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Abstract
Brain-Computer Interfaces (BCIs) are systems allowing people to interact with the environ-
ment bypassing the natural neuromuscular and hormonal outputs of the peripheral nervous
system (PNS). These interfaces record a user’s brain activity and translate it into control
commands for external devices, thus providing the PNS with additional artificial outputs.
In this framework, the BCIs based on the P300 Event-Related Potentials (ERP), which rep-
resent the electrical responses recorded from the brain after specific events or stimuli, have
proven to be particularly successful and robust. The presence or the absence of a P300 evoked
potential within the EEG features is determined through a classification algorithm. Linear
classifiers such as stepwise linear discriminant analysis and support vector machine (SVM)
are the most used discriminant algorithms for ERPs’ classification. Due to the low signal-to-
noise ratio of the EEG signals, multiple stimulation sequences (a.k.a. iterations) are carried
out and then averaged before the signals being classified. However, while augmenting the
number of iterations improves the Signal-to-Noise Ratio, it also slows down the process. In
the early studies, the number of iterations was fixed (no stopping environment), but recently
several early stopping strategies have been proposed in the literature to dynamically interrupt
the stimulation sequence when a certain criterion is met in order to enhance the commu-
nication rate. In this work, we explore how to improve the classification performances in
P300 based BCIs by combining optimization and machine learning. First, we propose a new
decision function that aims at improving classification performances in terms of accuracy
and Information Transfer Rate both in a no stopping and early stopping environment. Then,
we propose a new SVM training problem that aims to facilitate the target-detection process.
Our approach proves to be effective on several publicly available datasets.

Keywords Brain computer interface · MILP mixed integer linear programming · P300
Speller · Support vector machine

1 Introduction

A Brain-Computer Interface (BCI) is a system that records a user’s brain activity and allows
him to interact with the environment by exploiting both signal processing and machine
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learning algorithms. Inmost cases, the recorded signals are noisy, so that filtering or averaging
techniques are used to improve the signal-to-noise ratio (SNR). The information embedded
in signals that are relevant to characterize the user’s mental states are then selected during a
feature extraction procedure before being classified and translated into artificial outputs—i.e.
into control commands for an output device such as a pointer, a keyboard or a robotic arm
(Lotte 2014; Lotte et al. 2018; Quitadamo et al. 2008; Wolpaw and Wolpaw 2012; McCane
et al. 2015). BCIs use either electrical, magnetic and metabolic signals (Wolpaw andWolpaw
2012) recorded with methods such as electroencephalography (EEG), electrocorticography
(ECoG),magnetoencephalography (MEG), functional Near Infra-Red Spectroscopy (fNIRS)
and functional Magnetic Resonance Imaging (fMRI). In particular, EEG represents one of
the most used methods since they are non invasive and inexpensive; for this reason they have
been used for a wide variety of tasks (Chaovalitwongse et al. 2006; Khojandi et al. 2019).

In this framework, BCIs based on event-related potentials (ERPs) have proven to be
particularly successful and robust (Schreuder et al. 2013). ERPs represent the electrical
responses recorded from the brain through EEG techniques after specific events or stimuli.
The ERPs are embedded within the general EEG activity (Sur and Sinha 2009), and are time-
locked to the processing of a specific stimulus. As their amplitude is lower that the one of the
ongoing EEG activity, averaging techniques are employed to increase the SNR: in principle,
averaging background noise which is not correlated to an event, such as the ongoing EEG
activity, tends to reduce its contribution to a small offset, which can be easily filtered out,
while the evoked responses, supposed to be the same after each stimulus, are left unmodified.
An ERP-based BCI attempts to detect ERP components to infer the stimulus that the user
intended to choose—i.e. the stimulus eliciting the ERP components (Treder and Blankertz
2010; Shahriari et al. 2019).

In 1988, the P300 ERP was first used by Farwell and Donchin within a BCI system
(Farwell and Donchin 1988). Their P300 Speller consists of 36 alpha-numeric characters
arranged within the rows and columns of a 6 × 6 matrix. The user’s task is to focus the
attention on a specific character—i.e. on one of the cells of the matrix. Each of the 6 rows and
6 columns then flashes for few tenths of milliseconds in a random sequence. A sequence of 12
different flashes—the 6 rows and 6 columns—is called an iteration. It constitutes the basis of
an oddball paradigm in which two classes of stimuli, namely the target (or rare) and the non
target (or frequent) which occur with different probabilities (0.166 and 0.833 in this case),
elicit two different brain responses. In particular, the target (rare) stimuli should elicit the
P300 response, which should not be evoked after a non target (frequent) stimuli. In our case
the row and the column containing the attended character represent the target stimuli, while
the other ten are the non-target ones. Brain responses to the target and non-target stimuli
are distinguished using a classification algorithm. The correct identification of the target row
and column allows the desired character’s selection, which is located at their intersection
(Krusienski et al. 2006, 2008; Sellers et al. 2006).

Later on in the literature, different variations of the original P300 paradigm have been
developed in order to improve the speller framework. For instance, in Schaeff et al.
(2012), Schreuder et al. (2011), Treder et al. (2011) the authors proposed gaze-independent
spellers, i.e. communication systems that can be used by subjects who have impairment at
moving their eyes. In all speller paradigms, given a sentence/run to copy-spell, the EEG data
are organized in terms of trials, iterations, and sub-trials. A single character selection step
is here referred to as a trial. Each trial consists of several iterations/stimulation sequences,
during which all the stimuli are intensified once in a pseudo-random order. A single stim-
ulus intensification is here referred to as a sub-trial. The trials’ selection process usually
involves one or two levels. In the former case, symbols are typically presented successively
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thus involving a single selection step. In the latter, the user has to select a group of symbols
at the first level and then the target symbol at the second level.

To use aBCI, two phases namely training/calibration and test/online are typically required.
During the calibration phase, the user is instructed to focus his/her attention on a specific
character (copy task) for which correct labels are then a priori known. The acquired EEG
signals are then preprocessed by filtering. A subset of EEG features is extracted to represent
the signal in a compact form. The obtained EEG patterns are recognized using a classification
algorithm, which is trained on the subset of identified features to determine the presence or
the absence of a P300 evoked potential. In the online phase, new EEG patterns are classi-
fied using the trained model before being translated into a command for an application. As
described above, in ERP-based BCIs, to perform a single selection step, multiple iterations
are carried out to improve the SNR. Since each iteration takes about 3 seconds to be com-
pleted, this strategy increases the time needed to detect brain signals thus affecting down the
communication rate. To overcome this drawback, different early stopping (ES) or Dynamic
Stopping methods have been introduced, where after a calibration phase, a suitable termina-
tion criterion is established to be tested online when the number of iteration is sufficient to
ensure a reliable classification. In this work, we explore how to improve the classification
performance by combining optimization and machine learning both in the classical setting
with a fixed number of repetitions and in the early stopping setting.

1.1 Literature review

As mentioned above, the presence or the absence of a P300 evoked potential within the EEG
features is determined using a classification algorithm (Krusienski et al. 2006).

Formally, the detection of brain responses to the target and non-target stimuli can be
translated into a binary classification problem. Let T S be the training set defined as:

T S = {(xi , yi ) : xi ∈ R
n, yi ∈ {−1,+1},

i := (k, r , t, f ) ∀k = 1 . . . nk, r = 1 . . . nr , t ∈ T , f = 1 . . . n f } (1)

where nk denotes the total number of trials in the training phase and nr denotes the num-
ber of iterations for each trial; the number of flashes n f and the set of levels T together
denote the set of possible stimuli that compose the stimulation sequence (i.e. n f = 6 and
T = {row, column} for P300 Speller’s paradigm or T = {outer , inner} for two-levels
paradigms).

