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Abstract

Understanding and modeling the dynamics of pedestrian crowds can help with designing and increasing the safety
of civil facilities. A key feature of crowds is its intrinsic stochasticity, appearing even under very diluted conditions,
due to the variability in individual behaviours. Individual stochasticity becomes even more important under densely
crowded conditions, since it can be nonlinearly magnified and may lead to potentially dangerous collective behaviours.
To understand quantitatively crowd stochasticity, we study the real-life dynamics of a large ensemble of pedestrians
walking undisturbed, and we perform a statistical analysis of the fully-resolved pedestrian trajectories obtained by
a year-long high-resolution measurement campaign. Our measurements have been carried out in a corridor of the
Eindhoven University of Technology via a combination of Microsoft KinectTM 3D-range sensor and automatic head-
tracking algorithms. The temporal homogeneity of our large database of trajectories allows us to robustly define and
separate average walking behaviours from fluctuations parallel and orthogonal with respect to the average walking path.
Fluctuations include rare events when individuals suddenly change their minds and invert their walking direction. Such
tendency to invert direction has been poorly studied so far even if it may have important implications on the functioning
and safety of facilities. We propose a novel model for the dynamics of undisturbed pedestrians, based on stochastic
differential equations, that provides a good agreement with our experimental observations, including the occurrence of
rare events.

The flow of human crowds is a fascinating scientific topic.
The interest comes from both its connections with open
scientific challenges related to the development of complex
behaviours and pattern formation in non-equilibrium sys-
tems [13] as well as from its relevance to the design and
safety of infrastructures [10]. Connections with statisti-
cal physics [4] and fluid dynamics descriptions [18] have
been used to develop models capable to reproduce some of
the features observed in crowds phenomenology [23, 14, 8].
From a macroscopic point of view it is no surprise that
crowds may be described, at least qualitatively, by means
of fluid-like continuity equations for the local crowd den-

sity [8].

While it may be tempting to extend this fluid analogy
even to the case of rarefied gases and complex fluids as
paradigms, respectively, of crowds with low and high pedes-
trian densities, many more qualitative investigations are
needed. A key difference between fluids and crowds is the
“active” nature of crowd “particles” with respect to the
“passive” nature of particles in ordinary fluids.

Despite the fact that pedestrian crowds are ubiquitous,
the availability of high-quality, high-statistics data is still
rather limited. This is probably related to technical dif-
ficulties in the analysis of camera recordings that can be
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easily affected by varying lighting conditions and by the
difficulties in the accurate identification of pedestrian posi-
tions in images [2]. When available, high quality data are
often limited to short recordings not allowing an accurate
statistical characterisations of the dynamics. This practi-
cally impedes investigations beyond mean behaviours. Suf-
ficient statistical accuracy is mandatory to investigate the
statistical properties of rare events as the ones, for instance,
corresponding to individuals suddenly changing their direc-
tion.

To overcome some of these issues, we have performed a
crowd tracking experiment with high space and time accu-
racy and with unprecedented statistics. These experimen-
tal data allow us to develop and to validate novel and sim-
ple stochastic models capable of quantitatively reproducing
the dynamics of single individual pedestrians as well as of
the statistical properties.

1 Conceptual framework

The behaviour of single individuals has been modeled in re-
cent literature [16, 14] as being subjected to “social forces”,
geometry constraints (or “wall forces”) as well as to intrin-
sic (random) noise. These models account for both “volun-
tary” as well as “accidental” pedestrian motions. If such
a description is correct, we must observe non trivial effects
which cannot be taken into account by a purely determin-
istic dynamics (i.e. by considering only social forces and
no noise). Indeed, this is exactly what happens. Pedestri-
ans with same starting position and velocity might exhibit
different trajectories, and the random noise in the model
should be enough to quantitatively explain this departure.
Furthermore with a small but well measurable probabil-
ity, some pedestrians abruptly invert their own direction of
motion during their walk: the random noise in the model
should be able to reproduce quantitatively such rare events.

In our experiment sudden inversions of walking direction
occur with a probability of one in about thousand pedestri-
ans. Because of the low frequency of these events, it can be
challenging to study quantitatively and thus explain them
in the context of stochastic mathematical models for single
pedestrian behaviour. In this paper we provide evidence,
with strong experimental support, that such rare events
can indeed be explained by the effect of “external” (nonde-
terministic) random perturbations. It is important to un-
derline that the effect of these rare events can be extremely
important in non dilute crowd conditions, as in several sit-
uations where crowd disasters occurred (see, e.g., [15, 17]).

