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Protein-protein interaction (PPI) networks are the backbone of all processes in living cells. In
this work we relate conservation, essentiality and functional repertoire of a gene to the connectivity
k (i.e., the number of interaction links) of the corresponding protein in the PPI network. On a
set of 42 bacterial genomes of different sizes, and with reasonably separated evolutionary trajecto-
ries, we investigate three issues: i) whether the distribution of connectivities changes between PPI
subnetworks of essential and nonessential genes; ii) how gene conservation, measured both by the
evolutionary retention index (ERI) and by evolutionary pressures, is related to the the connectiv-
ity of the corresponding protein; iii) how PPI connectivities are modulated by evolutionary and
functional relationships, as represented by the Clusters of Orthologous Genes (COGs). We show
that conservation, essentiality and functional specialisation of genes constrain the connectivity of
the corresponding proteins in bacterial PPI networks. In particular, we isolate a core of highly
connected proteins (with connectivities k ≥ 40), which is ubiquitous among the species considered
here – though mostly visible in the degree distributions of bacteria with small genomes (less than
1000 genes). The genes that belong to this highly connected core are conserved, essential and, in
most cases, belong to the COG cluster J, related to ribosomal functions and to the processing of
genetic information.

Keywords: Protein-protein interactions, Gene Essentiality, Evolutionary Retention Index, Clusters of Or-
thologous Genes

I. INTRODUCTION

To operate biological activities in living cells, proteins
work in association with other proteins, often assem-
bled in large complexes. Hence, knowing the interac-
tions of a protein is important to understand its cel-
lular functions. Moreover, a comprehensive description
of the stable and transient protein-protein interactions
(PPIs) within a cell would facilitate the functional anno-
tation of all gene products, and provide insight into the
higher-order organisation of the proteome [1, 2]. Several
methodologies have been developed to detect PPIs, and
have been adapted to chart interactions at the proteome-
wide scale. These methods, combining different technolo-
gies, experiments and computational analyses, generate
PPI networks of sufficient reliability, enabling the assign-
ment of several proteins to functional categories [3, 4].
Moreover, the statistical study of bacterial PPIs over sev-
eral species (meta-interactomes) has brought important
knowledge about protein functions and cellular processes
[5, 6].

Our aim here is to shed some light on the relationships
among conservation, essentiality and functional annota-
tion at the genetic level and connectivities of PPI net-
works, at the protein level. We extend here our previous
observations made on the PPI of E.coli which suggested
a strong correlation between the connectivity of PPI net-
works on the one hand, and codon bias, gene conserva-
tion and essentiality on the other hand [7, 8]. It is worth,
in the next two paragraphs, specifying what is usually
meant by gene essentiality and gene conservation.

Individual genes in the genome contribute differently
to the survival of an organism. According to their known
functional profiles and based on experimental evidence,
genes can be divided into two categories: essential, and
nonessential ones [9, 10]. Essential genes are not dispens-
able for the survival of an organism in the environment
it lives in [10, 11]. Nonessential genes are instead those
which are dispensable [12], being related to functions that
can be silenced without compromising the survival of the
organism. Naturally, each species has adapted to one or
more evolving environments and, plausibly, genes that
are essential for one species may be not essential for an-
other one.

It has been argued many times that essential genes are
more conserved than nonessential ones [13–17]. The term
”conservation” has, however, at least two meanings. On
the one hand, a gene is conserved if orthologous copies
of it are found in the genomes of many species, as mea-
sured by the Evolutionary Retention Index (ERI) [9, 18].
On the other hand, a gene is (evolutionarily) conserved
when it is subject to a purifying, selective, evolutionary
pressure, which disfavours mutations. A common mea-
sure of evolutionary pressure is Ka/Ks, the ratio of the
number of non synonymous substitutions per non syn-
onymous site to the number of synonymous substitutions
per synonymous site. In this second meaning a conserved
gene is, in a nutshell, a slowly evolving gene, a gene that
hardly incorporates mutations [13, 19]. To measure the
evolutionary pressures exerted on the genes we use here
Ka/Ks, and to measure evolutionary patterns of codon
bias we use the Effective Number of Codons (ENC) plots.
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The main finding of this work is the presence, in bacte-
rial PPI networks, of a functional transition ruled by the
connectivity (degree k) of proteins. The genes of pro-
teins with high connectivities are under selective pres-
sure, conserved, and essential. Below the transition
(k < 50), the functional repertoire of low connectivity
proteins is heterogeneous, whereas the genes of proteins
with k > 50 mainly belong to the Cluster of Orthologous
Genes (COG) J (related to translation, ribosomal struc-
ture and biogenesis), with just a few interesting hubs
belonging to COGs I (Lipid transport and metabolism),
K (Transcription) and L (Replication, recombination and
repair). Moreover, we show that in the degree distribu-
tion of each bacterial PPI network there is an ubiqui-
tous trace of an almost-invariant structure of conserved
hubs, essentially due to the ribosomal protein complexes,
mostly visible in the networks of bacteria with small
genomes.

MATERIALS AND METHODS

Bacterial dataset and PPI networks

We consider a set of 42 bacterial genomes (that we
have previously investigated in [8]), here collected in Ta-
ble I. Nucleotide sequences were downloaded from the
FTP server of the National Center for Biotechnology In-
formation [20]. These genomes were chosen in order to
have a reasonably large coverage of data concerning con-
servation, essentiality and selective pressure.

