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Abstract. We give an overview on the series of articles [FL1, FL2, FL3]
that aims at introducing a new approach towards the “combinatorial” cate-
gory introduced by Andersen, Jantzen and Soergel in their work on Lusztig’s
conjecture on the irreducible highest weight characters of modular algebraic
groups.

1. Introduction

One of the essential steps in the proof of Lusztig’s conjecture for large enough
characteristics is the work of Andersen, Jantzen and Soergel [AJS94]. There,
the authors define a category M over an arbitrary field k that has the property
that it encodes important structural information on the representation theory of
quantum groups at a root of unity if k is of characteristic zero, and of modular Lie
algebras if k is of positive characteristic. Using an intricate base change argument,
the authors were able to show that Lusztig’s formula for the irreducible highest
weight characters of simple, simply connected modular groups follows from the
analogous formula in the quantum case (which was proven earlier by Kazhdan
and Lusztig), provided that the characteristic of the base field is large enough.

After this seminal result was obtained, representation theorists were hoping
that every prime above the Coxeter number of the group might be large enough
in the above sense, and many people were aspiring to prove this. However, in 2013
Geordie Williamson came up with a series of counterexamples, and in addition
to showing that the above hope was too optimistic, Williamson also showed that
the exceptional characteristics grow exponentially with the Coxeter number [Wil].
This result is both discouraging and challenging. So far we seem not to have a
good idea of what is going on for the exceptional primes, and we seem to be
quite far from stating a new conjecture on the irreducible characters in case the
characteristic of the ground field is exceptional.

Lusztig’s conjecture was inspired by explicit examples for the irreducible char-
acters of algebraic groups that were found by Jantzen, who was using a variety
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of powerful tools (such as Jantzen’s sum formula, see also [Jan77]) for the calcu-
lations. In the present situation, we would like to provide further methods and
tools. We hope that they will be of use for gaining an understanding of what to
expect of modular representation theory at small primes. Now, the Andersen–
Jantzen–Soergel result referred to above holds for any field of characteristic above
the Coxeter number, and it allows us to deduce the irreducible highest weight
characters from multiplicities encoded in the category M. This motivates our
attempt to try to look at the category M from a new perspective.

There is a precedent for our approach. In the case of the conjecture of Kazhdan
and Lusztig on the irreducible highest weight characters of semisimple complex
Lie algebras, one can translate the problem into the realm of either the cate-
gory of Soergel bimodules, or of Braden–MacPherson sheaves on finite moment
graphs. The connection to Soergel bimodules is established via translation func-
tors, whereas the connection to sheaves on moment graphs can be obtained more
directly, using the fact that Braden–MacPherson sheaves are projective objects
inside a certain category of sheaves that admit a Verma flag (cf [Fie08]). Both
approaches have their advantages.

In the positive characteristic case, the translation combinatorics side is incor-
porated in the definition of the Andersen–Jantzen–Soergel category. Now we
want to construct the sheaves-on-moment-graphs side of the picture. It turns
out that the right category to look at is the category of filtered sheaves on fi-
nite moment graphs. We define this category together with an exact structure
and we relate the projective objects to the Andersen–Jantzen–Soergel category.
The projective objects can be constructed in two essentially different ways: On
the one hand side, there is a filtered Braden–MacPherson algorithm that yields
the indecomposable projectives directly. On the other hand, our category also
carries translation functors, and the indecomposable projectives occur as direct
summands of Bott-Samelson-type objects.

We can relate our category to the category of sheaves on affine moment graphs,
and hence are able to obtain multiplicity formulas that imply Lusztig’s conjecture
for large enough primes.

2. The Andersen–Jantzen–Soergel category

The category of Andersen, Jantzen and Soergel that appears prominently in
their work on the representation theory of modular Lie algebras and quantum
groups, is sometimes called a “combinatorial category”. This term might be
somewhat misleading, as the category has not much to do with classical, set-
theoretic combinatorics. It is rather a category that is defined in terms of basic
linear algebra and that is meant to “categorify” the algorithm for calculating the
periodic polynomials inside the periodic Hecke module. Let us now introduce the
basic notions.
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2.1. Alcoves and reflections. Let R ⊂ V be an irreducible root system in the
Euclidean vector space V . We denote by R∨ ⊂ V ∗ the system of coroots, and
α∨ ∈ R∨ is the coroot associated with α ∈ R. With X ⊂ V we denote the weight
lattice. It is acted upon by the (finite) Weyl group W .