During the calibration phase, a classification algorithm is trained over T S to learn the
discriminant function f such that

f (x) = y, (2)

and this function is used in the online phase to spell words or sentences. In the BCI literature,
several algorithms have been proposed for addressing this classification problem (Lotte et al.
2018). In particular, linear classifiers such as stepwise linear discriminant analysis (SWLDA)
(Draper and Smith 1998), and support vector machine (SVM) (Friedman et al. 2001) are still
the most used discriminant algorithms for ERPs’ classification (Lotte et al. 2018). These
methods classify the brain responses by means of a separating hyperplane (Krusienski et al.
2006). This discriminant function is built on the basis of the training data, and it is defined
as:

f (x) = wT x + b, (3)
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where w is the vector containing the classification weights and b is the bias term. Linear
classifiers differ in the way they learn w and b (Krusienski et al. 2006). In (3), the right-hand
side is called decision value. Its absolute value is proportional to the distance of the sample
points x from the separating hyperplane.

In a standard binary classification problem, for each instance the class label is assigned
based on the sign of the relative decision value. However, in a classical P300 Speller (Far-
well and Donchin 1988), based on the assumption that a P300 is elicited for one of the six
row/column stimuli and finding that the P300 response is invariant to row/column stimula-
tion, the target class is assigned to the stimuli matching the maximum decision values for
both the rows and the columns (Krusienski et al. 2006). In general, recalling the definition of
T and n f given in (1), we can identify the target stimulus for trial k ∈ {1 . . . nk} and iteration
r ∈ {1 . . . nr } as:

predicted stimulus(k,r ,t) = argmax
f =1...n f

[
wT x(k,r ,t, f ) + b

]
∀t ∈ T (4)

The predicted character for trial k ∈ {1 . . . nk} and iteration r ∈ {1 . . . nr } is then identified
by combining the predicted target stimuli found ∀t ∈ T (i.e a row target and a column target
for the standard P300 paradigm).

As mentioned in Sect. 1, for each character, data recorded from multiple iterations have
to be integrated to improve the SNR. To the best of our knowledge there exist two main
different iteration-averaging strategies in the literature: (i)ERP avg: for each character brains
responses to target and non target stimuli are averaged across the iterations before being
classified, and (ii) DV avg: for each character the decision values of each target and non-
target stimulus are averaged across the iterations before assigning the target class. Recently
in (Bianchi et al. 2019), a new classification function namely score-based function (SBF)
has been introduced for integrating brain responses recorded from multiple iterations. For
each character, the SBF exploits a set of heuristically-determined scores to weight each
stimulus according to its decision value. For each stimulus, the assigned scores are summed
up iteration by iteration. The target class (one for the rowandone for the column) is assigned to
the stimulus having the highest total score after the last available iteration. The SBF has been
introduced for developing an early stopping method (ESM)—i.e. an automatic method that
interrupts the stimulation at any point in a trial when a certain criterion, based on the ongoing
classification results, is satisfied (see for instance Lenhardt et al. 2008; Zhang et al. Jun 2008;
Liu et al. 2010; Höhne et al. 2010; Schreuder et al. 2011; Jin et al. 2011; Throckmorton et al.
2013; Mainsah et al. 2014; Jiang et al. 2018; Vo et al. 2017, 2018; Schreuder et al. 2013;
Kha et al. 2017; Gu et al. 2019; Huang et al. 2020). The proposed ESM based on the SBF
outperformed the current state-of-the-art early stopping methods proposed in Schreuder et al.
(2013). Note that the SBF is quasi-opposite to the approach proposed in Kha et al. (2017)
where a score is assigned to an SVM based classifier and then an Early Stopping is defined
using the cumulative scores of the classifiers. In Huang et al. (2020), an Early Stopping
technique is used to improve the accuracy of the P300 speller while it is performing other
tasks. Thus the proposed approach allows adapting the classification accuracy to the subject’s
attention level in real-time. In this paper, we follow the same line of research of Bianchi et al.
(2019), by making some further steps to include the information on the protocol into the
classification phase. Indeed, the novelty of our approach consists of three points:

1. determine the optimal scores for each participant by solving an optimization problem on
her/his training data;
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2. solve a modified version of the optimization problem in order to implement an efficient
early stopping method;

3. include the information on the decision function (the target is the stimulus having maxi-
mum decision value) into the training problem

The great advantage of our method is that the calibration phase (different for each participant)
becomes completely automatic and does not need any cross validation phase or manual
parameters tuning.

The paper is structured as follows: in Sect. 2, we introduce our new decision function,
defining the optimization problems to be solved both in the no stopping and early stopping
scenario. In Sect. 3, we introduce a new training problem that keeps into account explicitly
the target assignment in BCI, and in Sect. 4 we derive its Wolfe dual. In Sect. 6 we report the
behavior of our new approaches on several datasets and finally we draw some conclusions
in Sect. 7. In “Appendix 1” we quickly describe the algorithm for solving the dual of our
new training problem, while in Appendix 2 we report the detailed numerical results for all
the datasets.

2 An optimized score based decision function (OSBF)

In Bianchi et al. (2019), a set of heuristically-determined scores has been used to weight and
combine the decision values of multiple iterations within an early stopping setting. In this
work, we decided to modify the approach by using a set of scores automatically determined
by solving a mixed integer linear programming (MILP) problem for each participant. Each
stimulus receives a weight according to its decision value: five zones are defined, and each
zone gets a different score a,b,c,d,e. In particular, the scores are related to the confidence in
the classification of the given stimulus as target: the score a is assigned to the stimulus that
is most likely to be the target, whereas the stimuli that are highly unlikely to be the target get
score e. All the stimuli in the middle get decreasing scores according to the distribution of
the decision values.

The zones are identified by considering the decision values of all iterations for all stimuli
in the training set and computing the corresponding quartiles Q1, Q2 and Q3. The idea is to
produce scores that reflect the distribution of the data.

Figure 1 shows how the scores are assigned depending on the distribution of the quartiles
of the decision values in a simple 2-dimensional example. The maximum score a is assigned
only if the confidence in the current classification is extremely high: i.e. if the decision value
is positive and higher than all the other decision values of the current iteration.

Note that, given the separating hyperplane, the score assignment for each stimulus of each
character is known: so, it is possible to build the following binary vectors that represent in a
compact form the score vector assignment z for each stimulus of each character:

zk,r ,t, fs =
{
1 if stimulus f of level t gets score s at iteration r for char k
0 otherwise

where f = 1 . . . n f and t ∈ T identify the stimulus, k = 1 . . . nk identifies the character,
r = 1 . . . nr identifies the iteration and, finally, s = a, . . . , e identifies the score. The score
assignments depends on the primary aim of the BCI:

(i) if the main focus is the accuracy, the idea is to use all the available iterations for spelling
a character (no stopping protocol), also in the online phase.
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Fig. 1 Graphical representation of the score distribution, reflecting the displacement of the points w.r.t the
distribution of the decision values. The different areas represent the confidence of the classification w.r.t the
target class. Please note that this is a simplified example where samples are represented as 2-dimensional data
points with features x1 and x2

(ii) if the idea is to try and speed up the communication, then the performance to be maxi-
mized is the transmission rate, trying to reduce the number of iterations needed to spell
a character in the online phase (early stopping).

In the next two subsections, we describe the Mixed Integer Linear Programming (MILP)
Problems we define in order to find the scores in the two different settings.

2.1 No stopping OSBF

First, we propose a strategy to choose the scores when all the iterations are exploited and the
primary focus is to increase the classification accuracy. In this setting, we aim at reliability
of the classification and we do so by imposing the following constraints:

1. at the last iteration, we require, if possible, that the score obtained by the target stimulus
is larger (with some margin if possible, that implies robustness of the classification)
than the score of any non target stimulus. This means that we ask not to fail in the
classification after the last available iteration; if this is not possible, a suitable binary
variable representing the failure on that stimulus is set to one;

2. to make the classification more robust on the test set, we require that in as many iterations
as possible, the score of the target is larger than the one of the non target stimuli;

3. as an objective, we try and maximize the accuracy on the training set, and the number of
iteration where the classification is robust.