PPIs are obtained from the STRING database (Known
and Predicted Protein-Protein Interactions, https://
string-db.org/)[21]. We have chosen STRING because
of its quite large coverage of different bacterial species,
useful to extend to multiple species the study we did
in [7]. In STRING, each interaction is assigned with a
confidence level or probability w, evaluated by compar-
ing predictions obtained by different techniques [22–24]
with a set of reference associations, namely the func-
tional groups of KEGG (Kyoto Encyclopedia of Genes
and Genomes) [25]. In this way, interactions with high w
are likely to be true positives, whereas, a low w possibly
corresponds to a false positive. As usually done in the
literature, we consider only interactions with w ≥ 0.9,
a threshold that provides a fair balance between cover-
age and interaction reliability (see for instance the case
study on E.coli reported in [7]). We denote by k the de-
gree (number of connections) associated to each protein
in each PPI network after the thresholding procedure.
Note also that after applying the cut-off we are left, for
each network, with a number of isolated proteins (single-
tons, with no connections) that grows as

√
n (where n is

the number of proteins in the genome). These isolated
proteins are not considered in the network analysis and
are regarded as stemming from statistical noise or just
appear isolated because the PPI data is incomplete.

It is known that PPIs of some species in our dataset

might be known much better than others (this is for in-
stance the case of E.Coli). To investigate potential bias
in the dataset, we checked that the densities of PPIs are
high for small genomes and tend to be constant and not
so different from that of E.coli in bacteria with bigger
genomes (see bottom panel of Figure S7). Moreover, the
big genomes in our dataset include highly investigated
pathogens.

The distinction between small and big genomes is a
key emergent point in this work. We divide the set of
42 bacterial genomes in three groups, according to the
number n of their genes: a) n < 1000, b) 1000 < n <
3000 and c) n > 3000. In the Supplementary Information
we have addressed the dependence of various network
properties on the size of the genome.

Gene Conservation: ERI and Ka/Ks

The Evolutionary Retention Index (ERI) [9] is a way
of measuring the degree of conservation of a gene. In
the present study the ERI of a gene is the fraction of
genomes, among those reported in Table I, that have at
least an orthologous (same COG label) of the given gene.
Then, as reminded in the Introduction, a low ERI value
is related to a gene which is rather specific, common to a
small number of genomes; whereas high ERI is character-
istic of highly shared, putatively universal and essential
genes.

We also consider another notion of gene conservation.
Conserved genes are those which are subject to a pu-
rifying, conservative evolutionary pressure. To discrim-
inate between genes subject to purifying selection and
genes subject to positive selective Darwinian evolution,
we use a classic but still widely used indicator, the ratio
Ka/Ks between the number of non synonymous substi-
tutions per non synonymous site (Ka) and the number of
synonymous substitutions per synonymous site (Ks) [19].
This parameter represents a straightforward and effective
way of separating genes subject to purifying evolution-
ary selection (Ka/Ks < 1) from genes subject to positive
selective Darwinian evolution (Ka/Ks > 1). There are
different methods to evaluate this ratio, though the alter-
native approaches are quite consistent among themselves.
For the sake of comparison, we have used here the Ka/Ks

estimates by Luo et al. [15] that are based on the Nej
and Gojobori method [26]. Note that each genome has a
specific average level of Ka/Ks [7].

Gene Essentiality

We used the Database of Essential Genes (DEG, www.
essentialgene.org) [15], which classifies a gene as ei-
ther essential or nonessential, on the basis of a combina-
tion of experimental evidence (null mutations or trans-
posons) and general functional considerations. DEG col-
lects genomes from Bacteria, Archaea and Eukarya, with

https://string-db.org/
https://string-db.org/
www.essentialgene.org
www.essentialgene.org
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different degrees of coverage[27, 28]. Of the 42 bacte-
rial genomes we consider, only 23 are covered—in toto or
partially—by DEG, as indicated in Table I.

ENC plot

The ENC-plot is a well known tool to investigate the
patterns of synonymous codon usage in which the ENC
(Effective Number of Codons) values are plotted against
GC3 (Guanine and Cytosine Content at the third codon
position). The formula of ENC values expected under
the hypothesis of pure mutational bias (no selection) is
given by:

ENC = 2 + s+
29

s2 + (1− s)2
(1)

where s represents the value of GC3 [29]. When the cor-
responding points fall near the expected neutral curve,
mutations that enforce the typical mutational bias of
the species are the main factor affecting the observed
codon diversity. Whereas when the corresponding points
fall considerably below the expected curve, the observed
codon usage bias of the species is mainly affected by natu-
ral selection. To quantitatively represent the balance be-
tween mutational bias and selective natural pressure we
parametrise the ENC formula, to be used in non-linear
fits to the experimental data:

ENC = a+ b ∗ s+
c

s2 + d ∗ (1− s)2
. (2)

ENC plots of genes corresponding to low, intermediate
and high connectivity proteins are shown in Figure S9.
The best fit parameters for the three groups of genes are
collected in Table VI.

Clusters of orthologous proteins

We use the functional annotation given in the database
of orthologous groups of proteins (COGs) from Koonin’s
group, available at http://ncbi.nlm.nih.gov/COG/
[30, 31]. We consider 15 functional COG categories (see
Table II), excluding the generic categories R and S for
which functional annotation is either too general or miss-
ing.

