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1 Introduction

In the last few years the phenomenon of infrared supersymmetry enhancement in quantum

field theories, first observed by Maruyoshi and Song [1], has been a subject of intense

investigation. A remarkable outcome of these studies is the discovery of four-dimensional

(4d) N = 1 Lagrangian theories which flow in the infrared (IR) to non-Lagrangian N = 2

theories, often of generalized Argyres-Douglas type [2–11]. Such renormalization group

(RG) flows in 4d have been further generalized in [12–17], and understood more deeply

in [18, 19]. Apart from being interesting in their own right, flows of this type have been

used in order to compute RG protected quantities of the IR Argyres-Douglas theories, such

as the superconformal index (see for example [1, 12, 13]).

In [20] three of the authors have initiated a study of the geometry underlying supersym-

metry enhancement. The aim was to make manifest the deep origin of this phenomenon,

which remained obscure at the field-theoretic level, and to shed light on those features a

theory needs to have in order to exhibit enhancement. The main focus was on 4d rank-1

theories, which were engineered by a D3-brane probe of singular geometries in F-theory [21].

In this case the Seiberg-Witten (SW) curve [22, 23] of the field theory on the D3-brane

may be identified with the elliptic fibration of the F-theory geometry. While higher-rank

theories may also be realized in this context by simply adding more D3 probes, one in-

evitably looses the identification of the elliptic fiber of the F-theory space with the SW

curve of the field theory, which was a key aspect of the construction proposed in [20]. The

principal goal of the present paper is to make instead use of the class-S realization of 4d

– 1 –



J
H
E
P
0
2
(
2
0
2
0
)
1
0
6

N = 2 field theories [8–10, 24, 25] in order to generalize the geometric investigation of [20]

to higher-rank theories.

Let us first briefly recall the Maruyoshi-Song procedure. One usually starts with a

(not necessarily Lagrangian) N = 2 theory in 4d, and deforms it by adding the superpo-

tential coupling

δW = Tr (µM) , (1.1)

where M is a chiral multiplet in the adjoint representation of the flavor group we add

by hand, µ is the moment map of the flavor symmetry, and the trace is evaluated over

flavor indices. The field M is then given a nilpotent vacuum expectation value (vev) and

the deformation halves the amount of preserved supersymmetry. Nevertheless, for specific

choices of initial theory and nilpotent vev, such a deformation triggers an RG flow which

leads (upon getting rid of a bunch of free fields) to a new (typically non-Lagrangian) N = 2

theory in the IR.

One general conclusion that may be inferred from the analysis of [20] is that the

phenomenon of supersymmetry enhancement in the IR (at least the one originating from

the above-sketched procedure) seems to be intimately correlated with the local structure of

some auxiliary algebraic space Xn around the origin. More precisely, if supersymmetry is to

enhance, some non-trivial factorization needs to take place, which turns said space locally

into a product of a lower-dimensional space times a trivial factor, i.e. Xn ' Yn−p × Cp.1

What the space Yn−p exactly is and what the factorization of Xn precisely means depends on

the context. For instance, in the case of field theories in three space-time dimensions, Yn−p
is identified with the Coulomb branch (CB) of the moduli space, which gets geometrized

in M-theory. The enhancement phenomenon is then directly explained in purely geometric

terms as a holonomy reduction of Xn, which is the space probed by M2-branes in M-theory.

In the 4d case, however, Xn and Yn−p are rather auxiliary spaces, whose interpretation

changes according to the way one geometrically engineers the field theory. For example,

if one uses F-theory to realize rank-1 theories (as was the case in [20]), Xn is nothing but

the elliptically-fibered geometry probed by a D3-brane, and again supersymmetry enhances

only when this space locally exhibits a holonomy reduction (in this case down to SU(2)). In

contrast, if one considers theories of class-S of arbitrary rank (as we are going to do here),

the meaning of these spaces is more subtle. Yn−p is closely related to the moduli space of

solutions of the Hitchin system underlying the class-S construction. More precisely, as is

well known, for a rank-r theory such a moduli space has the structure of a T 2r fibered over

the r-dimensional CB of the four-dimensional theory (Hitchin fibration) [25, 26]. Associated

to it there is another fibration (now r + 1-dimensional) over the same base, whose generic

fiber is the spectral curve of the Hitchin field: the genus of this curve turns out to be

precisely r, and this nicely encodes the SW geometry of the 4d theory. In analogy with

the F-theory case, we identify Yn−p with the latter fibration. A necessary condition for

supersymmetry to enhance is then that the space Xn (which also has the structure of a

Riemann-surface fibration) locally factorizes in such a way that the genus of the fiber of

1In all interesting cases the origin carries some singularity, because any space trivially factorizes in the

neighborhood of a smooth point.
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Yn−p coincides with the dimension of its base. Only if this non-trivial factorization takes

place, can we associate to Yn−p a Hitchin fibration, which will determine the low-energy

dynamics of the ensuing N = 2 theory in the IR.

The above reasoning suggests that, for class-S theories, we can geometrically explain

the enhancement in terms of the restoration of a hyperkähler structure on the moduli space

of solutions of the corresponding Hitchin system. As we will explain in more detail in

section 2, the starting 4d N = 2 theory will be associated to a Hitchin system on a two-

sphere with one regular and one irregular punctures, whose Hitchin field Φ is a meromorphic

section ofO(−2) encoding the CB operators in (some of) its Casimir invariants [18, 27]. The

deformation (1.1) turns said Hitchin system into a generalized one [28–31], consisting of two

Hitchin fields Φ1,Φ2 which are now meromorphic sections of O(−1), each being singular at

just one of the two punctures. In particular, in the neighborhood of the regular puncture

where Φ2 has a pole, Φ1 plays the role of the field M . In this context, a deformation

leading to supersymmetry enhancement corresponds to giving Φ1 a nilpotent vev along

the principal orbit, which forces Φ2 to become a holomorphic section of O(−1) on the

two-sphere, and thus to vanish identically. We are therefore left with a twisted Hitchin

system, whose solutions with given boundary conditions at the irregular puncture,2 as we

will show, are in bijection with those of an ordinary Hitchin system. This strongly suggests

that a hyperkähler structure can be restored on the corresponding moduli space, hence

explaining why supersymmetry enhances.

Armed with this understanding of the geometry underlying supersymmetry enhance-

ment, in section 3 we will carry out a systematic analysis of the Maruyoshi-Song flows.

Given the starting theory and the nilpotent orbit, the “interpolating” geometry Xn re-

mains the same at all energy scales, and the IR behavior of the theory crucially depends on

a possible factorization Xn ' Yn−p × Cp. Along the lines of [20], on the one hand we will

derive a simple algebraic criterion to rule out supersymmetry enhancement. On the other

hand, for the cases that exhibit supersymmetry enhancement we will derive, using purely

algebraic methods, the correct scaling dimensions of CB operators as well as the explicit

form of the infrared SW geometry, including all masses and couplings.

The paper is organized as follows: in section 2, after reviewing some material about

N = 1 class-S theories, we demonstrate how, for flows exhibiting SUSY enhancement, the

generalized Hitchin system turns into a twisted Hitchin system in the IR. Its solutions are

shown (subsection 2.3) to be in bijection with those of an ordinary system. In section 3 we

derive in a purely algebraic manner two necessary criteria for enhancement. Rather than

stating them abstractly, we present them in the context of two specific Lagrangian models,

in particular N = 2 SQCD with gauge group SU(3). Finally, we draw our conclusions in

section 4 and briefly comment on open issues related to punctures of type III.

2We restrict our attention to irregular punctures with the property that boundary conditions for the

Hitchin field can be univocally inferred from its characteristic polynomial. Our approach is not refined

enough to treat irregular punctures where the Hitchin field has degenerate eigenvalues, i.e. the so-called

type III punctures [10]. We will briefly comment about them in section 4.
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2 SUSY enhancement and Hitchin systems

In this section we explain how, in the context of N = 1 class-S field theories, supersym-

metry enhancement originates from the emergence of an ordinary Hitchin system out of a

generalized Hitchin system. The key intermediate step will be a bijection between solu-

tions to the ordinary Hitchin system and solutions to a suitably twisted one. Our method

uses deformations induced by principal nilpotent vevs only. Since there are cases of non-

principal deformations leading to enhancement too, in subsection 2.4 we will explain how

our approach allows us to recover those.

2.1 Preliminaries

Let us consider M-theory on the background R4×X×R, where X is a Calabi-Yau threefold.

A stack of N M5 branes wrapping R4×C, where C is a holomorphic two-cycle in X, describes

an N = 1 theory on R4. We consider backgrounds of the form

X = L1 ⊕ L2 ,

where L1 and L2 are holomorphic line bundles on C of degree p and q. Indeed the Calabi-

Yau condition imposes the constraint p+ q = 2g − 2, where g is the genus of the Riemann

surface. In this paper we will be concerned only with theories for which C is a sphere and

therefore, from now on, we will restrict to this case. The two line bundles then satisfy the

constraint p+ q = −2, reflecting the Calabi-Yau condition

L1 ⊗ L2 = O(−2) . (2.1)

As in the N = 2 case, a sphere with an arbitrary number of regular punctures can be

thought of as a collection of trinions (spheres with three punctures) connected together,

where connecting two trinions together is physically interpreted as gauging the diagonal

combination of their global symmetry. The gauging can be either N = 1 or N = 2

depending on the details of the geometric construction [32–37]. In order to describe the

resulting four-dimensional theory, it therefore suffices to understand what the trinions are.