Our main variable in the optimization problem is the vector of scores s = (a b c d e)T .
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Table 1 Description of the set of indexes, parameters and variables used in the no stopping and early stopping
OSBF

Set Description

Set of indexes

K Set of trials in the offline phase

R Set of iterations that compose each trial

T Set of levels of the paradigm

F Set of stimuli in the stimulation sequence

Name Set of Indexes Description

Parameters

z K, R, T, F Binary vector of 5 components which represents the zones
partition. The i-th component of zk,r ,t, f is set to 1 if and only
if stimuli (k,r,t,f) is assigned to the i-th confidence zone

Name Set of Indexes Description

Variables

x K, R, T Binary variable which equals 1 if the target stimuli is correctly
detected at current iteration in no stopping OSBF. For early
stopping OSBF, this variable equals 1 if the early stopping
condition is verified for the first time on the target at the
current iteration, and it is not satisfied by any non target
stimulus earlier

err K, T Binary variable which equals 1 if the target stimuli was not
correctly detected at the last iteration possible

s Score vector s = {a, b, c, d, e}
� Reliability Threshold

We add an auxiliary variable to try and impose some distance between the score of the
target stimulus and the scores of the non target stimuli that we call �, and that represents a
measure of reliability of the classification. Further, we add some binary variables:

– xk,rt : binary variable that is equal to 1 if the target of character k for level t has a score at
iteration r that is larger than the score of any non target stimulus plus �

– errkt : binary variable that is equal to 1 if the target is not correctly classified for character
k at level t , i.e. if at the last iteration the target score is lower or equal to the score of
some non target stimulus

The MILP problem to be solved is then the following:

max
∑
t∈T

((
1 −

∑nk
k=1 err

k
t

nk

)
+ 1

nknr

nk∑
k=1

nr∑
r=1

xk,rt

)
(5)

s1 ≤ u (6)

s j+1 ≤ s j − 1∀ j = 1, . . . , 4 (7)

s3 ≥ 0 (8)

s5 ≥ l (9)

� ≥ s1 − s5 + 1 (10)
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1 − errkt ≤ xk,nrt ∀k ∈ {1 . . . nk}, ∀t ∈ T (11)

r̄∑
r=1

sT zk,r ,t, f + � ≤
r̄∑

r=1

sT zk,r ,t,trg(k,t)

+ M(1 − xk,r̄t ) ∀k, r̄ , t, f : f �= trg(k, t) (12)

errkt , xk,rt ∈ {0, 1} ∀k ∀t ∀r (13)

where l and u are chosen bounds on the possible values of the scores, and M is large enough
to make the constraints trivially satisfied when the corresponding binary variable xk,rt is zero.
The objective function, that has to be maximized, is composed by two terms: the percentage
of success on the training set, and the average number of iterations where the classification
is robust and reliable. We then have the following constraints:

(i) Constraints (6), (7) and (9) impose that the scores are bounded and that are ordered in
decreasing order and differ of at least one; whereas constraint (8) imposes that the first
three scores are nonnegative

(ii) constraint (10) imposes a lower bound on the threshold to ensure reliability of the clas-
sification. Indeed this lower bound ensures that the threshold has a minimum value
depending on the scores: in particular s1 − s5 + 1 represents the maximum difference in
score that can be assigned to different flashes in a single iteration. Therefore, even in the
worst possible scenario, where two flashes get the same score, there must be at least one
iteration where one gets the maximum score and the other the minimum score to break
the parity.

(iii) constraints (11) impose that variable errkt is 1 if and only if x
k,nr
t = 0, that is it represents

an unreliable classification at the last iteration.
(iv) constraints (12) impose that if at iteration r̄ the classification is reliable for the target

trg(k, t) of character k at level t , then the corresponding binary variable xk,rt is set to 1.

2.2 Early stopping OSBF

Problem (5) can be modified in order to improve the system performance in terms of speed,
implementing an automatic Early Stopping Method, similarly to Bianchi et al. (2019).

The idea is again to use the scores s and the threshold � at each iteration of the test phase
to verify an early stopping condition: during the test phase, the stimuli are ordered according
to the sum of their scores and, if the difference in score between the first and second stimulus
is greater than the threshold �, the method classifies the target character and the remaining
iterations are not performed.

In order to adapt problem (5) to the early stopping setting, we introduce some further
constraints, and modify the meaning of some binary variables:

max
∑
t∈T

(
1 − 1

nk

nk∑
k=1

errkt − 100 × n f l

60

SOA

nk

( nk∑
k=1

nr∑
r=1

r xk,rt + nr

nk∑
k=1

errkt

))
(14)

(6) − (10)

1 − errkt ≤
nr∑
r=1

xk,rt ∀k ∈ {1 . . . nk} (15)
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nr∑
r=1

xk,rt ≤ 1∀k ∈ {1 . . . nk} (16)

(12)

r̃∑
r=1

sT zk,r ,t, f ≥
r̃∑

r=1

sT zk,r ,t, f − � + 1 (17)

− M(1 − xk,r̄t ) ∀k,∀t,∀r̃ < r̄ ,∀ f : f �= trg(k, t)

errkt , xk,rt ∈ {0, 1} ∀k ∀t ∀r (18)

In this case, the objective function keeps into account both the percentage of success (to
be maximized) and the time needed for classification (to be minimized). Note that the second
term (which represents the trial duration in minutes) was multiplied by a factor 100 to make
the two terms of the objective function comparable. We then have some further constraints,
since in this case we are interested in the first iteration where the following early stopping
condition is met:

r̄∑
r=1

sT zk,r ,t, f + � ≤
r̄∑

r=1

sT zk,r ,t,trg(k,t). (19)

In this model, we set the binary variables xk,rt in such a way that it is 1 if and only if the early
stopping condition (19) is verified for the first time on the target at iteration r , and it is not
satisfied by any non target stimulus earlier. This is imposed by the combination of constraints
(12), (16) and (17).

We stress that in both the no stopping and the early stopping scenarios, the MILP problem
is solved using the training set data (the same used to build the hyperplane), whereas the
score efficiency is evaluated on the test set.

3 A new training problem

As already pointed out in the introduction, in order to achieve a good classification accuracy
it is fundamental to exploit the information that at each iteration there is exactly one target
stimulus for each level, assigning then the target class to the stimulus having the maximum
decision value. Our idea is to try and add this protocol knowledge already in the training
problem.

Given the definition (1) of training set, the standard training problem to solve in order to
find a separating hyperplane according to the SVM approach is the following (Piccialli and
Sciandrone 2018):

min
w∈Rn ,b∈R

1

2
‖w‖2 + C1

∑
i∈T S

ξi

yi (w
T xi + b) ≥ 1 − ξi ∀i ∈ T S

ξi ≥ 0 ∀i ∈ T S

In this work, we modify the training problem including the information that the target
stimuli should receive the maximum decision value among all the other flashes. Let’s denote
by trgi the target stimulus for the stimulation sequence where the stimulus i belongs: so, in
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particular, if i = (k, r , t, f ) we will have:

trgi = (k, r , t, f ′) ∈ T S & ytrgi = 1

Then, we want to impose:

wT x(k,r ,t, f1) + b ≥ wT x(k,r ,t, f2) + b ∀k, r , t, f1, f2 :
y(k,r ,t, f1) = 1& y(k,r ,t, f2) = −1 (20)

From now on, in order to simplify the notation, we will write constraints (20) in the following
more compact form:

wT xtrgi + b ≥ wT xi + b ∀i ∈ T S : yi �= 1 (21)

and we add slack variables to avoid infeasibility, getting the following set of constraints:

wT xtrgi − wT xi ≥ 1 − ηi ∀i ∈ T S : yi �= 1 (22)

ηi ≥ 0 ∀i ∈ T S : yi �= 1 (23)

Now we simply plug these constraints into the primal problem getting the new training
problem based on the maximum decision function:

min
w∈Rn ,b∈R

1

2
‖w‖2 + C1

∑
i∈T S

ξi + C2

yi �=1∑
i∈T S

ηi (24)

yi (w
T xi + b) ≥ 1 − ξi ∀i ∈ T S (25)

wT zi ≥ 1 − ηi ∀i ∈ T S : yi �= 1 (26)

ξi ≥ 0 ∀i ∈ T S (27)

ηi ≥ 0 ∀i ∈ T S : yi �= 1 (28)

where the vector z is defined as:

zi = xtrgi − xi ∀i ∈ T S : yi �= 1

4 Wolfe Dual of the new training problem

In order to build the Wolfe Dual of the quadratic optimization problem (24)–(28), it is
necessary to introduce the dual multipliers of the constraints:

– λi ∀i ∈ T S: the multiplier associated to constraints (25)
– ρi ∀i ∈ T S : yi �= 1: the multiplier associated to constraints (26)
– μi ∀i ∈ T S: the multiplier associated to constraints (27)
– θi ∀i ∈ T S : yi �= 1: the multiplier associated to constraints (28)

Let us define the vector λ and ρ as the vectors of size l1 and l2 respectively containing
λi (∀i ∈ T S) and ρi (∀i ∈ T S : yi �= 1). Then we define the following matrix � ∈
	(l1+l2)×n :
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� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1(x1)T

...

yl1(xl1)T

(z1)T

...