RESULTS AND DISCUSSION

Degree distribution of PPI networks. We start by
studying the degree distributions P (k) observed in bac-
terial PPIs. We first recall that such a distribution was
found to be scale-free in E.coli [7, 32–34], meaning that
the corresponding PPI network features a large number
of poorly connected proteins, and a relatively small num-
ber of highly connected hubs. In order to assess the

generality of this observation, we compute P (k) for each
genome in Table I (plots are reported in Figures S10 and
S11). Note that, despite the fact that PPI networks of
different bacteria have different sizes and densities, their
average connectivity and the support of their P (k) are
very similar. Thus, we can superpose all the considered
bacterial degree distributions without the need to nor-
malise the support of each P (k). When doing so, we ob-
serve two distinct regimes (see Figure 1). For low values
of k < 40, the distribution is approximately scale-free:
P (k) ∝ k−γ (γ = 2.48). This scaling behaviour is con-
sistent with previous studies on the genomes of yeast,
worms and flies [35] and on co-conserved PPIs in some
bacteria [36]. The scale free natura of bacterial PPI’s is
still a matter of debate, and a rough discussion of the
origin of this feature is out of the scope of this paper.
In this work we generally confirm that, as said above,
there is as expected, a large number of poorly connected
proteins and a small number of hubs.

Remarkably, for higher values of k the distribution de-
viates from a power law, and a bump with a Gaussian-
like shape emerges. This feature, visible for k ≥ 40 may
be due to the contribution of proteins belonging to large
complexes [37]. From the whole set of observation pre-
sented in this paper, the bump in the P (k) is due to the
complex of ribosomal interactions. Indeed, if one recal-
culates the degree distribution of a dataset in which the
ribosomal proteins are removed the bump is not present
(see Figure 1, empty dots). Moreover, if we consider the
separate contribution of essential and nonessential genes
to the P (k) (for DEG-annotated genomes), we see that
the bump is present only in the degree distribution of
essential genes. Note also that the degree distributions
for essential and nonessential genes are well separated
and the average degree is systematically higher for essen-
tial genes than for nonessential ones, consistently with
previous findings [35]. Remarkably, we have shown in a
previous paper [8] that the number of essential genes in
bacteria is close to 500 and does not depend on the size
of the genome. To correctly interpret the emergence of
the bump in the average P (k) in Figure 1 it is worth to
point out the distinction between small and not so small
genomes. In the small genomes almost all the genes are
essential and among the essential genes those belonging
to COG J (functions related to translation and riboso-
mal structure and biogenesis) play a major and ubiqui-
tous role. In Figure S8 we have checked that the bump
that emerges in Figure 1 as a feature of essential and
conserved genes, is quite visible in the P (k) of small
genomes, whereas seems to be confused in the case of
bigger genomes. This might be interpreted as a dilution
effect; in the networks of bigger genomes there are a lot
of specific interactions besides the essential ones. Nev-
ertheless, averaging P (k) over small, intermediate and
big genomes we still see the bump and interpret it as
an emerging feature due to a core of highly connected
proteins (connectivities k ≥ 40). From these considera-
tions we can exclude that this bump, observed here for

http://ncbi.nlm.nih.gov/COG/
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FIG. 1. Probability distribution P (k) for the number of con-
nections k of each protein, averaged over the bacterial species
considered in Table I (full dots), compared with the degree
distribution after removal of the proteins corresponding to
genes in COG J, related to translational processes (empty
dots). Inset: P (k) for essential (E) and nonessential (NE)
genes, averaged over DEG-annotated genomes. Note that the
average degree is higher for essential genes than for nonessen-
tial ones, and the two probability distributions are quite dis-
tinct. The region of the curve for low k can be well approxi-
mated by a power law [38].

the first time, might emerge just because that part of
the PPI is much more investigated than other subnet-
works: the bump is there because of the ribosome, and
this happens for all bacteria.

PPI connectivity and gene conservation We now in-
vestigate whether the connectivity k of a protein in a PPI
network drives a transition in the degree of conservation
(as measured by ERI) of the corresponding genes. Fig-
ure 2 displays the average value and the spread of ERI
in genes relative to proteins with the same degree in the
PPIs of different species. As a general feature we observe
that, on the average, the genes of highly connected pro-
teins are highly conserved among the bacterial species
we consider, that constitute a reasonably wide sample of
different evolutionary adaptations. The same Figure 2
shows that if k ≤ 50 then the ERI highly fluctuates be-
tween different samples of proteins with the same k, in
different species. For high connectivities (above k = 50),
the ERI is close to 1, with a drastic drop in the fluctu-
ation (as shown in the inset). This observation points
to the existence, in each bacterial PPI, of an almost-
invariant structure of conserved hubs, sustained by highly
conserved genes. We can conclude, as a rule of thumb,
that a protein with connectivity degree of 40 or more is
likely to be coded by a gene shared by at least 80% of the
species in a generic pool of bacteria. At the moment, we
have not a general explanation for this apparent thresh-
old. Let us just propose, as an heuristic observation, the
existence of an almost-critical value of connectivity to be
set between 40 and 50, that corresponds to the connectiv-
ity of the core of proteins specifically involved, as we have

FIG. 2. Average ERI values of bacterial genes as a function
of the degrees k of the corresponding proteins, for all the
considered genomes. Error bars are standard deviations of
ERI values associated to a given k value. Inset: amplitude of
the error bar (∆ERI) as a function of k.

alluded to in the previous paragraph, to the ubiquitous
ribosomal functions (see also Tables IV and V).
Evolutionary pressure and PPI connectivity We then

look at the evolutionary pressure exerted on genes whose
proteins have different connectivities. Figure 3 shows the
ratio Ka/Ks for groups of genes binned by the connectiv-
ity k of the corresponding proteins, for all the 42 bacterial
species in Table I. As is well known this ratio Ka/Ks pro-
vides a straightforward indication of the balance between
a positive driving darwinian selection (when the numera-
tor prevails) and a purifying, stabilising selection (acting
against change in genes for which the denominator pre-
vails).

