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Abstract The complexity of nutrient–gene interactions

has led to the development of a new branch in the nutrition

sciences, the nutrigenomics. The individual susceptibility

to nutrients based on environment ? genotype ? pheno-

type interplay makes this new research field extremely

promising although complex. In this review, we highlight

and examine recent findings and the most relevant

hypotheses on the role of the diet in the onset and pro-

gression of cardiovascular diseases. The effect of

unbalanced diets on the cardiovascular system is consid-

ered one of the most important risk factors both for

ischemic and degenerative myocardial pathologies. The

concept that nutrigenomics could help in improving public

and personal health is becoming tangible indicating future

directions for basic and applied research in the patho-

physiology of cardiovascular disease.
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During the last two centuries, much progress have been

achieved in understanding how food is metabolized. Car-

bohydrates, proteins and fats are oxidized by the body, and

related energy values can be calculated. Since the early

twentieth century, considerable research on energy

exchange, nature of food components [36] and how nutri-

ents influence the right balance between health and disease

[27] has been carried out. Once the understanding of ma-

cronutrients was clarified, nutrition scientists turned their

attention to the elucidation of the role of micronutrients in

particular minerals and vitamins [23, 32, 33]. During the

last half of the twentieth century, most work focused on the

clarification of the functions of essential nutrients and the

definition of the role of micronutrients as enzyme and

hormone cofactors, and their subsequent roles in metabolic

pathways [2]. Also, the relevance of carbohydrates and fats

in different diseases, such as diabetes and atherosclerosis,

was discovered, and their actual and potential mechanisms

detailed [24, 51, 64]. However, the mechanism by which

nutrients influence health and disease status remained

unclear. For example, how can some individuals consume

high fat diets and yet show no evidence of atherosclerotic

disease? Genetic differences certainly were suspected, but

the elucidation of cellular, molecular and ultimately

genetic mechanisms in both healthy and unhealthy indi-

viduals proved to be a challenge.

Development of new tools enabling exploration of the

cause-effect phenomena at the molecular level stimulated

scientists to develop hypotheses and conduct experiments

to lay the foundation for a deeper level of understanding of

gene-diet interactions. Today, an emerging field of nutri-

tional research focuses on identifying the molecular

interactions between nutritional bioactive components and

processes through which genome-encoded proteins are

expressed. Discoveries in genomics offered unpredictable

possibilities for more dynamic scientific investigations

based on understanding the effects of nutrients in processes

at molecular-level as well as the variable effects that

nutrients and non-nutritive dietary components could have

on each individual. The analysis of gene–nutrient interac-

tions rapidly became a focal point of applicative research,

since several types of environmental stimuli are able to
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modify genomes and diet is by far the most important of

them. Furthermore, the gastrointestinal system is an inter-

face between the external environment and the body and

functions to extract nutrients from food as well as handle

the non-nutrient components in foods. Investigation of how

genes and gene products metabolize nutritional factors and,

conversely, how dietary compounds regulate gene expres-

sion by determining phenotype modification has been

defined as ‘‘nutrigenomics’’.

The tenets of nutrigenomics are essentially based on the

concepts that: (1) diet can be an important risk factor for a

wide number of diseases; (2) dietary compounds can

directly or indirectly interact with the genome by altering

gene expression; (3) the individual genetic pattern can

influence the balance between physiological and patholog-

ical condition determined by diet; (4) several diet-regulated

genes can play a fundamental role in the incidence and

progression of many chronic diseases; (5) a personalized

diet on the basis of nutritional status and genotype can be

very helpful in preventing and curing chronic diseases. The

eventual implementation of these concepts in every-day

clinical practice promises to revolutionize the preventive

and therapeutic approach to many degenerative diseases

thereby reducing the need for conventional pharmaceutical

therapy. At present, this highly innovative methodology is

in its embryonic phase and needs extensive investigation

and unquestionable confirmation by experimental and

human studies before entering routine clinical use. Never-

theless, the body of knowledge about nutrient-gene

interaction is rapidly increasing in different medical areas

(cancer, metabolic diseases, cardiovascular diseases

(CVD), etc.). Among others, great attention is paid to the

potential effects of differently formulated diets on genes

involved in the pathogenesis of CVD, the major cause of

mortality and morbidity worldwide. An individual’s likeli-

hood of CVD is determined by his or her genetic profile, as

well as on the individual’s age, gender, and lifestyle.

Therefore, the identification of genes potentially activated

by specific dietary components is of paramount relevance in

establishing efficient preventive strategies for patients at

risk of CVD. Thus moderating environmental factors which

we are exposed to over a lifetime, such as diet, potentially

might have the greatest impact on CVD risk. Ordovas [42,

43] has identified so far several polymorphic loci in genes

known to influence cardiovascular health. He estimated that

hundreds of genes maybe ultimately introduced into a risk-

analysis database. The author has also proposed four main

components under genetic control that contribute to coro-

nary artery disease risk: high blood lipids, impaired glucose

tolerance and diabetes, high blood pressure and abdominal

obesity [44] (Fig. 1).