(zl2)T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The following proposition holds:

Proposition 1 The dual problem of problem (24) is

min
1

2

(
λT ρT

)
��T

(
λ

ρ

)
− eT λ − eT ρ (29)

yT λ = 0 (30)

0 ≤ λ ≤ C1e (31)

0 ≤ ρ ≤ C2e (32)

Proof The Wolfe dual of problem (24)–(28) is given by:

max
w,b,λ,ρ,μ,θ

L(w, b, ξ, η, λ, ρ, μ, θ) (33)

∇wL(w, b, ξ, η, λ, ρ, μ, θ) = 0 (34)

∇bL(w, b, ξ, η, λ, ρ, μ, θ) = 0 (35)

∇ξ L(w, b, ξ, η, λ, ρ, μ, θ) = 0 (36)

∇ηL(w, b, ξ, η, λ, ρ, μ, θ) = 0 (37)

λ, ρ, μ, θ ≥ 0 (38)

where L(w, b, ξ, η, λ, ρ, μ, θ) is the Lagrangian of optimization problem (24)–(28) that can
be expressed as follows:

L(w, b, ξ, η, λ, ρ, μ, θ) = 1

2
‖w‖2 + C1

∑
i∈T S

ξi + C2

yi �=1∑
i∈T S

ηi

−
∑
i∈T S

λi

(
yi (w

T xi + b) − 1 + ξi

)
+

−
yi �=1∑
i∈T S

ρi

(
wT zi − 1 + ηi

)
−

∑
i∈T S

μiξi −
yi �=1∑
i∈T S

θiηi

(39)

By rearranging terms equation 39 can be rewritten as:

L(w, b, ξ, η, λ, ρ, μ, θ) = 1

2
‖w‖2 +

∑
i∈T S

ξi (C1 − λi − μi ) +
∑
i∈T S

λi +
yi �=1∑
i∈T S

ρi+

+
yi �=1∑
i∈T S

ηi (C2 − ρi − θi ) − wT

⎛
⎝ ∑

i∈T S

λi yi xi +
yi �=1∑
i∈T S

ρi zi

⎞
⎠ − b

∑
i∈T S

λi yi

(40)

The constraints of the Wolfe Dual (equations 34-37) can now be computed based on the
Lagrangian function in equation 40. The equation ∇wL(w, b, ξ, η, λ, ρ, μ, θ) = 0 leads to
an expression for w:
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w =
⎛
⎝ ∑

i∈T S

λi yi xi +
yi �=1∑
i∈T S

ρi zi

⎞
⎠ , (41)

whereas the equation ∇bL(w, b, ξ, η, λ, ρ, μ, θ) = 0 leads to the constraint
∑
i∈T S

λi yi = 0 (42)

Equation ∂L(w,b,ξ,η,λ,ρ,μ,θ)
∂ξi

= 0 allows to derive μi as a function of λ:

C1 − λi − μi = 0 ∀i ∈ T S (43)

whereas ∂L(w,b,ξ,η,λ,ρ,μ,θ)
∂ηi

= 0 results in an expression of θi as a function of ρi

C2 − ρi − θi = 0 ∀i ∈ T S : yi �= 1 (44)

Non-negativity of the multipliers λ, ρ, μ, θ combined with equations (43) and (44) result
in the following set of constraints:

0 ≤ λi ≤ C1 ∀i ∈ T S (45)

0 ≤ ρi ≤ C2 ∀i ∈ T S : yi �= 1 (46)

We can plug equations (43) and (44) in the objective function, getting:

L(w, b, ξ, η, λ, ρ, μ, θ) = 1

2
‖w‖2 +

∑
i∈T S

ξi (C1 − λi − μi ) +
∑
i∈T S

λi +
yi �=1∑
i∈T S

ρi+

+
yi �=1∑
i∈T S

ηi (C2 − ρi − θi ) − wT

⎛
⎝ ∑

i∈T S

λi yi xi +
yi �=1∑
i∈T S

ρi zi

⎞
⎠ − b

∑
i∈T S

λi yi =

= 1

2
‖w‖2 +

∑
i∈T S

0 × ξi +
∑
i∈T S

λi +
yi �=1∑
i∈T S

ρi +
yi �=1∑
i∈T S

0 × ηi − wTw − 0 × b =

= −1

2
‖w‖2 +

∑
i∈T S

λi +
yi �=1∑
i∈T S

ρi

(47)

The Wolfe Dual of problem (24)–(28) can then be expressed by using equation (47) as
objective and equations (41), (42), (45), (46) as constraints.

min
1

2
‖w‖2 −

∑
i∈T S

λi −
yi �=1∑
i∈T S

ρi (48)

w =
⎛
⎝ ∑

i∈T S

λi yi xi +
yi �=1∑
i∈T S

ρi zi

⎞
⎠ (49)

∑
i∈T S

λi yi = 0 (50)

0 ≤ λi ≤ C1 ∀i ∈ T S (51)

0 ≤ ρi ≤ C2 ∀i ∈ T S : yi �= 1 (52)
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Note that:

‖w‖2 = wTw =
⎛
⎝ ∑

i∈T S

λi yi xi +
yi �=1∑
i∈T S

ρi zi

⎞
⎠

T ⎛
⎝ ∑

i ′∈T S

λi ′ yi ′xi ′ +
yi ′ �=1∑
i ′∈T S

ρi ′ zi ′

⎞
⎠ =

∑
i∈T S

∑
i ′∈T S

(λiλi ′ yi yi ′(xi )
T xi ′) +

yi �=1∑
i∈T S

yi ′ �=1∑
i ′∈T S

(ρiρi ′(zi )
T xi ′) + 2

∑
i∈T S

yi ′ �=1∑
i ′∈T S

(λiρi ′ yi (xi )
T zi ′)

Let us define the vector λ and ρ as the vectors of size l1 and l2 respectively containing
λi (∀i ∈ T S) and ρi (∀i ∈ T S : yi �= 1). Then we define the following matrix � ∈
	(l1+l2)×n :

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1(x1)T

...

yl1(xl1)T

(z1)T

...

(zl2)T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The dual problem can then be rewritten as

min
1

2

(
λT ρT

)
��T

(
λ

ρ

)
− eT λ − eT ρ (53)

yT λ = 0 (54)

0 ≤ λ ≤ C1e (55)

0 ≤ ρ ≤ C2e (56)

that is still a quadratic convex programming problem.

5 Algorithmic framework

In Fig. 2, we summarize the proposed approach, which takes in input the EEG signals of a
P300 Speller task for a subject and outputs the performance reached in terms of accuracy and
ITR. The same pipeline is used within both the no stopping and the early stopping setting.

This generic framework allows for performing several design choices for both the prepro-
cessing phase and the hyperplane construction. Details on how we preprocessed our datasets
are reported in Sect. 6.1. Regarding the hyperplane construction method, we used both the
standard SVM problem and the training problem proposed in Sect. 3.

