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Abstract: We discuss the soft behaviour of open string amplitudes with gluons and mas-
sive states in any dimension. Notwithstanding non-minimal couplings of massive higher
spin states to gluons, relying on OPE and factorization, we argue that the leading and
sub-leading terms are universal and identical to the ones in Yang-Mills theories. In order to
illustrate this, we compute some 4-point amplitudes on the disk involving gluons, massive
states and, for the bosonic string, tachyons. For the superstring, we revisit the structure of
the massive super-multiplets at the first massive level and rewrite the amplitudes in D = 4

in the spinor helicity formalism, that we adapt to accommodate massive higher spin states.
We also check the validity of a recently obtained formula relating open superstring ampli-
tudes for mass-less states at tree-level to SYM amplitudes, by factorisation on two-particle
massive poles. Finally we analyse the holomorphic soft limit of superstring amplitudes with
one massive insertion.
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1 Introduction and motivations

Recently the soft behaviour of scattering amplitudes has received renewed attention in con-
nection with the extended BvBMS symmetry [1–6]. It has been long known that gauge
theory and gravity amplitudes expose universal behaviours when one of the mass-less ex-
ternal momenta is ‘soft’ i.e. k ! 0 [7–9]. In both cases the leading behaviour is singular,
i.e. goes as ��1 if k = �ˆk with ˆk some fixed momentum [7]. The sub-leading terms can
be derived from the leading ones and are largely fixed by gauge invariance. In particular,
in gauge theories the sub-leading behaviour �0 is universal, too. In gravity not only the
sub-leading behaviour �0 but also the next-to-subleading or sub-sub-leading behaviour �+1

is universal [8–10].
The problem of what happens when loops or non-minimal higher derivative couplings

are included was addressed in [11–15]. At the loop level IR divergences tend to spoil
the analysis. Yet, in supersymmetric theories such as N = 4 SYM, one can define loop
integrands recursively and check that they expose the expected soft behaviour at all loops
and for any choice of (massless) external legs. This may be viewed as a further constraint on
(loop) amplitudes derived without resorting to standard perturbative methods (see e.g. [16]
for a recent pedagogical review).

When non-minimal interactions are considered, the result depends on the specific choice
[14]. In gauge theories, F 3 terms do not change the universal soft behaviour of minimal
coupling, while �F 2 do modify even the leading term when � is a massless scalar. Similarly,
in gravity theories R3 terms do not change the universal soft behaviour of minimal coupling,
while �R2 do modify even the leading term when � is a massless scalar such as the dilaton.

These results are largely independent of the number of space-time dimensions and in
particular apply to string theory in critical dimension and in lower dimensions [17–22].
One has to distinguish between open and closed strings and between bosonic, super and
heterotic strings. In [14], the soft behaviour has been shown to be governed by the OPE
of the vertex operators. As a result both open and closed superstring amplitudes with
external massless states expose the expected soft behaviour, while closed bosonic string
amplitudes don’t, due to the tree-level non minimal coupling �R2 with the dilaton. Open
bosonic string amplitudes behave universally despite the presence already at tree level of
the non-minimal F 3 correction to the standard Yang-Mills coupling and the coupling TF 2

to the tachyon1. For the heterotic string at tree level, the soft behaviour of massless vector
1Couplings to gravitons and other closed string states appear at higher order in the string coupling gs.
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bosons is universal, since the trilinear coupling is purely of Yang-Mills type, while the soft
behaviour of the graviton is non-universal due to �R2 coupling2. No R3 term however
appears due to supersymmetry.

Aim of the present paper is to extend the analysis to open string amplitudes with
massive external states (in the bosonic string case we will also consider tachyons as external
states). Amplitudes with massive external states have not received much attention in the
literature. See however [23–28] for recent work on the subject and [29–33] and the review
[34] for mass-less amplitudes with emphasys on the exchange of massive higher spin states.

The analysis is interesting in two respects. On the one hand couplings of string states
are generically non-minimal, although probably unique. On the other hand, gravity and
gauge interactions emerge quite naturally in string theory and one would expect the soft
behaviour of scattering amplitudes to expose some universality thanks to gauge invariance.

Plan of the paper is as follows. We start with open bosonic strings. After reviewing
tri-linear couplings on the disk of tachyons, vector bosons and higher spin massive states,
we compute some explicit 4-point amplitudes involving tachyons and massive states. We
then consider open superstrings on the disk and perform a similar analysis in an arbitrary
number of dimension D  10. For convenience and for comparison with the existing
literature we rewrite superstring amplitudes in D = 4 in the spinor helicity formalism, that
we adapt to accommodate massive higher spin states, after revisiting the structure of the
massive super-multiplets. We also check the validity of a recently obtained formula relating
open superstring amplitudes for mass-less states to SYM amplitudes at tree-level [35, 36],
by factorizing 5-point amplitudes on the first massive pole and recovering our previous
formulae. We explain how to generalise this procedure to an arbitrary number of massive
external states. We then discuss the soft behaviour of open string amplitudes with gluons
and massive states in any dimension and argue that the leading and sub-leading terms are
universal and identical to the SYM case, relying on OPE and factorization. We then check
this explicitly for the amplitudes, we previously computed. We also analyse the holomorphic
soft limit of superstring amplitudes with one massive state and check consistency with our
expectations. Finally we will draw our conclusions and identify interesting directions for
future investigation. Various appendices contain technical details that are included for
completeness.

2 Open bosonic string amplitudes

In order to check the soft behavior of four-point amplitudes on the disk in the open bosonic
string, we summarize in Appendix A all the possible tri-linear couplings involving the vertex
operators up to the first massive level.

2M. B. would like I. Antoniadis to stressing the tree level origin of this term in the heterotic string, which
only is generated at one-loop in 4-dim Type II theories with 16 supercharges, such as after compactification
on K3⇥ T 2
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2.1 Vertex operators

Our first goal is to compute scattering amplitudes with the insertion of vertex operators up
to the first massive level. Up to normalization factors, the tachyon vertex operator is

VT = eipX p2 = �m2
T =

1

↵0 ; (2.1)

the gluon vertex operator is

VA = aµ i@X
µ eikX k2 = �m2

A = 0 a·k = 0 (2.2)

and the first massive level vertex operator is

VH = Hµ⌫ i@X
µ i@X⌫ eipX p2 = �m2

H = � 1

↵0

Hµ⌫ = H⌫µ Hµ⌫p
µ
= 0 ⌘µ⌫Hµ⌫ = 0. (2.3)

While the choice of the tachyon vertex operator is essentially unique, the choice of the
vertex operators for the massless gluon A and for the massive state H is not unique. It is
always possible to add the null operator c ik@XeikX = �BRST e

ikX to c VA. For H one can
choose a linear combination of the operator VB = Bµi@2XµeipX(z) and a generic eH(z) =
eHµ⌫i@Xµi@X⌫eipX(z), with eH an arbitrary two-index symmetric tensor. Nonetheless, due
to BRST invariance, one has the freedom to fix the gauge in which Bµ = 0 and Hµ⌫ is
symmetric, traceless and traverse as in Eq. (2.3).

2.2 Chan-Paton factors and twist symmetry

Although we will mostly consider ‘color-ordered’ amplitudes on the disk, we would like to
review some relevant aspect of the group theory structure. Disk amplitudes are cyclically
invariant and can be dressed with Chan-Paton factors [37]

A(1, 2, . . . n)! bA(1, 2, . . . n) = A(1, 2, . . . n)tr(t1 . . . tn) (2.4)

where ta with a = 1, . . . N2 are the generators of U(N)

3. In modern terms this corre-
sponds to the fact that open strings carry multiplicities associated to the D-branes they
end on. A(1, 2, . . . n) are called ‘color-stripped’ or ‘color-ordered’ amplitudes or simply
sub-amplitudes. They enjoy such remarkable properties as [38]

• Cyclic symmetry: A(k, k+1, . . . , n, 1, 2, . . . k�1) = A(1, 2, . . . n)

• Twist symmetry: A(n, n�1, . . . , 2, 1) =
Qn

i=1 !iA(1, 2, . . . , n�1, n)

• Dual identity: A(1, 2, . . . n) +A(2, 1, 3, . . . n) + . . .+A(2, 3, . . . , n�1, 1, n) = 0

where !S = ±1 is the eigenvalue in the state S of the ‘twist’ operator ⌦, that exchanges the
two ends of the strings. In particular !A = �1 while !T,H = +1. In general !S = (�1)NS

3We will not consider unoriented projections or symmetry breaking that may produce matter in bi-
fundamental or (anti-)symmetric representations of the gauge group.
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where NS is the level of S. Pretty much as in gauge theory, complete amplitudes are
obtained by summing over non-cyclical permutations of color-dressed amplitudes. At 3-
points one simply has

bA(1, 2, 3) = A(1, 2, 3)tr(t1t2t3) +A(1, 3, 2)tr(t1t3t2). (2.5)

For the amplitude with three tachyons A(1, 3, 2) = A(3, 2, 1) = +A(1, 2, 3), so that

bA(1, 2, 3) = A(1, 2, 3)tr(t1t2t3 + t1t3t2) = A(1, 2, 3)d123, (2.6)

while for three vectors A(1, 3, 2) = A(3, 2, 1) = �A(1, 2, 3), so that

bA(1, 2, 3) = A(1, 2, 3)Tr(t1t2t3 � t1t3t2) = A(1, 2, 3)f123. (2.7)

In general one gets dabc (‘anomaly coefficients’ or cubic Casimir) when
Q3

i=1 !i = +1 and
fabc (structure constants) when

Q3
i=1 !i = �1. In particular all couplings bA(S, S,A) ⇠ fabc

whichever the state S. Moreover, at least for totally symmetric tensors in the first Regge
trajectory, the dominant term at low energy is

A(S1, S2, A3) = f123S
µ1...µs
1 S2,µ1...µsa3·(p1 � p2) + . . . (2.8)

i.e. string theory tries to be as ‘minimal’ as it can! Yet there are higher derivative correc-
tions to this, as we will see momentarily.

2.3 Four-point bosonic string amplitude

In this section we collect some open bosonic string amplitudes involving massless, massive
and tachyonic states. Details of the computations can be found in Appendix B4. For sim-
plicity we consider color-ordered amplitudes. Complete amplitudes arise after multiplying
by the relevant Chan-Paton factors tr(t1t2t3t4) and summing over non-cyclic permutations.
In fact, exploiting ‘twist symmetry’ i.e. ⌦ invariance, one can further reduce the sum
to three terms (instead of six). For notational simplicity we will drop all adimensional
constants (including powers of gs) that are irrelevant for our analysis and the �-function
of momentum conservation (2⇡)D�D(

P
i pi) will be understood. To help recognising the

light-like momenta we will denote them by k’s, while tachyonic and massive momenta will
be denoted by p’s. Starting with Veneziano amplitude (four tachyons)

A(T1, T2, T3, T4) =
�(�1� ↵0s)�(�1� ↵0t)

�(�2� ↵0
(s+ t))

(2.9)

where s = �(p1 + p2)2 = �(p3 + p4)2, t = �(p2 + p3)2 = �(p1 + p4)2, u = �(p1 + p3)2 =

�(p2 + p4)2, with s + t + u = �4/↵0, it is not difficult to compute the three-tachyons
one-vector amplitude

A(A1, T2, T3, T4) =
1p
2↵0

✓
a1p2
k1p2

� a1p4
k1p4

◆
�(1 + 2↵0k1p2)�(1 + 2↵0k1p4)

�(1� 2↵0k1p3)
, (2.10)

the two-tachyons two-vectors amplitude

A(A1, A2, T3, T4) = (ea1ea2 + 2↵0ea1p3 ea2p3)
�(1 + 2↵0k1p4)�(�1 + 2↵0k1k2)

�(�2↵0k1p3)
, (2.11)
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where
eai = ai �

aip4
kip4

ki, i = 1, 2, (2.12)

satisfy eaip4 = 0, and finally the two-tachyons-vector-tensor amplitude

A(T1, T2, A3, H4) =
1p
2↵0

�(�1 + 2↵0k3p4)�(1 + 2↵0p2k3)

�(�2↵0p1k3)


� 2a3Hp2 � 2a3Hk3

1 + 2↵0k3p1
2� 2↵0k3p4

+ 2↵0a3p4

✓
p2Hp2

1� 2↵0k3p4
2↵0k3p1

+ k3Hk3
1 + 2↵0k3p1
2� 2↵0k3p4

+ 2p2Hp3

◆

� 2↵0a3p2

✓
k3p4 p2Hp2
2↵0p2k3 p1k3

(1� 2↵0k3p4)� p3Hp3
1 + 2↵0p1k3
2↵0p2k3

� 2p2Hk3
1� 2↵0k3p4
2↵0p2k3

◆�
.

Later on we will check that they enjoy the expected behavior in the soft limit.