For our purpose, we focus on a corridor shaped land-
ing, where the same dynamics repeats everyday (so that
statistics can be arbitrarily increased) and where pedes-
trians have limited freedom (they can enter/exit from a
restricted region L and exit/enter from region R). In our
system (sketched in Figure 1) pedestrians walk subjected
to a very simple geometrical constraint without particular
distractions (no pictures, windows, etc.). The average lon-
gitudinal velocity is almost the same (within a 10% margin)
in the two possible walking directions (L to R and R to L).

5.2 m

1.2
m

1.2 mup

Γ(t)

BA

Figure 1: Sketch of the measurement site (staircase land-
ing) with dimensions. Pedestrians walk from region L to
R or vice versa. From the individual trajectories (cf. thin
lines, only 7 reported for the sake of readability) we can
define an average path Γ (cf. thick dashed line) around
which the ensemble of pedestrians fluctuates during their
walk.

Let u indicate the longitudinal velocity, we denote by up
the average value of u (in absolute value).

Under such conditions, a direction inversion event is sim-
ply the change u → −u of the pedestrian’s walking direc-
tion. The key question is whether the occurrence prob-
ability of rare events can be quantitatively related to the
amplitude of fluctuations (or nondeterministic noise if any)
as measured when pedestrians are walking without turning
back. At first, this idea may appear hopeless because in-
version events, as the one we are interested in our case, can
be due to several subjective external factors (e.g. receiv-
ing a phone call). However, if our postulation is correct,
we should be able to compute quantitatively the probabil-
ity of turning back by a reasonable good measure of the
external stochastic noise. It is the purpose of the present
paper to show that this is indeed the case as shown in Fig-
ure 2. In Figure 2, we report the probability distribution of
the number of pedestrians, Ni, observed between two con-
secutive rare events (inversion events). Such probability
distribution (red dots) is expected to be exponential since
the statistics of rare events follow a Poisson distribution
(after the reasonable assumption that rare events are inde-
pendent from each other). The blue dotted line is the best
exponential fit of the observations providing exp(−Ni/N0)
where N0 ≈ 450, i.e. on average we observe a rare event
every 450 walking pedestrians. The black open circles are
the probability distribution computed using our model (de-
tailed below) and shows a remarkably good agreement with
the observations.

In the following we provide the experimental and math-
ematical details of our approach: first, we give the details
of our installation, then we describe our stochastic model
for pedestrian dynamics, and finally, we compare it against
field measurements.

2 Experimental settings

We recorded the trajectories of pedestrians walking in a
corridor-shaped landing (cf. Figure 1) in the Metafo-
rum building at Eindhoven University of Technology (the
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Figure 2: Probability distribution function of the number
of pedestrians, Ni, passing in the corridor between two tra-
jectory inversion events (i.e. the number of consecutive
crossings of the corridor). Comparison of measurements
(red dots), simulation data from Eq. (1)-Eq. (2) (black
open circles) and of a Poisson process with expectation
E[Ni] = N0 = 450 pedestrians (dotted blue line).

Figure 3: Examples of KinectTM depth maps of a sin-
gle pedestrian walking undisturbed in our measurement
site reaching the opposite side (cf. Figure 1). (a) Three
background-less depth maps from three instants close in
time. The reconstructed trajectory of the pedestrian head
is superimposed as a solid line. The grey-scale coloriza-
tion follows the depth levels: darker pixels are closer to
the camera plane, thus heads, which are local extrema of
the depth field, are darkest. The background, immutable
in time, has been subtracted. (b) Example of a raw depth
map for the middle frame in (a). Pixels whose depth could
not be assessed reliably by the sensor are in black. These
typically include far background pixels or shaded regions.

Netherlands). Via two staircases at both ends, the land-
ing connects the canteen of the building (ground floor) to
the dining area (first floor). Our installation monitored a
rectangular section in the center of the U-shaped walka-
ble area, covering a surface 2.3 m long and 1.2 m wide (full
transversal size). Recordings have been carried out on a
24/7 basis for 109 complete working days in the period Oc-
tober 2013 - October 2014.

To collect pedestrian trajectories, following [28], we de-
veloped a system with the following characteristics. Via
a commercial low-cost Microsoft KinectTM 3D-range sen-
sor [22] we collect raw overhead depth maps of the corri-
dor (sensor height: 4 m; time resolution: 15 fps). Depth
maps are the distance field between observed objects and
the sensor plane: such scalar fields can be conveniently en-
coded in gray scale pictures (cf. Figure 3). KinectTM sen-
sors reconstruct depth maps in hardware (via projection of
structured IR light) providing a stream at VGA resolution
(640 px×480 px). The depth signal enables head detection
and hence the full reconstruction of individual trajectories.
We report a typical trajectory provided in Figure 3. We
process the depth map stream offline extracting the head
positions frame-by-frame (cf. [28]), thus we perform the
tracking in a Particle Tracking Velocimetry (PTV) fash-
ion [30] via the library OpenPTV [29]. Through this pro-
cedure, further described in the SI, we achieve a typical
detection and tracking error within a centimeter. In par-
ticular, head detection reliability is generally high modulo
fluctuations due, for instance, to hair or hats “geometry”,
irrelevant for the estimation of trajectories and velocities.