We see that the more connected proteins correspond to
genes which are subject to an increasing purifying evolu-
tionary pressure. Indeed, the ratio (Ka/Ks) is less than
1 in all bins of connectivity and systematically decreases,
as a function of k. A decreasing ratio generally indicates
an increasing role of purifying, conservative, darwinian,
evolutionary pressure on the corresponding set of genes.
This is a reasonable results, pointing out that the groups
of genes that support conserved structures of connectiv-
ity in the PPIs are more constrained, in evolution, than
the genes of less interacting proteins.

To add evidence to this observation we have also con-
sidered ENC plots for sets of genes binned by the connec-
tivities of the corresponding proteins. Interestingly, the
ENC data in Figure S9 are fully consistent with those
in Figure 3. In the ENC plots, the points associated
to low connectivity proteins (red) are closer to the so
called Wright’s profile (represented there as black solid
lines) than those associated to proteins with intermediate
and high connectivities (green and blue lines). Figure 4
stresses this observation in a more quantitative way by
showing that in the ENC plots the average distance from
Wright’s profile monotonously increases with k, Overall,
the above results clearly indicate that codon bias and
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FIG. 3. (Ka/Ks) of groups of genes corresponding to pro-
teins with different connectivity degrees k. As in the follow-
ing Figures 4 and S9, low connectivities are shown in red,
intermediate in green and high connectivities in blue.

FIG. 4. ENC plot and connectivity. Each point in this graph
represents a group of genes, characterised by the average con-
nectivity k of the corresponding proteins in the PPI network
and by the average euclidean distance d, in the ENC plot,
from Wright’s theoretical curve. Different groups of genes are
represented with different colors as a function of k. . The dis-
tance from the curve clearly increases with k. Wright’s curve
corresponds, in the ENC plot, to pure mutational bias (see
equation (1)), then higher connectivities of the proteins im-
ply bigger evolutionary selective pressure on the correspond-
ing group of genes.

GC content of high connectivity genes are more under
selective darwinian pressure than genes coding for low-
connectivity proteins, in which the rate of accepted muta-
tions is mainly ruled by neutral mutational bias. These
observations point out that the almost-invariant struc-
ture of protein hubs we alluded to in the previous para-
graph, is supported by and underlying set of genes which
are under strong mutational control. Perhaps this is an
expected result, but we clearly show it here as a general
feature associated to ribosomal ubiquitous and conserved
functions.

PPI and Essentiality. To further investigate the rela-
tionship between gene essentiality and protein connectiv-
ities, we consider DEG-annotated genomes and classify
interactions between proteins (links) making reference to

the essentiality of the corresponding genes. We distin-
guish three sets of links: ee (linking proteins from two
essential genes), ēē (from two nonessential genes) and eē
(from an essential gene and a nonessential one). We then
compute the density of these sets of links respectively as:

ρee =
|ee|

1
2E(E − 1)

, (3)

ρēē =
|ēē|

1
2NE(NE − 1)

, (4)

ρeē =
|eē|

1
2E ·NE

, (5)

where E and NE denote the number of essential and
nonessential genes, respectively (self-connections are ex-
cluded in our analysis). The denominator is the maxi-
mum possible value of the numerator, corresponding to
the fully-connected graph. Such densities are then com-
pared with the overall density of the network—restricted
to genes classified as either essential or nonessential:

〈ρ〉 =
|ee|+ |ēē|+ |eē|

1
2 (E +NE)(E +NE − 1)

. (6)

We use the ratios ree = ρee/〈ρ〉, rēē = ρēē/〈ρ〉 and
reē = ρeē/〈ρ〉 to assess the level of connectivity of the
subnetworks with respect to the overall connectivity. Ta-
ble III shows that subnetworks of essential genes are far
denser than the overall networks, and that, in general,
essential and nonessential genes tend to form network
components that are weakly interconnected. This hap-
pens because many essential genes encode for ribosomal
proteins, which in turn are localised in the ribosomal
complex where they have a high probability to interact
[39] (see also Table 3 of [8], which shows approximately
25% of essential genes fall into COG J).

Figures S12 and S13 display the superposed adjacency
matrices of the ee (red dots), eē (violet dots) and ēē
(blue dots) subnetworks, thus showing the network fea-
tures for each individual species. These graphs confirm
the dominance of the interactions between the proteins
of essential genes (red dots) in the small genomes. The
adjacency matrices of bacteria with intermediate and big
genomes are dominated by interactions involving proteins
supported by non essential genes (blue dots).
PPI connectivity and functional specialisation. For

each PPI network, we define the conditional probabil-
ity that a protein with degree k belongs to a given COG
as:

P (COG|k) = P (k|COG)P (COG)/P (k), (7)

where P (k) is the degree distribution in the PPI network,
P (COG) is the frequency of that COG in the proteome,
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and P (k|COG) is the degree distribution restricted to
that COGs. Figure 5 shows the COG spectrum as a func-
tion of k over all the bacteria here considered. Interest-
ingly, we again note a marked transition. Below k ' 40
the COG spectrum is quite heterogeneous: genes cor-
responding to proteins with low connectivity are spread
over several COGs which correspond to different func-
tions (see Table II). Instead, proteins with more than 40
interactions are likely to be coded by genes belonging to
COG J. There are yet a handful of outliers, hubs with
connectivities between 57 and 62, that belong to COG I
(related to lipid transport and metabolism) and K and
L (which, together with J, define the functional class of
information storage and processing). The list of these
outliers is reported in Table IV. Interestingly, they cor-
respond to RNA polymerases and to enzymes involved
in the acetate metabolism. But, which are the genes of
COG J that drive the transition?