Our framework requires to execute an offline phase in which the hyperplane construction
problem is solved and the score vector is computed by using one of the MILP problems
proposed in Sects. 2.1 (no stopping setting) and 2.2 (early stopping setting). In the early
stopping setting the MILP problem will also output the reliability threshold �. Solving the
MILP problems requires to partition the decision values of offline data in 5 confidence zones
(as specified in Fig. 1) which are retrieved on the basis of the distribution of the decision
values. The output of the offline phase is composed both by the computed hyperplane, the
scores vector and eventually the threshold�. These values are then used in an online scenario
in order to evaluate subject’s performance both in terms of accuracy (%) and Information
Transfer Rate (bit/min), which is of particularly interest in the early stopping setting.
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Fig. 2 Flowchart of the proposed algorithmic framework , which takes in input the EEG signal of a subject in
a P300 Speller task. The proposed framework requires to perform an offline phase in order to instantiate the
process. Results from the offline phase are then used to automatically decode online EEG signals and evaluate
the performance results reached by the subject. This pipeline is valid both in a no stopping and early stopping
environment; in the latter case, in the online phase the early stopping condition will be evaluated at every
incoming iteration before computing the performances obtained for the subject

6 Numerical results

6.1 Dataset

We tested our approaches on five different datasets:
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Fig. 3 Graphical representation of the AMUSE paradigm in which six speakers are places all over the subject.
In the first level, each speaker is used to represent a set of characters, while on the second level each speaker
is used to represent a single character among the previously selected set

AMUSE The protocol is based on auditory stimulus elicited bymeans of spatially
located speakers, we have two levels, 15 rounds, six classes for each
level, see Fig. 3 (Schreuder et al. 2011). It is performed on healthy
subjects and downloadable by the BNCI horizon website http://bnci-
horizon-2020.eu/database/data-sets.

P300 Speller The protocol is the classical P300 Speller (Farwell and Donchin 1988),
performed on 10 healthy subjects.

ALS P300 Speller The protocol is the classical P300 Speller (Farwell and Donchin 1988),
performed on 8 patients suffering of Amyotrophic Lateral Sclerosis
(ALS).

MVEP It is a visual protocol in which a moving pattern generates a movement-
onset visual evoked potential that is used to recognize the user’s choice.
This protocol is based onmodifications of Cake Speller protocol (Treder
et al. 2011). Sixteen healthy subjects have been involved in the study.

Center Speller It is a visual protocol where we have a visual stimulus elicited by means
of three different stimuli, two levels, 10 rounds, six classes for each level
(Treder et al. 2011). It is performed on 13 healthy subjects.

Akimpech It is a P300 Speller performed on 27 healthy subjects, the number of
characters is 16 with 15 iterations for each character in the calibration
phase, whereas in the online phase changes depending on the subject.

Details of the datasets are reported in Table 2. Please note that we have evaluated our strategy
on EEG data recorded from 95 subjects thus assessing its generalization capabilities.

All EEG signals were pre-processed and features were extracted with the NPXLab Suite
(Bianchi 2018). Two principal pre-processing operations were applied:

– Electrodes selection: for the datasets Center Speller, MVEP, and AMUSE (see Sect. 6.1)
we kept just the electrodes belonging to the 10-20 EEG placement. This strategy allows
us to reduce both the dimension of the dataset and the overfitting;

– k-decimation: this technique was applied to all datasets in order to reduce overfitting. In
this case, we down-sampled the EEG signal from every electrode by replacing each k
consecutive samples with their average value.

Let’s recall that the OSBF strategy requires to compute the quartiles of the training set
decision values in order to assign scores to stimuli. In this scenario, we stress that, for the
standard P300 Speller’s paradigm, stimuli corresponding to the intensification of rows and
columns are considered separately; in fact, we observed that the distribution of the decision

123

http://bnci-horizon-2020.eu/database/data-sets
http://bnci-horizon-2020.eu/database/data-sets


Annals of Operations Research

Ta
bl
e
2

D
at
as
et

pa
ra
m
et
er
s.
T
he

fo
llo

w
in
g
ch
ar
ac
te
ri
st
ic
s
ar
e
re
po
rt
ed
:n

um
be
r
of

su
bj
ec
ts
(N

S)
,t
ot
al

nu
m
be
r
of

tr
ai
ls
in

th
e
tr
ai
ni
ng

se
t,
to
ta
ln

um
be
r
of

tr
ia
ls
in

th
e
te
st
se
t,

ty
pe

of
pa
ra
di
gm

,p
ar
tic
ip
an
ts
(p
ar
t.
H
=
he
al
th
y,
A
L
S
=
am

yo
tr
op
hi
c
la
te
ra
ls
cl
er
os
is
pa
tie
nt
),
nu
m
be
r
of

se
ns
or
s
(S
en
s.
),
m
od
al
ity

(m
od
.A

=
au
di
to
ry
,V

=
vi
su
al
),
nu

m
be
r
of

po
ss
ib
le
sy
m
bo

ls
(S
ym

b.
),
to
ta
ln

um
be
r
of

st
im

ul
ii
n
th
e
se
le
ct
io
n
pr
oc
es
s
(f
or

al
lp

os
si
bl
e
le
ve
ls
),
th
e
m
ax
im

um
nu

m
be
r
of

ite
ra
tio

ns
in

th
e
or
ig
in
al
se
tti
ng

,t
he

SO
A
(s
tim

ul
us

on
se
ta
sy
nc
hr
on
y)
,t
he

ov
er
he
ad

(O
H
pr
e
an
d
po

st
-s
tim

ul
us

pa
us
es
),
th
e
va
lu
e
of

k
us
ed

in
th
e
k-
de
ci
m
at
io
n
pr
ep
ro
ce
ss
in
g
op

er
at
io
n

D
at
as
et

N
S

#T
ra
in

#T
es
t

Pa
rt
.

Se
ns
.

M
od
.

Sy
m
b.

St
im

.
M
ax

It
.

SO
A

O
H

k

A
M
U
SE

Sc
hr
eu
de
r
et
al
.(
20

11
)

16
38

4
80

9
H

61
A

30
12

15
0.
17

5
18

.2
5

10

C
en
te
rS
pe
lle
r
T
re
de
r
et
al
.(
20

11
)

13
22

0
53

8
H

63
V

30
12

10
0.
21

7
8.
25

10

M
V
E
P
Sc
ha
ef
f
et
al
.(
20

12
)

15
27

0
60

6
H

57
V

30
12

10
0.
26

6
11

.7
4

P3
00
Sp

el
le
r
A
ri
cò

et
al
.(
20

14
)

10
12

0
60

H
8

V
36

12
8

0.
25

0
7.
25

12

A
L
SP

30
0S

pe
lle
r
R
ic
ci
o
et
al
.(
20

13
)

8
12

0
16

0
A
L
S

16
V

36
12

10
0.
25

0
8

12

A
ki
m
pe
ch

L
ed
es
m
a-
R
am

ir
ez

et
al
.(
20

10
)

27
43

2
79

0
H

10
V

36
12

15
0.
18

8
4

10

123



Annals of Operations Research

valueswas different for rowand column stimuli. The other paradigmswe considered are based
on two-levels of selection: in this case, we considered stimuli corresponding to the outer and
inner level together for computing the quartiles, since we observed similar distributions of
the decision values.

6.2 No stopping scenario

As a first step, we evaluate the impact of choosing the scores by solving problem (5). We
compare our strategy with both the classicalDV avg approach and the SBF decision function
(Bianchi et al. 2019) where we sum up the heuristically determined scores for all the available
iterations (i.e., we use it in a no stopping fashion). We build the separating hyperplane by
training a linear SVM with the package Liblinear (Fan et al. 2008). We try both the L1 and
L2 loss, and since there is no clear winner, we report the results obtained with both the losses.
Table 3 shows the accuracy—i.e. the percentage of correctly classified characters—obtained
by the different approaches. Findings in Table 3 show that the OSBF outperforms the other
two approaches since it reaches the highest accuracy on all the datasets. Please note that the
OSBF is computationally cheap since the solution of problem (5) is extremely fast (order of
few seconds for each MILP problem), and does not require any cross-validation phase (we
fixed parameters C1 in all the experiments). In order to further improve the accuracy, we try
and build the hyperplane by solving the dual problem (33). We call this approach M-SVM.
In order to solve problem (33), we apply a modification of the dual coordinate algorithm as
described in the “Appendix 1”. Also in this case, we do not perform any cross validation but
we fix C2 = 0.1 × C1 and we use the same value of C1 of the previous experiment.