From all pedestrian trajectories connecting L to R and
vice versa, we can define an average path, Γ (sketched in
Figure 1, together with few illustrative individual trajec-
tories). The trajectories of individual pedestrians present
some degree of stochasticity, and it is thus difficult to dis-
entangle a mean path from fluctuations at the single trajec-
tory level. Such disentanglement is instead easy and very
accurate after ensemble averaging on a large collections of
trajectories. The time resolution of our recordings and the
large statistics allow us to achieve a very accurate estimate
of the average path Γ (with an error within the millime-
ter, cf. Figure 7), enabling us to study the statistics of
fluctuations.

3 Dynamics

In modelling a single pedestrian walking, our starting point
is the introduction of a convenient system of coordinates
(x, y), where x labels the position in the direction along
the corridor and y the transversal position (with y = 0 cor-
responding to the center of the corridor). Assuming that
there exists no correlation in the longitudinal and transver-
sal dynamics, we model the dynamics in the two directions
independently:
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Figure 4: Transversal dynamics: comparison between measurements and model. We model the transversal motion as a
harmonically bounded Langevin motion (cf. y and v dynamics in Eq. (3)-Eq. (4)). In (a) we report the time-correlation
function of the transversal displacement y. The analytic solution (proportional to a cosine function with exponential
decay) is reported as a blue dotted line. Measurements (red dots) and simulations (empty dots) in a domain of equal
size are in good agreement with the analytic solution. (b,c) Probability distribution function of, respectively, transversal
positions y and transversal velocities v. In both cases the analytic solution is a Gaussian distribution (dotted blue line)
which is in good agreement with the measurements (red dots). In the case of transversal positions y we observe rare
deviations from the Gaussian behaviour at |y| > 0.4. These are due to stopping events (cf. peak at u = 0 in Figure 5(c)).
We refer the reader to the SI for further details on the calculations.
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Figure 5: Longitudinal dynamics: comparison between measurements and model. We model the longitudinal motion as
a Langevin dynamics in a double well velocity potential (cf. x and u dynamics in Eq. (1)-Eq. (2)). In (a) we compare
the experimental potential (after symmetrization of the velocities, cf. Eq. (8); red dots) with the rescaled potential
Rφ(u) = R(u2 − u2

p)
2 (dotted line). (b) Time correlation of the longitudinal velocity u. The analytic exponential decay

of the linearized dynamics (exp(−8αu2
pt), cf. Eq. (9), dotted blue line) is compared with measurements (red dots)

and simulations of Eq. (1)-Eq. (2) (in a virtual corridor with dimensions similar to those of our experiments; empty
dots). The finite size of the corridor is responsible for a deviation from an exponential decay: from simulations, we
expect the correlation to decay exponentially for small times only (τ < 1.5 s). The measured time correlation (cf. SI for
detailed formulas) decays around the expected exponential trend with larger discrepancies after τ > 0.75 s. Following the
exponential decay at small times we fit the correlation time ((8αu2

p)
−1), i.e. α. (c) Probability distribution function of

longitudinal velocity u: comparison between measurements (red dots) and model (empty dots). The simulated dynamics
captures the entity of the fluctuation as well as the negative velocity tail within the considered approximation (neglected
high velocity behaviour and stops).
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ẋ(t) = u(t) (1)

u̇(t) = f(u) + σxẆx (2)

ẏ(t) = v(t) (3)

v̇(t) = −2βy(t)− 2γv(t) + σyẆy (4)

where u and v are the velocity components in the longitudi-
nal, x, and transversal, y, directions and β and γ are (posi-
tive) model parameters. The structure of the function f(u)
is still to be identified, and the noise terms Ẇx and Ẇy are
assumed, for simplicity, independent, δ-correlated in time
and Gaussian distributed (these assumptions are conven-
tional, although non mandatory [26]). For the time being,
we focus on the transversal dynamics where we model the
behaviour of a single pedestrian as a linear Langevin equa-
tion. There is a priori no reason to believe that a linear
approximation is correct or even reasonably good, thus the
only way to assess the validity of Eq. (3)-Eq. (4) is to com-
pare the predictions of the model against the outcome of
our experiments. In Figure 4 we show the y autocorre-
lation function, the probability density distributions of y
and of v respectively. Both y and v show distributions very
close to a Gaussian, supporting the linear Langevin model
in Eq. (3)-Eq. (4). The autocorrelation function of y shows
good quantitative agreement with the prediction of the lin-
ear Langevin equations. All values of the fitted parameters
are reported in Table 3.

