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Abstract
We show that the Aharonov–Bohm effect finds a natural description in the setting of
QFT on curved spacetimes in terms of superselection sectors of local observables.
The extension of the analysis of superselection sectors from Minkowski spacetime
to an arbitrary globally hyperbolic spacetime unveils the presence of a new quantum
number labelling charged superselection sectors. In the present paper, we show that
this “topological” quantum number amounts to the presence of a background flat
potential which rules the behaviour of charges when transported along paths as in the
Aharonov–Bohm effect. To confirm these abstract results, we quantize the Dirac field
in the presence of a background flat potential and show that theAharonov–Bohmphase
gives an irreducible representation of the fundamental group of the spacetime labelling
the charged sectors of the Dirac field. We also show that non-Abelian generalizations
of this effect are possible only on spacetimes with a non-Abelian fundamental group.
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1 Introduction

The analysis of superselection sectors is one of the central results of algebraic quantum
field theory. It allows to derive from first principles particle statistics, the particle–
antiparticle correspondence, quantum charges and, as a consequence, the appearance
of global gauge symmetries, independently of the model under consideration [12].

In the original formulation, superselection sectors were defined by Doplicher, Haag
and Roberts in terms of localized and transportable endomorphisms ρ(o) : A → A of
the global observable C∗-algebraA, where o is a double cone inMinkowski spacetime.
In this way, a new representation (sector)

π : A → B(H0), π := π0 ◦ ρ(o),

is defined starting from a vacuum representation π0. The term localized indicates that
ρ(o) � Ae is the identity on any local algebra Ae ⊂ A generated by observables
localized in a double cone e causally disjoint from o, while transportablemeans that,
for any double cone a, ρ(o) is unitary equivalent to an endomorphism localized in a.
This yields the DHR selection criterion [20].

It was later recognized by Roberts that an equivalent formulation of superselection
sectors could be achieved by considering charge transporters, that is, families z of
unitaries z(a, o) ∈ Aa , o ⊂ a, fulfilling a cocycle relation. Each z defines a family
{ρz(o)}o of localized endomorphisms, such that

z(a, o) ρz(o)(A) = ρz(a)(A) z(a, o), A ∈ A.

In Minkowski spacetime, this approach turns out to be equivalent to the original one
[29,30]. Yet things change in the context of curved spacetimes M , mainly due to
topological obstructions that arise when the family of diamonds, the analogues of
double cones, is not upward directed under inclusion. A first point is that the notion
of an algebra of global observables is not well-defined and must be replaced by the
universal algebra, indicated with �A [16], having the property of lifting any family of
representations

πo : Ao → B(H) : πa � Ao = πo, o ⊂ a.

A second point is that localized endomorphisms alone cannot encode the whole phys-
ical content of sectors [6,32]. Therefore, the use of charge transporters becomes
necessary in the more general scenario of a curved spacetime M .

A condition that must be imposed on z in order to get a well-defined representation
π of �A is

z p := z(a, on−1) · · · z(o2, o1)z(o1, a) ≡ I ,

where p := {a, o1, . . . , on−1} is a suitable covering (path-approximation, Sect. 2.2) of
an arbitrary loop (closed curve) γ : [0, 1] → M . This condition is called topological
triviality, and the justification of this terminology is given by the fact that z p only
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depends on the homotopy class of γ . The question of what happens if topological
triviality is not imposed then naturally arises. An answer is given in a series of papers,
in which the following facts were established:

1. Statistics, charge content and particle–antiparticle correspondence arewell defined
on generic charge transporters. Thus, they have all the properties that allow to
assign a physical interpretation to topologically trivial transporters. Moreover,
each z defines a representation

σ : π1(M) → U(n), (1)

which affects the transport of localized endomorphisms along loops. The integer
n ∈ N is called the topological dimension [6].

2. Generic charge transporters do not define representations of �A. Rather, they define
representations of the net AKM := {Ao}o on flat Hilbert bundles over M , which
correspond to covariant representations of a universal C∗-dynamical system α :
π1(M) → autA∗ encoding parallel transport along loops [33–35]. It turns out
that �A is a quotient of A∗, corresponding to the set of representations of A∗ with
trivial action of π1(M) on the Hilbert space.

The physical interpretation of these results was proposed by Brunetti and the second
named author in the scenario of the Aharonov–Bohm effect. There, superposition of
wavefunctions of charged particles is affected by phases (parallel transports) of type

σ(γ ) = exp
∮

γ

A, (2)

where A is a potential with vanishing electromagnetic field, and it is natural to note the
similarity with (1). The suitable model in which such an interpretation can be tested
at the level of quantum field theory is the Dirac field, describing charged quantum
particles in a curved spacetime M . A step in this direction has been made in [38],
where it is proven that introducing a background potential represented by a closed
1–form yields a representation of the observable netAKM of the free Dirac field over
a flat Hilbert bundle over M .

