, it is evident how it features 
the same sensitivity to the test rate at different temperature. 
Furthermore, the evaluation of the load presents low standard 
deviation. This means that the method is highly replicable 
also at high temperature. Finally, the results were exploited 
for the training of two artificial neural networks aimed at 
predicting the load-penetration depth curves and the load at 
the end of the first plastic stage. The results obtained highlight 
a great accuracy with a very low mean error. In conclusion, 
ANNs may be a valuable method for the characterization of 
the mechanical performance of aluminium substrate. 
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