Next, we consider the equation for u and we need thus
to identify the function f(u) in Eq. (2). As already pointed
out, we have two almost identical velocities characterising
the average left-to-right and right-to-left walk, with an ab-
solute value of about up = 1 m/s. Therefore we assume that
f(up) = f(−up) = 0, i.e. the two states u = ±up should
correspond to stationary solutions of the deterministic part
of Eq. (2). We argue that u = 0 is also a stationary solu-
tion, i.e. f(0) = 0 and in particular it should be an unstable
stationary solution. As we shall see, the assumption on the
state u = 0 is not exactly true and it should be considered
as a first approximation. Postponing the question on the
state u = 0, we can reasonably assume that f(u) can be
approximated as

f(u) = −4αu(u2 − u2
p), (5)

where α is a positive parameter that represents the mod-
ulating factor of the force. The above equation is the
simplest form of f(u) satisfying our assumptions. Us-
ing Eq. (5), we can rewrite Eq. (2) in the form:

u̇ = −4αu(u2 − u2
p) + σxẆx. (6)

Associated with Eq. (6), we can consider the stationary
probability distribution P (u) given by:

P (u) = N exp [−Rφ(u)] , (7)

where φ(u) ≡ (u2− u2
p)

2 represents a double-well potential
associated with the force f(u), N is a normalisation fac-
tor and R = 2α/σ2

x. The way we write P (u) in Eq. (7)

highlights the fact that the stationary probability distri-
bution depends on a single parameter, namely R. Note
that the probability for a rare event to occur is given by
P (0)/P (up) = exp(−Ru4

p) which corresponds to the well
known Kramer’s estimate [1, 20].

To compare our theoretical expectation against experi-
mental data, we consider the full set of experimental trajec-
tories, in both directions, and we compute the probability
density distribution Pexp(u). From this we construct the
potential of the longitudinal dynamics via the relation

Φexp ≡ − log( 1
2 (Pexp(u) + Pexp(−u))). (8)

In Figure 5(a) we compare Φexp to our theory. There are
two main points to be observed: first, for very large, al-
though rarely occurring, absolute values of u, our choice of
f(u) is clearly poor; second, at variance with our assump-
tion, the state u = 0 seems to corresponds to a locally
stable state and there exist two unstable states at u = ±us
with us ≈ 0.2 m/s. For the second point, what we are
missing in our modelling is the relatively small probability
to stay at u = 0 for time longer than the one predicted
by Eq. (6). This corresponds to pedestrians stopping walk-
ing for a while, possibly taking a phone call. However, such
a time is two order of magnitude shorter than the average
transition time from u to −u. We refrain from increasing
the complexity of f(u) to fit the shape of Φexp (though this
would easily be possible) since our major goal here is to ac-
curately model the probability of rare trajectory inversion
events. This goal is relatively simple to achieve, in Fig-
ure 5(a) we chose R = 4.88 s4m−4 so that the maxima of
Rφ(u) corresponds to the two symmetric maxima of Φexp.
With such a choice, the probability of a rare event, follow-
ing Kramer’s estimate, is the same in our model and in the
experimental data.

To close our parameter estimation for Eq. (6), we need
to compute α and/or σx in an independent way. To this
purpose, we consider the case of u close to one of the two
“minima” shown in Figure 5(a), say u = up, and we lin-
earize Eq. (6) around such a minimum. Upon defining
δu = u− up, we can write:

δu̇ = −8αu2
pδu+ σxẆx. (9)

From Eq. (9) the correlation function of δu should de-
cay as exp(−8αu2

pt) (cf. e.g. [25]). It is therefore pos-
sible to estimate α by computing the correlation func-
tion of δu from the experimental data; the results are de-
picted in Figure 5(b). Although for large time the cor-
relation function does not seem to follow an exponential,
at relatively short time we can safely estimate the correla-
tion time as α ≈ 0.0625 m−2s. Given α we can compute
σx =

√
2α/R ≈ 0.16 ms−3/2. Remarkably, the value of σx

is quite close to the value estimated for σy. Although the
two noise variances are not constrained to be the same, it
is reasonable to argue that the velocity fluctuations should
be isotropic, this is in line with what we found. Also, the
correlation time 1/(8αu2

p) ≈ 2 s is very close to the cor-
relation time 1/(2γ) ≈ 2.4 s estimated for the correlation
function of v. Once more, while there is no reason for the
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system to be perfectly isotropic, we consider the closeness
of the values of noise variance and correlation times as a
non-trivial self-consistency check of our model.