We define, for α ∈ R, the affine translation tα : V → V , λ 7→ λ + α. From
this we obtain an action of the root lattice ZR on V . The affine Weyl group
is defined as the subgroup generated by W and ZR inside the group of affine
transformations of V . The affine Weyl group is also generated by the following
subset of affine reflections: For α ∈ R and n ∈ Z we denote by sα,n : V → V the
map λ 7→ λ− (〈λ, α∨〉 − n)α, i.e. the affine reflection at the hyperplane

Hα,n := {λ ∈ V | 〈λ, α∨〉 = n}.

The set of alcoves A is the set of connected components of the topological
space V \

⋃
α,nHα,n (we think of V as being endowed with its standard, metric

topology). Then A is acted upon by the affine Weyl group Ŵ , and this action is
free and transitive. Let us fix a system of positive roots R+ ⊂ R. We denote by
Ae ∈ A the base alcove, i.e. the unique alcove contained in the dominant Weyl

chamber in V and that contains 0 in its closure. The map Ŵ → A , w 7→ w(Ae),
is a bijection, and we define

Aw := w(Ae).

We denote by Π ⊂ R+ the set of simple roots, and by γ ∈ R+ the highest root
(i.e. the unique element with the property γ − α ∈ Z≥0R+ for all α ∈ R+). The
set of simple affine reflections is

Ŝ := {sα,0 | α ∈ Π} ∪ {sγ,1}.

The reflection hyperplanes corresponding to s ∈ Ŝ are precisely the hyperplanes
that have a codimension 1 intersection with the closure of Ae.

For any α ∈ R+ we define a bijection α ↑ · : A → A . Let A be an alcove. Set
n = nA,α := min{m ∈ Z | 〈λ, α∨〉 < m for all λ ∈ A}. Then we set

α ↑ λ := sα,n(A).

We denote by � the minimal partial order on the set A that satisfies A � α ↑ A
for all positive roots α and all alcoves A.

Let A ∈ A be an alcove, and let s ∈ Ŝ. Let us denote by Hs the reflection
hyperplane corresponding to s. Then there is a unique reflection hyperplane

H = HA,s in the Ŵ-orbit of Hs that has a codimension 1 intersection with the
closure of A. Let us denote by As the image of A under the reflection at H. We

then have As � A or A � As, and we denote by A
(s)
− (by A

(s)
+ , resp.) the smaller

(larger) alcove in the set {A,As}.
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2.2. Localizations. Now let us fix a field k. We denote by S = S(X ⊗Z k) the
symmetric algebra of the k-vector space spanned by the lattice X. Let us define
for any positive root α the localization

Sα = S[β−1 | β ∈ R+, β 6= α]

of S and
S∅ = S[β−1 | β ∈ R+].

We then have canonical inclusions S ⊂ Sα ⊂ S∅ for each positive root α.

2.3. The surrounding category. We now have all ingredients to define the
“combinatorial” category that surrounds the Andersen–Jantzen–Soergel category.

Definition 2.1 ([AJS94]). Let K be the category that consists of objects

M = ({M(A)}A∈A , {M(A, β)}A∈A ,β∈R+) ,

where

(1) M(A) is an S∅-module for each A ∈ A and
(2) for A ∈ A and β ∈ R+, M(A, β) is an Sβ-submodule ofM(A)⊕M(β ↑ A).

A morphism f : M → N in K is given by a collection (fA)A∈A of homomorphisms
fA : M(A)→ N(A) of S∅-modules, such that for all A ∈ A and β ∈ R+, fA⊕fβ↑A
maps M(A, β) into N(A, β).