3 Open superstring amplitudes

3.1 Vertex operators

In this section we consider open superstring amplitudes involving gluons and massive states.
At the first massive level, two independent string excitations appear: a symmetric, trans-
verse and traceless tensor H with dH = D(D � 1)/2 � 1 degrees of freedom (dH = 44 in
D = 10) and a totally antisymmetric transverse tensor C with dC = (D�1)(D�2)(D�3)/6
degrees of freedom (dH = 84 in D = 10). It is worth to notice that in D = 4, the tensor
H corresponds to a massive spin 2 particle, while the C corresponds to a massive pseudo-
scalar. Up to normalization factors, In the canonical q = �1 super-ghost picture their
vertex operators are

V (�1)
A = e�' a· eikX k2 = 0 k·a = 0 (3.1)

V (�1)
H = Hµ⌫ e

�' i@Xµ  ⌫ eipX ↵0p2 = �1 pµH
µ⌫

= 0 Hµ
µ = 0 (3.2)

V (�1)
C = Cµ⌫⇢  

µ ⌫ ⇢ eipX ↵0p2 = �1 pµC
µ⌫⇢

= 0 . (3.3)

For our purposes it is necessary to consider also vertex operators in the q = 0 super-
ghost picture

V (0)
A = (a·i@X + k· a· ) eikX ; (3.4)

V (0)
H = Hµ⌫ [i@Xµ

(i@X⌫
+ p ·   ⌫

] + @  ) eipX ; (3.5)

V (0)
C = Cµ⌫⇢ e

�'
[i@Xµ

+ p·  µ
] ⇢ � eipX . (3.6)

Higher spin massive states in the first Regge trajectory are described by vertex operators
of the form

VHs = Hµ1...µs

"
sY

i=1

i@Xµi
+ p  µ1

sY

i=2

i@Xµi
+ (s� 1)@ µ1 µ2

sY

i=3

i@Xµi

#
eipX (3.7)
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with ↵0p2 = (1�s) and H totally symmetric, transverse and trace-less. Their tri-linear
couplings to the vector bosons schematically read

A(A1, A2, Hs) = hc e�'VA(z1) c e
�'VA(z2) c VHs(z3)i = (2↵0

)

s/2
(f1f2)

µ1µ2Hµ1...µs

sY

i=3

kµi
12

(3.8)

In D = 4 the above expressions drastically simplify if one resorts to the spinor helicity
formalism and adapt it so as to encompass massive states.

3.2 Supersymmetry

Although we will only consider bosonic states in the NS sector of the open superstring, it
is worth discussing the structure of the super-multiplet at the first massive level [39].

In addition to the NS states H and C we have two spin 3/2 fermions of opposite
chirality (in D = 10) that combine to give a massive spin 3/2 fermion. In the canonical
q = �1/2 super-ghost picture their vertex operators read

V =  

↵
µS↵@X

µe�'/2eipX (3.9)

and
Ve =

e
 

µ
↵W

↵
µ e

�'/2eipX (3.10)

where S↵ is a spin field of conformal dimension 5/8 in the 16 irrep of SO(1, 9) and W↵
µ =

:C↵ µ
: is an excited spin field of conformal dimension 13/8 in the 1440 irrep of SO(1, 9).

BRST invariance implies transversality pµ ↵
µ = 0 = pµe µ

↵, �-traceleness �µ↵� 
�
µ = 0 =

�

↵�
µ
e
 

µ
� as well as

�

µ
↵�pµ 

�
⌫ = iM e

 ⌫,↵ , �

↵�
µ pµe ⌫,� = iM ↵

⌫ (3.11)

The N = (1, 0) supersymmetry charge in D = 10 is the gaugino vertex at zero momen-
tum

Q(�1/2)
↵ =

Z
dzS↵e

�'/2 (3.12)

In the q = +1/2 super-ghost picture one has

Q(+1/2)
↵ =

Z
dz�µ↵�C

�@Xµe
+'/2 (3.13)

Acting with Q(�1/2)
↵ on V and Ve one gets combinations of the NS vertex operators

VC and VH as well as the ‘auxiliary’ vertices VB and VE in the canonical q = �1 picture,
yielding very schematically4

�Hµ⌫ = "�(µ ⌫) �Cµ⌫⇢ = "�[µ⌫ e ⇢] �Bµ⌫ = "�[µ ⌫] �Eµ = "e µ (3.14)

Similarly acting with Q(+1/2)
↵ on the NS vertex operators VC and VH as well as on the

‘auxiliary’ vertices VB and VE yields very schematically5

� µ = "��
h
p�(Hµ⌫ +Bµ⌫)�

⌫
+M�µE

�
i
+MCµ⌫⇢�

⌫⇢"+ . . . (3.15)

4See [39] for the precise coefficients.
5See [39] for the precise coefficients.
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and
�e µ = "�⌫ [M(H⌫µ +B⌫µ) + p⌫Eµ] + "�⌫p⌫Cµ�⇢�

�⇢
+ . . . (3.16)

3.3 Dimensional reduction to D = 4

For obvious reasons we are particularly interested in the dimensional reduction to D = 4.
The massive N = (1, 0) super-multiplet in D = 10 at the first level yields a long multiplet
of the N = 4 super-algebra

{Hµ⌫ , 8 µ, 27Zµ, 48�, 42'} (3.17)

comprising 128 bosonic and as many fermionic states. In order not to burden the notation
µ, ⌫, . . . are now 4-dim indices, while i, j, . . . denote the internal 6 dimensions. The origin
of the bosonic fields is as follows

Hµ⌫  Hµ⌫ (3.18)

27Zµ  6Hµ,i, 15Cµ,ij , 6Cµ⌫,i (3.19)

since a massive vector in D = 4 is equivalent to a massive anti-symmetric tensor, and

42' 21Hij , 20Cijk, Cµ⌫⇢ (3.20)

It is perhaps not surprising that these be in one-to-one correspondence with the (bosonic)
fields in the N = 4 super-current multiplet, upon dualizing the six massive Hµ,i into as
many massive anti-symmetric tensors eHµ⌫,i = "µ⌫�⇢p�H

⇢
i /M . It is amusing to decompose

this massive multiplet into massive multiplets of the N = 1 super-algebra

{Hµ⌫ , 8 µ, 27Zµ, 48�, 42'}!
{Hµ⌫ , 2 µ, Zµ}+ 6 { µ, 2Zµ,�}+ 14 {Zµ, 2�,'}+ 14 {�, 2'} (3.21)

In the case of a Z3 orbifold, whereby xi ! zI , z⇤
Ī

the multiplicities can be expressed in terms
of dimensions of irreps of SU(3) i.e. 6! 3+3⇤, 14! 8+3+3⇤ and 140 ! 1+1+6+6⇤.
Once again, it is not surprising that the multiplet content {Hµ⌫ , 2 µ, Zµ} be in one-to-one
correspondence with the currents {Tµ⌫ ,⌃µ, ¯⌃µ, Jµ} in the N = 1 super-current multiplet
of Ferrara and Zumino [40].

For later purposes, note that Hµ⌫ , with ⌘µ⌫Hµ⌫ = 0 = pµHµ⌫ belongs in a spin-2
supermultiplets with 8 bosonic and as many fermionic d.o.f. whose vector boson is Zµ =

�IJ̄CµIJ̄ , while H 0
µ⌫ = H0[⌘µ⌫ + ↵0pµp⌫ ] with Hij = H0�ij/2 (so that ⌘MNHMN = 0)

combine with C0 = "µ⌫⇢�p�Cµ⌫⇢/M in a chiral multiplet.

3.4 Four-point amplitudes (superstring) and spinor helicity basis

For simplicity, we will only consider amplitudes with a single massive external state:
A(A1, A2, A3, H4) and A(A1, A2, A3, C4). Depending on the choice of incoming particles
these correspond to production, annihilation or 3-body decay of the massive state. In view
of this, it is useful to restrict to 4-dimensional momenta and polarisations and work in
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the helicity basis whereby null momenta are expressed in terms of on-shell Weyl spinors of
opposite chirality

k↵↵̇ = kµ�
µ
↵↵̇ = u↵ū↵̇ (3.22)

and resort to the standard notation u↵(k)! |ki ū↵̇(k)! [k|, so much so that

u(ki)u(kj) = �hiji , ū(ki)ū(kj) = [ij] and 2 ki·kj = hiji[ij] (3.23)

For real momenta ū↵̇(k) = (u↵(k))⇤. Momentum conservation reads
X

i

|ii[i| = 0 =

X

i

|i]hi|. (3.24)

Schoutens’s identity entails h12ih34i+h13ih42i+h14ih23i=0 and a similarly for |k]’s.
Positive and negative helicity polarisations can be expressed as

a�↵↵̇ = a�µ �
µ
↵↵̇ =

u↵v̄↵̇
ūv̄

and a+↵↵̇ = a+µ �
µ
↵↵̇ =

v↵ū↵̇
uv

, (3.25)

where q↵↵̇ = v↵v̄↵̇ is an arbitrary light-like momentum that encodes the gauge freedom.
Also for massive particles it proves convenient to express their momenta and polarisa-

tions in terms of null momenta and Weyl spinors. Setting p↵↵̇=k↵↵̇+q↵↵̇=u↵ū↵̇+v↵v̄↵̇ one
has p2=2kq=�m2

=uv ūv̄.
Helicity of a massive particle is not Lorentz invariant. For later purposes it proves

convenient to explicitly identify the precise Lorentz transformations that map massive he-
licity states into one another. Let us choose the basis {u↵, v↵} for Left-handed spinors with
uv=huvi6=0 and {ū↵̇, v̄↵̇} for Right-handed spinors with ūv̄=[uv] 6=0. Dropping indices for
simplicity, the Lorentz group SL(2, C)⇥ SL(2, C) act as

Lu = u0 = au+ bv Lv = v0 = cu+ dv (3.26)

with a, b, c, d 2 C such that ad� bc = 1 and

Rū = ū0 = āū+

¯bv̄ Rv̄ = v̄0 = c̄ū+

¯dv̄ (3.27)

It is easy to check that any symplectic product is invariant i.e. hi0j0i=hiji and [i0j0]=[ij].
The Lorentz transformations that leave the time-like momentum p invariant form an SO(3)

subgroup with

a = ei↵ cos � , b = ei� sin � , c = �e�i�
sin � , d = e�i↵

cos � (3.28)

The SO(3) transformations

Lx : u0 =
1p
2

(u+ v) v0 =
1p
2

(�u+ v) (3.29)

and
Ly : u0 =

1p
2

(u+ iv) v0 =
1p
2

(iu+ v) (3.30)

with Rx/y=L⇤
x/y will prove particularly useful in the following.
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For a massive vector boson, with p=uū+vv̄ the three helicity states are6

w0 = uū� vv̄ w+ = uv̄ w� = vū (3.31)

with w0·w0=4m2, w0·w±=0, w±·w±=0, w±·w⌥=2m2. {w0, w+, w�} form a complete basis
for transverse polarisations in that

w0⌦w0 + w+⌦w� + w�⌦w+ = 2m2⌘ + 2p⌦p (3.32)

The complex circular polarisations w± can be combined into real ones

wx = uv̄ + vū wy = iuv̄ � ivū (3.33)

It is easy to check that Lx maps wx into w0 (up to a sign Lxwx=�w0) and vice versa

Lxw0=+wx, leaving wy unaltered Lxwy=wy, while Ly maps wy into w0 (Lywx=w0) and
vice versa Lyw0=�wy, leaving wx unchanged Lywx=wx.

For a massive tensor boson (s=2), the five helicity states can be taken to be

H++ = w+⌦w+ H�� = w�⌦w� H00 = w0⌦w0 � w+⌦w� � w�⌦w+

H+0 = w+⌦w0 + w0⌦w+ H�0 = w�⌦w0 + w0⌦w� (3.34)

Note that w0⌦w0 + w+⌦w� + w�⌦w+ = 2m2⌘ + 2p⌦p is a scalar polarisation. As for
the vector polarisations, the complex combinations H±± and H±0 can be combined into
real ones Hxx�Hyy=H+++H��, Hxy=iH++� iH��, Hx0=H+0+H�0, Hy0=iH+0�iH�0

(H00 is real). The transformation Lx+Ly leaves H+++H�� invariant, while Lx�Ly maps
H+++H�� into H00. Lx maps H++�H�� into (H�0�H+0)/2 while Ly maps H++�H��
into �i(H+0+H�0)/2.

For spin s totally symmetric tensors (as in the first Regge trajectory) one has 2s+1

helicity states, starting from the ‘top’ component S++...+=(uv̄)s = ws
+ to the ‘bottom’

S��...�=(vū)s=ws
�, passing through the middle components S00...0=(uū�vv̄)s+ . . .=ws

0 +

. . . . Applying combinations of the above SO(3) transformations (on the helicity spinors)
one can map any amplitude, e.g. the one with the ‘top’ helicity component of a massive
state, into any other. This applies independently for each external insertion.