In Figure 6 we are able to show which genes are the
main characters in the transition. We investigate the con-
nectivities of the highly conserved genes (ERI=1, shared
by all the species in Table I) belonging to COG J, and
whose proteins have connectivities bigger than 40. These
highly shared genes corresponding to cores of highly con-
nected ribosomal proteins are listed in Table V. In the
heat map of Figure 6 we sort each gene in the COG J
in order of descending degree, species by species, and we
see that there is a core of genes (in red, lower left sec-
tor) that correspond to highly connected proteins, which
are also highly shared (ERI = 1, see Table V) among
all the species we considered. It is quite clear from this
heat mapthat the 42 species in this study can be split
into at least two groups (see the cladogram on the left).
In the bottom group there is a shared set of genes (the
red band at the bottom-left side of the heat map) corre-
sponding to a common core of highly connected ribo-
somal proteins. This remarkable observation suggests
that the species in this group (namely, Synechocystis sp.
PCC 6803, Escherichia Coli K-12 MG1655, Clostridium
acetobutylicum ATCC 824, Mycobacterium tuberculosis
H37Rv, Sphingomonas wittichii RW1, Vibrio cholerae
N16961, Burkholderia thailandensis E264, Rickettsia
prowazekii str. Madrid E, Agrobacterium tumefaciens
(fabrum), Ralstonia solanacearum GMI1000, Xylella fas-
tidiosa 9a5c) should have a common structural and func-
tional organisation of their ribosomes – An Interesting
point to be further investigated. In the rest of the species
the connectivity of the proteins, corresponding to the
highly shared COG J genes, with k > 40 is more het-
erogeneous. We can conclude that the abrupt transition
shown in Figure 5 is driven by a subset of COG J genes
which are highly conserved among a subset of species and
are listed in Table V. As one can see these genes corre-
spond to a specific subset of ribosomal proteins in the
small and large subunits that should be further investi-
gated in their functional and structural role.
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FIG. 5. Probability distribution P (COG|k) of belonging to
a given COG for proteins with degree k, over all considered
genomes. Proteins with low connectivity have a very hetero-
geneous COG composition, whereas, those with high k basi-
cally belong only to COG J.

CONCLUSIONS

Connectivity analysis of biological networks, such as
protein-protein interaction or metabolic networks, has
demonstrated that structural features of network sub-
graphs are correlated with biological functions [40, 41].
For instance, it was shown that highly connected patterns
of proteins in a PPI are fundamental to cell viability [42].
In this work we have shown the existence of a functional
transition in bacterial species, ruled by the connectivity
of proteins in the PPI networks. The critical threshold in
k of the transition is located between k = 40 and k = 50.
Proteins that have connectivities above the threshold are
mostly encoded by genes that are conserved, under se-
lective pressure (as measured both by ERI and Ka/Ks)
and essential. Moreover the functional repertoire above
the threshold focuses mainly on the COG J (Translation,
ribosomal structure and biogenesis), with just a few in-
teresting hubs belonging to COGs I (Lipid transport and
metabolism), K (Transcription) and L (Replication, re-
combination and repair).

Indeed, the PPI network of each bacterial species is
characterised by a highly connected core of conserved ri-
bosomal proteins, the components of multi-subunit com-
plexes whose corresponding genes are mostly essential
[32, 36] and code for supra-molecular complexes, that
pile up in the bump we have observed for the degree dis-
tribution (Figure 1). Hence, what we are seeing here is
essentially the ribosome, and related protein complexes
such as RNA Polymerase. Indeed, the ribosome is the
only molecular machine in bacteria in which a given pro-
tein could legitimately have 40 or more protein binding
partners, with the help of rRNA mediating interactions
[43].

Admittedly, since there are bacterial species that are
much more investigated than others, comparative sta-
tistical studies of bacterial PPIs might be particularly
biased by the choice of the sample of genomes to be in-
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FIG. 6. Heat map of the connectivity degree of the protein as distributed over the COG J genes with ERI=1, in each species.
Genes are sorted by decreasing average degree. We note that those genes which correspond to degrees bigger than 40 are
conserved for all species. Details of these genes are provided in Table V.

cluded in the study. Our dataset is no exception. In order
to assess this possible bias in our study we have checked
that in our dataset we have included small genomes (i.e.
less than 1000 genes) whose PPIs have densities (a rough
proxy for the coverage of the interactions in the network)
that are higher than those of bigger genomes (Figure
S7). The group of small genomes comprises Buchnera,
Chlamydia, Mycoplasmas, whereas bigger genomes refer
mostly to illustrious pathogens that are surely among the
most investigated bacterial species. The densities of the
networks of these species are quite similar and compa-
rable with that of E.coli. As a general rule, and quite
obviously, the networks relative to small genomes are
better covered in the STRING database (after the ap-
plication of a conservative cutoff w = 900) than those
relative to bigger genomes. Interestingly, we have shown
that, indeed, the PPI adjacency matrices of bacteria with
small genomes are dominated by the interactions con-
stituting the ribosomal complex. In the adjacency ma-
trices of the PPIs of bacteria with bigger genomes, the
cloud of interactions between the proteins of non essen-

tial genes tends to superpose to the ever present riboso-
mal core. In conclusion, we believe to have convincingly
shown that bacterial PPIs are characterised by the pres-
ence of a highly connected structure, associated to the
ribosomal functions, and particularly visible in bacteria
with small genomes.