In the special case of trinions with punctures which (locally) preserve 8 supercharges3

we can proceed as follows: we decompose a trinion into a sphere with three holes (pair

of pants) and three caps with a puncture. For each of these building blocks we take the

canonical and the trivial line bundles. When we connect a cap to the pair of pants, we

also need to specify how the corresponding line bundles are glued together: we can either

glue the canonical bundles (and therefore the trivial bundles) together, or we can glue the

canonical bundle of one block to the trivial bundle of the other. Once we have done that,

we end up with our trinion endowed with the two line bundles L1,2.

We can encode these geometric data by attaching a sign to each puncture and to the

pair of pants. When the signs of the puncture and of the pair of pants agree, it means

3These are the punctures appearing in the standard N = 2 Class S construction and correspond to the

1/2 BPS boundary conditions for N = 4 SYM [38]. In principle one could consider more general punctures

corresponding to 1/4 BPS boundary conditions [39, 40], but we will not need this in our paper.
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that we are gluing the corresponding canonical bundles together. Of course, if we change

the sign of all the building blocks we are simply interchanging L1 and L2 and we end up

with the same theory. We easily see that if all building blocks are of the same kind, one

line bundle gets identified with the trivial bundle on the sphere (and the other with its

canonical bundle) and the threefold is of the form T ∗(S2)×C. This special case corresponds

to an N = 2 class S trinion.

A nice feature of this construction is that the degrees of the two line bundles L1,2

can be computed straightforwardly: the first Chern class receives a nontrivial contribution

only from the canonical bundle on the various building blocks and we simply need to

sum the various contributions. The canonical bundle of a cap contributes −1 whereas the

sphere with three holes contributes +1. In any case the constraint p + q = −2 is always

automatically satisfied.

Let us consider TN theory, which has three full punctures and all the building blocks

have the same sign. If we now modify the theory by changing the sign of one puncture

the two line bundles become L1 ≡ L2 = O(−1). Physically, this is interpreted as follows:

we start from TN and we add by hand a chiral multiplet M transforming in the adjoint

representation of the global symmetry carried by the puncture. We also couple it to the

corresponding moment map µ by adding the superpotential term Tr (µM). Indeed we

can generalize the construction by including generic punctures, which are in one-to-one

correspondence with nilpotent orbits of the global symmetry. When the signs of the pair of

pants and the puncture agree and the puncture is not full, it means that we have higgsed

the theory with a full puncture by turning on a nilpotent vev for the corresponding moment

map. If instead the signs do not agree, it means that we have turned on a nilpotent vev

for the singlet M rather than the moment map, which is now set to zero in the chiral ring

due to the F-term equation for M . Combining these operations we can construct all of the

N = 1 trinions starting from TN plus a collection of chiral multiplets.

The moduli space of these N = 1 theories (on R3×S1) is described by the solutions of

a generalized Hitchin system involving two Hitchin fields (Φ1 and Φ2) which are sections of

the line bundles L1 and L2 respectively. The equations of the generalized Hitchin system

state that these fields are covariantly holomorphic and commute ([Φ1,Φ2] = 0). Each field

is singular at punctures of a given sign only (for example Φ1 is singular only at punctures

with sign plus and analogously Φ2 is singular only at punctures with sign minus). The

singularity is the same as in the N = 2 case. Indeed, in the N = 2 case, one field is a

one-form and is singular at all the punctures, whereas the other is a function without poles

and is therefore constant. Setting it to zero we recover the description of the Coulomb

branch of the N = 2 theory in terms of an ordinary Hitchin system.

In the rest of this paper we will be concerned with Db
k(J) theories, which correspond

to a sphere with two punctures, one is full and the other is irregular [18, 27]. J is an ADE

group and labels the choice of the six-dimensional N = (2, 0) theory we compactify on

the sphere. The parameters k and b specify the choice of irregular puncture: if we take a

local coordinate w on the sphere such that the irregular puncture is located at w = 0, the
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behavior of the Hitchin field near w = 0 is

Φ ' T

w1+k/b
+ . . . , (2.2)

where T is a regular semi-simple element of the Lie algebra J and the dots stand for less

singular terms.4 The parameter k is an arbitrary positive integer, whereas b can take two

or three different values depending on the choice of J :

J b

AN−1 N ; N − 1

DN 2N − 2; N

E6 12; 9; 8

E7 18; 14

E8 30; 24; 20

(2.3)

Notice that the Coxeter number h(J) is always an allowed value for b. In the following we

will drop the label b whenever b = h(J). A detailed discussion about these theories can be

found in [18].

The analysis with the two Hitchin fields briefly reviewed above does not immediately

apply to Db
k(J) models. However, by analogy with the case of N = 1 theories labelled

by a sphere with regular punctures only, we propose that the Db
k(J) theory deformed by

coupling an adjoint chiral to the moment map associated with the symmetry carried by the

full puncture is described by a generalized Hitchin system in which both fields are sections

of O(−1). One field is singular at the irregular puncture only (say Φ1) and the singularity

is the same as in the parent N = 2 theory, whereas the other field Φ2 is singular at the

regular puncture only. Moreover, giving a nilpotent vev to the adjoint chiral (i.e. initiating a

Maruyoshi-Song flow) can be implemented by changing the boundary condition for Φ2. The

nontrivial consistency checks we will find below give strong evidence in favor of our claim.

2.2 RG flows and spectral curves

Extracting the SW curve of the IR theory. In this section we will use the re-

sults reviewed in the previous section about the generalized Hitchin system to analyze the

Maruyoshi-Song flow at the level of the SW curve. As is well known, in the case of the

ordinary Hitchin system the SW curve for the underlying N = 2 theory is encoded in the

spectral equation for the Hitchin field Φ [25]:

det(λ− Φ) = 0 , (2.4)

where λ is the SW differential. If we now choose local coordinates for the base and fiber of

T ∗(C) and write λ in terms of those, (2.4) becomes the SW curve describing the theory. In

the case of N = 1 class S theories we have a similar result involving the spectral equations

of the generalized Hitchin fields Φ1,2 [28–31]:{
det(λ1 − Φ1) = 0

det(λ2 − Φ2) = 0 ,
(2.5)

4Note that our notation slightly differs from the one adopted in [27], whereby the parameter k is shifted

by one unit of b with respect to the k appearing here.
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where λ1,2 are sections of the corresponding line bundles. In general the system (2.5)

should then be supplemented by further equations enforcing the commutativity constraint

[Φ1,Φ2] = 0. As we will explain later, this fact will not play any role in our discussion.

Now we use our guess that the Db
k(J) theory with a chiral multiplet in the adjoint of

J coupled to the corresponding moment map is described by a generalized Hitchin system,

with both line bundles of degree −1. One field, say Φ1, is singular at the irregular puncture

only, whereas Φ2 is singular at the regular puncture. The boundary conditions at the two

punctures are the same as in the parent N = 2 theory. Upon giving a principal nilpotent

vev to the adjoint chiral we remove the regular puncture completely. As a result, in the

geometry describing the infrared fixed point, the field Φ2 becomes a section of O(−1) on

the sphere without poles and therefore vanishes identically. We can therefore focus on the

spectral equation of Φ1 only.

Let us illustrate the procedure for the class of theories Dk(SU(N)) (i.e. J = SU(N)

and b = N). The extension to other models with J = SU(N) or J = SO(2N) is trivial.

The SW curve and differential read

xN + zk + . . . = 0 ; λ = x
dz

z
,

where the dots stand for subleading terms. We can rewrite it as in (2.4):

λN +

N∑
α=2

λN−αPdα(z)

(
dz

z

)α
= 0 . (2.6)

The polynomials Pdα(z) have degree dα equal to the integer part of kα/N and PdN (z) can

be taken to be monic. The degree α differentials have a pole of order α at z = 0 (the

regular puncture) and a pole of order α + dα at z = ∞ (irregular puncture). In order to

model the infrared fixed point of the Maruyoshi-Song flow we now turn our attention to a

twisted Hitchin field which is a section of O(−1) and is singular only at infinity, where the

irregular puncture is located. The corresponding spectral equation then reads

λN1 +

N∑
α=2

λN−α1 Pdα(z)(dz)
α
2 = 0 , (2.7)

where the various terms are chosen to reproduce the singular behaviour at the irregular

puncture.5

Our claim now is that the twisted Hitchin field Φ1 whose spectral equation is given

by (2.7) is equivalent to an ordinary Hitchin field Φ̃ obtained by tensoring Φ1 with a

reference section of O(−1) having a simple pole at infinity. The corresponding spectral

equation is then obtained by tensoring (2.7) with (dz)N/2:

λ̃N +
N∑
α=2

λ̃N−αPdα(z)(dz)α = 0 . (2.8)

5We denote with (dz)α/2 a section of O(−α) on the sphere without zeros and with a pole of order α at

infinity.
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This equation precisely encodes the SW data of the IR fixed point of the RG flow, namely

the theory (AN−1, Ak−1). In order to see this, we choose local coordinates on T ∗(P1) and

set λ̃ = x̃dz. Plugging this into (2.8) we find

x̃N + zk + . . . = 0 ; λ̃ = x̃dz . (2.9)

We normalized the coordinates in such a way that PdN (z) in (2.8) is monic. We can also

take advantage of the freedom to shift z (which does not change the SW differential up to

exact terms) to remove all subleading terms proportional to zk−1. These are precisely the

SW curve and differential of the (AN−1, Ak−1) theory.