We are now able to accomplish the last and more signifi-
cant step in our study, namely the analysis of rare inversion
events. To perform a fare comparison between our theoret-
ical approach and the experimental data, we proceed as fol-
lows: we simulate numerically Eq. (1) and Eq. (6) with ini-
tial condition x = 0 and u = up. We integrate the solution
up to the point x = 2 m (exit) and then we repeat the inte-
gration N times starting with the same initial conditions.
Next, we consider the experimental data for the same case,
i.e. initial condition x = 0. The value of N is chosen to be
the one obtained in the experiments (N = 72376). Finally,
we compute P (u) as obtained by the numerical simulations
and compare it with Pexp(u) from the experimental mea-
surements. Rare events should corresponds to the tail in
the probability distribution reaching the state u = −up.
The comparison between the two probability distribution
is reported in Figure 5(c). Although there is a discrepancy
at u = 0 and at extreme values of u (as expected), the
overall comparison is extremely good. Figure 5(c) clearly
shows that the probability of rare events, i.e. the individual
decision to turn back along the path, can be estimated by
the effect of external random perturbations. This result is
apparently in contrast with the intuition that the decision
to make an U-turn is an external and unpredictable event
which cannot be modeled. However, as already pointed
out, it is also possible to consider the shape of function f(u)
in Eq. (2) and the variance of the noise as a suitable way,
in statistical sense, to model this unpredictable individual
freedom. We need to stress that our choice of the experi-
mental settings and the very large statistical database are
essential for our findings that, to our knowledge, have not
been reported by others before. Finally, measurements and
simulation are compared in terms of rear events distribu-
tion in Figure 2 showing very good agreement.

Our result opens ways to a number of possible investi-
gations. Clearly, in less diluted pedestrians environments,
rare events are statistically modified by the effect of other
individuals and of their associated “social forces”. How-
ever, even with due modifications, the possibility of rare
inversion events can contribute to non trivial effects, such
as the local increase of crowd density. Also, it may be in-
teresting to understand how the probability of rare events
is changed by increasing the size of the system (especially
in the x direction). For instance, in the case of a longer
corridor it is reasonable to expect the emergence of a peak
around u = −up in the longitudinal velocity distribution in
connection to the larger relaxation space allowed to reach
stable velocity after inversion. We may also expect, in prin-
ciple, that our parameters (α, β, γ) are somehow system-
size dependent.

4 Conclusions

Thanks to an innovative crowd measurement campaign, we
investigated quantitatively the statistical properties of sin-

α 0.0625 m−2s σx 0.16 ms−3/2

β 1.63 s/m−2 σy 0.16 ms−3/2

γ 0.207 s−1 up 1.0 ms−1

Table 1: Parameters used in the model. α: modulating
factor of the double-well potential force f governing the
longitudinal motion (cf. Eq. (2)); β: stiffness coefficient of
the transversal linear Langevin dynamics; γ: friction coef-
ficient of the transversal linear Langevin dynamics; σx, σy:
white noise intensity in longitudinal and traversal direction;
up: desired mean walking speed.

gle pedestrian dynamics in a simple geometric setting. We
reliably measured the motion of pedestrians in real world
conditions for one year long removing several of the con-
straints and biases of laboratory experiments. For example,
inversion of trajectories would never occur in a laboratory
context where pedestrians are explicitly instructed to walk
across a corridor. We considered the simplest flow condi-
tion possible: undisturbed pedestrians walking in a quasi
one-dimensional corridor.

Even in this simple scenario, the dynamics shows dif-
ferent levels of stochasticity consistently and reproducibly
present in the two symmetric cases (left-to-right and right-
to-left) considered. Pedestrians show a randomly fluctu-
ating behaviour around a “preferred” average path which
connects the two extremes of the observed region. Rarely,
strongly deviating behaviours, such as long pauses or in-
versions, are observed. The presence of such highly deviat-
ing behaviours gives the overall picture of the dynamics a
non-trivial structure, different from the mean-field average
behaviour.

In the same spirit of the statistical analysis of other
stochastic systems, we analyse the dynamics in terms of
probability distribution functions. As a consequence of the
extensive measurement campaign performed we obtained
probability distribution functions very well resolved in the
tails (extreme events) and we specifically focused our at-
tention to positions and velocities pdfs. In the case of the
longitudinal velocity, the large deviations measured reflect
in a non-Gaussian statistic.

To reproduce such stochastic behaviour and its specific
statistical features, we use a Langevin-like equation with
a bi-stable pseudo-potential in the velocity space. The
stochastic fluctuation of the velocity in the positive veloc-
ity well of the potential, excited by a forcing white noise,
reflects the natural fluctuations across the preferred path.
Furthermore, the white noise allow us to reproduce rare
transitions responsible of U-turns, corresponding to tran-
sitions from the positive velocity well to the negative well.
Remarkably, this behavioural change is not determined a
priori, but rather it is the result of a purely random process.