In the last few decades, much attention has been focused

on plasma lipoprotein composition as one of the most

important risk factors for CVD. Genetic variability in

humans for all the known lipid-related genes and some

variants associated with an abnormal lipid metabolism and

plasma lipoprotein profiles have been extensively studied

[7, 52]. Evidence suggests that variation in the genes for

apolipoprotein (apo) A-I, apo A-IV, apo B, and apo E

contributes to the heterogeneity in the lipid response to

dietary intervention. However, the effects of genetic vari-

ation are not consistent and are sometimes conflicting,

making recommendation of the use of genetic profiling to

determine genetic responders to dietary interventions and

thus tailoring therapeutic diets premature [37]. Dietary

effects are not only confined to blood components. Anti-

oxidant nutrients and related bioactive compounds

common in fruits and vegetables as well as in high-fibre

diets protect against environmental toxic insults to the

vascular endothelium by down-regulating signalling path-

ways involved in inflammatory responses and

atherosclerosis [21, 28]. Epidemiologic studies suggested

that a high polyphenol intake from fruits and vegetables is

associated with decreased risk for CVD by improving

endothelial function and inhibiting platelet aggregation

[61]. However, the biological mechanisms through which

fibres and/or flavonoids influence the cardiovascular sys-

tem are still to be fully elucidated.

Observational studies on Greenlandic population, in

which the prevalence of cardiovascular pathologies were

very low, supported subsequent studies which investigated

whether marine x-3 polyunsaturated fatty acids (PUFAs),

such as EPA and DHA, could exert beneficial effects on the

cardiovascular system [6, 29, 41]. This positive effect was

hypothesized since Greenlandic typical diet is essentially
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Fig. 1 Risk factors for cardiovascular diseases (after Ordovas [44])
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composed by fish containing high quantity of x-3 PUFAs

[5]. Subsequently, clinical trials and in vivo and in vitro

experimental studies have demonstrated that x-3 PUFAs

protect against several cardiovascular disorders as well as

myocardial infarction, arrhythmias, hypertension and ath-

erosclerosis [3, 14, 54, 65]. Fundamental clinical trials,

such as the GISSI prevention study (Italian Group for the

Survival Study in the Infarction) [16] and the Diet And

Reinfarction Trial (DART) [8], performed on patients with

a history of ischemic stroke, have shown a positive direct

relationship between x-3 PUFAs consumption and a sig-

nificant reduction, more than 30%, in the reinfarction risk.

In order to identify basic mechanisms through which x-3

PUFAs counteract CVD, several studies have been per-

formed demonstrating that this class of lipids determine

multiple effects on vascular structure and function. In vivo

experimental studies showed a moderate blood pressure

decrease in hypertensive rats [13] and in humans treated

with low doses (4 g/day) of x-3 PUFAs (particularly

DHA), but not with high doses [1, 39]. Furthermore, EPA

and DHA display endothelium-independent and endothe-

lium-dependent vasorelaxing effects. In the latter case, it

has been observed that x-3 PUFAs suppress the synthesis

of endothelium-derived contraction factors (EDCF) and

increase the production of endothelium relaxing factors,

such as nitric oxide (NO) and prostaglandin-1 [17, 30, 55].

Endothelium-independent mechanisms of x-3 PUFAs are

essentially based on the maintenance of low intracellular

Ca2+ concentration in vascular smooth muscle cells

(VSMCs) in order to reduce vasoconstriction [13]. More-

over, the x-3 PUFAs-induced NO increase in endothelial

cells can significantly reduce platelet aggregation, leuko-

cyte adhesion and VSMC proliferation and migration [4,

12, 22]. This action is carried out by modulating the

platelet-derived growth factor (PDGF) transduction path-

way [56] or the cyclin-dependent kinase-2 activity [47]. In

addition, the plasma triglyceride pro-atherosclerotic effect

is strongly reduced by x-3 PUFAs in a dose-dependent

manner [20, 50]. To date, this effect is so well defined that

EPA and DHA are currently used as therapeutic drugs in

the hypertriglyceridemia treatment. The anti-inflammatory

effect of x-3 PUFAs has also beneficial repercussions in

the development of atherosclerosis and thrombosis pro-

cesses through the atherosclerotic plaque stabilization and

the reduction of macrophages and lymphocyte infiltration

[10, 57, 58]. In contrast, the knowledge concerning the

anti-inflammatory effects of x-3 PUFAs on the myocar-

dium is limited to a potent anti-arrhythmic action that has

been described both in vivo on myocardium [38, 40] and in

vitro on cardiomyocytes [26, 31]. The presence of PUFAs

in cardiomyocyte membrane phospholipids modulates Na+,

K+ and Ca2+ channels’ activity [62, 63] causing an electric

stabilization of cells and thus prevention of arrhythmias.

This stabilizing action influences also the heart rate

throughout the autonomous nervous system [9]. No other

substantial information is presently available concerning

basic mechanisms supporting observations from epidemi-

ologic studies. In particular, nutrient effects on genes

expressed in the myocardium and their potential relevance

in cardiovascular health and disease are totally unknown.