It is convenient to also introduce the following shift functors that incorporate
the ZR-symmetry of the set of alcoves. For an element γ ∈ ZR and an object M
of K we define the functor τγ : K → K as follows. For an alcove A and a positive
root β we set

(τγM)(A) = M(A+ γ),

(τγM)(A, β) = M(A+ γ, β).

If f : M → N is a morphism in K, then τγf : τγM → τγN is given by (τγf)A =
fA+γ.

2.4. Translation functors and the base object. In order to define the Andersen–
Jantzen–Soergel category we need a set of translation functors that act on the

category K. Let s ∈ Ŝ be a simple affine reflection and let M be an object in K.
We now define an object TsM in K. Let A be an alcove and β ∈ R+. We set

(TsM)(A) := M(A
(s)
− )⊕M(A

(s)
+ )

and

(TsM)(A, β) :=



{(βx+ y, y) | x, y ∈M(A, β)}, if β ↑ A(s)
− = A

(s)
+

and A = A
(s)
− ,

βM(β ↓ A, β)⊕M(β ↑ A, β), if β ↑ A(s)
− = A

(s)
+ ,

and A = A
(s)
+ ,

M(A
(s)
− )⊕M(A

(s)
+ ), if β ↑ A(s)

− 6= A
(s)
+ .
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These definitions are functorial in M in the obvious way, and hence yield a functor
Ts : K → K.

Apart from the translation functors we also need the following base object Q0

in K. For an alcove A and a positive root β we set

Q0(A) :=

{
S∅, if A ∈ W(Ae),

0, if A 6∈ W(Ae)

and

Q0(A, β) :=


{(βx+ y, y) | x, y ∈ Sβ}, if A, β ↑ A ∈ W(Ae),

βSβ, if A ∈ W(Ae), β ↑ A 6∈ W(Ae),

Sβ, if A 6∈ W(Ae), β ↑ A ∈ W(Ae),

0, if A, β ↑ A 6∈ W(Ae).

2.5. The Andersen–Jantzen–Soergel category of “special objects” in K.
We are now ready to define the category M.

Definition 2.2. The category of special objects is the smallest full subcategory
M of K that satisfies the properties.

• It contains the object Q0.
• It is stable under the translation functors Ts for any simple affine reflection
s and the shift functors τγ for any γ ∈ ZR.
• It is stable under taking direct summands and forming direct sums.

2.6. The connection to modular representation theory. Now suppose that
k is an algebraically closed field of positive characteristic p, and suppose that G is
an almost simple, connected and simply connected algebraic group defined over
k. Let T ⊂ G be a maximal torus, and suppose that the associated root system
is R. We can then identify X with the set of weights Hom(T, k×) of G.

Let g be the Lie algebra of G, and h ⊂ g the Lie algebra of T . We now consider
a certain category C of X-graded restricted representations of g. First note that
g is a restricted Lie algebra, so we can consider the category of restricted repre-
sentations. An object in C is now a finite dimensional restricted representation
M of g that carries an additional grading M =

⊕
µ∈XMµ as a vector space such

that the following holds: for H ∈ h and m ∈ Mµ we have H.m = µ(H)m, where
µ ∈ Hom(h, k) is the differential of µ. A morphism of X-graded representations
is a homomorphism of representations of g that is diagonal with respect to the
gradings.

An important property of C is the following: If M is a rational representation,
then differentiating the G-action yields a representation of g on M . If we in
addition remember the weight space decomposition, i.e. the action of T , then we
obtain an object in C.

The category C is an abelian category. For any λ ∈ X one defines the baby
Verma module Z(λ) in C with highest weight λ, and its unique simple quotient
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L(λ). We now consider the p-dilated and ρ-shifted action of the affine Weyl group

on the lattice X, i.e. we consider the semidirect product Ŵp = W n ZpR with

its natural action on X shifted by ρ, i.e. w.λ = w(λ + ρ) − ρ. We identify Ŵp

with the affine Weyl group Ŵ acting on the set A in the obvious way. Let w0

be the longest element in W .

Theorem 2.3 ([AJS94]). Suppose that p > h.