A statistical test (Wilcoxon Matched Pair Test, p < 0.05) performed on the detailed
data of Table 13 (see “Appendix 2”) indicated that OSBF M-SVM performed better than
any other methods after Bonferroni correction, with the only exception of OSBF-L2 SVM,
whose difference was statistically significant only before the aforementioned correction for
multiple comparisons.

Looking at the average results in Table 4 it emerges that the results obtained by OSBF
applied to theM-SVM improve on average only on some datasets, with a significant improve-
ment on the two most difficult datasets: the one containing ALS patients and AMUSE. The
intuition was that it could help only when standard SVM is not “good enough”. In order to
better understand the contribution of the new training problem, we look at the single-subject
results, dividing the participants (across all the datasets) into two classes:

Class 1 subjects where the standard SVM problem is better than the new M-SVM;
Class 2 subjects where the standard SVM problem is worse than the new M-SVM.

We observed that Class 1 and Class 2 contain respectively about 16% and 23% of the
subjects among all datasets, whereas in the remaining 61% of the subjects the standard SVM
and the M-SVM perform exactly the same.

In Table 5, we report the average accuracy on both classes, and it is quite evident that the
new training problem helps whenever the starting accuracy is not too high. When the starting
accuracy is high, the performance does not change or gets worse probably for the overfitting.
Interestingly, adding the constraints on the maximum decision value can be interpreted as a
form of data augmentation. Indeed, if we include the bias b into the vector w, augmenting
each data point in the training set with a last component equal to 1, we can reinterpret the
constraints (22) as standard sign constraints imposed on the point zi , with label ŷi = 1.
Therefore, we are augmenting our training set by adding the points zi , as shown in Fig. 4,
and this results in balancing the dataset.
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Table 4 Accuracy obtained by OSBF with the different hyperplanes: standard SVM with L1 loss, standard
SVM with L2 loss, and the new M-SVM obtained by solving problem (33)

Dataset OSBF L1-SVM OSBF L2-SVM OSBF M-SVM

ALSP300Speller 0.95 0.962 0.975

P300Speller 0.967 0.967 0.967

CenterSpeller 0.953 0.949 0.96

AMUSE 0.763 0.796 0.806

MVEP 0.777 0.76 0.783

Akimpech 0.962 0.978 0.974

6.3 Early stopping scenario

As a second step, we consider the early stopping version of both the SBF (that is the current
state of the art for early stoppingmethods) and theOSBF. In order to evaluate the performance
of the proposedmethod with respect to the number of iterations needed for an accurate classi-
fication also the theoretical Information transfer rate (ITR, bit/min) has been computed. The
ITR is a communication measure based on Shannon channel theory with some simplifying
assumptions. It can be computed by dividing the number of bits transmitted per trial (or bit
rate, bits/trial) by the trial duration in minute. We compute the bit-rate, using the definition
proposed in Wolpaw et al. (1998), as:

B = log2 N + P log2 P + (1 − P) log2
(1 − P)

(N − 1)
, (57)

where N is the number of possible symbols in the speller grid and P is the probability that
the target symbol is accurately classified at the end of a trial. From (57) the ITR is computed
as:

ITR = B

trial duration
(58)

where

trial duration = SOA · fs · i
60

min. (59)

In (59), SOA refers to the stimulus-onset asynchrony; fs represents the number of stimuli in
each stimulation sequence and i is the mean number of used iterations to select a symbol. In
Tables 6, 7, 8 and 9 the results obtained with the early stopping setting are shown. Findings
in Table 6 further corroborates the potentials of the OSBF since its outperforms the SBF, no
matter what hyperplane is used. In Table 7 we compare the early stopping results in terms
of accuracy obtained with the OSBF with the different hyperplanes (L1-SVM, L2-SVM and
M-SVM): we can notice that, in this case, the M-SVM reaches a higher level of accuracy
than the other methods among almost all datasets. Tables 8 and 9 show the results in terms of
theoretical ITR. In this case, we can see that all the strategies reach comparable results and
there is not a clear winner. This is confirmed by the statistical analysis (Wilcoxon test) which
did not reveal any significant difference among the various methods when applied to the data
contained on either Tables 14 and 15 included in “Appendix 2”. We can then conclude that
the OSBF strategy is a more conservative approach than the SBF, since it manages to keep a
high level of accuracy preserving the communication speed.
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Fig. 4 Given the point xi with label yi = −1, it is possible to reinterpret constraints (22) as adding to the
training set the points zi with label ŷi = 1. Please note that this is a simplified example where samples are
represented with 2-dimensional data points with features x1 and x2

Table 6 Accuracy obtained in the early stopping setting by the SBF andOSBF using the separation hyperplane
given by a linear SVM with both L1 and L2 losses

Dataset SBF L1-SVM SBF L2-SVM OSBF L1-SVM OSBF L2-SVM

ALSP300Speller 0.85 0.863 0.925 0.925

P300Speller 0.95 0.95 0.967 0.95

CenterSpeller 0.903 0.893 0.944 0.931

AMUSE 0.636 0.647 0.756 0.744

MVEP 0.712 0.712 0.748 0.744

Akimpech 0.911 0.934 0.943 0.948

As a final analysis, in Tables 10, 11 and 12 we compare the no stopping and early stopping
configurations respectively with L1-SVM, L2-SVM and M-SVM hyperplanes. It is reason-
able to expect that the early stopping setting leads to a increase of ITR; on the other hand, we
can expect a loss in terms of accuracy. In order to evaluate these phenomena, we report the
ITR levels obtained both in the no stopping and early stopping setting and we compute both
the percentage of increase in terms of ITR and the percentage of loss in terms of accuracy.We
can notice that, no matter what hyperplane is used, the early stopping configuration always
leads to a consistent increase in terms of ITR with a small percentage of accuracy loss.
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Table 7 Accuracy obtained in the early stopping setting by the OSBF with the different hyperplanes: standard
SVM with L1 loss, standard SVM with L2 loss, and the new M-SVM obtained by solving problem (33)

Dataset OSBF L1-SVM OSBF L2-SVM OSBF M-SVM

ALSP300Speller 0.925 0.925 0.944

P300Speller 0.967 0.95 0.967

CenterSpeller 0.944 0.931 0.95

AMUSE 0.756 0.744 0.76

MVEP 0.748 0.744 0.760

Akimpech 0.943 0.948 0.942

Table 8 ITR (bit/min) obtained in the early stopping setting by the SBF and OSBF using the separation
hyperplan given by a linear SVM with both L1 and L2 losses

Dataset SBF L1-SVM SBF L2-SVM OSBF L1-SVM OSBF L2-SVM

ALSP300Speller 20.187 19.234 20.187 20.716

P300Speller 34.38 34.086 32.343 30.356

CenterSpeller 28.372 28.042 27.76 27.649

AMUSE 12.67 12.929 14.490 15.232

MVEP 9.434 9.252 10.245 10.626

Akimpech 34.593 38.464 35.061 36.532

Table 9 ITR (bit/min) obtained in the early stopping setting by the OSBF with the different hyperplanes:
standard SVM with L1 loss, standard SVM with L2 loss, and the new M-SVM obtained by solving problem
(33)

Dataset OSBF L1-SVM OSBF L2-SVM OSBF M-SVM

ALSP300Speller 20.187 20.716 21.79

P300Speller 32.343 30.356 32.11

CenterSpeller 27.76 27.649 27.909

AMUSE 14.490 15.232 15.35

MVEP 10.245 10.626 10.431

Akimpech 35.061 36.532 34.811

Table 10 Comparison of the ITR (bit/min) between the no stopping and early stopping setting for the OSBF
decision function by using the standard SVM training problem with L1 loss

Dataset OSBF L1-SVM NS OSBF L1-SVM ES ITR increase (%) Accuracy loss (%)

ALSP300Speller 9.342 20.187 116.1 2.6

P300Speller 12.172 32.343 165.7 0.0

CenterSpeller 10.281 27.760 170.0 0.9

AMUSE 5.895 14.490 145.8 0.9

MVEP 5.940 10.245 72.5 3.8

Akimpech 10.077 35.061 247.9 2.0
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Table 11 Comparison of the ITR (bit/min) between the no stopping and early stopping setting for the OSBF
decision function by using the standard SVM training problem with L2 loss