3.4.1 Amplitude AAAAC in D10

Let us start with A(A1, A2, A3, C4). With a judicious choice of super-ghost pictures and
c-ghost insertions one has

A
⇣
A(�1)

1 , A(0)
2 , A(0)

3 , C(�1)
4

⌘
= lim

(z1,z2,z4)!(1,1,0)

Z 1

0
dz3
⌦
ce�'a1 e

ik1X
(z1)

c(a2i@X+k2 a2 )e
ik2X

(z2)(a3i@X+k3 a3 )e
ik3X

(z3)cC4   e
ip4X

(z4)
↵

(3.35)

6For a different basis of massive polarisations in 4-pt amplitudes, see [23, 24].
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Following the steps detailed in Appendix D.1, one finally gets

AAAAC=B(1, 1)
⇢
�a1·C4:f2

h
a3·k1�

u

t
a3·k2

i
�a1·C4:f3

hu
t
a2·k3�

u

s
a2·k1

i
+

u

s
a1·f2·C4:f3

�a1·f3·C4:f2�2
u

t
a1· ˙C4·f3· ˙f2

�
, (3.36)

where the contractions are performed in a self-explanatory fashion and

B(1, 1)=B(2↵0k3p4, 1+2↵0k2k3)=
�(2↵0k3p4)�(1+2↵0k2k3)

�(1+2↵0k3(k2 + p4))
. (3.37)

Using 2k1k2=�s=+2k3p4�M2, 2k2k3=�t=+2k1p4�M2 and 2k3k1=�u=+2k2p4�M2
i.e.

s+t+u=M2
=1/↵0, one can check gauge invariance with respect to each of the three vector

legs.
Expanding and shuffling all the terms in Eq. (3.36), the amplitude AAAAC can be

written in a manifestly symmetric form under the exchange of the three vector boson legs

AAAAC = 4↵0uB(1, 1)
✓
C4[a1a2a3] +

X

i 6=3

C4[a1a2ki]
a3ki
k3ki

+

X

i 6=2

C4[a3a1ki]
a2ki
k2ki

+

X

i 6=1

C4[a2a3ki]
a1ki
k1ki

+ C4[a1k2k3]
a2a3
k2k3

+ C4[a2k3k1]
a3a1
k3k1

+ C4[a3k1k2]
a1a2
k1k2

◆
,

(3.38)

where C[abc]=Cµ⌫⇢aµb⌫c⇢.

3.4.2 AAAAC in D=4 helicity basis

In D=4 Cµ⌫⇢ is equivalent to a (pseudo) scalar C0="�µ⌫⇢p�Cµ⌫⇢/6M . In the helicity basis
one has two independent color-ordered amplitudes A(1

�
2

�
3

�C0) and A(1

�
2

�
3

+C0) and
their complex conjugates A(1

+
2

+
3

+C0) and A(1

+
2

+
3

�C0)
7. The former reads

A(1

�
2

�
3

�C0) = iB(1, 1)mCh13i
[12][23]

. (3.39)

The latter reads
A(1

�
2

�
3

+C0) = iB(1, 1) [13]h12i
3

m3
Ch23i

. (3.40)

3.4.3 Amplitude AAAAH in D10
Let us now consider AAAAH . With a judicious choice of super-ghost pictures and c-ghost
insertions one has

A
✓
A(0)

1 , A(�1)
2 , A(0)

3 , H(�1)
4

◆
= lim

(z1,z2,z4)!(1,1,0)

Z 1

0
dz3
⌦
c(a1i@X+k1 a1 )e

ik1X
(z1)

ce�'a2 e
ik2X

(z2) (a3i@X+k3 a3 )e
ik3X

(z3) c@X·H4· eip4X(z4)
↵
. (3.41)

7Once again, details of the computations are relegated in Appendix D.3.
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Following the steps detailed in Appendix D.2, one finally finds

AAAAH=

1

st
B(1�↵0s, 1�↵0t){a1a3 st[a2Hk1(1�↵0s)�a2Hk3(1�↵0t)]

+2a1Ha2 s k1f3k2�2a3Ha2 t k3f1k2+2↵0
[st(a3k2 a1k3 k3Ha2�a1k2 a3k1 k1Ha2)

+a1k2 a3k2 u (k1Ha2 s�k3Ha2 t)]�2a1k2 a3k1 a2Hk3(1�↵0t)t+2a3k2 a1k3 a2Hk1(1�↵0s)s

+a2f3Ha1 us�a2f1Ha3 ut�2↵0
(a3k1 a2f1Hk1�a1k3 a2f3Hk3)st

+2↵0a1k2(a2f3Hk1 s�a2f1Hk3 t)u�2↵0a3k2(a2f1Hk3 t�a2f1Hk1 s)u

+2a1k3 a2f3Hk1(1�↵0s)s�2a3k1 a2f1Hk3(1�↵0t)t�2↵0st(a2f1f3Hk1�a2f3f1Hk3)

�2a2f1f3Hk3(1�↵0t)t+2a2f3f1Hk1(1�↵0s)s}. (3.42)

After laborious manipulations, this amplitude can be written in the compact symmetric
form

AAAAH=

4

st
B(1�↵0s, 1�↵0t){

⇥
2↵0f3Hf1 k3f2k1+(1+2↵0k1k3)f3Hf1f2

⇤
k3k1

+

⇥
2↵0f1Hf2 k1f3k2+(1+2↵0k1k2)f1Hf2f3

⇤
k1k2

+

⇥
2↵0f2Hf3 k2f1k3+(1+2↵0k2k3)f2Hf3f1

⇤
k2k3}. (3.43)

3.4.4 AAAAH in D=4 helicity basis

Let us first consider the amplitudes involving the scalar component of H and start with
A(1

+
2

+
3

+H0)=A(1

�
2

�
3

�H0)
⇤. The amplitude can be written in the very compact form

A(1

+
2

+
3

+H0) = B(1, 1) mH [13]

h12ih23i . (3.44)

which is identical up to a phase to A(1

+
2

+
3

+C0), for normalised states.
Consider a different choice for the helicity of the vectors in the amplitude with H0:

A(1

�
2

�
3

+H0)=A(1

+
2

+
3

�H0)
⇤. The final result reads

A(1

�
2

�
3

+H0) = B(1, 1) [13]h12i
3

m3
Hh23i

. (3.45)

which is identical up to a phase to A(1

�
2

�
3

+C0).
Consider now the the amplitude for the spin-2 tensor H2 and three vector bosons

A(1

�
2

+
3

+Hh
2 )=A(1

+
2

�
3

�H�h
2 )

⇤. Setting p=k4+k5, the simplest amplitude to compute is
the one for the state with polarisation H++

=h4|h4||5]|5] that reads

A(1

�
2

+
3

+H++
) = B(1, 1) h14i4[13]

mHh12ih23ih45i2
. (3.46)

The other amplitudes obtain in a straightforward way, after repeatedly applying Lx and Ly

as outlined above. The final result can be compactly written as
X

h

chA(1

�
2

+
3

+Hh
) =

B(1, 1) [13]h14i2h15i2
mHh12ih23ih45i2

⇢
c++
h14i2
h15i2 � 4c+0

h14i
h15i + 6c00 � 4c0�

h15i
h14i + c��

h15i2
h14i2 .

�
(3.47)
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In the chosen orthogonal basis |H++|2=|H��|2=4(k4k5)2=m4
H=(1/↵0

)

2, |H+0|2=|H0�|2 =
16(k4k5)2=4m4

H=(2/↵0
)

2 and |H00|2=24(k4k5)2=6m4
H=(

p
6/↵0

)

2, so much so that ĉ±± =

m2
Hc±±, ĉ±0=2m2

Hc±0 and ĉ00=
p
6m2

Hc00 for properly normalized polarization tensors.

3.5 Higher-point open superstring amplitudes from SYM

In [35, 36] Mafra, Schlotterer and Stieberger (MSS) have obtained a beautiful formula that
allows one to express open superstring amplitudes for massless external states on the disk
to SYM amplitudes at tree level. The formula is reminiscent of the KLT (Kawai, Lewellen,
Tye) relations [41] and reads

AST
n (1, 2, . . . n) =

X

�2Sn�3

F (1[2�3� . . . n� 2�]n�1, n)AYM
n (1[2�3� . . . n�2�]n�1, n) (3.48)

with z1 = 0, zn�1 = 1, zn =1 so that

F (1[23 . . . n� 2]n� 1, n) =

(�)n�3
Z 1

z1=0
dz2

Z 1

z2

dz3 . . .

Z zn�1=1

zn�3

dzn�2

Y

i<j

z
sij
ij

[n/2]Y

k=2

k�1X

l=1

slk
zlk

n�1Y

k=[n/2]+1

k�1X

l=k+1

skl
zkl

, (3.49)

where sij=2↵0kikj=�↵0sphysij . The formula (3.49) follows from a tree-level CFT compu-
tation using the pure spinor formalism [35] and its soft limits and other properties were
checked in [36]. A pure RNS derivation of Eq. (3.49) has been given in [42], the proof is
based on a revisited S-matrix approach [43] .We will here check that it is consistent with
factorization on massive string states in two-particle channels i.e.

lim

s12!�↵0M2
H

(s12 + ↵0M2
H)An(V1V2V3 . . . Vn) =

X

H

A3(V1V2H)An�1(HV3V4 . . . Vn), (3.50)

where A3(V V H) is physical (decay rate, width) and can be computed for arbitrary states
following the strategy outlined in appendix C. This is nothing but Res[An(V1V2V3 . . . Vn)]

for s12=�↵0M2
H .

For simplicity will only consider mass-less 5-point amplitudes producing 4-point ampli-
tudes with 3-massless and 1-massive state in D=4 and briefly mention how to generalize the
procedure to an arbitrary number of mass-less and massive external states. In particular we
give the relevant formula for mass-less 6-point amplitudes and sketch, at least in the MHV
case, how to get the 4-massless and 1-massive at 5-points or the 2-massless and 2-massive
at 4-points.

3.6 5-points in D=4 helicity basis

The 5-point color-ordered amplitude for open superstring massless gluons reads [35, 36]

A5(12345) = F (12345)AYM
5 (12345) + F (13245)AYM

5 (13245), (3.51)

where F are multiple hyper-geometric functions

F (1[23]45) = s12s34

Z 1

0
dx

Z 1

x
dyxs12�1ys13(y � x)s23(1� x)s24(1� y)s34�1, (3.52)

– 12 –



with sij=2↵0kikj and F (13245) is obtained by exchanging 2 and 3 i.e.

F (1[32]45) = s13s24

Z 1

0
dx

Z 1

x
dyxs12ys13�1

(y � x)s23(1� x)s24�1
(1� y)s34 . (3.53)

Since in D=4 any 5-pt amplitude is either MHV or antiMHV with AMHV
5 (1

+
2

+
3

�
4

�
5

�
) =

AMHV
5 (1

�
2

�
3

+
4

+
5

+
)

⇤, let us consider the MHV case for definiteness

A5(1
�
2

�
3

+
4

+
5

+
) =

h12i3
h23ih34ih45ih51iF (12345) +

h12i4
h13ih32ih34ih45ih51iF (13245) (3.54)

that can be written as

A5(1
�
2

�
3

+
4

+
5

+
) =

h12i3
h13ih23ih34ih45ih51i [h13iF (12345)� h12iF (13245)]. (3.55)

MSS have checked the correct factorization on the massless poles [35, 36]. Here we will
check consistency in the massive two-particle channel. To this end one has to take the
residue at the pole s12 ! �1 respectively of F (12345) and F (13245). Starting from the
expression

F (12345) = s12s34

Z 1

0
dy

Z y

0
dx xs12�1

(1� x)s24(y � x)s23(1� y)s34�1ys13 (3.56)

and making use of

xs12�1
=

1

s12(s12 + 1)

d2

dx2
xs12+1 (3.57)

in Eq. (3.56) and integrating by parts, one finds

F (12345) = s34

Z 1

0
dy (1� y)s34�1ys13

Z y

0
dx

xs12+1

s12 + 1

d2

dx2
[(1� x)s24(y � x)s23 ]. (3.58)

Now it is easy to take the residue and find

Res
s12=�1

F (12345) = lim

s12!�1
(s12 + 1)F (12345)

= s34s24B(s13 + s23 + 1, s34) + s34s23B(s13 + s23, s34). (3.59)

Performing the same steps for

F (13245) = s13s24

Z 1

0
dy

Z y

0
dx xs12(1� x)s24�1

(y � x)s23(1� y)s34ys13�1, (3.60)

yields

Res
s12=�1

F (13245) = lim

s12!�1
(s12 + 1)F (13245) = s13s24B(s13 + s23, s34 + 1). (3.61)

Finally the residue of the color-ordered string amplitude is

Res
s12=�1

AST
5 (12345) = s34B(s3p, s34)

⇢
AYM

5 (12345)


s23 �

s24s3p
s35

�
�AYM

5 (13245)

s13s24
s35

�
,

(3.62)
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where s3p=s13+s23=�s34�s35=↵0t+↵0u=1�↵0s, since p=k1+k2 and 2k1k2=p2=�M2
H/C .