Counting decoupled operators. In order to count decoupled operators we can make

use of the one-to-one correspondence between UV and IR CB operators discussed in [19],

which we will now review. We start by recalling that for Dk(SU(N)) theories the versal

deformations of the AN−1 singularity are the mass Casimirs of the SU(N) global symme-

try. The vev of ultraviolet (UV) CB operators is instead described by the z-dependent

deformation terms. The (AN−1, Ak−1) theory is described by the same curve but the CB

operators correspond to all deformation terms with coefficient of dimension larger than

one. The one-to-one correspondence between UV and IR CB operators is then described

as follows: given any UV CB operator u, divide the corresponding deformation term by

z. This operation maps the original term to another deformation and the scaling dimen-

sion of the corresponding parameter u′ is that of u plus the dimension of z, which in the

Dk(SU(N)) theory is equal to N
k . Since by assumption D(u) > 1, we conclude that

D(u′) > 1 +
N

k
=
k +N

k
.

Now we exploit the observation that the scaling dimension in the IR of u′ (provided it does

not decouple) is D(u′) times k
k+N ,6 and due to the above inequality, we clearly see that

this quantity is larger than one. We then conclude that the term u′ always corresponds

to a CB operator of the IR theory (AN−1, Ak−1). Analogously, coupling constants of

dimension smaller than one in the UV are mapped to coupling constants in the IR and

mass parameters of dimension one are mapped to mass parameters.

Due to the fact that the curve describing UV and IR fixed points are the same, the

deformation parameters in the two cases are clearly equal in number. In the UV there

are N − 1 parameters (the mass Casimirs of the SU(N) global symmetry, which in the

N = 1 theory are rather interpreted as expectation values for the singlets) on which the

map described above is not defined, and accordingly we expect to see N − 1 parameters

in the IR which do not arise from our UV-IR map. These are easy to describe: for any

integer n ≤ N − 2 find the largest j such that the monomial xnzj appears in the curve.7

Clearly all such terms (and only those) cannot arise from our map and they are precisely

6This can be seen e.g. by comparing the deformation term of highest dimension in the UV and in the

IR. See [18] for details.
7For n = 0 we take j to be k − 1.
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N − 1 in number. Terms of the form xnzk−1 can actually be removed by shifting z,8 and

do not arise in the infrared theory. Their number can be easily determined to be the

integer part of N/k plus one. All the other terms correspond to coupling constants in the

infrared theory. This is seen as follows: the dimension of the parameters multiplying the

monomials xnzj has to be smaller than the dimension of z, otherwise xnzj+1 would be an

allowed deformation term. Combining this with the fact that the dimension of z in the IR

is smaller than 1, we reach the desired conclusion. So we conclude as expected that, out

of the singlets and UV CB operators, all except N − 1 operators become CB operators in

the IR.

2.3 Twisted vs ordinary Hitchin systems

The analysis of the previous section relied on the equivalence of the moduli space of solu-

tions of two different Hitchin systems on a punctured Riemann sphere: an ordinary one,

with Hitchin field Φ̃ ∈ Γ(O(−2)), and a twisted one, with Hitchin field Φ1 ∈ Γ(O(−1)).

Boundary conditions are such that both these Hitchin fields are smooth sections everywhere

on the sphere except at one point (the same point for both), the irregular puncture, where

they develop a pole. We argue that there is a one-to-one correspondence between solutions

of the two systems with said boundary conditions. One way to see this is to bijectively

map one system of equations to the other.

The non-holomorphic equation of an ordinary Hitchin system reads

F + [Φ̃, Φ̃†] = 0 , (2.10)

where F is the (1, 1)-form gauge field strength and † simply denotes complex conjugation

and matrix transposition. This equation can also be trivially written in terms of compo-

nents and, in the local patch Uz with coordinate z, it takes the simple form:

Fzz̄ + [Φ̃z, Φ̃
†
z̄] . (2.11)

On the contrary, the non-holomorphic equation of a twisted Hitchin system only has a well

defined expression in terms of components:

h
−1/2
zz̄ Fzz̄ + [(Φ1)z, (Φ1)†z̄] , (2.12)

where h is the hermitian metric on the tangent bundle of the sphere.

Let us now write

Φ̃ = ŝΦ1 , (2.13)

where ŝ ≡ s/||s||, and s is a nowhere-vanishing reference section of O(−1) that is smooth

everywhere except at one point, which we choose to be the same point where Φ̃ and Φ1

are singular. This condition on s is needed in order not to change the assigned boundary

conditions of the two Hitchin fields by creating further poles. There is only one such

reference section (modulo rescaling by global smooth functions), and it has obviously a pole

8This change of variables is allowed in the IR only because in the UV it would change the location of

the regular singularity.
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of order 1 at the irregular puncture. For later convenience, we normalized this section by

dividing it by its norm, i.e. by the square root of the globally well-defined smooth function

||s||2 = h−1/2s̄s . (2.14)

Placing the irregular puncture at the infinity of the patch Uz, the local presentation of ŝ

in that patch is

ŝ|Uz =

√
dz

||
√

dz||
, ||

√
dz||2 =

√
dz dz̄

(1 + |z|2)2
, (2.15)

where we have used the Fubini-Study metric on P1 to write down the norm.

Plugging (2.13) into (2.10) and using (2.14) yields (2.12). Since ŝ is nowhere vanishing

and unique, (2.13) is a bijective map between solutions to the ordinary and the twisted

Hitchin systems. This map respects the boundary conditions of the Hitchin fields, but it

changes their order of pole at the irregular puncture. To see this, it is convenient to work

in the local patch Uw, where w = 1/z, so that the irregular puncture is located at w = 0.

Locally we can always switch to a gauge, the holomorphic gauge, where A0,1 = 0, and thus

have the Hitchin field satisfy the equation

∂̄w̄Φ̃w = 2πi

p−1∑
i=0

ai∂
i
wδw , (2.16)

where δw is the delta function on w = 0 and ai are matrix-valued coefficients determining

the singular behavior of Φ̃ such that, around the irregular puncture

Φ̃ ∼ dw

p−1∑
i=0

(−1)ii! ai
wi+1

. (2.17)

Using (2.15), it is immediate to see that our reference section around the irregular punc-

ture is

ŝ|Uw =
1

||
√

dw||

√
dw

w
, (2.18)

and therefore we have

Φ1 ∼
√

dw

p−2∑
i=0

(−1)ii! bi
wi+1

, (2.19)

where bi = ||
√

dw||ai+1. Hence the twisted Hitchin field has a pole at the irregular puncture

of order one unit less than the one of the ordinary Hitchin field, i.e.

∂̄w̄(Φ1)w = 2πi

p−2∑
i=0

bi∂
i
wδw . (2.20)

2.4 Comments about non-principal nilpotent vevs

In [13] the authors found several examples of theories which exhibit supersymmetry en-

hancement in the IR upon turning on a non-principal nilpotent vev. At first sight these
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flows do not seem to fit in our discussion since under a non-principal nilpotent vev the

regular puncture is not removed completely and the generalized Hitchin system does not

reduce to a simpler twisted Hitchin system. The scope of this section is to notice that, as

was already pointed out in [18], we are not actually missing any of the known enhancing

RG flows by focusing on our setup.

The argument is based on the simple observation that for any group we can get several

non-principal nilpotent orbits just by embedding the principal nilpotent orbit of a subgroup.

The point is the following: in our geometric setup we are activating an expectation value

for the moment map associated with the full puncture only and since the global symmetry

carried by the regular puncture is in general only a subgroup of the actual global symmetry

of the theory, by considering the principal nilpotent vev for the corresponding moment map

we are actually considering (in general) a non-principal nilpotent vev for the theory.

Our main observation is that whenever there are multiple choices of nilpotent vev which

lead to supersymmetry enhancement in the IR, there are also multiple realizations of the

theory in the Db
k(J) class (with different J) and, by considering the principal nilpotent

orbit for J in the various realizations, we always recover all the enhancing RG flows. We

do not have an a priori proof of this statement, but we will now check that we do recover

all the RG flows discussed in [13].

• Let us start by the case of SU(2) SQCD, which has three different realizations in the

Db
k(J) class: it is equivalent to D4

1(SO(8)), D2(SU(4)) and D2
2(SU(3)). We therefore

predict that the theory exhibits enhancement upon turning on a principal nilpotent

vev and also SU(4) and SU(3) induced nilpotent vevs respectively. It is well-known

that there is a unique way to embed SU(3) inside SO(8) up to conjugation and the

corresponding induced nilpotent orbit is labelled by the partition [32, 12]. Indeed

it was found in [13] that the corresponding vev does lead to enhancement in the

IR. The remaining enhancing orbits are the principal (as our construction correctly

predicts), the orbit [5, 13] and the two [4, 4] orbits. The last three all lead to the

same IR fixed point. This result is perfectly consistent with our construction, which

predicts enhancement in the case of an SU(4) induced nilpotent vev: there are three

inequivalent embeddings of SU(4) inside SO(8) and the corresponding nilpotent orbits

are precisely the three listed above.