In the present paper, we complete the above partial results and perform an analysis
of the superselection structure of AKM . Our main results show that:

• Superselection sectors z define background flat potentials Az , that are, at the math-
ematical level, flat connections on suitable flat Hermitean vector bundlesLz → M
whose rank coincides with the topological dimension of z (Theorem 2.4). We shall
be interested, in particular, in those sectors with topological dimension 1, so that
Lz is a line bundle.

• Superselection sectors with topological dimension 1 and “charge 1”, in a sense that
shall be clarified later, are in one-to-one correspondence with twisted field nets.
These are representations of the field net of the Dirac field on flat Hilbert bundles
over M with monodromy given by the “second quantization” of the monodromy
of Lz (Theorem 4.4);
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• When no torsion appears in the first homology group of the spacetime, Lz is
topologically trivial. In this case, we are able to construct a twisted field solving
theDirac equationwith interaction term Az , and the representation (1), with n = 1,
takes the form (2) (Theorem 4.3). This occurs in physically relevant scenarios such
as de Sitter and anti-de Sitter spacetimes, as well as the spacetime complementary
to the ideally infinite solenoid of the Aharanov-Bohm apparatus.

Both the twisted field net and the twisted Dirac field are indistinguishable from the
analogous untwisted objects in simply connected regions of M . This is the reason why
AKM is able to detect them. The non-trivial parallel transport carried by the family of
localized endomorphisms defined by a sector is interpreted in terms of the background
flat potential, shedding some light on the role that the corresponding interaction plays
on quantum charges.

The paper is organized as follows.
In Sect. 2, we recall results from [6,32] describing the superselection structure, say

Z1(AKM ), of a generic observable net. Moreover, by applying a result by Barrett [3],
for any sector z we exhibit a flat u(n)-connection such that (1) is the associated parallel
transport. This yields a Chern character defined on Z1(AKM ) with values in the odd
cohomology Hodd(M, R/Q) of the spacetime (Remark 2.3). The first component of
the Chern character will be shown to correspond to Aharonov–Bohm phases in the
subsequent sections.

In Sect. 3, we focus on the case in which AKM is the observable net of the free
Dirac field. By applying results in [4], we show that Haag duality holds in the GNS
representation πω of any pure quasi-free state ω of the Dirac-CAR algebra defined
on the spinor space of a globally hyperbolic spacetime (Theorem 3.2). This, and the
I I I -property fulfilled by the local Von Neumann algebras living in πω, [8], yields two
key properties for the analysis of sectors of AKM . Finally, we construct a family of
topologically trivial sectors of AKM labelling the electron–positron charge (Remark
3.7).

In Sect. 4, we construct Dirac fields interacting with background potentials A,
which are closed 1–forms (d A = 0). These fields are “twisted”, as in [24], namely
they are defined on the space of sections of the Dirac bundle tensor a flat line bundle
with connection A. We show that these fields are in one-to-one correspondence with
sectors in Z1(AKM ) such that Lz is topologically trivial (Theorem 4.3). The parallel
transport defined by A appears, from one side as a byproduct of the interaction term
in the Dirac equation, and on the other side as the parallel transport of DHR-charges
(localized endomorphisms) of AKM .

In Sect. 5, we draw our conclusions and we illustrate further developments, in
particular forπ1(M) non-Abelian and generalizedDirac fieldswith non-Abelian gauge
group.

In “Appendix A”, we prove a technical result, allowing to adopt the usual Haag
duality instead of the punctured one in the analysis of sectors.

Some of the results of the present paper have been presented in [39] in a simplified
form, in particular by avoiding to discuss Haag duality and without going in details
on the structure of twisted Dirac fields.
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2 Aharonov–Bohm effects in terms of sectors

Aim of the present section is to describe the Aharanov–Bohm effect in terms of super-
selection sectors of the net of local observables on a 4-d globally hyperbolic spacetime
M . From the intrinsic viewpoint of the electromagnetic field and of the vector potential,
this effect has been studied instead in [5,37].

We start by recalling some basic facts on globally hyperbolic spacetimes, and we
introduce the net of local observables defined in a reference representation. We then
discuss DHR-charges of the observable net in terms of charge transporters. These
are cocycles depending on a suitable family of regions of the spacetime, diamonds,
taking values in the unitary group of the observable net. The key observation is that
diamonds encode the fundamental group π1(M) of the spacetime M and cocycles
define representations ofπ1(M). TheAharonov–Bohmeffect ismanifested in cocycles
which define nontrivial representations of the fundamental group of the spacetime.We
shall prove that these cocycles are nothing but the holonomy of smooth flat connections
acting on a DHR charge. The form of the action is ruled by the charge quantum
numbers.

The material appearing in the present section is essentially a convenient summary
of [6,32]. Exceptions are Lemma 2.2 and Theorem 2.4, where the interpretation in
terms of flat connections is given.

2.1 Local observables in a globally hyperbolic spacetime

Let M denote a four-dimensional, connected, globally hyperbolic spacetime. Causal
disjointness relation is a symmetric binary relation ⊥ defined on subsets of M as
follows:

o ⊥ õ ⇐⇒ o ⊆ M\J (õ) , (3)

where J denotes the causal set of o. The causal complement of a set o is the open set
o⊥ := M\cl(J (o)). An open set o is causally complete whenever o = o⊥⊥.