We believe that the present model can be extended to
more complex crowd dynamics like e.g. conditions where
the crowd density is high, as common in many civil infras-
tructures in our cities.
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2003.

Supporting Information (SI)

Depth maps acquisition and pedestrian tracking

Our field measurements are based on the 3D data deliv-
ered by an overhead Microsoft KinectTM device [22]. In
addiction to a standard camera, Microsoft a KinectTM pro-
vides a structured-light sensor enabling the evaluation of
the depth map of the filmed scene. Depth maps encode
the distance between each point (pixel) in the scene and
the camera plane. They are typically represented via gray-
scale images (cf. Figure 3, darker shades of gray are closer
to the camera). Following the approach introduced in [28],
and discussed for the current scenario in [7, 5], over-head
depth maps allow an accurate detection of the pdestrian
positions. Performing an agglomerative clustering of the
foreground part of the depth map through a complete link-
age [9], we identify pedestrians via a 1:1 correspondence
with the clusters appearing in the scene. Clusters are found
after cutting the hierarchical clustering dendrogram at an
height commensurable with the shoulder size (cf. relia-
bility analysis in [28]). Finally, heads are associated with
the “upper” part (i.e. having lesser depth) of each cluster
(5th percentile). Employing overhead sensors with verti-
cal top-to-bottom view is not mandatory. In fact, larger
recording can be achieved via cameras having pitch angle
smaller than 90o, however this comes at the cost of in-
creased probability of mutual pedestrians occlusions and
higher automatic detection difficulty. Measurements from
sensors in this more general configuration are not treated
here. The interested reader can refer e.g. to [3].

After head positions are assessed on a frame basis, we
perform a spatio-temporal matching to reconstruct trajec-
tories. We employ the tracking algorithms in the Open
Particle Tracking Velocimetry (OpenPTV) library [29, 30].
We use OpenPTV also to deal with the conversion of cam-
era “pixel” coordinates to “metric” coordinates. Calibra-
tion has been helped by a “checker board” composed of
nine circular holes in a 3 × 3 configuration (hole diame-
ter: 9 cm, hole center distance with first neighbors: 13 cm).
This allowed a final resolution of circa 3.9 mm per px in
the span-wise direction (x) and circa 4.1 mm per px in the
transversal direction (y) around the head plane (approxi-
mately 1.7 m above the ground).

To reduce noisy fluctuations from 3D reconstruction and
head detection, we adopt the Savitsky-Golay smoothing fil-
ter [27], common in the particle tracking velocimetry com-
munity (cf., e.g., [12, 21]). We employ a local quadratic

approximation based on a symmetric window having width
equal to 7 time samples.

Pedestrian trajectories

In our continuous recordings, we observed up to six pedes-
trians walking simultaneously. In this paper we focus on
trajectories by individuals moving undisturbed by peers
(cf. [6, 5] for an overview of other possible traffic condi-
tions including co-flows and counter-flows). To select these
trajectories we operate as follows:

1. for each trajectory γ we compute L(γ): the average
number of pedestrians observed in the site along this
trajectorie. The pedestrian whose trajectory is γ is al-
ways observed, hence, by construction, L(γ) ≥ 1 holds;

2. we retain all those trajectories γ for which L(γ) ≤
L1 = 1 + εL, with εL small (εL = 0.05 in our case).
Allowing a small εL allows one to include trajectories
in which for few frames (in our case typically one) a
pedestrian appeared with a peer.

Relaxing the selection condition L1 = 1 enables increased
statistics. When εL is small we argue a reasonably neg-
ligible perturbation on the individual trajectories by the
presence of a peer. In fact, at small εL two individuals
can appear together just when at the opposite sides of the
facility one enters and one leaves.

We further employed the following quality checks on the
trajectories, to remove faulty or low quality data poten-
tially compromising statistics:

1. we restrict to fully reconstructed trajectories connect-
ing either of the two virtual boundaries xL = −0.8 m
and xR = 1.0 m (cf. vertical boundary bands in Fig-
ure 1 and in Figure 6(a,b)) or that feature an uncon-
ventionally long time duration (as suggested in [3]);

2. selected trajectories are if the order of several tens
of thousands. These can still contain detection or
tracking errors. We screened them manually, mostly
exhaustively, prioritizing trajectories providing outly-
ing values from position or velocity (joint) distribu-
tions. Among others, we employed the following em-
piric trajectory-based quantity. For each trajectory γ,
we define

F (γ) =
maxγ(s)− α0.50,γ(s)√

N
, (10)

where, respectively,

• s is a speed measurement along γ, i.e. s =√
u2 + v2;

• maxγ(s) denotes the maximum value of s along
γ;

• α0.50,γ(s) denotes the 50th percentile (median) of
s along γ;

• N is the number of samples in γ.
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This observable F highlights discrepancies between the
maximum and the median speed along a trajectory.
Outlying F values are likely synonym of jittery tra-
jectory reconstructions. As large differences between
maxγ(s) and α0.50,γ(s) are likely to occur in case of tra-
jectories spanning long time intervals, which for our
site means one (or more) stop-and-go, we introduce
the (empiric) weight N−1/2. This weight reduce the F
“penalty” for long, and possibly correct, trajectories.