Dataset OSBF L2-SVM NS OSBF L2-SVM ES ITR increase (%) Accuracy loss (%)

ALSP300Speller 9.452 20.716 119.2 3.9

P300Speller 12.172 30.356 149.4 1.7

CenterSpeller 10.240 27.649 170.0 2.0

AMUSE 6.276 15.232 142.7 6.5

MVEP 5.723 10.626 85.7 2.0

Akimpech 10.370 36.532 252.3 3.1

Table 12 Comparison of the ITR (bit/min) between the no stopping and early stopping setting for the OSBF
decision function by using the M-SVM training problem

Dataset OSBF M-SVM NS OSBF M-SVM ES ITR increase (%) Accuracy loss (%)

ALSP300Speller 9.823 21.790 121.8 3.2

P300Speller 12.172 32.110 163.8 0.0

CenterSpeller 10.439 27.909 167.4 1.0

AMUSE 6.367 15.350 141.1 5.8

MVEP 6.002 10.431 73.8 2.9

Akimpech 10.278 34.811 238.7 3.3

7 Conclusions

BCIs are proposed for a wide range of applications, such as those for communicating (Sellers
et al. 2006), for entertainment (Bianchi 2020), environmental or neuroprostheses control
(Muller-Putz and Pfurtscheller 2008), rehabilitation (Bockbrader et al. 2018), and supporting
diagnoses (Lugo et al. 2016), to name a few. Moreover, the same paradigm, such as the P300
discussed in this manuscript, can be used in all of them. Despite this large scenario, all of
these applications try to get one among these two goals:

(i) to improve the accuracy of the systems, which usually is equivalent to minimize the
occurrence of classification errors;

(ii) to maximize the communication speed or, in a more general sense, the information
transfer rate.

These two strategies are usually pursued because the consequences of errors are different
such as in the cases of a BCI used to drive a wheelchair, as compared to a BCI used to
communicate: in the first case an error can harm a user, while in the second case it only leads
to a typo. In any case, depending on the application, the strategies to achieve such goals can
vary a lot.

This paper focuses on the classification problem that arises in many BCI protocols. The
idea was to exploit the knowledge on the protocol in order to improve the classification
accuracy and the communication speed of the BCI, that is to achieve both goals or at least to
shorten the distance among them, thus allowing a painless tuning of a BCI according to the
target application.

The novelty of our approach is three-fold. First, for each participant we determine the
optimal scores by solving an optimization problem on her/his training data; secondly, we
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implement an efficient early stopping method by solving a modified version of the optimiza-
tion problem connected to training; finally, we successfully include the information on the
decision function (i.e. the target always is the stimulus having maximum decision value) into
the training problem. The main advantage of our proposed methodology is that the prelim-
inary calibration phase becomes completely automatic so that a cross validation phase or
manual parameters tuning is no longer fundamental.

Our method achieves such results by means of two main ingredients:

(i) the use of a MILP problem to assign a ‘reliability score’ to the classification of each
stimulus in every iteration

(ii) the definition of a new training problem that keeps into account that the target class is
assigned to the stimulus having the maximum decision value.

Both these elements have been applied in two different scenarios: a first one where accu-
racy was the main focus and all the iterations available for each subject were used both in the
calibration and the online phase; a second one where the focus was to improve the commu-
nication speed, and hence an early stopping strategy was implemented in the online phase.
In order to evaluate the approaches we conducted an extensive experimentation on datasets
coming from different protocols and including both healthy subjects and ALS patients. The
results show how we were able to improve accuracy and ITR on all the datasets, proving
once more that combining machine learning tools to problem knowledge can significantly
improve performances.

To our knowledge, according to the literature, it is the first time that a methods was
successfully used and performed better than any other in either accuracy and information
transfer rate. Moreover, this was verified on six different publicly available datasets, which
include either healthy subjects or ALS patients. This remarkable result, which has been
obtained through offline analysis, once verified also during online recording sessions, may
represents the new gold standard in P300 based BCI paradigms and provide a significant
improvement for all the applications that make use of it.

The use of an optimization problem to define how reliable a classification is, can be
used also in the context of collaborative BCIs (Poli et al. 2014), where a group decision is
made on the basis of the EEG signals of a certain number of subjects. The idea is to use an
optimization problem to assign a score to each subject for each trial of a certain task as for
example recognizing a face in an image containing a crowded environment (Valeriani and
Poli 2019). In this case, the idea is to evaluate from the EEG the reliability of the subject on
that task using an automated process based again on a the solution of a MILP problem. This
is material of future work.
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Appendix

Dual Coordinate Descent Algorithm

In this sectionwedescribe howwemodified theDualCoordinateDescentAlgorithmproposed
in Hsieh et al. (2008) in order to find the separating hyperplane for problem 24-28. The
Dual Coordinate Descent Algorithm basically solves the dual problem applying a Gauss
Seidel decomposition method where each variable constitutes a block, and the subproblem
with respect to a single variable is globally solved analytically. We adapt the algorithm by
modifying the following points:

– how the gradient of the objective function is computed;
– how the hyperplane is updated.

In particular, we can write the objective function f and the separating hyperplane w as:

f = 1

2

l1∑
i=1

l1∑
j=1

λiλ j yi y j x
T
i x j +

l1∑
i=1

l2∑
j=1

λiρ j yi x
T
i z j

+ 1

2

l2∑
i=1

l2∑
j=1

ρiρ j zi z j −
l1∑
i=1

λi −
l2∑
i=1

ρ j (60)

w =
l1∑
i=1

λi yi xi +
l2∑
i=1

ρi zi (61)

Let’s define the vector α = [
λT ρT

] ∈ IRl1×l2 . Equations 60 and 61 can equivalently be
defined with respect to vector α. We can then express the i-th component of the gradient of
f (α) as:

∇i f =
{∑l1

j=1 α j yi y j xTi x j + ∑l1+l2
j=l1

α j yi xTi z j − 1 if i < l1∑l1
j=1 α j y j xTj z j + ∑l1+l2

j=l11
α j zTi z j − 1 otherwise

(62)

which can be rewritten as:

∇i f =
{
yiwT xi − 1 if i < l1
wT zi − 1 otherwise

(63)

We note that in principle we may use liblinear if we include the bias b into the vector w,
augmenting each data point in the training set with a last component equal to 1, and we set
C1 = C2. However, it turns out from the experiments that is more effective to treat the zi
separately defining a dedicated parameter C2 to be chosen in cross validation, which is why
we defined our own training algorithm.
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Algorithm 1 A Dual Coordinate Descent Algorithm for problem 24-28
k ← 0
α ← [

λT ρT
]

α0 ← 0, w0 ← 0
while αk not optimal do

αk,1 ← αk , wk,1 ← wk

for i = 0 to l1 + l2 do

∇i f (α
k,i ) =

{
yi (w

k,i )T xi − 1 if i < l1;
(wk,i )T zi − 1 otherwise

∇P
i f (αk,i ) =

⎧⎪⎨
⎪⎩

min(∇i f (α
k,i ), 0) if αk,i = 0

max(∇i f (α
k,i ), 0) if αk,i = C

∇i f (α
k,i ) otherwise

if ∇P
i f (αk,i ) == 0 then

αk+1
i = αki , wk+1,i = wk,i

else

αk+1
i = min

(
C,max

(
0, αki − ∇i f (α

k,i )
Qi,i

))

wk,i+1 =
⎧⎨
⎩

wk,i + yi
(
αk+1
i − αki

)
xi if i < l1;

wk,i +
(
αk+1
i − αki

)
zi otherwise;

αk,i+1 =
(
αki , . . . αk+1

i , αki+1, . . . αkl1+l2

)

end if
end for

end while

Detailed numerical results

As a supplement, we provide the detailed results obtained for all subjects for all considered
datasets. In Table 13 we provide the results obtained in the no stopping setting, while in
Tables 14 and 15 the results for the early stopping setting are reported.
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Table 15 Detail of the ITR (bit/min) results obtains with all early stopping framework mentioned