Using a mixed notation with both physical Mandelstam variables (s, t, u) and sij variables
we obtain the following expression

Res
s12=�1

AST
5 (12345)

=B(1�↵0s, 1�↵0t)
�
AYM

5 (12345)[s23s35+(s34+s35)s24]�s13s24AYM
5 (13245)

 
. (3.63)

One can check the factorization case by case, fixing the helicity of the external gluons.
Before embarking in the computations, notice that only SO(6) singlet bosons can appear
in the two-gluon channel. Following the dimensional reduction we previously revisited in
some detail, one only has Hµ⌫ , Cµ⌫⇢=C0"�µ⌫⇢p�/mC and �ijHij=�⌘µ⌫Hµ⌫=�3H0, after
decomposing Hµ⌫=Htt

µ⌫+H0(⌘µ⌫+↵0pµp⌫). Let us start with A(1

�
2

�
3

+
4

+
5

+
). In this case

we expect that only C and 3H0=⌘µ⌫H
(4)
µ⌫ =⌘µ⌫H

(10)
µ⌫ =��ijH(10)

ij , with H(4)
µ⌫ =⌘µ⌫+↵0pµp⌫

the four-dimensional part of H, contribute. With this choice, Eq. (3.62) becomes

Res
s12=�1

AST
5 (1

�
2

�
3

+
4

+
5

+
)

= B(1, 1) h12i4
h23ih45ih51i


h23i[23]h35i[35] + (h34i[34] + h35i[35])h24i[24]

h12ih34i � [13][24]

�

=

h12i2
mH/C

B(1, 1)
mH/C [35]

h45ih34i =A3(1
�
2

�H0)A4(H03
+
4

+
5

+
)+A3(1

�
2

�C0)A4(C03
+
4

+
5

+
),

(3.64)

where B(1, 1)=B(1+2↵0k1k2, 1+2↵0k1k3). The result coincides with the one we previously
derived using standard world-sheet techniques.

Consider now the amplitude A(1

�
2

+
3

�
4

+
5

+
). As shown in Tab. 1 in appendix D.4, if

we take k1↵↵̇=u↵ū↵̇ and k2��̇=v� v̄�̇ , with k1, k2 such that 2k1 · k2=p2=�1/↵0, we find that
only the spin-2 polarization v↵v�ū↵̇ū�̇ contributes at the massive pole. With this choice,
we have

Res
s12=�1

AST
5 (1

�
2

+
3

�
4

+
5

+
)

= B(1, 1)h13i
4{h23i[23]h35i[35] + (h34i[34] + h35i[35])h24i[24] + [13][24]h12ih34i}

h12ih23ih34ih45ih51i

= mHB(1, 1) h13i4[35]
mHh12i2h34ih45i

=

X

h

A3(1
�
2

+Hh
)A4(H

�h
3

�
4

+
5

+
). (3.65)

where only H++
=|1i|1i|2]|2] contributes since A3(1

�
2

+H++
)=mH=�2

p
↵0k1k2, while for

the remaining helicity states A3(1
�
2

+Hh 6=++
)=0 . The result coincides with the one we

previously derived using standard world-sheet techniques.
The last case is the amplitude A(1

+
2

+
3

�
4

�
5

+
) in which, as for the first case, only H0
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and C0 get exchanged in the s12 channel.

Res
s12=�1

AST
5 (1

+
2

+
3

�
4

�
5

+
)

= B(1, 1) h34i3
h12ih23ih45ih51i(h23i[23]h35i[35] + (h34i[34]+h35i[35])h24i[24]+[13][24]h12ih34i)

=

[12]

2

mH/C
B(1, 1) h34i

3
[35]

m3
H/Ch45i

= A3(1
+
2

+H/C)A4(H/C, 3�4�5+). (3.66)

The result coincides with the one previously derived using standard world-sheet techniques.

3.7 6-points and higher point amplitudes

Open-string amplitudes with more than one massive insertion look somewhat cumbersome
and not very illuminating in D=10. In D=4, in the spinor helicity basis, formulae look
more compact. A possible strategy for systematic computations is to derive amplitudes for
massive states by multiple factorization of amplitudes for massless states on massive poles
in two-particle channels. For open superstrings in turn one can rely on the MSS formula
[35, 36], relating string amplitudes to SYM amplitudes, whose validity we have given further
support earlier on.

For instance at 6-points, there are six terms in the MSS formula, corresponding to the
permutations of [234] i.e.

AST
6 (123456) = F (1[234]56)AYM

6 (1[234]56) + F (1[342]56)AYM
6 (1[342]56)

+ F (1[423]56)AYM
6 (1[423]56) + F (1[324]56)AYM

6 (1[324]56)

+ F (1[432]56)AYM
6 (1[432]56) + F (1[243]56)AYM

6 (1[243]56) (3.67)

Differently from the 4- and 5-point cases where only MHV (or anti-MHV) amplitudes are
non-zero, at 6-point one has a NMHV amplitude ANMHV

6 (� � � + ++) that even in
SYM has a lengthy expression if compared to Parke-Taylor formula [38]. Focussing on
MHV amplitudes AMHV

6 (� � + + ++)=h12i3/h23ih34i . . . h61i one can still compute 5-
point amplitudes with one massive insertion with almost no effort and 4-point amplitudes
with two massive insertions with little more effort.

For an arbitrary number of external massless legs n a priori one has NkMHV amplitudes
with k = 0, . . . [n/2]�2. These, and susy related ones, are needed to compute amplitudes
for generic massive states by factorization. Summarizing one can start with ASYM,k

n+2m , then
derive AST,k

n+2m and finally obtain AST,k
n,m by factorization on the assigned two-particle massive

poles. Notice that the initial helicity configuration should be chosen compatibly with the
choice of massive states, i.e. at the first level H0/C0 couple to gluons with the same helicity
while H2 couples to gluons with opposite helicity. Reverting the argument, the allowed
helicity configurations in SYM constrain the allowed amplitudes in superstring theory.

4 Soft limit

4.1 General arguments

In [14] the soft limits of massless string amplitudes was studied both explicitly (up to 6-
point amplitudes) and abstractly by making use of OPE analysis. The conclusion was that
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disk amplitudes of gluons behave exactly as in Yang-Mills theory at tree level both for the
open superstring and for the open bosonic string. Indeed one expects universal behaviour
at leading (��1) and sub-leading (�0) order, in formulae

An(1, 2, . . . , s, . . . , n) =

⇢
as·ks+1

ks·ks+1
� as·ks�1

ks·ks�1

�
+


fs:Js+1

2ks·ks+1
� fs:Js�1

2ks·ks�1

��
An�1(1, 2, . . . ŝ . . . , n) +O(�) (4.1)

where Ji denotes the angular momentum operator acting on particle i and fµ⌫
s = kµs a⌫s �

k⌫sa
µ
s , as by now usual.
We would like to extend the analysis of [14] based on the OPE to open string amplitudes

with massive states.
The leading and subleading soft behaviours are captured by the OPE of the soft gluon

integrated vertex with the adjacent (integrated) vertices. Using
Z zs+1

dzs(zs+1 � zs)
2↵0ksks+1�1F (zs, zi) ⇡

F (zs+1, zi)

2↵0ksks+1
+ . . . (4.2)

and similarly for zs�1 one gets

VA(as, ks)VA(as±1, ks±1) ⇡ ± asks±1

2ksks±1
VA(as±1, ks + ks±1) + ... (4.3)

where ... includes massive string states which do not contribute to the leading singularity
since

VA(as, ks)VA(as±1, ks±1) ⇡ ...+
X

M 6=0

1

2ksks±1 +M2
H

VM (H[as, as±1, ks, ks±1], ks+ks±1)+ ...

(4.4)
where VM denotes the vertex operator of a massive state, with momentum p = ks + ks±1

and polarisation H that can be expressed in terms of as, as±1, ks, ks±1.
Expanding the denominator as

1

2ksks±1 +M2
H

⇡ 1

M2
H

✓
1� 2ksks±1

M2
H

+ . . .

◆
(4.5)

one immediately sees that at most the sub-leading (regular �0 behaviour) might be affected.
However the tri-linear coupling A�A�H contains at least one soft momentum ks and this
produces a further suppression by �+1. This holds true also for the tachyon since the
T�A�A coupling involves two momenta AT�A�A = T (k1k2a1a2 � k1a2k2a1), similarly for
Hµ⌫ since AH�A�A = Hµ

⌫f1
⌫
⇢f2

⇢
µ
+ . . ., while for Cµ⌫⇢ at the first massive level of the

superstring one has AC�A�A = Cµ⌫⇢a
µ
1a

⌫
2(k1 � k2)⇢.

Let us now consider the case where the soft gluon is attached to a massive (or tachyonic)
leg

VA(as, ks)VM (Hs±1, ps±1) ⇡
1

2ksps±1
VM 0

(H 0
[as, Hs±1, ks, ps±1], ks + ps±1) + ... (4.6)
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where M 0 denotes any state at the same mass level as the state M . For the bosonic string
at the tachyonic and first massive level only one kind of particles appears so much so that
(for totally symmetric tensors of the first Regge trajectory at level N = `� 1)

AAH`H`
=

a1p23H
µ1...µ`
2 H3,µ1...µ`

+ a1,µH
µµ2...µ`
2 p⌫12H3,⌫µ2...µ`

+ p31,µH
µµ2...µ`
2 a⌫1H3,⌫µ2...µ`

+O(↵0p2)]

(4.7)

The first term is the string analogue of minimal coupling that is leading in the soft limit
k1 ! 0. Gauge invariance fixes the sub-leading term to be as expected. Indeed, for color-
ordered amplitudes with n+ 1 gluons and no massive states one finds [14, 22]

An+1(1, . . . s . . . , n+1) =

±1

2ks·ks±1
An(1, . . . ŝ, . . . , n+1)|a

0
s+1=as+1as·ks±1�asks·as±1+ksas·as±1

k0s+1=ks+1+ks
+. . .

(4.8)
expanding in ks yields

±
⇢

as·ks±1

2ks·ks±1
� ks·as±1

2ks·ks±1
as·

@

@as±1
+

as·ks±1

2ks·ks±1
ks·

@

@ks±1
+

as·as±1

2ks·ks±1
ks·

@

@as±1

�

An(1, . . . ŝ . . . , n+ 1) + . . . (4.9)

gauge invariance dictates the presence of the additional sub-leading term

⌥ ks·ks±1

2ks·ks±1
as·

@

@ks±1
An(1, . . . ŝ . . . , n+ 1) (4.10)

that completes at sub-leading order the action of fs:Js±1 on An(1, . . . ŝ . . . , n+ 1).
Including m massive states, if the soft gluon is adjacent to two hard gluons the above

analysis continues to apply. When at least one of the adjacent legs is massive, let’s say the
one in position s+ 1, with spin ` one has

An+1,m(1, . . . s . . . , n+m+1) =

±1

2ks·ps+1
An,m(1, . . . ŝ . . . , n+m+1)|H

0
s+1=Hs+1as·ps+1+...

p0s+1=ps+1+ks
+. . .

(4.11)
where . . . denotes the additional terms in the tri-linear V -H-H coupling. Barring a couple
of subtleties, we will deal with later on, expanding in ks one gets (schematically)

±
⇢

as·ps+1

2ks·ps+1
� `

ks·H ...
s+1

2ks·ps+1
as·

@

@H ...
s+1

+

as·ps+1

2ks·ps+1
ks·

@

@ps+1
+ `

as·H ...
s+1

2ks·ps+1
ks·

@

@H ...
s+1

�

An,m(1, . . . ŝ . . . , n+m+ 1) + . . . (4.12)

gauge invariance wrt the soft gluon dictates the presence of the additional sub-leading term

⌥ ks·ps+1

2ks·ps+1
as·

@

@ps+1
An,m(1, . . . ŝ . . . , n+m+ 1) (4.13)

that completes the action of fs:Js+1 on An,m(1, . . . ŝ . . . , n+m+ 1) at sub-leading order.
Now let us deal with two subtleties: the higher derivative terms in the tri-linear coupling

A-H-H and the possible non-diagonal couplings A-H-H 0 that would spoil universality. The

– 17 –



former is easy to dispose of, higher derivative corrections to minimal coupling can only
affect the sub-leading term that is fixed by gauge invariance wrt the soft gluon starting
from the low-derivative terms coded in the OPE. The latter requires more attention. For
open superstrings, as we have seen, already at the first massive level one finds two kinds of
particles in the Neveu-Schwarz sector: Cµ⌫⇢ (3-index anti-symmetric tensor, 84 d.o.f.) and
Hµ⌫ (2-index symmetric traceless tensor, 44 d.o.f.). In addition to the ‘diagonal’ couplings
V -C-C and V -H-H (and SUSY related) one should consider the mixed coupling V -H-C
⇡ ↵0Mp31·H2·C3:[a1p12] that exposes the singular soft factor 1/kp since MC = MH but
gets suppressed by an extra power of the soft momentum in the numerator. Lacking the
leading ��1 term that fixes also the sub-leading �0 term, thanks to gauge invariance, this
kind of higher derivative non-diagonal couplings can at most affect the sub-sub-leading
�+1 (and higher) terms which are not expected to be universal. Although the situation
gets exponentially more intricate the higher the mass level and spin, we conclude that no
correction are to be expected wrt the standard YM case in the soft behaviour for open
string amplitudes involving massive states.