• For any alcove A ∈ A there is an up to isomorphism unique indecompos-
able object QA in M with QA(B) = 0 unless A � B, and QA(A) ∼= S∅.

• We have [Z(w.0) : L(x.0)] = rkS∅QAw0x
(Aw0w) for all w, x ∈ Ŵ.

(Note that from the construction it follows that for any object M of M and
any alcove A, the S∅-module M(A) is free of finite rank).

This fundamental result shows that the category of special objects encodes the
Jordan–Hölder multiplicities of the baby Verma modules in the category C. In
fact, the result obtained in [AJS94] is much stronger: The category M is even
equivalent to the category of (deformed) projective objects in C, hence it encodes
the (full) categorical structure of C!

2.7. Lusztig’s conjecture. The affine Weyl group together with the set of sim-

ple affine reflections Ŝ is a Coxeter system, so it comes equipped with a length

function ` : Ŵ → Z≥0 and a Bruhat order ≤. The affine Hecke algebra Ĥ is the

free Z[v±1]-module with basis {Hw | w ∈ Ŵ} whose algebra structure is uniquely
determined by the relations

Hw ·Hx = Hwx if `(wx) = `(w) + `(x),

H2
s = He + (v−1 − v)Hs for s ∈ Ŵ .

Then He is a multiplicative identity in Ĥ, and it turns out that each Hw is

invertible in Ĥ. The Kazhdan–Lusztig involution on Ĥ is the Z-linear involution
· that is determined by v = v−1 and Hw = H−1w−1 . The element Hs = Hs + v is

self-dual with respect to this involution for any simple affine reflection s ∈ Ŝ.
The periodic module P is the free Z[v±1]-module with basis {A | A ∈ A },

equipped with a right action of Ĥ, which is uniquely determined by

A ·Hs =

{
As+ vA, if A = A

(s)
− ,

As+ v−1A, if A = A
(s)
+ ,

for all A ∈ A and s ∈ Ŝ. Let P◦ be the Ĥ-submodule of P generated by the set{
Eλ :=

∑
w∈W

v`(w)(w(Ae) + pλ)
∣∣∣λ ∈ X} .

The following theorem gives us a distinguished basis for the module P◦.
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Theorem 2.4 ([Lus80b], [Soe97, Theorem 4.3]). (1) There exists a unique ad-
ditive involutive map · : P◦ → P◦ such that Eλh = Eλh for all λ ∈ X,

h ∈ Ĥ.
(2) For any A ∈ A there exists a unique element PA such that PA = PA and

PA = A +
∑

B∈A \{A} pA,BB with pA,B ∈ vZ[v]. The set {PA}A∈A is a
basis for P◦.

The pA,B appearing in the above statement are called the periodic polynomials.
Now Lusztig’s conjecture can be reformulated (e.g., [Fie10]) as the following

statement about the Jordan–Hölder multiplicities of baby Verma modules: For

any x,w ∈ Ŵ we have [Z(w.0) : L(x.0)] = pAw0w,Aw0x
(1).

2.8. An intrinsic definition of M? The above result of Andersen, Jantzen
and Soergel places the multiplicity problem into a somewhat elementary context.
The categories M and K are defined using only linear algebraic structures, they
do not refer any more to the representation theory of Lie algebras or reductive
groups. Yet the construction of M is quite complicated, as experience shows
that it is quite hard to calculate explicitely with the translation functors defined
in Section 2.4. It is hence desirable to have an alternative, maybe more intrinsic
definition of M.

An example of such an intrinsic definition in a related context is the following.
In the case that the characteristic of k is zero, the analogue (and the inspiration)
of Lusztig’s conjecture is the slightly older conjecture of Kazhdan and Lusztig
on the characters of simple highest weight representations of semisimple com-
plex Lie algebras. In the approach of Soergel one translates this problem into a
decomposition problem of Soergel bimodules, or, equivalently, of moment graph
sheaves. The Soergel bimodules (or the Braden–MacPherson sheaves) can be
characterized as being the projective objects in a surrounding category of objects
that “admit a Verma flag”. This fact yields a translation-functor-free proof of
the analogue of Theorem 2.3 in this context (cf. [Fie08]), and it might help to
understand similar situations in which translation functors cannot be defined, as
for example the restricted category O at the critical level for an affine complex
Kac–Moody algebra.