• Let us now discuss the other Lagrangian cases. The only relevant ones are SU(N)

and USp(2N) SQCD, since all other Lagrangian theories exhibit enhancement upon

turning on a principal nilpotent vev only (or do not exhibit enhancement at all). In

the case of SU(N) SQCD (N > 2) with 2N flavors there are two choices of nilpotent

vevs (principal and subregular), and accordingly we have two different realizations

of conformal SU(N) SQCD in our class: D2(SU(2N)) and D2N−2
2 (SU(2N − 1)).

Analogously, the two possible choices of nilpotent vev for USp(2N) conformal SQCD,

whose global symmetry is SO(4N + 4), correspond to the two different realizations

of this theory in the Db
k(J) class: D2N+2

1 (SO(4N + 4)) and D2(SO(4N + 2)).
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• Let us consider the theories called (IN+1,1−N , F ) in [13], whose global symmetry is

SU(N +1). These models exhibit enhancement both for the principal and subregular

nilpotent orbits. When N is odd the theory is equivalent to SU(nc) conformal SQCD

with nc = N+1
2 colors, whereas for N even the model is not Lagrangian. We indeed

recover this result! In our notation these theories have the following realizations:

D2(SU(N + 1)) and DN−1
2 (SU(N)). The full global symmetry is manifestly visible in

the first realization only. When N = 2 the theory coincides with D4 Argyres-Douglas

theory (sometimes called H2), which has SU(3) global symmetry and flows to N = 2

SCFTs under both choices of nilpotent vev (principal and minimal).

• Finally, let us discuss Minahan-Nemeschansky theories. In the case of the E6 theory

the authors of [13] found that there are three choices of nilpotent vev which lead

to supersymmetry enhancement in the IR. Accordingly, it turns out that the E6

Minahan-Nemeschansky theory appears three times in the Db
k(J) class: it is equiva-

lent to D2(SO(8)), D5
1(SO(10)) and D9

1(E6). By activating a principal nilpotent vev

for the group J we recover the three enhancing RG flows. We find instead two differ-

ent realizations of the E7 Minahan-Nemeschansky theory: D14
1 (E7) and D8

1(E6), in

agreement with the fact that enhancement occurs only for two choices of nilpotent

vev. Finally, E8 Minahan-Nemeschansky theory exhibits enhancement only in the

case of a principal nilpotent vev. As expected we find just one realization of this

model: D24
1 (E8).

3 Systematics of SUSY enhancement

In this section we will derive a necessary algebraic criterion for supersymmetry enhancement

and, in case enhancement occurs, explain how to systematically derive the SW curve and

differential of the IR theory (as well as the correct conformal dimensions of CB operators)

without using any maximization procedure. After discussing a few general facts about the

underlying geometries in subsection 3.1, we will study in detail a specific rank-2 Lagrangian

case in subsection 3.2, in order to illustrate the key steps of our approach. We will then

conclude by analyzing in subsection 3.3 a particular rank-6 case, whose peculiarities will

lead us to an important refinement of our algebraic criterion.

3.1 N = 1 curves from branes

For the analysis of this section it is crucial to understand how to implement the SUSY

breaking deformations at the level of the underlying SW geometry. This will directly

generalize the results of [20] for rank-1 theories, whereby all Maruyoshi-Song flows were seen

to originate from certain T-brane deformations [41, 42] of the Weierstrass geometry in F-

theory. To this end, rather than aiming for a general treatment, we find it more convenient

to work with a simple class of SCFT’s. Extrapolating the rules of our approach to treat

more complicated theories (in particular any linear quiver) can be done straightforwardly.

Consider 4d N = 2 SQCD with N colors and 2N flavors as the starting theory. Its

SW geometry can be easily derived from a standard Witten cartoon involving D4, D6 and
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𝑥6

𝑥4,5

(a)

𝑥6

𝑥4,5

(b)

Figure 1. (a): brane configuration for 4d N = 2 SQCD. The figure shows the case with N = 3.

⊗ represents an N = 2 D6-brane. (b). Brane configuration obtained after rotating the N = 2

D6-brane in figure 1(a). The N = 1 D6-branes are depicted as red vertical lines.

NS5-branes [43] (see figure 1(a)). The various branes extend in ten-dimensional flat space

as follows:
Witten cartoon 0 1 2 3 4 5 6 7 8 9

D4 × × × × ×
NS5 × × × × × ×

D6N=2 × × × × × × ×
D6N=1 × × × × × × ×

where the subscripts N=2 and N=1 indicate the amount of supersymmetry preserved by the

orientation of the corresponding D6-branes. To engineer N = 2 SQCD, N = 2 D6-branes

can be placed in any place and different configuraitons are related by the Hanany-Witten

transitions [44]. Here we have chosen to work in the Hanany-Witten frame where all of

the N = 2 D6-branes are on one side of the two NS5-branes, which makes the whole

U(2N) flavor symmetry manifest, and thus allows us to access all of its nilpotent orbits

when turning on the deformation. The SW geometry shows up in the M-theory uplift as

the internal world-volume of the M5-brane lifting the above D4/NS5 configuration. This

spans a holomorphic curve within the Taub-NUT space lifting the D6N=2, and it has the

following general form

z2 + c1pN (x)z + c2 det (x12N −M) = 0 , λ = x
dz

z
, (3.1)

where z is a coordinate combining direction 6 and M-theory circle, x stands for directions

4, 5, c1, c2 are constants depending on the exactly marginal gauge coupling, pN (x) is a

monic polynomial in x of degree N , encoding the N − 1 CB parameters in its coefficients,

M is the mass matrix for the U(2N) flavors, and λ indicates the SW differential. From

this perspective, the eigenvalues of M are understood as the relative position of the N D6

branes in the directions 4 and 5 with respect to the stack of N D4-branes connecting the

two NS5-branes.

The N = 2 → N = 1 coupling (1.1) can now be implemented simply by rotating

all of the D6-branes and taking them oriented like the D6N=1 in the table above [28,

45]. Recalling that the meson µ is made of fields originating from the strings stretching
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between the N gauge D4-branes and the 2N flavor D4-branes, this rotation has the effect of

promoting the mass matrix M to a 4d dynamical chiral field, describing the now free motion

of the flavor D4-branes in directions 4, 5, which are now shared by NS5 and D6-branes.

The N = 1 brane configuration is depicted in figure 1(b).

Note that the M-theory lift of this N = 1 type IIA configuration still consists of a Taub-

NUT space, now extended along directions 6,8,9 and the M-theory circle, times R7. There

is however still a single M5-brane wrapping the same holomorphic curve (3.1) embedded

again in directions 4,5,6, and the M-theory circle. This is just because the orientation of

both the NS5-branes and the D4-branes has not been changed. Notice that the curve is the

same as in (3.1) just because it is entirely determined by the asymptotic behaviour of NS5

and D4-branes. The only difference is that now M has to be interpreted as the expectation

value of the new dynamical field M . For this reason, in order to study all Maruyoshi-Song

flows of SQCD, it will suffice to insert in (3.1) the explicit form of the “flipping” field M

M = ρ(σ+) +
∑
j

Mj,−j , (3.2)

where ρ indicates the nilpotent embedding and Mj,−j the fluctuation associated to the

lowest component of the spin j representation of the embedded SU(2). The sum extends

over all spins appearing in the decomposition of the adjoint representation of SU(2N)

(see [46, 47]).

The logic just described is completely general and can be applied to any starting SCFT

in 4d, even non-Lagrangian ones: the space (3.1), which we dubbed Xn in the introduction,

has the general structure of a genus-r Riemann-surface fibered over a base of dimension

n− r > r, where r is the rank of the theory. Studying whether a given orbit leads to SUSY

enhancement is reduced to analyzing whether near the origin the fibration structure of Xn

is non-trivial only on a r-dimensional base.

This picture nicely connects to the description of the enhancement via Hitchin systems

we discussed in section 2. The Witten cartoon we have seen for SQCD translates into a

class-S configuration characterized by a two-sphere with one regular maximal puncture,

carrying SU(2N) flavor symmetry, and one irregular puncture, accounting for the two

“unbalanced” NS5-branes of figure 1(a). The SW geometry, in turn, arises as a 2N -

branched cover of the punctured sphere [25]

det (λ12N − Φ(z)) = 0 , (3.3)

where z is the local coordinate on the sphere, x is the local fiber coordinate of its canonical

bundle, and Φ is the Hitchin field, a meromorphic section of O(−2) on the sphere, with

poles at the punctures. By reducing this configuration back to type IIA along a different

circle, say direction 3, Φ acquires the interpretation of the field of transverse deformations

along directions 4, 5 of a stack of 2N D4-branes wrapped on the punctured sphere:

class-S 0 1 2 4 5 6 7 8 9 10

D4 × × × × ×
Φ × ×
Φ′ × ×
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In this different duality frame, the rôle of the mass matrix M is played by a second

Hitchin field Φ′, constant over the sphere, representing the transverse deformation of the

D4 stack along directions 8, 9. This is because Φ′ is identified with the complex scalar in

the vector multiplet of the three-dimensional N = 4 theory living on the stack, and as such

it couples to the matter µ localized at the regular puncture as Tr (µΦ′) [31]. As explained

in section 2, activating the SUSY breaking deformation (1.1), therefore, translates in this

context to promoting Φ′ to a meromorphic section9 of O(−1), and to viewing the N = 1

geometry Xn (eq. (3.1) with M regarded as a field) as the intersection of (3.3) with the

second spectral equation

det
(
λ′12N − Φ′(z)

)
= 0 . (3.4)

Recall that Φ′ is taken completely smooth at the regular puncture z = 0. At this location,

as is evident from eq. (3.1), Φ′ has exactly the same spectral data of M , thus elucidating

the meaning of the flipping field within the generalized Hitchin system of N = 1 class-

S theories.