For illustrative purposes, we will explicitly check the above statements in the soft limit
of some 4-point amplitudes with massive string states at the first level. Differently to the
case of amplitudes with only mass-less external states that factorise on 3-point amplitudes,
that would vanish for real momenta due to collinearity, when some of the external states
are massive, the soft limit can produce physical 3-point amplitudes e.g. widths or decay
rates of massive states into lower mass ones.

4.2 Soft limit of A(A1, T2, T3, T4)

In this case the limit k1 ! 0 is straightforward. Consider first the expansion of the factor

�(1 + 2↵0k1p2)�(1 + 2↵0k1p4)

�(1� 2↵0k1p3)
=

(1 + 2↵0k1p2 (1))(1 + 2↵0k1p4 (1))

1� 2↵0k1p3 (1)
= 1+O(�2). (4.14)

The expansion of the full amplitude reads

A(A1, T2, T3, T4) /
✓
a1p2
k1p2

� a1p4
k1p4

◆
A(T2, T3, T4) +O(�), (4.15)

showing the expected singular behavior in both the s and the t channels, whereas the term
of order O(�0) vanishes because

1

2

fµ⌫
1 Jiµ⌫A(T2, T3, T4) = 0, i = 2, 4. (4.16)

being the 3-tachyon amplitude a constant independent from the momenta.

4.3 Soft limit of A(A1, A2, T3, T4)

Consider the amplitude in Eq. (B.4) once we have expressed the Euler beta function in
terms of Euler gamma functions
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�(1 + 2↵0k1p4)�(1 + 2↵0k1k2)

�(1� 2↵0k1p3)

1

1� 2↵0k1k2

✓
k1p3
k1k2

(�a1a2 + 2↵0
(a1p3 a2p3 + a1p4 a2p4)

� a1p3 a2p4
1 + 2↵0k1p4

k1k2
� a1p4 a2p3

1 + 2↵0k1p3
k1p4 k1k2

k1p3

◆
. (4.17)

As already verified, the combination of Euler gamma functions in the above expression
contributes in the limit � ! 0 as 1 +O(�2), thus can be neglected. We have two terms of
order ��1:

� a1p3 a2p4
k1k2

� a1p4 a2p3 k1p3
k1k1 k1p4

. (4.18)

Using the identity
k1p3

k1k2 k1p4
= � 1

k1k2
� 1

k1p4
, (4.19)

Eq. (4.18) can be written as

a1p4 a2p3 � a1p3 a2p4
k1k2

+

a1p4 a2p3
k1p4

=

✓
1

2

a1p+a2p� �
1

2

a1p�a2p+

◆
1

k1k2

+

✓
a1

p+ � p�
2

a2
p�
2

+ a1
p+ � p�

2

a2
p+
2

◆
1

k1p4

=

✓
� a1k2

k1k2
+

a1p4
k1p4

◆
a2

p34
2

+

1

2

a1p� a2k1
k1k2

� 1

2

a1p4 a2k1
k1p4

, (4.20)

where
p+ = p3 + p4 p� = p3 � p4. (4.21)

The leading soft contribution is, as expected,
✓
� a1k2

k1k2
+

a1p4
k1p4

◆
A(A2, T3, T4). (4.22)

The order O(�0) contribution to the amplitude reads

� a1a2
k1p3
k1k2

+

1

2

a1p� a2k1
k1k2

� 1

2

a1p4 a2k1
k1p4

+ 2↵0
✓
k1p3
k1k2

(a1p3 a2p3 + a1p4 a2p4 + a1p4 a2p3)

+ a1p4 a2p3

✓
k1p3
k1p4

+

k1k2
k1p4

+ 1

◆
� a1p3 a2p4

✓
k1p4
k1k2

+ 1

◆◆
(4.23)

= �a1a2
k1p3
k1k2

+

1

2

a1p� a2k1
k1k2

� 1

2

a1p4 a2k1
k1p4

+ 2↵0a1p+a2p+ (4.24)

= �1

2

a1a2
k1p3
k1k2

+

1

2

a1a2
k1p4
k1k2

+

1

2

a1a2
k1p4
k1p4

+

1

2

a1p� a2k1
k1k2

� 1

2

a1p4 a2k1
k1p4

+O(�). (4.25)

In the above expression we recognize the expected behavior

1

2k1k2
f1µ⌫J

µ⌫
2 A(V2, T3, T4) =

✓
a1a2 k1

p34
2

� a1
p34
2

a2k1

◆
1

k1k2
, (4.26)

1

2k1p4
f1µ⌫J

µ⌫
4 A(A2, T3, T4) =

✓
1

2

a1a2 k1p4 � a1p4 a2k1

◆
1

k1p4
. (4.27)
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4.4 Soft limit of A(T1, T2, A3, H4)

Consider the amplitude in Eq. (B.6). Let us first discuss the soft limit of the kinematical
factor

�(�1 + 2↵0k3p4)�(1 + 2↵0p3k3)

�(�2↵0p1k3)
=

�(1 + 2↵0k3p4)�(1 + 2↵0p3k3)

�(1� 2↵0p1k3)

k3p1
k3p4(1� 2↵0k3p4)

= (1 +O(�2))
k3p1
k3p4

1

1� 2↵0k3p4
. (4.28)

It is then convenient to multiply the tensorial part of the amplitude for the above expansion
in order to identify more easily the contributions up to O(�0):

a3p4
k3p4

p2Hp2 =
a3p4
k3p4

p12
2

H
p12
2

+O(�0), O(�0) =
a3p4
k3p4

k3H
p12
2

; (4.29)

� a3p2
k3p2

p2Hp2 = �
a3p2
k3p2

p12
2

H
p12
2

+O(�0), O(�0) = �a3p2
k3p2

k3H
p12
2

; (4.30)

2a3p2 p2Hk3
p1k3

p2k3 k3p4
= �2a3p2

p2k3
p2Hk3 � 2

a3p2
k3p4

p2Hk3; (4.31)

� 2a3Hp2
p1k3
k3p4

p2k3
p2k3

= 2a3Hp2 + 2

k3p2
k3p4

a3Hp2. (4.32)

The leading order O(��1
) behaves as expected

A��1
(T1, T2, A3, H4) =

✓
a3p4
k3p4

� a3p2
k3p2

◆
p12
2

H
p12
2

, (4.33)

being A(T1, T2, H4) =
p12
2 H p12

2 . Look at the subleading contribution:

1

k3p2

✓
� a3p2 k3H

p12
2

� 2a3p2 p3Hk3 + a3Hp2 k3p2

◆

1

k3p4

✓
a3p4 k3H

p12
2

� 2a3p2 p3Hk3 + a3Hp2(2k3p2 + k3p4)

◆

=

1

k3p2

✓
a3p2 k3H

p12
2

� k3p2 a3H
p12
2

◆
� 1

k3p4

✓
2a3

p12
2

k3H
p12
2

� 2k3
p12
2

a3H
p12
2

◆
.

(4.34)

It is easy to verify that the above expressions coincide with:

1

2k3pi
f3µ⌫J

µ⌫
i A(T1, T2, H4), i = 2, 4. (4.35)

We recall that the angular momentum for a spin-2 particle takes the form

Jµ⌫ = pµ
@

@p⌫
� p⌫

@

@pµ
+ 2Hµ�

@

@H⌫
�

� 2H⌫�
@

@Hµ
�

. (4.36)
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4.5 Soft limit of A(A1, A2, A3, C4)

The amplitude is given in Eq (3.36). Let us study the soft behaviour when k3 ! 0. Recall
that s+ t+ u = 1/↵0

The Veneziano factor B(1, 1) yields

B(1, 1) = �(1� ↵0s)�(1� ↵0t)

�(1 + ↵0u)
=

�(2↵0k3p4)�(1 + 2↵0k3k2)

�(1� 2↵0k3k1)
⇡ 1

2↵0k3p4
⇥ [1 +O(�2)]

(4.37)
To leading order the polarisation dependent factor yields

P = �a1·C4:f2

✓
a3·k1 �

k3·k1
k3·k2

a3·k2
◆

(4.38)

combining the two one gets, as expected

A��1

4 (A1, A2, A3, C4) =

✓
a3·p4
k3p4

� a3·k2
k3·k2

◆
a1·C4:f2 =

✓
a3·p4
k3p4

� a3·k2
k3·k2

◆
A3(A1, A2, C4)

(4.39)
To sub-leading order �0, one gets

A�0

4 (A1, A2, A3, C4) =

✓
2a1·C4·f3·f2 � a1·f3·C4·f2

k3p4
� 2a1·C4·f3·f2

k3·k2

◆

=

✓
f3:J4
k3p4

� f3:J2
k3·k2

◆
A3(A1, A2, C4) (4.40)

as expected, where

J2
µ
⌫ =

kµ2@

@k⌫2
�kµ2@

@k⌫2
+aµ2

@

@a⌫2
�aµ2

@

@a⌫2
, J4

µ
⌫ = pµ4

@

@p⌫4
�pµ4

@

@p⌫4
+3Cµ�⇢

4
@

@C⌫�⇢
4

�3C⌫�⇢
4

@

@Cµ�⇢
4

Actually @/@p4 acts trivially in this case].
With little more effort one would get the same result for k1 ! 0, while for k2 ! 0 the

only contributions come from ‘standard’ soft behaviour of gluons hitting adjacent gluons.
This gives support to our general conclusion that superstring amplitudes with n mass-

less and m massive external legs on the boundary of the disk behave universally in the soft
limit.

4.6 Soft limit of A(A1, A2, A3, H4)

The amplitude is given in Eq (3.43). Let us study the soft behaviour when k3 ! 0. Recall
that s+ t+u = 1/↵0 as for A(A1, A2, A3, C4). Following the same steps one finds to leading
order

A��1

4 (A1, A2, A3, H4) =
k3k1
k3p4

✓
a3k2
k3k2

� a3k1
k3k1

◆
1

2

m2
Ha1Ha2 + a2k1 a1Hk2 � a1f2Hk2

�
=

�
✓
a3k2
k3k2

� a3p4
k3p4

◆
f1Hf2 +O(1) =

✓
a3k2
k3k2

� a3p4
k3p4

◆
A3(A1, A2, H4) (4.41)
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where use of m2
H = �p24 = �2k1k2 +O(�) has been made.

At subleading order one finds several terms i.e.

1

k3k2


a2a3

✓
k3p4 a1Hk2 � a1Hk3

m2
H

2

◆
+ a1Ha3a2k3

m2
H

2

+ a1Hk2 a2k3 a3k1

� a1Hk3 a2k1 a3k2 � a1f2f3Hk2 + a1f3f2k2 � k3p4 a1Ha2 a3k2 + a3p4 a2Ha2 k2k3

+ a2a3 a1Hk2 k2k3 + a2k1 a1Ha3 k2k3

�

+

1

k3p4
[a2a3 a1Hk3

m2
H

2

+ a1Ha3 a2k3
m2

H

2

+ a1Ha3 a2k1 k3k2 � a1f2Ha3 k3k1 � a1f3Ha2

� a1Hk3 a2k1 a3k2 � a1f2Hk3 a3k2 � a1f3Hk2 a2k1 � a1f2f3Hk2 � a3p4 a1f2Hk3]

(4.42)

Summing the terms within squared parenthesis everything can be written in terms of
f1, f2, f3 (as dictated by gauge invariance at this order) finding

A�0

4 (A1, A2, A3, H4) =

✓
f1Hf3f2 � f1Hf2f3

k3k2
� f1f3Hf2 � f1Hf3f2

k3p4

◆

=

✓
f3J2
k3k2

� f3J4
k3p4

◆
A3(A1, A2, H4) (4.43)

with J2
µ
⌫ given above and

JH
4

µ
⌫ = pµ4

@

@p⌫4
� pµ4

@

@p⌫4
+ 2Hµ�

4
@

@H⌫�
4

� 2H⌫�
4

@

@Hµ�
4

As above @/@p4 acts trivially in this case. This gives further support to our general argu-
ments on the soft limit.