In the following section we review the articles [FL1],[FL2] and [FL3], in which
an alternative construction of the category M is given.

3. (Co-)filtered modules over structure algebras

Let us consider the algebra

Z := {(zx) ∈
⊕
x∈W

S | zx ≡ zsαx mod α∨ for all x ∈ W , α ∈ R+}.

This is the structure algebra (over the field k) of the finite moment graph G
associated to the root system R. It is a Z-graded, commutative, unital S-algebra.
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3.1. Cofiltered Z-modules. Now we consider the set A as a topological space
with the �-order ideals as the open sets. That means that J ⊂ A is open if
A ∈ J and B � A imply B ∈ J . An (A ,�)-cofiltered Z-module, as defined in
[FL1], is nothing but a sheaf of Z-modules on A . Yet we decided not to use this
terminology, as we are also considering (A ,�)-cofiltered sheaves on the finite
moment graph and we would have to call these objects “sheaves on A of sheaves
on G”, which is a confusing terminology that we want to avoid. So our definition
of an (A ,�)-cofiltered object M is as follows. It is given by Z-modules M�A

for all A ∈ A together with restriction homomorphisms rA,B : M�A → M�B

whenever B � A. This data should satisfy rA,A = idM�A for all A ∈ A , and
rB,C ◦ rA,B = rA,C if C � B � A. We will also use the more suggestive notation
m|�B for rA,B(m). A morphism f : M → N between (A ,�)-cofiltered Z-modules
is given by a family of homomorphisms f�A : M�A → N�A for all A ∈ A that is
compatible with the restriction homomorphisms in the obvious way.

For each such open subset J and each (A ,�)-cofiltered Z-module M we then
define

MJ :=

{
(mA) ∈

∏
A∈J

M6A

∣∣∣∣∣mA|�B = mB for all A,B ∈ J with B � A

}
.

This is a Z-module again. For open subsets J ′ ⊆ J the projection
∏

A∈J M
�A →∏

A∈J ′M
�A along the decomposition obviously yields a homomorphism MJ →

MJ ′ of Z-modules. We say that M is a flabby (A ,�)-cofiltered Z-module if, for
any pair (J ′,J ) with J ′ ⊆ J , the homomorphism MJ →MJ ′ is surjective.

3.2. The support condition. We need one more condition on our objects.
First, we define, for any A ∈ A and any cofiltered Z-module M , the Z-module

M[A] := ker
(
M�A →M≺A) .

Note that there is a unique w ∈ W with w(Ae) ∈ A+ ZR. We denote this w by
π(A), and in this way we obtain a map π : A →W . We say that M satisfies the
support condition if for any A ∈ A , the action of (zw) ∈ Z on M[A] is given by
multiplication with the scalar zπ(A).

We denote by Z-mod� the category of all (A ,�)-cofiltered Z-modules that
satisfy the following assumptions:

(1) M is flabby.
(2) M satisfies the support condition.
(3) For all open subset J , the S-module MJ is finitely generated and torsion

free.

The following two subcategories are then important for us:

• Bref ⊂ Z-mod� is the full subcategory of objects that have the property
that MJ is a reflexive S-module for any open subset J .
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• B ⊂ Z-mod� is the full subcategory of objects that have the property
that MJ is graded free over S for any open subset J .

3.3. Projective objects and the Braden–MacPherson algorithm. Neither
of the categories Z-mod�, Bref or B is abelian. But they do carry a natural exact
structure instead.

Definition 3.1. We say that a sequence 0 → M → N → O → 0 in Z-mod� is
exact, if for any open subset J of A the induced sequence

0→MJ → NJ → OJ → 0

is an exact sequence of Z-modules.

One checks that this indeed defines an exact structure in the sense of Quillen.
This exact structure allows us to talk about projective objects in the categories
Z-mod�, Bref and B. Note that we call an object P in either of these categories
projective if the respective Hom(P, ·) functor maps a short exact sequence to a
short exact sequence of abelian groups.