The observations we have presented here could be
useful for the prediction of gene essentiality, based on
the knowledge of PPI networks, and for the predic-
tion of interactions between proteins, based on genetic
information[44, 45]. It is interesting to note that our
results are consistent with a previous study based on in-
ferred bacterial co-conserved networks based on phylo-
genetic profiles [36]. This work suggests to further and
systematically investigate how the structure of the PPI
networks is correlated with multiple networks at the ge-
netic level, at least in unicellular organisms. In particular
we believe that a recent approach based on the introduc-
tion of multiple-layer networks could be of great potential
interest (e.g. to search for a general scheme behind an-
timicrobial resistance [46–50]).
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Ruiz-González, and M. A. Fares, Essentiality is a strong
determinant of protein rates of evolution during mutation
accumulation experiments in escherichia coli, Genome Bi-
ology and Evolution 8, 2914 (2016).

[18] T. Bergmiller, M. Ackermann, and O. K. Silander, Pat-
terns of evolutionary conservation of essential genes
correlate with their compensability, PLoS Genetics 8,
e1002803 (2012).

[19] L. D. Hurst, The Ka/Ks ratio: diagnosing the form of
sequence evolution, Trends in Genetics 18, 486 (2002).

[20] D. A. Benson, M. Cavanaugh, K. Clark, I. Karsch-
Mizrachi, D. J. Lipman, J. Ostell, and E. W. Sayers,
Genbank, Nucleic Acids Research 41, D36 (2013).

[21] M. J. Szklarczyk, The string database in 2017: quality-
controlled protein–protein association networks, made
broadly accessible., Nucleic Acids Research 45, D362
(2017).

[22] C. T. Chien, P. L. Bartel, R. Sternglanz, and S. Fields,
The two-hybrid system: A method to identify and clone
genes for proteins that interact with a protein of interest,
Proceedings of the National Academy of Science 88, 9578
(1991).

[23] E. M. Phizicky and S. Fields, Protein-protein interac-
tions: Methods for detection and analysis, Microbiologi-
cal Reviews 59, 94 (1995).

[24] O. Puig, F. Caspary, G. Rigaut, B. Rutz, E. Bouveret,
E. Bragado-Nilsson, M. Wilm, and B. Séraphin, The tan-
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FIG. S7. Relation between genome size n and average degree 〈k〉 ± σk (upper panel) and density ρ (bottom panel) of the
corresponding PPI network for the set of bacteria collected in Table I.The density of a network is the ratio between the actual
number of links and the number of links in the fully connected case, namely 1

2
n(n− 1).

FIG. S8. Distributions of PPI degree P (k) averaged over the PPI networks of the three groups of bacteria in Table I, subdivided
according to the number n of their genes: a) n < 1000, b) 1000 < n < 3000 and c) n > 3000. Clearly, the ”bump” at k > 40
in Figure 1 is a feature that is characteristic of small genomes (groups a and b), mostly constituted by essential genes. In the
genomes of group c the interactions that constitute the bump are diluted among the other interactions due to non essential
genes. This dilution effect can be seen also in the subsequent figures S10, S11, S12, S13
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FIG. S9. ENC plots for three groups of genes corresponding to proteins with different degree connectivities k. In each panel
the solid black lines are plots of Wright’s theoretical curve (equation (2)) which correlates effective number of codons with GC3