5 Holomorphic soft limit

In this section we verify that open string amplitudes with massive external states enjoy the
same universal behaviour as YM amplitudes in the holomorphic soft limit [12]. In this limit
the holomorphic spinor us of a positive helicity gluon (inserted between leg 1 and leg n) is
scaled to zero u = �ûs. In SYM the leading behaviour as ��2 is governed by the operator

S0
YM =

hn1i
hnsihs1i

the sub-leading behaviour as ��1 is governd by the operator

S1
YM =

hn1i
hnsihs1i

⇢
hsni
h1ni ū

↵̇
s

@

@ū↵̇1
+

hs1i
hn1i ū

↵̇
s

@

@ū↵̇n

�

For MHV amplitude the sub-leading term vanishes and the procedure exponentiates [12].
In general it is convenient to use momentum conservation to express two ū’s in terms of
the remaining ones and the u’s. In our case, an obvious choice is to express ū4 and ū5 that
appear in the definition of the massive momentum p = k4+k5 = u4ū4+u5ū5. When taking
derivatives one has to take into account the mass constraint m2

= �(k4 + k5)2 as we will
see momentarily.
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5.1 A(A+, A+, A+, C)

Consider the amplitude

A(1

+, 2+, 3+, C0) = B(1� ↵0s, 1� ↵0t)
[13]mC

h12ih23i (5.1)

and take the limit for u2 ! �u2, with � ! 0. It is straightforward to show that

B(1� ↵0s, 1� ↵0t) =
1

↵0h13i[13](1 +O(�2)). (5.2)

The momentum of the massive particle is the sum of two massless momenta p = k4 + k5
with the constraint h45i[54] = m2

C . This constraint implies

m2
C = h45i[54] = h13i[13] + �(h12i[12] + h23i[23]), (5.3)

mC = mC(� = 0)

✓
1 +

1

2

�

✓
h12i[12]
h13i[13] +

h23i[23]
h13i[13]

◆◆
+O(�2). (5.4)

Expanding the amplitude, one finds

A(1

+, 2+, 3+, C0) =
1

�2
m2

C

h31i[13]
[13]mC

h12ih23i(1 +O(�2))

= � (1 + �(h12i[12] + h23i[23])) [13]mC

h12ih23i

✓
1 +

�

2h13i[13](h12i[12] + h23i[23])
◆
+O(�2)

= � 1

�2
[13]mC

h12ih23i

✓
1 +

3

2

�

✓
h12i[12]
h13i[13] +

h23i[23]
h13i[13]

◆◆
. (5.5)

The leading contribution to the holomorphic soft limit is easily identified to be

A(�2)
(1

+, 2+, 3+, C0) =
1

�2
h31i
h32ih21iA(1

+, 3+, C0) =
1

�2
h31i
h32ih21i

[13]

2

mC
= � [13]mC

�2h12ih23i .
(5.6)

that meets our expectations.
The sub-leading contribution is expected to be

A(�1)
(1

+, 2+, 3+, C0) =
1

�

h31i
h32ih21i

✓
h23i
h13i ū2

@

@ū1
+

h21i
h31i ū2

@

@ū3

◆
A(1

+, 3+, C0). (5.7)

In the presence of the mass constraint, the derivatives wrt ū1,3 are replaced by

@

@ū1,3
! d

dū1,3
=

@

@ū1,3
+

@mC

@ū1,3

@

@mC
, (5.8)

with
@mC

@ū1
=

h13i
2mC

|3], @mC

@ū3
= � h13i

2mC
|1]. (5.9)

Writing the three-point function A(1

+, 3+, C0) in a slightly different way

[13]

2

mC
=

m3
C

h13i2 +O(�), (5.10)
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we need to evaluate only the derivative of the tri-linear coupling respect to mC . Finally we
find

A(1

+, 2+, 3+, C0)
(�1)

=

1

�

✓
h13i[23]
2h21imC

� h13i[21]
2h32imC

◆
@

@mC
A(1

+, 3+, C0)

= �1

�

3

2

[13]mC

h12ih23i

✓
h23i[23]
h13i[13] +

h12i[12]
h13i[13]

◆
. (5.11)

that exposes the expected behaviour, too.
In order to complete our analysis, we consider the case in which the soft momentum is

k3. Let’s first expand the amplitude in Eq. (5.1) up to the order ��1

A(1

+, 2+, 3+, C0) =
1

�2
[13]m3

0

2k3p4 h12ih23i

✓
1 +

3

2

�
h13i[13] + h23i[23]

h12i[12]

◆
+O(�0). (5.12)

At leading order, the soft operator is simply

a+3 k2
2k3k2

� a+3 p4
k3p4

, (5.13)

which in the spinor helicity formalism becomes
hq2i
h32ih3qi �

hq4i[43] + hq5i[53]
2k3p4h3qi

=

h12i[13]
h23i 2k3p4

, (5.14)

with the help of Schouten’s identity. The expected leading order behavior looks like

A(�2)
(1

+, 2+, 3+, C0) =
1

�2
h12i[13]
h23i 2k3p4

A(1

+, 2+, C0) =
1

�2
[13]m3

0

h12ih23i 2k3p4
, (5.15)

where we exploited the fact that

A(1

+, 2+, C0) =
[12]

2

m0
. (5.16)

At sub-leading order we expect the soft operator to be

f+
3 :J2
2k2k3

� f+
3 :J4
2k3p4

! 1

h23i ū3
d

dū2
� 1

2k3p4

✓
[34]ū3

d

dū4
+ [35]ū3

d

dū5

◆
. (5.17)

Noticing that
✓

@

@ū2
+

@m0

@ū2

@

@m0

◆
[12]

2

m0
=

3

2

[12]ū1
m0✓

@

@ū4
+

@m0

@ū4

@

@m0

◆
[12]

2

m0
=

h45i[12]2ū5
2m3

0✓
@

@ū5
+

@m0

@ū5

@

@m0

◆
[12]

2

m0
= �h45i[12]

2ū4
2m3

0

,

we find
A(�1)

(1

+, 2+, 3+, C0) =
3

2�

[12][13]

h23im0
, (5.18)

which is compatible with Eq. (5.15) after noticing that the sub-leading term in the expansion
can be written as

3

2�

[13][23][12]

2k3p4
+

3

2�

[13][23][12]

m0

✓
� 1

2k3p4
+

1

h23i[23]

◆
=

3

2�

[12][13]

h23im0
. (5.19)
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5.2 A(A�, A+, A�, C)

Consider now the amplitude

A(1

�, 2+, 3�, C0) =
�(1 + 2↵0k1k2)�(1 + 2↵0k2k3)

�(1� 2↵0k2p4)

h13i3
h12ih23imC

. (5.20)

Taking the limit in which u2 ! 0, we have

A(1

�, 2+, 3�, C0) =
1

�2
h13i3

h12ih23imC(� = 0)

✓
1� �

2

✓
h12i[12]
h13i[13] +

h23i[23]
h13i[13]

◆◆
. (5.21)

For the leading term one finds

A(�2)
(1

�, 2+, 3�, C0) =
1

�2
h13i
h12ih23i

h13i2
mC

, (5.22)

for the sub-leading term

A(�1)
(1

�, 2+, 3�, C0) =
1

�

h13i
h12ih23i

h13i2
mC

✓
h23ih13i
h13i2mC

[23]� h21ih13ih31i2mC
[21]

◆
h13i2
m2

C

. (5.23)

that behaves as expected in the holomorphic soft limit.
In this case we will not consider the limit in which k3 ! 0 since the three-point

amplitude A(1

�, 2+, C0) = 0 vanishes.

5.3 A(A�, A+, A+, H++
)

Consider finally the amplitude

A(1

�, 2+, 3+, H++
) = B(1� ↵0s, 1� ↵0t)

h14i4[13]
mHh12ih23ih45i2

. (5.24)

Expanding for u2 ! 0, one finds

A(1

�, 2+, 3+, H++
) =

1

�2
h14i4

h12ih23ih31ih45i2mH(�) =
1

�2
h14i4[45]2

h12ih23ih31im3
H(�)

. (5.25)

Using
h14i[45] = h13i[35] + �h12i[25], (5.26)

we have

A(1

�, 2+, 3+, H++
) =

1

�2
h14i2[35]2h31i
h12ih23imH(�)3

✓
1 + 2�

h12i[25]
h13i[35] �

3

2

�

✓
h12i[12]
h13i[13] +

h23i[23]
h13i[13]

◆◆
.

(5.27)
At this stage the soft limit appears straightforward. The leading term reads

A(�2)
(1

�, 2+, 3+, H++
) =

h31i
h12ih23i

h14i2[35]2
m3

H

(5.28)
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Using the expressions for the two derivatives

d

dū1
A3(1

�, 3+, H++
) = � 3

2m5
H

h14i2[35]2h13iū3 (5.29)

d

dū3
A3(1

�, 3+, H++
) =

2

m3
H

h14i2[35]ū5 +
3

2m5
H

h14i2[35]2h13iū1 (5.30)

into the soft sub-leading term

A(�1)
(1

�, 2+, 3+, H++
) =

h31i
h12ih23i

✓
h23i
h13i ū2

d

dū1
+

h21i
h31i ū2

d

dū3

◆
h14i2[35]2

m3
H

(5.31)

we reproduce exactly Eq. (5.27).
Let’s consider the limit in which k3 ! 0. Expanding the amplitude in Eq. (5.24) up to

the order ��1 we find

A(1

�, 2+, 3+, H++
) =

1

�2
h14i2h12i[13][25]2
2k3p4 h23im3

0

✓
1� 3

2

�
h13i[13] + h23i[23]

h12i[12] + 2�
h13i[35]
h12i[25]

◆
.

(5.32)
Using the leading order soft operator we derived in Sec. 5.1, we find that

A(�2)
(1

�, 2+, 3+, H++
) =

1

�2
h12i[13]
h23i 2k3p4

A(1

�, 2+, H++
) =

1

�2
h14i2h12i[13][25]2
2k3p4 h23im3

0

, (5.33)

using

A(1

�, 2+, H++
) =

h14i2[25]2
m3

0

. (5.34)

The sub-leading soft behavior of the amplitude is determined by

[32]

2k2k3
ū3

d

dū2

h14i2[25]2
m3

0

=

3

2�

h14i2[13][25]2
h23im3

0

,

1

2k3p4

✓
[34]ū3

d

dū4
+ [35]ū3

d

dū5

◆
h14i2[25]2

m3
0

= 2

h14i2[23][35]
2k3p4m3

0

. (5.35)

Following the same algebraic manipulations as in Sec. 5.1 it can be shown that these two
terms reproduce the sub-leading soft term of the expansion in Eq. (5.24).

6 Conclusions

We have computed several open bosonic and super- string scattering amplitudes on the disk
with massive and tachyonic external states in critical dimension as well as in D = 4 (for
the superstring, using the spinor helicity basis).

We have then checked their universal behaviour when massless gluons go soft, despite
the presence of higher derivative couplings, and offered a general argument to this effect
based on world-sheet OPE. We have also checked consistency of the factorisation on the first
massive pole of the MSS formula obtained in [35, 36] relating open superstring amplitudes
on the disk to tree-level SYM amplitudes.
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We have only briefly considered closed strings. For gravitons, even in the presence of
massive external legs, one would expect a universal soft behaviour up to sub-sub-leading
order (�+1) [8–10, 47–49]

Mn(1, 2, . . . , s, . . . , n) = (6.1)
X

i 6=s


ki·hs·ki
ks·ki

+

2ki·hs·Jiks
ks·ki

+

ks·Ji·hs·Ji·ks
ks·ki

�
Mn�1(1, 2, . . . ŝ . . . , n) +O(�2) (6.2)

This should hold true at tree-level and with the understanding that interactions be governed
by minimal couplings. While in closed Type II superstrings on the sphere the soft limit of
amplitudes with massless states is the same as in gravity at tree level, for bosonic strings
– and in fact for the heterotic string, too – the presence of a �R2 vertex with the dilaton
spoils the universal behave even at leading order, in that a soft graviton attached to a hard
graviton can produce a hard dilaton thus producing a mixed amplitude8

Using KLT relations [41] one can efficiently compute closed amplitudes with massive
external states as ‘squares’ of open string amplitudes with massive external states, like the
ones we have considered in the present investigation. We plan to carry out this analysis in
simple cases and study the soft behaviour at tree level confirming universality, respectively
lack of it, in the case of the closed superstring (both Type IIA and Type IIB), respectively
in the case of the bosonic or heterotic string due to the presence of the �R2 terms [52].
We hope to shed further light on the soft behaviour of the Kalb-Ramond field, the dilaton
[50] and the other moduli fields [51]. It would also be interesting to investigate the soft
behaviour of loop amplitudes and to test the validity of the new proposal [53, 54] of getting
the graviton from the collinear limit of two gluons beyond tree level and in the presence of
massive external states.
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A Open bosonic string 3-point amplitudes

For the sake of completeness we summarize all the possible three point functions involving
open bosonic string states up to the first massive level, Eqs. 2.1, 2.2, 2.3. Kinematics of
three point on-shell amplitudes is fixed in terms of the masses of the particles involved in
the process. This property will be used repeatedly and stressed wherever necessary. In
the following formulas a factor (2⇡)D�D (

P
i pi), with D  26, resulting from integration

over the zero mode of the coordinate fields Xµ, is always understood. We will also drop a
factor of gs (↵0

)

(D/2�3)/2, which is gs (↵0
)

5 for the bosonic string in critical dimension, but,
8As suggested in [46], one may be tempted to propose a generalisation of the soft theorem whereby

dilatons and gravitons are ‘unified’ into a gravi-dilaton with symmetric transverse but non-traceless polar-
isation tensor eµ⌫ = hµ⌫+�µ⌫ with �µ⌫ = ⌘µ⌫�kµk̄⌫�k⌫ k̄µ and k̄2 = 0 k̄k = 1. Yet for the Kalb-Ramond
anti-symmetric tensor bµ⌫ which is odd under world-sheet parity ⌦, one expects a vanishing behaviour at
leading order [14].
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following the discussion in section 2.2, we will explicitly include the relevant Chan-Paton
factors fabc or dabc that make the full ‘amplitude’ Bose symmetric.