Dataset Subj. SBF
L1-SVM

SBF
L2-SVM

SBF
M-SVM

OSBF
L1-SVM

OSBF
L2-SVM

OSBF
M-SVM

ALSP300Speller 1 16.599 15.734 19.593 16.599 15.239 20.175

ALSP300Speller 2 12.222 12.556 11.111 12.222 13.845 13.722

ALSP300Speller 3 16.492 19.073 16.298 16.492 21.032 15.210

ALSP300Speller 4 16.424 12.501 13.826 16.424 15.879 16.836

ALSP300Speller 5 20.577 20.771 21.207 20.577 20.565 22.236

ALSP300Speller 6 21.654 19.193 18.605 21.654 20.305 22.356

ALSP300Speller 7 18.508 21.477 23.429 18.508 20.565 23.236

ALSP300Speller 8 39.018 32.566 36.928 39.018 38.296 40.548

P300Speller 1 25.132 23.148 25.132 31.020 30.263 31.815

P300Speller 2 38.774 40.025 40.025 41.359 40.025 41.359

P300Speller 3 32.652 22.977 30.263 31.815 19.547 29.542

P300Speller 4 33.831 36.650 36.650 24.433 25.132 24.433

P300Speller 5 41.359 44.314 41.359 37.599 37.599 37.599

P300Speller 6 25.132 31.020 26.655 27.573 29.542 29.542

P300Speller 7 27.573 21.454 27.573 28.855 26.974 27.573

P300Speller 8 30.263 28.855 31.020 21.990 19.991 20.456

P300Speller 9 41.359 42.786 41.359 34.466 34.466 34.466

P300Speller 10 47.722 49.631 47.722 44.314 40.025 44.314

CenterSpeller VPiac 20.249 26.589 23.718 23.546 24.404 21.732

CenterSpeller VPiba 26.307 26.794 26.794 27.868 26.982 30.014

CenterSpeller VPibb 31.684 31.049 31.816 33.617 30.699 32.973

CenterSpeller VPibc 29.426 27.713 28.289 30.473 31.336 29.083

CenterSpeller VPibd 23.146 27.908 24.662 23.647 26.704 23.576

CenterSpeller VPibe 36.558 33.161 37.370 32.653 33.707 32.973

CenterSpeller VPibf 32.471 26.430 31.821 32.140 30.004 31.824

CenterSpeller VPibg 43.509 43.085 44.608 39.607 43.725 38.569

CenterSpeller VPibh 18.407 11.128 16.535 16.797 15.199 19.050

CenterSpeller VPibi 28.770 31.514 31.356 27.147 27.185 26.935

CenterSpeller VPibj 22.652 24.898 24.808 18.391 16.365 18.844

CenterSpeller VPica 25.320 24.957 27.354 25.990 24.959 25.704

CenterSpeller VPsaf 30.342 29.324 31.062 28.999 28.167 31.544

AMUSE VPfar 5.549 5.370 6.552 8.610 9.986 8.314

AMUSE VPfau 14.682 16.384 17.185 14.834 16.699 16.139

AMUSE VPfav 15.535 14.670 15.456 19.101 21.385 19.395

AMUSE VPfaw 8.541 12.963 12.811 14.112 16.804 16.256

AMUSE VPfax 10.425 8.435 10.154 11.186 10.287 9.579

AMUSE VPfaz 29.548 31.219 31.078 33.581 30.235 37.179

AMUSE VPfca 19.655 20.983 17.787 27.462 27.767 27.462

AMUSE VPfcb 7.303 8.242 10.630 8.356 10.413 11.195
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Table 15 continued

Dataset Subj. SBF
L1-SVM

SBF
L2-SVM

SBF
M-SVM

OSBF
L1-SVM

OSBF
L2-SVM

OSBF
M-SVM

AMUSE VPfcc 20.129 22.135 24.316 22.509 25.576 22.971

AMUSE VPfcd 15.004 14.126 13.374 13.763 15.183 14.970

AMUSE VPfcg 8.621 10.283 7.204 9.691 9.228 9.166

AMUSE VPfch 1.838 1.146 1.469 2.819 2.862 3.136

AMUSE VPfcj 3.197 2.200 3.654 4.565 5.378 7.027

AMUSE VPfck 9.682 9.056 9.368 9.594 10.557 10.408

AMUSE VPfcm 5.763 7.058 4.565 9.227 7.871 8.002

AMUSE VPkw 27.244 22.588 28.013 22.433 23.480 24.398

MVEP VPfat 14.958 14.291 13.818 17.155 15.372 14.972

MVEP VPgdf 5.504 5.419 3.910 5.314 5.845 6.016

MVEP VPgdg 6.586 11.509 9.982 8.776 8.822 9.048

MVEP VPiac 11.131 8.422 7.097 6.886 8.350 8.398

MVEP VPiba 4.186 5.435 7.175 5.528 4.035 6.015

MVEP VPibe 16.537 17.687 16.239 18.598 21.599 18.751

MVEP VPibs 8.185 6.961 6.306 6.972 9.618 9.155

MVEP VPibt 9.232 10.368 9.426 12.149 11.743 12.149

MVEP VPibu 2.253 3.136 2.854 4.108 3.430 3.672

MVEP VPibv 10.438 7.861 10.650 14.113 12.383 13.729

MVEP VPibw 13.403 13.192 17.706 17.485 19.418 15.786

MVEP VPibx 15.977 14.671 15.071 16.467 16.972 15.894

MVEP VPiby 10.564 7.123 9.098 6.992 8.197 8.767

MVEP VPice 5.280 4.897 5.019 5.710 6.264 6.892

MVEP VPicv 7.271 7.813 6.522 7.422 7.343 7.215

Akimpech ACS 23.354 29.594 27.111 22.840 23.990 24.666

Akimpech APM 51.115 53.921 54.563 50.551 51.691 48.586

Akimpech ASG 40.801 43.749 42.566 36.551 40.254 41.175

Akimpech ASR 22.004 20.972 13.311 22.561 20.642 16.259

Akimpech CLL 24.106 29.092 30.928 23.146 29.745 32.356

Akimpech CLR 52.884 47.413 45.833 45.833 41.666 39.285

Akimpech DCM 45.059 42.503 42.313 42.218 43.689 40.103

Akimpech DLP 21.249 31.112 28.765 28.278 28.668 25.819

Akimpech DMA 18.975 25.073 24.142 25.724 28.174 26.192

Akimpech ELC 53.088 50.737 53.710 50.182 52.083 48.076

Akimpech FSZ 34.140 45.379 29.082 32.874 35.871 34.417

Akimpech GCE 25.441 28.303 26.500 25.405 25.961 24.513

Akimpech ICE 35.864 38.841 28.723 35.256 34.203 33.536

Akimpech IZH 31.358 32.417 28.353 31.212 32.067 29.545

Akimpech JCR 17.051 21.163 22.774 23.031 23.047 19.216
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Table 15 continued

Dataset Subj. SBF
L1-SVM

SBF
L2-SVM

SBF
M-SVM

OSBF
L1-SVM

OSBF
L2-SVM

OSBF
M-SVM

Akimpech JLD 49.818 45.833 39.010 44.788 47.577 42.177

Akimpech JMR 29.005 41.494 39.660 37.878 41.044 39.746

Akimpech JSC 17.758 27.944 25.540 19.469 28.301 25.784

Akimpech JST 53.710 57.053 55.220 51.691 54.347 51.115

Akimpech LAC 58.760 57.772 60.043 55.443 50.182 52.083

Akimpech LAG 39.163 38.809 41.354 36.548 41.729 36.667

Akimpech LGP 41.540 50.737 51.497 46.928 51.497 50.551

Akimpech LPS 21.166 23.951 22.754 22.754 22.754 24.598

Akimpech MoMR 36.569 37.083 33.674 35.714 32.850 35.166

Akimpech PGA 17.631 24.322 21.851 22.807 24.922 22.353

Akimpech WFG 31.372 41.167 37.770 34.324 33.587 35.640

Akimpech XCL 41.036 52.083 46.840 42.640 45.833 40.279
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