in the case of pure mutational bias (no selective pressure). Coherently with Figures 3 and 4, the case of low connectivities
are shown in red, intermediate in green and high connectivities in blue. In the bottom-right panel dashed non-linear fits of
Wright’s theoretical shapes to the experimental data. For the sake of completeness the best fit parameters are reported in the
following Table VI.
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FIG. S10. Degree distributions P (k) (part 1, small genomes) of some of the bacteria collected in Table I, sorted by the increasing
size n of their genomes. For DEG-annotated genomes, the inset shows the contribution of essential (red) and nonessential (blue)
genes. Note, for k > 40, in many cases the presence of a structure, particularly evident in the P (k) of the essential genes, that
likely contributes to the bump in Figure 1.
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FIG. S11. Degree distributions P (k) (part 2, big genomes) of the PPI networks for some of the bacteria collected in Table I,
ordered by the increasing size n of their genomes. For DEG-annotated genomes, the inset shows the contribution of essential
(red) and nonessential (blue) genes. Note that, in most cases, in the region k > 40, the signature of the bump is blurred,
hidden behind a general power law trend, likely due to the contribution of the interactions of non essential genes, as shown in
the subsequent figures: S12 and S13.
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FIG. S12. Adjacency matrices (part 1, small genomes) of PPI networks for the DEG-annotated bacterial species collected in
Table I. From top left the matrices are sorted according to the increasing size of the bacterial genomes. In each matrix, genes
are ordered according to the decreasing degree of the corresponding protein in the network, from left to right (horizontal axis)
and from bottom to top (vertical axis). Links between essential genes are plotted as a red dot, those between nonessential (and
non-annotated) genes with blue dots, and those between essential and nonessential (plus non-annotated) genes with a violet
dot. The red spot in the lower left sector of each matrix corresonds to the core of genes of the highly connected proteins of
the almost-invariant structure of ribosomal hubs. Overall, in the case of small genomes it is evident how the red subnets of
the essential genes dominate the matrices. In bigger genomes, as also shown in the next figure, the blue non-essential with
non-essential gene interactions and the violet cross-interactions tend to superpose to the core of the essential genes. It is worth
noting that it could be reasonable to evaluate how much a PPI is relatively covered, in each species by the relative occurrence
of blue and violet dots normalized to the maximal number of links in the network
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FIG. S13. Adjacency matrices (part 2, big genomes) of PPI networks for the DEG-annotated bacterial species collected in
Table I. From top left the matrices are sorted according to the increasing size of the bacterial genomes. In each matrix, genes
are ordered according to the decreasing degree of the corresponding protein in the network, from left to right (horizontal axis)
and from bottom to top (vertical axis). Links between essential genes are plotted as a red dot, those between nonessential (and
non-annotated) genes with blue dots, and those between essential and nonessential (plus non-annotated) genes with a violet
dot. Also looking at these graphs one would be tempted to possibly associate the relative presence of blue interactions to the
extent the interactome is known and annotated
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Organisms Abbr. Class RefSeq STRING n
Mycoplasma genitalium G37 myge 10 NC 000908 243273 475
Buchnera aphidicola Sg uid57913 busg 2 NC 004061 198804 546
Mycoplasma pneumoniae M129 mypn 10 NC 000912.1 272634 648
Mycoplasma pulmonis UAB CTIP mypu 10 NC 002771 272635 782
Chlamydia trachomatis D/UW-3/CX chtr 14 NC 000117.1 272561 894
Treponema pallidum Nichols trpa 11 NC 000919.1 243276 1036
Helicobacter pylori 26695 hepy 4 NC 000915 85962 1469
Aquifex aeolicus VF5 aqae 12 NC 000918 224324 1497
Campylobacter jejuni caje 4 NC 002163 192222 1572
Haemophilus influenzae Rd KW20 hain 3 NC 000907.1 71421 1610
Streptococcus pyogenes NZ131 stpy 6 NC 011375 471876 1700
Francisella novicida U112 frno 3 NC 008601 401614 1719
Thermotoga maritima MSB8 thma 16 NC 000853.1 243274 1858
Neisseria gonorrhoeae FA 1090 uid57611 nego 2 NC 002946 242231 1894
Fusobacterium nucleatum ATCC 25586 funu 15 NC 003454.1 190304 1983
Brucella melitensis bv. 1 str. 16M brme 1 NC 003317.1 224914 2059
Porphyromonas gingivalis ATCC 33277 pogi 7 NC 010729 431947 2089
Streptococcus sanguinis stsa 6 NC 009009 388919 2270
Vibrio cholerae N16961 vich 3 NC 002505 243277 2534
Staphylococcus aureus N315 stau 6 NC 002745.2 158879 2582
Deinococcus radiodurans R1 dera 9 NC 001263.1 243230 2629
Agrobacterium tumefaciens (fabrum) agtu 1 NC 003062 176299 2765
Xylella fastidiosa 9a5c xyfa 3 NC 002488 160492 2766
Staphylococcus aureus NCTC 8325 stau 6 NC 007795 93061 2767
Listeria monocytogenes EGD-e limo 6 NC 003210.1 169963 2867
Synechocystis sp. PCC 6803 sysp 13 NC 000911.1 1148 3179
Burkholderia thailandensis E264 buth 2 NC 007651 271848 3276
Sinorhizobium meliloti 1021 sime 1 NC 003047.1 266834 3359
Burkholderia pseudomallei K96243 bups 3 NC 006350 272560 3398
Ralstonia solanacearum GMI1000 raso 2 NC 003295.1 267608 3436
Clostridium acetobutylicum ATCC 824 clac 8 NC 003030.1 272562 3602
Caulobacter crescentus cacr 1 NC 011916 565050 3885
Mycobacterium tuberculosis H37Rv mytu 5 NC 000962.3 83332 3936
Escherichia Coli K-12 MG1655 esco 3 NC 000913.3 511145 4004
Shewanella oneidensis MR-1 shon 3 NC 004347 211586 4065
Bacillus subtilis 168 basu 6 NC 000964 224308 4175
Salmonella enterica serovar Typhi saen 3 NC 004631 209261 4352
Bacteroides thetaiotaomicron VPI-5482 bath 7 NC 004663 226186 4778
Sphingomonas wittichii RW1 spwi 1 NC 009511 392499 4850
Pseudomonas aeruginosa UCBPP-PA14 psae 3 NC 008463 208963 5892
Mesorhizobium loti MAFF303099 melo 1 NC 002678.2 266835 6743
Rickettsia prowazekii str. Madrid E ripr 1 NC 000963.1 272947 8433

TABLE I. Summary of the selected bacterial dataset. Organism name, abbreviation, class, RefSeq, STRING code, size of
genome (number of genes n). Genomes annotated in the Database of Essential Genes (DEG) are highlighted with bold fonts.
Classes are:Alphaproteobacteria(1), Betaproteobacteria(2), Gammaproteobacteria(3), Epsilonproteobacteria(4), Actinobacte-
ria(5), Bacilli(6), Bacteroidetes(7), Clostridia(8), Deinococci(9), Mollicutes(10), Spirochaetales(11), Aquificae(12), Cyanobac-
teria(13), Chlamydiae(14), Fusobacteria(15), Thermotoga(16).
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COG ID Functional classification
INFORMATION STORAGE AND PROCESSING

J Translation, ribosomal structure and biogenesis
K Transcription
L Replication, recombination and repair

CELLULAR PROCESSES AND SIGNALING
D Cell cycle control, cell division, chromosome partitioning
T Signal transduction mechanisms
M Cell wall/membrane/envelope biogenesis
N Cell motility
O Post-translational modification, protein turnover, chaperones

METABOLISM
C Energy production and conversion
G Carbohydrate transport and metabolism
E Amino acid transport and metabolism
F Nucleotide transport and metabolism
H Coenzyme transport and metabolism
I Lipid transport and metabolism
P Inorganic ion transport and metabolism

TABLE II. Functional classification of COG clusters.