3.2 SQCD with 6 flavors

With these geometric discussions in mind, we now analyze in detail a 4d N = 2 SQCD

with N = 3, and the systematics of its Maruyoshi-Song flows. We first focus on cases

where the supersymmetry is enhanced to N = 2 at IR. In order to see if the resulting

curve describes a 4d N = 2 superconformal field theory, we will make use of two necessary

conditions which are satisfied for an N = 2 superconformal field theory. The first condition

is that the genus of the curve should agree with the number of CB operators. The second

condition is that if there is a parameter a with 1 < D(a) ≤ 2 in the curve, then there

should be only one parameter b which satisfies D(a) +D(b) = 2. Since these are necessary

conditions we cannot say exactly that the curve satisifying the two conditions describes

an N = 2 superconformal field theory. We can only say that it is not inconsistent that

it does. However the two conditions are more powerful when we single out theories that

do not lead to supersymmetry enhancement. Indeed, in subsection 3.3, we will see cases

which do not satisfy at least one of the two conditions, and hence the supersymmetry is

not enhanced for those cases.

We first start from the SW curve of 4d N = 2 SU(3) gauge theory with six flavors.

The explicit form of the curve can be obtained from (3.1) with N = 3 and it is given by

z2 +
(
a1x

3 + a2x+ a3

)
z +

6∏
i=1

(x−mi) = 0 , (3.5)

where we chose

M = diag(m1,m2,m3,m4,m5,m6) . (3.6)

Here diag(a, b, c, · · · ) denotes a diagonal maxtrix with the entries a, b, c, · · · and mi, (i =

1, · · · , 6) are mass parameters for the six flavors. The SW diffrential is the same as the

9In section 2 this meromorphic section was called Φ1.
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general form in (3.1), namely,

λ =
x

z
dz . (3.7)

Note that, by a z-dependent shift of x, the SW differential changes only by a total derivative

term. We used a constant shift of x to eliminate the monomial x2z in (3.5). We have also

rescaled x to get rid of the overall constant in front of the product term.

We can determine the scaling dimension of the parameters a1, a2, a3 in (3.5) from the

fact that the scaling dimension of the SW differential (3.7) is equal to one. This fixes

the dimension of x to be 1. Then, from homogeneity of the curve polynomial (3.5), the

dimension of z is 3 and we have

DUV(a1) = 0 , DUV(a2) = 2 , DUV(a3) = 3 , (3.8)

where the superscript UV reminds us that this is the UV theory. We can then interpret a1

as the coupling constant and a2, a3 as CB operators.

We can see that the curve (3.5) satisfies the two necessary conditions for a 4d N = 2

superconformal field theory. The equation (3.5) describes a genus-two curve at a generic

point on the Coulomb-branch moduli space. Since we have two CB operators a2 and a3,

the genus of the curve indeed agrees with the number of the CB operators. Regarding

the second condition, we have one parameter a2 which satisfies 1 < DUV(a2) ≤ 2. Then

we can see that the curve contains the associated parameter a1 which satisfies DUV(a1) +

DUV(a2) = 2.

As described in subsection 3.1, when we turn on the N = 1 coupling with an adjoint

chiral multiplet, the equation of the curve is essentially the same as (3.5) but the mass

matrix M is now promoted to a dynamical chiral field. Namely, we consider the curve

z2 +
(
a1x

3 + a2x+ a3

)
z + det

(
x16 −M − M̃116

)
= 0 , (3.9)

where M is given by (3.2) and M̃116 corresponds to the trace component. Note that

the SW differential is not necessarily the same as (3.7), and needs to be determined for

each example.

In this subsection we consider two examples, i.e. the nilpotent orbits [6] and [5, 1]. It is

known from a-maximization that these cases lead to supersymmetry enhancement [12, 13].

Here, instead, we carry out this analysis in a purely algebraic manner, using the N = 1

curve (3.9).

Orbit [6] of SU(6). We first consider turning on a vev in the maximal nilpotent orbit

of SU(6), labeled by [6]. For this nilpotent orbit, the raising operator of the sl(2) standard

triple10 is canonically defined to be:

ρ(σ+) =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0


. (3.10)

10For a standard reference on building standard triples see [48].
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Under the background (3.10) the adjoint representation of the su(6) flavor algebra splits

according to the branching rule

adj→ V5 ⊕ V4 ⊕ V3 ⊕ V2 ⊕ V1 , (3.11)

where with Vj we denote the sl(2) irreducible representation of spin j. The components

that remain coupled are the lowest components of each spin j representation, namely Mj,−j
for j = 1, · · · , 5. Hence the M in (3.9) is given by

M =



0 1 0 0 0 0

5M1,−1 0 1 0 0 0

5M2,−2 8M1,−1 0 1 0 0

5M3,−3 9M2,−2 9M1,−1 0 1 0

M4,−4 8M3,−3 9M2,−2 8M1,−1 0 1

M5,−5 M4,−4 5M3,−3 5M2,−2 5M1,−1 0


. (3.12)

Then the characteristic polynomial in the curve (3.9) becomes

det(x16 −M − M̃116)

=x6 − 6M̃1x
5 +

(
15M̃2

1 − 35M1,−1

)
x4

+
(
−20M̃3

1 + 140M̃1M1,−1 − 28M2,−2

)
x3

+
(

15M̃4
1 − 210M̃2

1M1,−1 + 259M2
1,−1 + 84M̃1M2,−2 − 18M3,−3

)
x2

+
(
−6M̃5

1 + 140M̃3
1M1,−1 +−518M̃1M

2
1,−1 − 84M̃2

1M2,−2

+220M1,−1M2,−2 + 36M̃1M3,−3 − 2M4,−4

)
x

+ M̃6
1 − 35M̃4

1M1,−1 + 259M̃2
1M

2
1,−1 − 225M3

1,−1 + 28M̃3
1M2,−2

+ 220M̃1M1,−1M2,−2 + 25M2
2,−2 − 18M̃2

1M3,−3 + 50M1,−1M3,−3

+ 2M̃1M4,−4 −M5,−5 .

(3.13)

We can redefine Mj,−j , (j = 1, · · · , 5) and M̃1 to rewrite (3.13) as

det(x16 −M − M̃116) = x6 +M1x
5 +M2x

4 +M3x
3 +M4x

2 +M5x+M6 , (3.14)

where the Mi, i = 2, · · · 6 are now the Casimir invariants of SU(6). In the end we arrive at

the equation

z2 +
(
a1x

3 + a2x+ a3

)
z + x6 +M1x

5 +M2x
4 +M3x

3 +M4x
2 +M5x+M6 = 0 , (3.15)

after turning on the N = 1 deformation (3.12).

We now interpret (3.15) as the IR curve after the RG flow. Since the curve (3.15) is

essentially the same equation as (3.5), it will have the same holomorphic one-forms. On

the other hand, the holomorphic one-forms can be obtained by taking a derivative of the

SW differential with respect to CB operators. In order to determine the scaling dimension
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of the parameters in (3.15), we use that relative scaling dimensions are RG-flow invariant,

and thus that the holomorphic one-form corresponding to the UV CB operator with the

maximal dimension, i.e. a3, is the same as the holomorphic one-form associated with the

IR CB operator with the maximal scaling dimension, which we postulate to be M6. In

other words, the new SW differential in the IR, λ[6], must satisfy

dλ

da3
=

dλ[6]

dM6
, (3.16)

where λ is given by (3.7). Condition (3.16) leads to the following relation between param-

eters and coordinates

DIR(z)− 5DIR(x) = 1−DIR(M6) . (3.17)

Equation (3.15) also implies D(z) = 3D(x) and 2D(z) = D(M6).11 Then, the scaling

dimension of the parameter M6 can be fixed as

DIR(M6) =
3

2
. (3.18)

The scaling dimension of the other parameters can also be determined:

DIR(M5) =
5

4
, DIR(M4) = 1 , DIR(M3) =

3

4
, DIR(M2) =

1

2
, DIR(M1) =

1

4
,

DIR(a1) = 0 , DIR(a2) =
1

4
, DIR(a3) =

1

2
.

(3.19)

Therefore the parameters M6 and M5 may be identified as the two CB operators in the

IR, being the only ones whose dimension is strictly above the unitarity bound.

Let us see if the resulting curve (3.15) satisfies the two necessary conditions for an

N = 2 superconformal field theory. First, the genus of the curve (3.15) is two and the

number of the CB operators is also two. Therefore the first condition is satisfied. For the

second condition, we need to see carefully if we can eliminate any parameters in (3.15) by

a change of coordinates which leaves the SW differential invariant up to a total derivative.

For that we need to determine the SW differential λ[6] explicitly for the IR theory.