• TTT vertex

A(T1, T2, T3)=dabc
⌦
c eip1X(z1) c e

ip2X
(z2) c e

ip3X
(z3)

↵

=dabc z12z13z23 z2↵
0p1p2

12 z2↵
0p1p3

13 z2↵
0p2p3

23 =dabc, (A.1)

where we used the identity (pi+pj)2=�2m2
T+2pipj=�m2

T , so that 2↵0pipj=m2
T=� 1

↵0 for
all i, j. The symbol zij stands for zi�zj . In order to simplify the notation, from now on
we will introduce the notation

Pµ
i =

X

j 6=i

pµj
zji

. (A.2)

In general, Pi is contracted always with the i-th polarization vector/tensor. Exploiting
‘transversality’ i.e. pµi t

i
µ...=0, we will always replace the sum in Eq. (A.2) with:

P1=
p23
2

z23
z12z13

, P2=
p31
2

z13
z12z23

, P3=
p12
2

z12
z13z23

. (A.3)

• TTA vertex

A(A1, T2, T3)=
1p
2↵0

fabc
D
c a1µ i@X

µ eik1X(z1) c e
ip2X

(z2) c e
ip3X

(z3)
E

=

p
2↵0 fabc z12z13z23 a1µP

µ
1

Y

i<j

z
2↵0pipj
ij =

p
2↵0 fabc

1

2

a1p23. (A.4)

• TAA vertex

A(A1, A2, T3)=
1

2↵0dabc
D
c a1i@X eik1X(z1) c a2i@X eik2X(z2) c e

ip3X
(z3)

E

=dabc
⇣
2↵0 a1

p23
2

a2
p31
2

+ a1a2
⌘
. (A.5)

The amplitude can be rewritten in a manifestly gauge invariant form:

A(A1, A2, T3)=2↵0 dabc
⇣
a1

p23
2

a2
p31
2

+a1a2 k1k2
⌘
=2↵0 dabc

1

2

f1µ⌫f
⌫µ
2 . (A.6)

• AAA vertex

A(A1, A2, A3)=
1

(2↵0
)

3/2
fabc

D
c a1i@X eik1X(z1) c a2i@X eik2X(z2) c a3i@X eik3X(z3)

E

=

p
2↵0fabc

✓
a1a2 a3

k12
2

+a1a3 a2
k31
2

+a2a3 a1
k23
2

+2↵0a1
k23
2

a2
k31
2

a3
k12
2

◆
. (A.7)

• TAH vertex

A(A1, T2,H3)=
1

(2↵0
)

3/2
fabc

D
c a1i@X eik1X(z1) c e

ip2X
(z2) c i@XH3 i@X eip3X(z3)

E

=

p
2↵0 fabc

⇣
2a1H3

p12
2

+2↵0a1
p23
2

p12
2

H3
p12
2

⌘
. (A.8)
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• AAH vertex

A(A1, A2, H3)=
dabc
(2↵0

)

2

D
c a1i@Xeik1X(z1) c a2i@Xeik2X(z2) c i@XH3i@Xeip3X(z3)

E

=dabc

✓
2a1H3a2+2↵0

✓
2a1

p23
2

a2H3
p12
2

+2a2
p31
2

a1H3
p12
2

+a1a2
p12
2

H3
p12
2

◆

�(2↵0
)

2a1
p23
2

a2
p13
2

p12
2

H3
p12
2

◆
. (A.9)

One can rewrite the above amplitude in the manifestly gauge invariant form

A(A1, A2, H3)=2↵0 dabc

✓
2 tr(f1H3f2)�↵0tr(f1f2) k1H3k2

◆
. (A.10)

• AHH vertex

A(A1, H2, H3)=
fabc

(2↵0
)

5/2

D
ca1i@Xeik1X(z1) c i@XH2i@Xeip2X(z2) c i@XH3i@Xeip3X(z3)

E

=

p
2↵0 fabc

✓
2a1

p23
2

tr(H2H3)�4tr(f1H2H3)+4↵0 p31
2

H2f1H3
p12
2

+8↵0a1
p23
2

p31
2

H2H3
p12
2

+(2↵0
)

2a1
p23
2

p31
2

H2
p31
2

p12
2

H3
p12
2

◆
. (A.11)

• THH vertex

A(T1, H2, H3)=
1

(2↵0
)

2
dabc

⌦
c eip1X(z1) c i@XH2 i@Xeip2X(z2) c i@XH3 i@Xeip3X(z3)

↵

=dabc
⇣
2 tr(H2H3)+4(2↵0

)

p31
2

H2H3
p12
2

+(2↵0
)

2 p31
2

H2
p31
2

p12
2

H3
p12
2

⌘
.

(A.12)

• TTH vertex

A(T1, T2, H3)=
1

2↵0dabc
⌦
c eip1X(z1) c e

ip2X
(z2) c i@XH3 i@Xeip3X(z3)

↵

=dabc z12z13z23
Y

i<j

z
2↵0pipj
ij 2↵0P3H3P3=2↵0 dabc

p12
2

H3
p12
2

. (A.13)

• HHH vertex

A(H1, H2, H3)

=

dabc
(2↵0

)

3

⌦
c i@XH1 i@X eip1X(z1) c i@XH2 i@X eip2X(z2) c i@XH3 i@X eip3X(z3)

↵

=dabc

✓
8 tr(H1H2H3)+2↵0

✓
tr(H1H2)

p12
2

H3
p12
2

+tr(H1H3)
p31
2

H2
p31
2

+tr(H2H3)
p23
2

H1
p23
2

+8

p23
2

H1H2H3
p12
2

+8

p23
2

H1H3H2
p31
2

+8

p31
2

H2H1H3
p12
2

◆

+(2↵0
)

2

✓
p23
2

H1H2
p31
2

p12
2

H3
p12
2

+

p23
2

H1H3
p12
2

p31
2

H2
p31
2

+

p31
2

H1H3
p12
2

p23
2

H1
p23
2

◆

+(2↵0
)

3 p23
2

H1
p23
2

p31
2

H2
p31
2

p12
2

H3
p12
2

◆
. (A.14)
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B Open bosonic string four-point amplitudes

In this appendix we sketch the computation of the open bosonic string amplitudes in-
volving massive and tachyonic states. For simplicity we consider color-ordered ampli-
tudes. Complete amplitudes arise after multiplying by the relevant Chan-Paton factors
tr(t1t2t3t4) and summing over non-cyclic permutations. In fact, exploting ‘twist symme-
try’ i.e. ⌦ invariance, one can reduce the sum to three terms (instead of six). Exploit-
ing conformal invariance we choose to fix z1 ! 1, z2=1, z= z12z34

z13z24
and z4=0. A factor

g2s,ap(↵
0
)

(D/2�4)/2
(2⇡)D �D(

P
i pi) is always understood.

• Veneziano amplitude (TTTT )

A(T1, T2, T3, T4)=

⌧
c eip1X(z1) c e

ip2X
(z2)

Z
dz3 e

ip3X
(z3) c e

ip4X
(z4)

�

=z12z14z24

Z
dz3

Y

i<j

z
2↵0pipj
ij =

Z 1

0
dz (1�z)2↵0p2p3z2↵

0p3p4
=B(1+2↵0p2p3, 1+2↵0p3p4).

(B.1)

Introducing the Mandelstam variables (p1+p2)2=(p3+p4)2=�s, (p2+p3)2=(p1+p4)2=�t,
(p1+p3)2=(p2+p4)2=�u, we can rewrite the Veneziano amplitude as

A(T1, T2, T3, T4)=
�(�1�↵0s)�(�1�↵0t)

�(�2�↵0
(s+t))

. (B.2)

• ATTT amplitude

A(A1, T2, T3, T4)=
1p
2↵0

⌧
c a1i@Xeik1X(z1) c e

ip2X
(z2)

Z
dz3 e

ip3X
(z3) c e

ip4X
(z4)

�

=

1p
2↵0

✓
a1p2
k1p2

�a1p4
k1p4

◆
�(1+2↵0k1p2)�(1+2↵0k1p4)

�(1�2↵0k1p3)
. (B.3)

• AATT amplitude

A(A1, A2, T3, T4)=
1

2↵0

⌧
ca1i@Xeik1X(z1) ca2 i@Xeik2X(z2)

Z
dz3e

ip3X
(z3) ce

ip4X
(z4)

�

=

✓
a1a2�2↵0

(a1p3 a2p3+a1p4 a2p4)+a1p3 a2p4
1+2↵0k1p4

k1p3
+a1p4 a2p3

1+2↵0k1p3
k1p4

◆

B(1+2↵0k1p4,�1+2↵0k1k2). (B.4)
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• AAAT amplitude

A(A1, A2, T3, A4)=

Z
dz3

⌦
ca2i@Xeip1X(z1) ca1i@X eip2X(z2) e

ip3X
(z3) ca4i@Xeip4x(z4)

↵

=

�(1+2↵0p1p2)�(1+2↵0p1p4)

�(1�2↵0p1p3)

p1p3
2↵0p1p2 p1p4

⇢
�a1a2 a4p1

1+2↵0p1p3
2↵0p3p4

+a1a2 a4p2
1+2↵0p2p3
2↵0p3p4

+a1a4 a2p1
1+2↵0p1p3
2↵0p2p3

�a1a4 a2p4
1+2↵0p3p4
2↵0p2p3

�a2a4 a1p2
1+2↵0p2p3
2↵0p1p3

+a2a4 a1p4
1+2↵0p3p4
2↵0p1p3

+2↵0
✓
a1p4 a2p1 a4p2�a1p2 a2p4 a4p1+a1p2 a2p1 a4p1
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2↵0p2p3
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• TTAH amplitude

A(T1, T2, A3, H4)=
1
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3
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⌧
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. (B.6)

C Open superstring 3-point amplitudes

In this section we compute all the possible tri-linear couplings involving superstring states
up to the first massive level in the Neveu-Schwarz sector following the same conventions as
in Appendix A.

• AAC vertex

A(A(0)
1 , A(�1)

2 , C(�1)
3 )

=

dabcp
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D
c (a1 i@X+k1 a1 ) e
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E

=

p
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⇢
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p
2↵0 dabc a

µ
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2

. (C.1)

• AAH vertex

A(A(0)
1 , A(�1)

2 , H(�1)
3 )

=

dabc
2↵0 hc (a1 i@X+k1 a1 ) e

ik1X
(z1) ce

�� a2 e
ik2X

(z2) ce
�� i@XH3  eip3X(z3)i

=�2↵0dabc tr(f1H3f2). (C.2)
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• AHC vertex
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=
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• AHH vertex
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=
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• ACC vertex
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• AAA vertex

A(A(0)
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• HHH vertex
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(C.7)
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• CCC vertex
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• CCH vertex
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• CHH vertex

A(C(0)
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D Open superstring four-point amplitudes

Let us discuss the derivation of the 4-point amplitudes with one massive external state, i.e.

A(A1, A2, A3, H4) and A(A1, A2, A3, C4).