Organisms ree rēē reē
basu 44.46 0.80 0.11
bath 20.07 0.76 0.25
bups 6.21 0.83 0.27
buth 18.69 0.70 0.22
cacr 18.40 0.70 0.15
caje 3.65 0.82 0.32
esco 2.91 0.88 0.31
frno 9.84 0.52 0.18
hain 1.65 1.15 0.27
hepy 2.91 0.78 0.38
myge 1.42 0.29 0.08
mypu 3.42 0.22 0.12
mytu 8.09 0.78 0.23
pogi 11.03 0.41 0.21
psae 9.85 0.92 0.16
saen 28.80 0.81 0.12
shon 6.50 0.64 0.16
spwi 15.47 0.74 0.22
stau 23.05 0.58 0.23
stau 21.89 0.64 0.16
stpy 9.30 0.73 0.23
stsa 30.65 0.61 0.22
vich 8.37 0.81 0.19

TABLE III. Relative density values r for PPI subnetworks between essential genes (ree), between nonessential genes (rēē) and
between essential and nonessential genes (reē), for each DEG-annotated bacterial genome.
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k COG Gene Protein
57 1250I paaH 3-hydroxyadipyl-CoA dehydrogenase, NADdependent

0365I acs acetyl-CoA synthetase
58 0222J rplL 50S ribosomal subunit protein L7/L12

0335J rplS 50S ribosomal subunit protein L19
0267J rpmG 50S ribosomal subunit protein L33
0365I acs acetyl-CoA synthetase

59 0183I paaJ 3-oxoadipyl-CoA3-oxo-5,6-dehydrosuberyl-CoA thiolase
1960I ydiO putative acyl-CoA dehydrogenase
0183I atoB acetyl-CoA acetyltransferase

60 0197J rplP 50S ribosomal subunit protein L16
0088J rplD 50S ribosomal subunit protein L4
0197J rplP 50S ribosomal subunit protein L16
0087J rplC 50S ribosomal subunit protein L3
1960I aidB putative acyl-CoA dehydrogenase

61 0085K rpoB RNA polymerase, beta subunit
0202K rpoA RNA polymerase, alpha subunit

62 0087J rplC 50S ribosomal subunit protein L3
0052J rpsB 30S ribosomal subunit protein S2
2965L PriB ribosomal replication protein

TABLE IV. Specifics of the hub proteins that populate the few bins of connectivity around k = 60 in Figure 5.
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COG Genes name <k >
COG0097J 50S ribosomal protein L6 60.24
COG0087J 50S ribosomal protein L3 60.19
COG0197J 50S ribosomal protein L16 60.19
COG0090J 50S ribosomal protein L2 60.14
COG0080J 50S ribosomal protein L11 60.12
COG0088J 50S ribosomal protein L4 60.12
COG0081J 50S ribosomal protein L1 58.19
COG0089J 50S ribosomal protein L23 57.88
COG0102J 50S ribosomal protein L13 57.45
COG0094J 50S ribosomal protein L5 57.21
COG0092J 30S ribosomal protein S3 57.12
COG0098J 30s ribosomal protein S5 57.10
COG0093J 50S ribosomal protein L14 57.00
COG0091J 50S ribosomal protein L22 56.24
COG0049J 30S ribosomal protein S7 55.31
COG0051J 30S ribosomal protein S10 55.24
COG0200J 50S ribosomal protein L15 55.12
COG0256J 50S ribosomal protein L18 54.86
COG0203J 50S ribosomal protein L17 54.43
COG0244J 50S ribosomal Protein L10 54.19
COG0100J 30S ribosomal protein S11 53.76
COG0522J 30S ribosomal protein S4 53.43
COG0096J 30S ribosomal protein S8 53.10
COG0099J 30S ribosomal protein S13 52.88
COG0048J 30S ribosomal protein S12 52.14
COG0198J 50S ribosomal protein L24 50.83
COG0185J 30S ribosomal protein S19 50.52
COG0199J 30S ribosomal protein S14 50.45
COG0103J 30S ribosomal protein S9 49.45
COG0480J tetracycline resistance protein. tetM 47.90
COG0052J 30S ribosomal protein S2 47.69
COG0184J 30S ribosomal protein S15 45.95
COG0186J 30S ribosomal protein S17 44.60
COG0255J 50S ribosomal protein L29 43.95
COG0222J 50S ribosomal protein L7/L12 42.43
COG1841J 50S ribosomal protein L30 40.71

TABLE V. Genes belonging to COG J with average degree bigger than 40 (see Figure 6). All these genes are conserved,
common to all species (ERI=1), and drive the transition shown in Figure 5

.

k a b c d R2

[0− 10] 40,561 -10,338 5,555 1,052 0,617
[10− 20] 23,774 3,890 8,583 0,626 0,590
[20− 30] 20,280 8,287 8,276 0,507 0,540
[30− 40] 18,296 10,685 8,334 0,190 0,790
[40− 50] 18,548 10,372 8,326 0,495 0,589
[50− 60] 25,868 2,508 8,038 0,650 0,758
[60− 70] 29,344 -0,756 10,224 0,977 0,870
[70− 80] 30,507 3,438 6,990 0,811 0,874

TABLE VI. Best fit values of the parameters in equation (2) and correlation coefficients for different connectivity data, shown
in figure S9.
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