Note that we can write the SW differential as λ[6] = f(z, x(z, a))dz,12 where a is

any CB parameter and x is regarded as a function of z from the curve equation (3.15),

F (z, x, a) = 0. Hence, the derivative of λ[6] with respect to a can be written as

dλ

da
= −∂f(z, x)

∂x

∂F (z, x, a)

∂a

(
∂F (z, x, a)

∂x

)−1

dz , (3.20)

Using (3.20), the relation (3.16) implies that

dλ[6]

dx
= dz , (3.21)

11The symbol D without subscript indicates the scaling dimension anywhere along the RG flow.
12Here we are assuming that the SW differential does not have an explicit dependence on a. In the next

subsection, we will analyze an example where we will need to relax this hypothesis.
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which we can trivially solve, leading to

λ[6] = xdz , (3.22)

up to total-derivative terms.

As opposed to the SW differential in the UV, eq. (3.7), the one in the IR, eq. (3.22),

crucially allows for a new change of coordinates: an x-dependent shift of z. It is also possible

to shift x by a constant. Therefore, eq. (3.15) can be further simplified by eliminating the

term linear in z and the term proportional to x5:

z2 + x6 +M2x
4 +M3x

3 +M4x
2 +M5x+M6 = 0 . (3.23)

It is now possible to see that the second condition is indeed satisfied. Namely we have two

pairs of coupling constant/CB operator, (M2,M6) and (M3,M5), which satisfy

DIR(M2) +DIR(M6) = 2 , DIR(M3) +DIR(M5) = 2 . (3.24)

Finally, M4 plays the rôle of mass parameter for the IR flavor symmetry.

Since the curve (3.23) with the SW differential (3.22) satisfies the two conditions, the

theory described by the curve is compatible with an N = 2 superconformal field theory.

Indeed in this case we know that the curve is nothing but the SW curve of the (A1, A5)

generalized Argyres-Douglas theory, which has U(1) flavor symmetry. This is consistent

with the result of [12].

Orbit [5, 1] of SU(6). Let us now consider turning on a vev for the subregular nilpotent

orbit of SU(6). Such an orbit is labeled by the partition [5, 1] of the number Nf = 6. For

this nilpotent orbit, the raising operator of the sl(2) standard triple is canonically defined

to be

ρ(σ+) =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0


. (3.25)

Under the background (3.25) the adjoint representation of the su(6) flavor algebra

splits according to the branching rule

adj→ V4 ⊕ V3 ⊕ 3V2 ⊕ V1 ⊕ V0 , (3.26)

where with Vj we denote the sl(2) irreducible representation of spin j. As usual, the

components of the field M that remain coupled after turning on the vev (3.25) are given

by the lowest component of each sl(2) spin j representation appearing in (3.26), namely
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Mj,−j for j = 1, · · · , 5. Hence the M in (3.9) is given in this case by

M =



M0,0 1 0 0 0 0

2M1,−1 M0,0 1 0 0 0

2
∑3

i=1M
(i)
2,−2 3M1,−1 M0,0 1 0 0

M3,−3 3
∑3

i=1M
(i)
2,−2 3M1,−1 M0,0 1 0

M4,−4 M3,−3 2
∑3

i=1M
(i)
2,−2 2M1,−1 M0,0 2M

(2)
2,−2

2M
(3)
2,−2 0 0 0 0 −5M0,0


. (3.27)

where we have denoted with M
(i)
2,−2, i = 1, 2, 3 the lowest spin component of the three

different V2 representations appearing in (3.26).

Now we need to compute the characteristic polynomial of the matrix M − 16M̃1, and

perform an analysis analog to that of section (3.2). However, for ease of presentation of the

result, let us just write the characteristic polynomial of M , and re-install the trace part at

a later stage. Such characteristic polynomial can be computed as

det (16x−M)

=x6 − x4
(
15M2

0,0 + 10M1,−1

)
+ x3

(
40M3

0,0 − 20M0,0M1,−1 − 7

3∑
i=1

M
(i)
2,−2

)

+ x2

(
− 45M4

0,0 + 120M2
0,0M1,−1 − 21M0,0

3∑
i=1

M
(i)
2,−2 + 16M2

1,−1 − 2M3,−3

)

+ x

(
24M5

0,0 − 140M3
0,0M1,−1 + 63M2

0,0

3∑
i=1

M
(i)
2,−2

+ 64M0,0M
2
1,−1 − 8M0,0M3,−3 + 8M1,−1

3∑
i=1

M
(i)
2,−2 −M4,−4

)

+ 40M0,0M1,−1

3∑
i=1

M
(i)
2,−2 − 5M0,0M4,−4 − 4M

(2)
(2,−2)M

(3)
(2,−2) − 5M6

0,0

+ 50M4
0,0M1,−1 − 35M3

0,0

3∑
i=1

M
(i)
2,−2 − 80M2

0,0M
2
1,−1 + 10M2

0,0M3,−3 . (3.28)

We can now redefine the singlets as follows

M2 := 15M2
0,0 + 10M1,−1 ,

M3 := 40M3
0,0 − 20M0,0M1,−1 − 7

3∑
i=1

M
(i)
2,−2 ,

M4 := − 45M4
0,0 + 120M2

0,0M1,−1 − 21M0,0

3∑
i=1

M
(i)
2,−2 + 16M2

1,−1 − 2M3,−3 ,

M5 := 24M5
0,0 − 140M3

0,0M1,−1 + 63M2
0,0

3∑
i=1

M
(i)
2,−2

+ 64M0,0M
2
1,−1 − 8M0,0M3,−3 + 8M1,−1

3∑
i=1

M
(i)
2,−2 −M4,−4 .

(3.29)
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The characteristic polynomial in terms of these new variables can be written in a much

more compact form, namely

det
(
16x−M − 16M̃1

)
= x6 +M1x

5 +M2x
4 +M3x

3 +M4x
2 +M5x+M6 , (3.30)

where we have re-installed the trace part, and we have defined

M6|M̃1=0 := −15625M6
0,0 +625M4

0,0M2 +125M3
0,0M3−25M2

0,0M4 +5M0,0M5−4M
(2)
2,2M

(3)
2,2 .

(3.31)

We stress that while in equation (3.30) the quantities M2, · · · , M5 have to be considered

independent variables, M6 is instead explicitly dependent on all of the Mi’s and also on

M0,0, M
(2)
2,−2, M

(3)
2,−2 and M̃1.

The N = 1 deformed curve is therefore given by

z2 +
(
a1x

3 + a2x+ a3

)
z + x6 +M1x

5 +M2x
4 +M3x

3 +M4x
2 +M5x+M6 = 0 ,

(3.32)

As in subsection (3.2), our strategy to compute the dimension of all the operators and

couplings entering the SW curve of the infrared theory consists in making an Ansatz for

the parameter playing the rôle of the IR CB operator with the highest dimension. Since

relative dimensions are RG-flow invariant, we are led to identify the highest spin M5 as

such operator. Then equating the holomorphic one-forms associated to the UV and IR CB

operators of highest dimension, we get

dλ

da3
=

dλ[5,1]

dM5
, (3.33)

where we denoted by λ[5,1] the IR SW differential. At the level of dimensions, this equa-

tion implies

DIR(z)− 5DIR(x) = 1−DIR(M5) . (3.34)

Now crucially equation (3.34), together with the homogeneity of the curve (3.32) fixes the

dimensions of the coordinates x and z and the operator M5 as

DIR(M5) =
5

3
, DIR(x) =

1

3
, DIR(z) = 1 . (3.35)

This in turn fixes the dimensions of all the other parameters as

DIR(M4) =
4

3
, DIR(M3) = 1 , DIR(M2) =

2

3
, DIR(M0,0) =

1

3
,

DIR(a1) = 0 , DIR(a2) =
1

3
, DIR(a3) =

2

3
.

(3.36)

The parameters M
(2)
2,−2 and M

(3)
2,−2 only appear in the deformed curve (3.32) through

their product, so it seems that we could only infer

DIR(M
(2)
2,−2) +DIR(M

(3)
2,−2) = 2 . (3.37)
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However, we also know they must have the same dimension as they have the same spin

under the Jacobson-Morozov sl(2), as shown in (3.26). This is enough to conclude that

DIR(M
(2)
2,−2) = DIR(M

(3)
2,−2) = 1 . (3.38)

Nevertheless, these two as well as M0,0 are not to be considered as independent parameters,

since they only enter the low-energy effective theory through the combination M6 (3.31).

We can therefore see that the parameters M5 and M4 can be identified as CB operators

in the IR, as they are the only ones of dimension stricly greater than one.

Let us now check if the chosen Ansatz leads to a SW geometry that satisfies the two

necessary conditions for an N = 2 superconformal field theory. We see that the genus of

the curve (3.32) is two, and also the number of CB operators is two, so the first condition

is satisfied. In order to check for the second condition, we need to eliminate any reduntant

parameter in (3.32) by a coordinate trasformation which leaves the SW differential fixed

(up to a total derivative).

In order to do this, we need first of all to solve for the SW differential of the IR theory.

By using equation (3.20) we find

λ[5,1] =
z

x
dx = z d log(x) , (3.39)

up to total-derivative terms. This form of the SW differential allows us to freely shift z by

a generic polynomial in x. We will use such a shift in order to reabsorb all the terms of

the form aix
4−iz for i = 1, · · · 4 in the curve (3.32).