We ultimately classify trajectories in dependence on the
direction, either left-to-right or right-to-left (with reference
to Figure 1). The classification is performed on the ba-
sis of the entering side or, when not possible, considering
the average longitudinal velocity. Neglecting differences be-
tween the dynamics left-to-right and vice versa (cf. [6]), we
merge the two classes after reversing the direction of the
class right-to-left.

Velocities, positions and average path The U-shape
of recording site yields pedestrian trajectories that are
slightly curved, as a consequence Cartesian coordinates
x − y′ that follow the longitudinal and transversal direc-
tions of the landing (cf. Figures 1 and 6) cannot be used
as a reference for the longitudinal and transversal walking
direction (coordinates x− y in Eq. (1)-Eq. (4)). We define
these directions according to curved coordinates following
the pedestrian motion, as described in the following. We
use adapted coordinate systems obtained independently for
the two classes of pedestrians (left-to-right and right-to-
left). Thus we merge the components calculated this way
to obtain the final probability distributions.

First, to find motion-adapted position coordinates we re-
fer to the average path (Γ), that is curved as the trajecto-
ries. We evaluate average paths from the positions distribu-
tions (cf. background in Figure 6(a,b)). Using a binning in
the longitudinal x direction (40 bins), we consider per-bin
averages of positions on the y′ axis. The average path is
given by connecting the bin-dependent y′-averages. Using
a x-dependent parametrization, we write

Γ(x) = (x,E[y′|x]), (11)

where E[y′|x] is the average value of y′ for measurements in
longitudinal location x (i.e. in the same bin as x). Notably,
as per the large number of measurements we can assess
the average path with low error. For instance, the average
distance between the average paths computed splitting our
measurements in two random subsets is about 0.6 mm (cf.
Figure 7). Finally, for comparison with the model we remap
pedestrians transversal position y′ to account for the offset
with the average path. In formulas, a pedestrian in location
(x, y′) is mapped to location (x, y) where

y = y′ −E[y′|x]. (12)

The presence of a preferred path is a key assumption for
the dynamics Eq. (1)-Eq. (4). We remark that its phys-
ical existence is likely scenario-dependent. For instance,
an obstacle in the way may yield two preferred paths, one
on each side. On wide corridors preferred paths might be
many, up to a continuum.
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Figure 6: (a,b) Probability density function of pedestrian
positions, respectively for pedestrians going left-to-right
(a) and right-to-left (b). Average paths Γ from Eq. (11)
are reported as a solid line. These are calculated after a
binning of the measurements in 40 equal intervals within
[−1.0, 0.8] in dependence on the x coordinate. The figure
axes report Cartesian coordinates aligned with the main
directions of the corridor, respectively longitudinal, x, and
transversal, y′ (cf. Eq. (11) and Eq. (12)). (c,d) Av-
erage velocity fields for pedestrian going left-to-right (a)
and right-to-left (b). The fields are computed after bin-
ning the measurements in a 40 × 40 grid on the region
[−1.0, 0.8] × [−0.6, 0.6], and averaging velocity measure-
ments bin-by-bin (fields are downsampled for readability).
The evaluation of the transversal walking fluctuation y and
the longitudinal and transversal components of the walking
velocity u and v (cf. Eq. (1)-Eq. (4)) employ the references
set in this way. The fluctuation y is the distance (par-
allel to the y′ axis, i.e. Eq. (12)) from the average path
(Eq. (11)). Longitudinal and transversal velocity compo-
nents are computed after a projection of the measured ve-
locity on the (normalized) velocity fields. Components are
calculated independently for the two classes of pedestrians,
then the contributions are merged to obtain the probability
distribution functions in Figures 4 and 5.
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Figure 7: Error in the evaluation of the average path
(Eq. (11)) for pedestrians going left-to-right and vice versa.
In both cases we split evenly and randomly the measure-
ment sets in two. We report the absolute error on Eq. (11)
between the sets, which remains within the millimeter.