We have the following result:

Theorem 3.2 ([FL1]). For each A ∈ A there is an up to isomorphism unique
object B(A) in the category Bref with the following properties:

(1) B(A) is indecomposable and projective.
(2) B(A)[B] = 0 unless A � B, and B(A)[A] ∼= S.

In the paper [FL1], the object B(A) is obtained by taking global sections of
an (A ,�)-cofiltered sheaf on the finite moment graph G associated with the root
system R. This sheaves is constructed algorithmically by a cofiltered version of
the Braden–MacPherson algorithm (cf. [BMP01]). It is not at all clear from
the construction that B(A) admits a Verma flag. Still the objects B(A) are
characterized by the projectivity, and one can construct them locally, i.e. vertex
by vertex, using a linear-algebraic algorithm.

3.4. Translation functors and a duality. In the paper [FL2] an alternative
proof of the above statement is presented. In this paper we introduce and study
translation functors on the categories Z-mod�, Bref and B, and we obtain an
additional property of the objects B(A).

Theorem 3.3 ([FL2]). For each A ∈ A , the object B(A) admits a Verma flag,
i.e. it is contained in B.

Moreover, we introduce a duality functor D associated with the longest element
w0 in the finite Weyl group and we prove the following

Theorem 3.4 ([FL2]). For each alcove A we have

DB(A) ∼= B(w0(A))[`(A)],

where ` : A → Z is the length function introduced by Lusztig.
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3.5. Connection to the Andersen–Jantzen–Soergel category. In [FL3] we
define a functor Ψ: Z-mod� → K. The main steps in the construction are the
following. Let M be an object in Z-mod�. For an alcove A we set

Ψ(M)(A) := (M[A])
∅.

For a positive root α we consider the �-interval [A,α ↑ A]. Then there is a
unique direct summand of (M[A,α↑A])

∅ canonically isomorphic to M∅
[A] ⊕M

∅
[α↑A],

and we denote by p the projection. We then define

Ψ(M)(A,α) := im
(

(M[A,α↑A])
α → (M[A,α↑A])

∅ p→M∅
[A] ⊕M

∅
[α↑A]

)
.

In [FL3] we then show:

Theorem 3.5. The image under the functor Ψ of the subcategory Bproj of pro-
jective objects in B is the Andersen–Jantzen–Soergel subcategory M of K.

The above theorem hence provides the more intrinsic definition of the category
M that we were looking for.

3.6. Multiplicities and periodic polynomials. In [FL3] we introduce another
functor. It takes a Braden–MacPherson sheaf on an affine moment graph and
produces an object in Z-mod�. We show in loc. cit. that we obtain objects that
are projective in B. Even though the functor is not fully faithful it yields enough
structure for a proof of the following result.

Theorem 3.6. Let A ∈ A be an alcove, and assume that either ch k = 0 or ch k
is big enough. Then

rkS B(A)[C] = pC,A(1)

for any C ∈ A .

By “big enough” we mean that there exists a numberN such that the statement
of the theorem is true if ch k > N . In fact, the theorem above holds if the cor-
responding affine Kazhdan–Lusztig conjecture holds for the Braden–MacPherson
sheaf B(w) on the affine moment graph over k, for all w such that w(Ae) is
contained in the antifundamental box, i.e the set of vectors λ ∈ V such that
−1 6 〈λ, α∨〉 6 0 for any α ∈ Π.

Now if p is big enough in the sense of Theorem 3.6, then we obtain from the
above, the definition of Ψ and the Andersen–Jantzen–Soergel result in Theorem
2.3 that

[Z(w.0) : L(x.0)] = rkS∅QAw0x
(Aw0w) 6 rkSB(Aw0x)[Aw0w]

= pAw0w,Aw0x
(1)

for all w, x ∈ Ŵ . Once this is established, it is easy to obtain the reverse inequal-
ity, and hence

[Z(w.0) : L(x.0)] = pAw0w,Aw0x
(1)

which is by what we explained in Section 2.7 equivalent to Lusztig’s conjecture.
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