In particular, the equation (3.32) can be thus simplified to

z2 + x6 +M1x
5 +M2x

4 +M3x
3 +M4x

2 +M5x+M6 = 0 , (3.40)

where DIR(M6) = 2 and DIR(M1) = 1
3 .

It is now possible to check that the second condition for the enhancement is indeed

satisfied. Namely we have two pairs of coupling constant/CB operator, (M1,M5) and

(M2,M4), satisfying

DIR(M5) +DIR(M1) = 2 , DIR(M4) +DIR(M2) = 2 . (3.41)

Finally M3 and M6 play the rôle of mass terms for the IR curve.

In conclusion we claim that, considering the orbit [5, 1], our method leads to a geometry

specified by the curve (3.40) and the differential (3.39). Such a pair passes both our criteria

of SUSY enhancement, so we expect that the N = 1 geometry has enhanced to N = 2.

Our expectation is confirmed by the a-maximization analysis of [13]. This flow is believed

to land on the (A1, D6) generalized Argyres-Douglas theory, which has SU(2)×U(1) flavor

symmetry [10]. Indeed, as can be seen in (3.40 and (3.39), our method naturally and

explicitly reproduced the SW curve and differential of such a theory.

3.3 Examples that do not enhance

In subsection 3.2, we have considered the deformations corresponding to the orbits [6]

and [5, 1] of SU(6). Both cases satisfy the two conditions and they showed supersymmetry
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enhancement in the IR. In this section, we turn to cases that do not exhibit supersymmetry

enhancement. One case is considering a different deformation in the 4d SU(3) gauge theory

with six flavors. In the other case we will use an SO-Sp quiver theory with the deformation

corresponding to the maximal nilpotent orbit of the symplectic flavor symmetry, which was

discussed in [19]. It is known that neither case leads to supersymmetry enhancement and

we are going to confirm this claim using our algebraic criteria.

Orbit [4, 2] of SU(6). For the first case we consider a deformation with a vev corre-

sponding to the nilpotent orbit labeled by [4, 2]. Namely the vev is given by

ρ(σ+) =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


. (3.42)

The fluctuations around the background that remain coupled are as usual the lowest com-

ponents of the spin j representations and the matrix form of the deformation becomes

M =



M0 1 0 0 0 0

−3M1,−1 M0 1 0 0 0

M2,−2 −4M1,−1 M0 1 M
(1)
1,−1 0

−M3,−3 M2,−2 −3M1,−1 M0 −M (1)
2,−2 3M

(1)
1,−1

3M
(2)
1,−1 0 0 0 −2M0 1

−M (2)
2,−2 M

(2)
1,−1 0 0 −M (3)

1,−1 −2M0


. (3.43)

Inserting (3.43) into (3.9) yields the N = 1 curve.

Let us then determine the scaling dimension of the parameters appearing in the curve

equation. Our Ansatz is that the CB operator with the highest dimension in the IR is

M3,−3. Denoting by λ[4,2] the IR SW differential, this yields the relation

dλ

da3
=

dλ[4,2]

dM3,−3
, (3.44)

which leads to

DIR(z)− 5DIR(x) = 1−DIR(M3,−3) . (3.45)

Then the relation (3.45) together with the curve equation fixes the scaling dimension of

some of the parameters as

DIR(M3,−3) = 2 , DIR(M2,−2) =
3

2
, DIR(M

(3)
1,−1) = 1 , DIR(M0) =

1

2
. (3.46)

Moreover, using that relative scalings are RG-flow invariant, we also find

DIR(M
(1)
1,−1) = DIR(M

(2)
1,−1) = 1 , DIR(M

(1)
2,−2) = DIR(M

(2)
2,−2) =

3

2
. (3.47)
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USp(2) SO(8) USp(2)

USp(8)

Figure 2. The orthosymplectic quiver.

O4−

(a)

O4−

(b)

Figure 3. Brane picture realizing the orthosymplectic quiver of figure 2.

Hence M3,−3 and M2,−2 may serve as CB operators. But the relation (3.47) implies that

also M
(1)
2,−2 and M

(2)
2,−2 remain coupled in the IR. On the other hand, we know that the

SW curve remains a genus-two curve throughout the flow. Therefore we now encounter

a situation where the number of the CB operators does not agree with the genus of the

curve, implying that the curve cannot describe an N = 2 superconformal field theory. This

is consistent with the result of [12].

An orthosymplectic quiver. Here we want to apply a similar analysis to a Lagrangian

theory with different gauge and flavor groups. The aim is to show an example that is known

not to exhibit supersymmetry enhancement, but that nevertheless satisfies the criterion

that the genus of the IR curve matches the dimension of the base over which it is fibered.

Consider the quiver of figure 2 where four flavors are attached to the SO(8) gauge node.

This theory was found in [19] to give no enhancement, because it violates an intri-

cate relation imposed by ’t Hooft anomaly matching, while preserving the rank. Using

the underlying SW geometry, we would like to argue that the absence of enhancement

originates from a mismatch between CB operators of dimension between 1 and 2 and cou-

pling constants. This suggests an elegant geometric counterpart to the third criterion for

enhancement discussed in subsection 3.2 of [19].13

The SW curve of the theory can be obtained from a brane configuration realizing

the quiver theory. This involves an O4-plane and the schematic picture is depicted in

figure 3(a). The four D6-branes in the upper half-plane give four flavors to the SO(8)

gauge node. In order to read off the SW curve, it is useful to use a configuration which

13The first two criteria in [19] are incorporated in our geometric condition that, if the theory is to preserve
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does not have any D6-branes. For that we move the D6-branes in between the middle

NS5-branes in the right direction for example. A D4-brane is created when a D6-brane

crosses an NS5-brane and the final configuration is given in figure 3(b).

To write the SW curve we follow the procedure developed in [49]. Due to the orien-

tifold, the curve is invariant under x→ −x. Also, the charge of the orientifold affects the

asymptotic behavior of the NS5-branes, which changes the powers of v compared to the

cases without an orientifold. In the end, the SW curve for the quiver in figure 2 is given by

z4 + (a2x
4 + a1x

2 + a0)z3 + (b4x
8 + b3x

6 + b2x
4 + b1x

2 + b0)z2

+

4∏
i=1

(x2 −m2
i )(c2x

4 + c1x
2 + c0)z +

4∏
i=1

(x2 −m2
i )

2 = 0 ,

(3.48)

where a0 and c0 are fixed by the constraint

z4 + a0z
3 + b0z

2 +
4∏
i=1

m2
i c0z +

4∏
i=1

m4
i = (z − α)2(z − β)2 . (3.49)

The SW differential is still given by (3.7). Since its dimension is one, we have

DUV(z) = 4 , DUV(x) = 1 . (3.50)

Hence the dimension of the various parameters are

DUV(a2) = 0 , DUV(a1) = 2 , DUV(b4) = 0 ,

DUV(bi) = 8− 2i (i = 0, 1, 2, 3) , DUV(c2) = 0 , DUV(c1) = 2 .

a1 is the CB operator of the first USp(2), bi, (i = 0, · · · , 3) are the CB operators of the

SO(8) and c1 is the CB operator of the second USp(2). Note that the highest Casimir of

SO(8) is reducible, b0 = b̃20 and mi, (i = 1, · · · , 4) are the mass parameters for the four

flavors.14 Finally, a2, b4, c2 are the gauge coupling constants associated to the three CB

operators of dimension 2. Recall that, in an N = 2 theory, each CB operator with scaling

dimension 1 < D ≤ 2 has a corresponding coupling constant with scaling dimension 2−D.

Let us now deform the above theory as usual by a coupling of the form (1.1), and

let us consider turning on a vev for M corresponding to the maximal nilpotent orbit of

USp(8), i.e.

ρ(σ+) =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −1 0


. (3.51)

N = 2 in the IR, the genus of the SW curve must be equal to the dimension of the base of the fibration.
14The field that is charged under both USp(2) and SO(8) is a half-hypermultiplet in the bifundamental

representation and it has no mass term.
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The decomposition of the adjoint representation of USp(8) under the embedded SU(2) is

adj = V1 ⊕ V3 ⊕ V5 ⊕ V7 , (3.52)

and the fluctuation of M will depend on the fields corresponding to the lowest components

of the spin 1, 3, 5, 7 representations. This means that we have:

M =



0 1 0 0 0 0 0 0

−7M1,−1 0 1 0 0 0 0 0

0 −12M1,−1 0 1 0 0 0 0

−7M3,−3 0 −15M1,−1 0 0 0 0 1

−M7,−7 0 −7M5,−5 0 0 7M1,−1 0 7M3,−3

0 12M5,−5 0 −16M3,−3 −1 0 12M1,−1 0

−7M5,−5 0 20M3,−3 0 0 −1 0 15M1,−1

0 −16M3,−3 0 −16M1,−1 0 0 −1 0


.