Second, for the evaluation of the longitudinal and
transversal components of pedestrians velocity we refer to
the average (Eulerian) velocity field. We consider a two-
dimensional spatial binning of our domain composed of
40 × 40 bins, which define a grid size comparable with
the typical head displacement between two following frames
(a typical crossing over the observation window takes be-
tween 32 and 37 frames). We obtain the Eulerian velocity
field after an average per bin of all velocity measurements.
In Figure 6(c,d) we report the Eulerian velocity fields for
pedestrians going left-to-right and vice versa. We evalu-
ate the longitudinal velocity component u by a projection
on the local (bin-wise) Eulerian velocity (rescaled to unit
modulus). The transversal velocity component v remains
defined by difference.

Time correlation The time correlation functions for po-
sitions are velocity are calculated with respect to the pedes-
trian state at the domain entrance (initial time-step, t0, of
each trajectory). Let Ξγt be the value of observable Ξ (e.g.
transversal position or velocity component) that the trajec-
tory γ assumes at time t. Let Ξ̃γt = Ξγt −Et[Ξ

γ
t ] be the fluc-

tuating component of Ξ with respect to the trajectory-wise
average Et[Ξ

γ
t ] at time t. The time correlation function of

Ξ satisfies

CΞ(t) =
Eγ [Ξ̃γt0 · Ξ̃

γ
t ]−Eγ [Ξ̃γt0 ] ·Eγ [Ξ̃γt ]√
N(t0) ·N(t),

(13)

where the normalization terms N(t) read

N(t) = Eγ [(Ξ̃γt −Eγ [Ξ̃γt ])2]. (14)

Simulations

We discretize Eq. (1)-Eq. (4) via the two-stage Heun’s
method (see, e.g., [19]) using the same data acquisition
timestep ∆t, i.e. ∆t = 1/15 s. Let xn, yn, un, vn ap-
proximate the pedestrian state x(t), y(t), u(t), v(t) at in-
stant tn = n∆t (with n = 0, 1, 2, . . . ,M), the approximated

state at tn+1 reads

xn+1 = xn + 1
2 (un + u∗) ∆t

un+1 = un − 2α[un((un)2 − u2
p) + u∗((u∗)2 − u2

p)] ∆t+ σx ∆η
yn+1 = yn + 1

2 (vn + v∗) ∆t
vn+1 = vn − β(yn + y∗) ∆t− γ(vn + v∗) ∆t+ σy ∆η,

(15)
where

x∗ = xn + un ∆t
u∗ = un − 4αun((un)2 − u2

p) ∆t+ σx ∆η
y∗ = yn + vn ∆t
v∗ = vn − 2βyn ∆t− 2γvn ∆t+ σy ∆η

(16)

and ∆η is the integral of a Gaussian white noise in the
interval [tn, tn+1], thus ∆η ∼ Normal(0,∆t). We initialized
simulated pedestrians in a virtual corridor at x = 0 m, we
terminated the advancement of Eq. (15)-Eq. (16) once one
of the two boundaries x = 0 m or x = 1.8 m was reached.
We initialized the transversal position y and transversal
velocity v as zero-averaged normal distributions having the
same variance as the experimental measurements.

Parameter fitting

We treat the motion in longitudinal and transversal direc-
tions (x and y) as independent and so we fit the model pa-
rameters. We address here the transversal motion to com-
plement the discussion on the longitudinal motion included
in the manuscript. From Eq. (2) and Eq. (4) the probabil-
ity P (v, y) to observe a given transversal velocity v and
position y follows the (stationary) Fokker-Planck equation
(e.g. [11]):

∂v

{
(2βy + 2γv)P (v, y) +

σ2
y

2 ∂vP (v, y)
}
−∂y {P (v, y)v} = 0

(17)
with solution (cf., e.g., [24]):

P (v, y) = P (v)P (y) = N exp
[
− 2γ
σ2
y
v2 − 4βγ

σ2
y
y2
]
. (18)

Values for three parameters, γ, β and σy, are to be identi-

fied. We fit the ratios 2γ
σ2
y

and 4βγ
σ2
y

(thus β) in Eq. (18) by

comparison with the experimental data via the relations

− log[Pexp(v)] ≈ 2γ
σ2
y
v2 +K ′ (19)

− log[Pexp(y)] ≈ 4βγ
σ2
y
y2 +K ′′, (20)

where Pexp(v) and Pexp(y) are, respectively, the empiric
distributions of v and of y, while K ′ and K ′′ are fixed
by normalization constraints. We use the time correlation
function of y as a third fitting equation. From, e.g., [25],
such correlation function satisfies

Cy(t) = N exp [−γt]
(
cosωt+ γ

ω sinωt
)
, (21)

for the frequency ω =
√

2β − γ2. For the sake of complete-
ness, the (stationary) Fokker-Planck equation associated to
Eq. (2) and solved by Eq. (7) reads

∂u

{(
f(u) +

σ2
x

2 ∂u

)
P (u)

}
= 0. (22)
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