D.1 AAAAC amplitude

With a judicious choice of super-ghost pictures and c-ghost insertion one has

A(A(�1)
1 , A(0)

2 , A(0)
3 , C(�1)

4 )= lim

(z1,z2,z4)!(1,1,0)

Z 1

0
dz3

hce�'a1 e
ik1X

(z1)c(a2@X+ik2 a2 )e
ik2X

(z2)(a3@X+ik3 a3 )e
ik3X

(z3)cC4   e
ip4X

(z4)i.
(D.1)

There are only two kinds of non-vanishing contractions: h (1):  :(2)@X(3):   :(4)i+(2$
3) and h (1):  :(2):  :(3):   :(4)i. The first kind of contractions yields

1

2z1
[a1·C4:f2a3·P3(x)+

1

x2
a1·C4:f3a2·P2(x)], (D.2)

where setting z3=x we also have

P3(x)=�
1

x

✓
k1+

k2
1�x

◆
P2(x)=

x

1�xk3�k1. (D.3)

– 33 –



It is convenient to define also

P4(x)=�
✓
k2+

1

x
k3

◆
P1(x)=k2+xk3. (D.4)

The second kind of contractions yields

� 1

2z1

 
a1·f2·C4:f3

x2
+

a1·f3·C4:f2
x

+2

a1· ˙C4·f3· ˙f2
x(1�x)

!
(D.5)

in a self-explanatory index-free notation. Including the momentum factor and the (super-
)ghost correlators yields (barring �(⌃p) etc)

A(A(�1)
1 , A(0)

2 , A(0)
3 , C(�1)

4 )=

Z 1

0
dxx�↵0s+1
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◆
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◆
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x
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1�x

#
. (D.6)

Perusing the factorial properties of �(z), finally yields

AAAAC=B(1, 1)
⇢
�a1·C4:f2

h
a3·k1�

u
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a3·k2

i
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u
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a1· ˙C4·f3· ˙f2

�
. (D.7)

D.2 AAAAH amplitude

We can now embark for a long journey through the computation of AAAAH . With a
judicious choice of super-ghost pictures and c-ghost insertions one has

A(A(�1)
1 , A(0)

2 , A(0)
3 , H(�1)

4 )

= lim

(z1,z2,z4)!(1,1,0)

Z 1
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(z2)

(a3@X+ik3 a3 )e
ik3X

(z3)c@X·H4· eip4X(z4)i.
(D.8)

Since h (1):   :(4)i=0, there are only three kinds of contractions:

h (1)@X(3)@X(3) @X(4)i, (D.9)
h (1):  :(2)@X(3) @X(4)i+(2$ 3), (D.10)
h (1):  :(2):  :(3): @X(4)i. (D.11)
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Exploiting the Pi(x) allows to identify 11 terms:

�a1·H4·a2a3·
✓
1

x
k1+

1

x(1�x)k2
◆
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✓
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1�xk3�k1
◆
! a1·H4·a3[a2·k3B(1, 1)�a2·k1B(0, 1) (D.13)
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a1·f2·H4·k2[a3·k1B(1, 1)+a3·k2B(1, 0)]+a1·f2·H4·k3[a3·k1B(0, 1)+a3·k2B(0, 0)] (D.20)
1
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✓
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◆
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Factoring out

B(1, 1)=�(1�↵
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�(1+↵0u)
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finally yields
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(D.24)

D.3 AAAAC in 4-dimensions

Let us first consider A(1

+
2

+
3

+C).

A(1

+
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◆

+

u
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+
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+
3 p4+a+1 k3 a

+
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The final result is

A(1

+
2

+
3

+C)=iB(1, 1)m4
C

[13]

h12ih23i . (D.26)

Let us now consider A(1

�
2

�
3

+C). Choosing

a�µ
1 =

h1|�µ|2]
[21]

a�µ
2 =

h2|�µ|1]
[12]

a+µ
3 =

h1|�µ|3]
h13i , (D.27)

the amplitude simplifies as follows

A(1

�
2

�
3

+C)=i

✓
�a�1 ·C:f+

3 a�2 k3
u

t
�a�1 f+

3 ·C:f�
2 �2

u

t
a�1 · ˙C·f+

3 · ˙f�
2

◆
B(1, 1) (D.28)

=ia�1 k3 a�2 k3 a+3 k2 B(1, 1)=i
[13]

h12ih23i
3B(1, 1). (D.29)

D.4 AAAAH in 4-dimensions

Expressing the 4-momentum of a H massive spin 2 state as p=k1+k2, with k21=k22=0 and
2k1·k2=p2=�1/↵0, it is possible to write its physical polarizations in the spinor helicity
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f�
1 f+

2 f�
1 f�

2 f+
1 f+

2 f+
1 f�

2

c0 hu1i2[u2]2+hv1i2[v2]2 0 0 hu2i2[u1]2+hv2i2[v1]2
�4hu1ihv1i[u2][v2] �4hu2ihv2i[u1][v1]

c1 2hu1i2[u2][v2]�2hu1ihv1i[v2]2 0 0 2hu2i2[u1][v1]�2hu2ihv1i[v1]2
c�1 2hv1i2[v2][u2]�2hv1ihu1i[u2]2 0 0 2hv2i2[v1][u1]�2hv2ihu1i[u1]2
c2 hu1i2[v2]2 0 0 hu2i2[v1]2
c�2 hv1i2[u2]2 0 0 hv2i2[u1]2

Table 1. In the table we list all couplings between a spin-2 massive state H and two vector bosons
A1, A2. The momentum of H is p↵↵̇=u↵ū↵̇+v↵v̄↵̇. It is worth to notice that H couples only to
couple of vector bosons with opposite helicities.

formalism. If we define k1↵↵̇=u↵ū↵̇ and k2↵↵̇=v↵v̄↵̇, we have

H↵↵̇��̇=c0(u↵u�ū↵̇ū�̇+v↵v� v̄↵̇v̄�̇�(u↵v�+u�v↵)(ū↵̇v̄�̇+ū↵̇v̄�̇))

+c1(u↵u�(ū↵̇v̄�̇+ū�̇ v̄↵̇)�v̄↵̇v̄�̇(u↵v�+u�v↵))

+c�1(v↵v�(ū↵̇v̄�̇+ū�̇ v̄↵̇)�ū↵̇ū�̇(u↵v�+u�v↵))

+c2u↵u� v̄↵̇v̄�̇+c�2v↵v�ū↵̇ū↵̇. (D.30)

Recalling that A(A1, A2, H) / tr(f1Hf2), we can express the coupling between two vector
bosons and each helicity component of H. As shown in Tab. 1, H couples only to vector
bosons with opposite helicity.

Let us discuss the case in which only the scalar component of H (the trace of H

in 4 dimensions) couples to the three vector bosons and let us start with the amplitude
A(1

+
2

+
3

+H0). Choosing

a+1 =
|1]h2|
h21i a+2 =

|2]h1|
h12i a+3 =

|3]h1|
h13i , (D.31)

some of the scalar products appearing in Eq. (D.24) vanish: a+2 ·a+3 =0, a+1 ·k2=0, a+2 ·k1=0

and a+3 ·k1=0, and the amplitude simplifies significantly
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�a1f3H0a2+2↵0a1f2H0k2 a3k2

u

t

+2↵0a1f2H0k3 a3k2
u(s+t)

st
�2↵0a1f3H0k2 a2k3

u+t

t
�2↵0a1f3H0k3 a2k3

u

t

+2↵0a1f2f3H0k2
u

t
+2↵0a1f2f3H0k3

u(s+t)

st
�2↵0a1f3f2H0k2

u+t

t
�2↵0a1f3f2H0k3

u

t
.

(D.32)

The scalar 4-dimensional polarization of H0 is H0µ⌫=⌘µ⌫+↵0pµp⌫ . Let us consider the
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diagonal part of the polarization of H0.

a1a2 a3k2
u

t
�a1a3 a2k3

u

t
=2(s+t)

[13]

h12ih23i

a1f2a3
u

s
�a1f3a2=4t

[13]

h12ih23i

2↵0a1f2k3 a3k2
u(s+t)

st
=�2↵0t(s+t)

[13]

h12ih23i

�2↵0a1f3f2k3
u

t
=�2↵0ut

[13]

h12ih23i (D.33)

Let us now consider the longitudinal part of the polarization: ↵0pµp⌫ .

↵0a1p a2p a3k2
u

t
�↵0a1p a3p a2k3

u

t
=0 (D.34a)

↵0a1f2p a3p
u

s
�↵0a1f3p a2p=�t

[13]

h12ih23i (D.34b)

2↵02a1f2p pk2 a3k2
u

t
+2↵02a1f2p pk3 a3k2

u(s+t)

st
=↵0

(s+t)2
[13]

h12ih23i (D.34c)

�2↵02a1f3p pk2 a2k3
u+t

t
�2↵02a1f3p pk3 a2k3

u

t
=↵0t(u+t)

[13]

h12ih23i (D.34d)

2↵02a1f2f3p pk2
u

t
+2↵02a1f2f3p pk3

u(s+t)

st
=↵0u(s+t)

[13]

h12ih23i (D.34e)

�2↵02a1f3f2p pk2
u+t

t
�2↵02a1f3f2p pk3

u

t
=↵0

(s+t)(u+t)
[13]

h12ih23i . (D.34f)

Using the identity s+t+u=1/↵0, the sum of the terms in Eqs. (D.33), (D.34) yields

A(1

+
2

+
3

+H0) /
1

↵0
[13]

h12ih23i . (D.35)

Let us consider the amplitude A(1

�
2

�
3

+H0). Choosing

a�1 =
|2]h1|
[21]

a�2 =
|1]h2|
[12]

a+3 =
|3]h1|
h13i , (D.36)

we can enforce the conditions ai·aj=0 and a1·k2=a2·k1=a3·k1=0. The resulting amplitude
looks like

A(1

�
2

�
3

+H0)=a1H0a2 a3k2
u

t
+a1H0a3 a2k3

u

t
+a1k3 a3H0a2+2↵0a1k3 a3H0k2 a2k3

u+t

t

+2↵0a1k3 a3H0k3 a2k3
u

t
�2↵0a1k3 a3k2 a2H0k2

u+t

t
�2↵0a1k3 a3k2 a2H0k3

u

t
. (D.37)

The diagonal part of the polarization of H0 produces

2↵0a1k3 a3H0k2 a2k3
u+t

t
�2↵0a1k3 a3k2 a2H0k3

u

t
=2↵0 [13]h23i3

h12i . (D.38)
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The longitudinal part of the polarization of H0 yields

↵0a1p a2p a3k2
u

t
+↵0a1p a3p a2k3

u

t
+↵0a1k3 a3p a2p=3↵0 [13]h23i3

h12i (D.39)

Finally the result is

A(1

�
2

�
3

+H0) / ↵0 [13]

h12ih23i
3. (D.40)

Let us consider the case in which the spin-2 tensor H with helicity u↵(4)u↵(4)v̄↵̇(5)v̄↵̇(5),
with p=k4+k5 the momentum of H, having helicity h=2 couples to three vector bosons,
i.e. A(1

�
2

+
3

+H). Choosing the following parametrization for the polarization vectors of
the incoming gluons

a�1 =
|2]h1|
[21]

, a+2 =
|2]h1|
h12i , a+3 =

|3]h1|
h13i , (D.41)

we have ai·aj=0 and a�1 ·k2=a+2 ·k1=a+3 ·k1=0.

A(1

�
2

+
3

+H)=

a�1 Ha+2 a+3 k2
u

t
�a�1 Ha+3 a+2 k3

u

t
�a�1 f+

3 Ha+2 �2↵0a�1 f
+
3 Hk2 a+2 k3

u+t

t

�2↵0a�1 f
+
3 Hk3 a+2 k3

u

t
�2↵0a�1 f

+
3 f+

2 Hk2
u+t

t
�2↵0a�1 f

+
3 f+

2 Hk3
u

t

=a�1 Ha+2 a+3 k2
u

t
�a�1 Ha+3 a+2 k3

u

t
+a�1 k3 a+3 Ha+2 +2↵0a�1 k3 a+3 Hk2 a+2 k3

u+t

t

+2↵0a�1 k3 a+3 Hk3 a+2 k3
u

t
�2↵0a�1 k3 a+3 k2 a+2 Hk2

u+t

t
�2↵0a�1 k3 a+3 k2 a+2 Hk3

u

t
. (D.42)

So we have

a�1 Ha+2 a+3 k2
u

t
�a�1 Ha+3 a+2 k3

u

t
=4A [25][45]h45i2

[21]h14i

a�1 k3 a+3 Ha+2 =4A [23][25][35]h45i2h23i
[21][13]h14i2

2↵0a�1 k3 a+3 Hk2 a+2 k3
u+t

t
+2↵0a�1 k3 a+3 Hk3 a+2 k3

u

t

=�4↵0A [23][35]h13ih45i2
[21][13]h14i3 (t[25]h24i�u[15]h14i)

�2↵0a�1 k3 a+3 k2 a+2 Hk2
u+t

t
�2↵0a�1 k3 a+3 k2 a+2 Hk3

u

t

=�4↵0A [23][25]h12ih45i2
[21][13]h14i3 (t[25]h24i�u[15]h14i), (D.43)

where
A=

h14i4[13]
h12ih23ih45i2 . (D.44)

The sum of the terms in Eq. (D.43), produces the amplitude

A(1

�
2

+
3

+H) / 1

↵0A=

1

↵0
h14i4[13]
h12ih23ih45i2 . (D.45)
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