The characteristic polynomial of the above matrix is:

P (x) = det (x16 −M)

=x8 + 84M1,−1x
6 + (66M3,−3 + 1974M2

1,−1)x4

+ (−26M5,−5 + 1364M3,−3M1,−1 + 12916M3
1,−1)x2

+ (−M7,−7 + 49M2
3,−3 − 98M5,−5M1,−1 + 2450M3,−3M

2
1,−1 + 11015M4

1,−1) ,

(3.53)

and therefore, the SW curve (3.48) is deformed as:

z4 + (a2x
4 + a1x

2 + a0)z3 + (b4x
8 + b3x

6 + b2x
4 + b1x

2 + b0)z2

+P (x)(c2x
4 + c1x

2 + c0)z + P (x)2 = 0 .
(3.54)

As usual, along the RG flow the functional form of the SW differential will change, but those

of the six holomorphic (1, 0)-forms of the curve will remain the same. The CB operator

with the largest scaling dimension in the UV is b1, and, given that relative scalings are

RG-flow invariant, the candidate field to play the rôle of b1 in the IR is the singlet with

the largest spin, i.e. M7,−7. Hence, we are led to impose

dλ

db1
=

dλ′

dM7,−7
, (3.55)

where λ′ is the SW differential in the IR. Since the SW differential in the UV (3.7) does

not have an explicit dependence on b1, but depends on it only through v, we can write the

l.h.s. of (3.55) as

dλ

db1
= − x2zdz

16x15 + · · ·
. (3.56)

Since the scaling dimension of λ′ is 1, we obtain

1−DIR(M7,−7) = 2DIR(z)− 13DIR(x) . (3.57)
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The explicit form of the curve (3.54) implies

D(z) = 4D(x) , 8D(x) = D(M7,−7) . (3.58)

Combining (3.57) with (3.58) yields

DIR(z) =
4

3
, DIR(x) =

1

3
. (3.59)

Then the scaling dimension of the various parameters in the SW curve (3.54) is given by

DIR(a2) = 0 , DIR(a1) =
2

3
,

DIR(b4) = 0 , DIR(b3) =
2

3
, DIR(b2) =

4

3
,

DIR(b1) = 2 , DIR(b̃0) =
4

3
,

DIR(c2) = 0 , DIR(c1) =
2

3
,

DIR(M1,−1) =
2

3
, DIR(M3,−3) =

4

3
, DIR(M5,−5) = 2 , DIR(M7,−7) =

8

3
.

(3.60)

From this we conclude that there are still 6 operators above the unitarity bound, playing the

rôle of the would-be CB operators in the IR, and hence also in the IR the genus of the SW

curve matches the dimension of the base over which it is fibered. However, as one can see

from the above scaling dimensions, there is näıvely no matching between CB operators with

1 < d ≤ 2 and coupling constants of dimension 2− d: the are 2 CB operators of dimension

2, but 3 coupling constants of dimension 0, and also 3 CB operators of dimension 4/3,

but 4 coupling constants of dimension 2/3. To confirm that this expectation is correct, we

should make sure that there exists no change of variables leaving the IR SW differential

invariant (up to total derivatives), which eliminates from (3.48) the two extra coupling

constants preventing the match. Unfortunately, this is very hard here, because we do not

know the explicit form of the IR SW differential. Nevertheless, we can give some evidence

in this direction. First, as opposed to the previously-discussed examples, here we cannot

exclude an explicit dependence of λ′ from the new would-be CB operators. Thus, focusing

solely on the operator of largest dimension, and writing with no loss of generality

λ′ = f [x(M7, , z), z,M7] dz , (3.61)

eq. (3.55) reads15

∂f

∂x

(
2P (x) + (c2x

4 + c1x
2 + c0)z

)
− ∂f

∂M7
(16x15 + · · · ) = x2z , (3.62)

15Note that f must satisfy five more partial differential equations, which originate from the other holo-

morphic (1, 0)-forms. Given the degeneration in dimension of the other would-be CB operators, we do not

know the explicit expression of these extra equations.
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where we have renamed M7 := M7,−7. Consider changing x → x + g(z,M7), leaving

everything else invariant. This change of variable induces a modification of (3.61) which

amounts to a total derivative if and only if f depends linearly on x. But such a dependence

can never satisfy eq. (3.62) for generic values of the parameters. A similar argument can

be drawn swapping x and z. However, one can think of a more general change of variables,

such as

x→ x+ gx(M7, z) ,

z → z + gz(M7, x) .
(3.63)

The change of the IR SW differential then reads

∆λ′SW = [f(x+ gx, z + gz,M7)− f(x, z,M7))] dz + f(x+ gx, z + gz,M7)
∂gz(x,M7)

∂x
dx .

(3.64)

One condition for the above to be a total derivative is that the change of variables (3.63)

must be such that f(x+ gx(z,M7), z+ gz(x,M7),M7) looses any explicit dependence on z.

Though we lack a proof of this, we argue that this cannot happen compatibly with the six

differential equations that the function f must satisfy.

Consequently, the mismatch between CB operators and couplings that we found in the

IR would explain why this theory does not exhibit supersymmetry enhancement, despite

we found the right CB dimension.

The matching condition refines our necessary criterion for enhancement, and seems

to give a geometric meaning to the condition (3.12) of [19], which every theory displaying

supersymmetry enhancement should meet.

4 Conclusions

In this paper we have extended our geometric understanding of the phenomenon of SUSY

enhancement to 4d field theories of rank higher than 1. In [20] the origin of the enhancement

for rank-1 theories was traced in the holonomy reduction of the F-theory internal space

used to engineer the field theory. Here, instead, we have used class-S constructions to

track the enhancement down to a hyperkähler-structure restoration on the moduli space

of solutions of the underlying Hitchin system. As in [20], we have formulated a simple

necessary algebraic criterion for enhancement in terms of an auxiliary geometry given by

a Riemann-surface fibration: if SUSY enhancement occurs in the IR, this geometry needs

to factorize in such a way that the dimension of the base of the fibration reduces and

becomes equal to the genus of the fiber. We have refined this criterion, supplementing

it by a matching condition between CB operators of dimension 1 < D ≤ 2 and coupling

constants of dimension 2−D.16 For theories exhibiting enhancement, we have been able to

write down the complete SW geometry (including masses and couplings) of the IR theory,

and compute all conformal dimensions of CB operators by purely algebraic techniques,

i.e. without relying on any maximization procedure.

16Such a condition is trivially satisfied for all theories of rank 1 which exhibit enhancement.
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An important remark is in order. The above-mentioned factorization implies that some

of the fields hitting the unitarity bound disappear from the IR theory. Our technique is

able in a purely geometric manner to distinguish them from those becoming instead masses

and coupling constants of the IR theory: the functional form of the SW differential gets

modified by the flow in such a way that new changes of coordinates become available in

the IR and this allows us to get rid precisely of those monomials containing the decoupled

fields. It would be very interesting to further investigate the deeper geometric meaning of

these specific RG-flow-induced modifications of the SW differential. We hope to come back

to this matter in a future publication.

As already mentioned in the introduction, our treatment of class-S theories in this

paper does not cover irregular punctures featuring a nontrivial degeneracy among the

eigenvalues of the Hitchin field (Type III irregular punctures [10]). Let us briefly illustrate

here what the issue is. Consider a Hitchin field on the sphere (parametrized by the coordi-

nate z) with a puncture of Type III at z =∞ (we consider the SU(N) case for simplicity).

Locally around the puncture the field can be diagonalized and expanded in powers of z

as follows:

Φ = Mn+1z
ndz + · · ·+M0

dz

z
+M ′

dz

z2
+ . . . , (4.1)

where n > 0, and the Mi’s and M ′ are diagonal N × N traceless matrices. The matrices

M0, . . .Mn+1 encode the data defining the boundary condition at the irregular puncture.

The matrix M ′ and subsequent terms are determined instead by solving the differential

equation of the Hitchin system; the corresponding terms are not singular at infinity. In

the case of type III punctures, the matrices M0, . . .Mn+1 have degenerate eigenvalues and

the degeneracy for the matrix Mi is not arbitrary, but instead it is constrained by the

degeneracies of Mi+1.

Assuming the UV theory has a puncture of Type III, upon activating the Maruyoshi-

Song RG flow, we are left with a twisted Hitchin field Φ1 with the same boundary condition

as in (4.1) at z =∞:

Φ1 = Mn+1z
n+1
√
dz + · · ·+M0

√
dz +

M ′

z

√
dz + . . . . (4.2)

Again, the term proportional to M ′ is not singular at infinity and the matrix M ′ is not part

of the data defining the boundary condition, it is determined by solving the differential

equation of the twisted Hitchin system.

On the one hand, according to our prescription, the new Hitchin field Φ̃ in the infrared

should read

Φ̃ = Mn+1z
n+1dz + · · ·+M0dz +M ′

dz

z
+ . . . . (4.3)

On the other hand, the term proportional to M ′ is now singular at infinity and is therefore

part of the data defining the boundary condition. This in particular means that the eigen-

value degeneracy for M ′ cannot be arbitrary and is actually constrained by the form of the

matrix M0. For the twisted and ordinary Hitchin systems to be equivalent, it must be the

case that the form of M ′ in (4.2) as determined by the differential equation of the twisted

Hitchin system is automatically consistent with the constraint imposed by M0. This is not
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necessarily true. We conclude that in the case of Type III punctures the twisted Hitchin

system and the ordinary one are generically inequivalent, thus preventing any enhancement.

However, we are unable to decide whether accidental equivalences may occur, leading to

SUSY enhancements for theories with type III punctures. We plan to come back to this

issue in the near future.
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