Recently, as shown in Fig. 2, in an experimental model of

hereditary cardiomyopathy, it has been demonstrated that

x3-PUFAs are able to counteract plasma membrane

Fig. 2 Morphological analysis of hamster hearts. Light microscopy

micrographs of paraffin-embedded ventricular sections (4 lm) stained

with haematoxylin and eosin. Left ventricular sections displaying: a
normal morphology in control healthy hamster; b large areas of

myofibril loss in the myocardium of cardiomyopathic hamster fed

with standard diet; c myofibril loss areas almost completely absent in

the myocardium of cardiomyopathic hamster fed with a diet

supplemented with x3-PUFAs. Scale bars = 50 lm
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degradation preserving physiological signals from the

membrane surface to the nucleus and reactivating regular

gene expression in otherwise damaged cardiomyocytes

[15].

Another possible mechanism through which nutrients

can directly modulate myocardial genes involves the acti-

vation of the transcription factor peroxisome proliferator-

activated receptor-a (PPAR-a), but to date no conclusive

data exist supporting this hypothesis. However, it can be

speculated that nutrients could modulate cardiovascular

function through dual signaling mechanisms: directly

through binding or modulating transcription factors (e.g.

PPAR alpha) or indirectly modifying cell membrane

composition and triggering different intracellular signalling

patterns [45].

In addition to PUFAs, several other nutrients can

potentially be involved in CVD aetiology. It has been

demonstrated for example that retinoic acid prevents

medial thickening of intramyocardial and intrarenal

arteries and perivascular and ventricular fibrosis in the

heart [34]. Heart development is known to be sensitive to

retinoid concentrations; a specific pattern of malforma-

tions is observed in both vitamin A-deficiency and

retinoid-toxicity states. Dickman and Smith [11] suggested

that retinoids may affect both morphogenesis and myofi-

bril formation in the developing heart. Lycopene is one of

the major carotenoids contained in a vegetable-rich diet.

Recently the acyclic form of b carotene has been inves-

tigated in epidemiologic studies in which high circulating

lycopene concentrations were associated with reductions

in cardiovascular disease. In particular, lycopene plays a

fundamental role in the early stages of atherosclerosis [49]

and emerging evidences suggest its possible role in the

primary prevention of CVD. Furthermore, the phytoanti-

toxin resveratrol (RV), a plant-derived polyphenol with

phytoestrogenic properties, protects the cardiovascular

system by numerous mechanisms including defence

against ischemic-reperfusion injury, promotion of vasore-

laxation, protection and maintenance of intact

endothelium, anti-atherosclerotic properties, inhibition of

low-density lipoprotein oxidation, suppression of platelet

aggregation and estrogen-like actions [19]. A molecular

study examining different pathways that may contribute to

the beneficial effects of resveratrol demonstrated its pos-

sible inhibition of angiotensin II-induced VSMC

hypertrophy, by interfering with the PI3K/Akt, p70S6K and

the ERK 1/2 signaling pathways [18]. Moreover, the an-

tiatherogenic (i.e. antiinflammatory) activity of RV on

human endothelial cells interferes with nuclear factor-jB

(NF-jB)-dependent transcription only when cells are

stimulated at least overnight with RV alone or with TNFa,

while a higher dose treatment does not influence such

activity [48]. Finally, the dietary intake of methionine, the

key amino acid in homocysteine metabolism, is suggested

to be a risk factor for CVD. In a recent epidemiologic

study, Virtanen et al. [60] concluded that long-term,

moderately high dietary methionine intake may increase

the risk of acute coronary events in middle-aged Finnish

men.

Interestingly, in a very recent paper Ordovas and

Mooser [46] focused their attention on the role of micro-

biota as a further determinant of the CVD risk, since it has

been demonstrated that oral and intestinal microrganisms

interact with the host genome and may play an important

role in the development of diseases such as cancer,

inflammatory, allergic and other age-related degenerative

pathologies [25, 35, 59]. This concept places metagenom-

ics—a new field of research that integrates molecular

biology and genetics to identify and characterize the

genetic material from environmental samples—as a rele-

vant area of future research opening new perspectives to

the knowledge of genome-environment interactions and

related new approaches to human healthcare.

In recent years, significant advances have been made in

the understanding of the complex interactions between

lifestyle and genotype and their subsequent effects on

health and disease. The increasing awareness of gene-

nutrient interactions and the potential of an individual’s

genetic profile to alter nutrient requirements and respon-

siveness [53], as well as to modify their risk of developing

diseases, will be the key to understanding the pathology

and the progression of polygenic of metabolic and non-

metabolic disorders [15]. The study of such interactions

may provide therapeutic alternatives tailored to the indi-

vidual and based on genetic background.

This new therapeutic frontier expands the current con-

cept of personalized nutrition envisaged by several

nutritionists in order to counteract ‘‘metabolic diseases’’;

thus in the future the most appropriate nutritional regimen

should be tailored for each person at birth to maintain

health and prevent disease, according to each individual

genotype.
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