A distinguished class of subsets of M is given by the set KM of diamonds o ⊂ M
[6, §3.1]. More precisely, a diamond o ⊂ M is an open subset such that there exists a
spacelike Cauchy surface �, a chart (U , ϕ) of �, and an open ball B ⊂ R

3 such that

o = D(ϕ−1(B)), cl(B) ⊂ ϕ(U ) ⊂ R
3,

where D(ϕ−1(B)) is the domain of dependence of ϕ−1(B), while cl(o), the closure
of o, is compact. Observe that diamonds are open, relatively compact, connected and
simply connected, causally complete, and the causal complement o⊥ is connected.
Moreover, diamonds form a base of neighbourhoods for the topology of M .

In the present paper, we are interested in describing the observable net in a refer-
ence representation playing the same rôle as the vacuum representation in Minkowski
spacetime. This is defined in terms of a net AKM given by the assignment of a von
Neumann algebra Ao ⊂ B(H0) for any a ∈ KM . We assume the following standard
properties:

• (Isotony) Ao ⊆ Aa for o ⊆ a,
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• (Causality) Ao ⊆ A′
a for o ⊥ a, where A′

a stands for the commutant of Aa ,
• (The Borchers property) for any inclusion cl(o) ⊂ õ, if E is a non-vanishing
orthogonal projection ofAo then there is an isometry V ∈ Aõ such that VV ∗ = E ;

• (Haag duality) Ao = ∩{A′
a : a ⊥ o}, for any o ∈ KM .

In addition, AKM is assumed to be irreducible (∪oAo)
′ = C1, and outer regular

Ao = ∩cl(o)⊂aAa .
Meaningful examples satisfying the above properties are the observable net of the

free scalar field [40] and, as we shall see, and that of the free Dirac field, in represen-
tations induced by pure quasi-free Hadamard states. Anyway, the above properties are
expected to hold for any Wightman field over M .

2.2 1-cocycles of the observable net and topology

We introduce the mathematical structure underlying the charges studied in [6]. The
main fact is that the theory is encoded by charge transporters which define repre-
sentations of the observable net by means of Haag duality. A crucial mathematical
property is that charge transporters satisfy a cocycle equation with respect to the par-
tially ordered set (poset) KM and, as a consequence, give a representation of the
fundamental group of the spacetime. In the present paper, we give an equivalent but
simplified exposition of cocycles which do not rely on simplicial sets.

We start by recalling some elements of the “geometry” of KM , the poset of dia-
monds ordered under inclusion ⊆. A pair a, o ∈ KM is said to be comparable
whenever either o ⊆ a or a ⊆ o, and in this case we write a ≷ o. Any compara-
ble pair o ≷ a defines two oriented “elementary” paths: (a, o) : o → a, starting from
o and ending to a, and its opposite (a, o) := (o, a) : a → o. We call the support of
(a, o) the set |(a, o)| := a∪o. Arbitrary paths are obtained by composing elementary
paths: for instance, given (a, o) and (o, ã) we can form the path

p := (a, o) ∗ (o, ã) : ã → a

and the opposite p : a → ã of p as the path

p := (a, o) ∗ (o, ã) := (o, ã) ∗ (a, o) = (ã, o) ∗ (o, a).

The composition and the operation of taking the opposite extend to arbitrary paths in
an obvious way: given p : a → o and q : o → õ then

q ∗ p : a → õ, q ∗ p = p ∗ q : õ → a.

A path of the type p : o → o is called a loop over o. It is verified that M is connected
if, and only if, KM is pathwise connected, meaning that any pair of diamonds a, o
can be joined by a path p : a → o [32]. There is a homotopy equivalence relation ∼
on the set of paths: the quotient by ∼ of the set of loops over a fixed a ∈ KM gives
the homotopy group π1(KM, a) which does not depend, up to isomorphism, on a,
because of pathwise connectedness. The isomorphism class is called the fundamental
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group of KM , written π1(KM). A key result is that, given o ∈ KM and xo ∈ o, there
is an isomorphism

π1(M, xo) � [γ ] �→ [pγ ] ∈ π1(K , o) , (4)

where π1(M, xo) is the homotopy group of M based at xo ∈ o [32]. In the previous
expression, pγ is a path-approximation of the closed curve γ : [0, 1] → M : that is, a
path

pγ = (on, on−1) ∗ . . . ∗ (o2, o1) ∗ (o1, o0)

such that there is a partition

t0 = 0 < t1 · · · < tn−1 < tn = 1 : γ (ti ) ∈ oi and γ ([ti−1, ti ]) ⊂ oi−1 ∧ oi , ∀i .

Thus, closed curves γ and β are homotopic, i.e. [γ ] = [β], if and only if pγ ∼ pβ ,
i.e. [pγ ] = [pβ ].
Remark 2.1 We highlight a few consequences of the previous result which are of
relevance to this paper. If KM is directed under inclusion, then π1(KM) is trivial
[32]. So, if π1(M) is not trivial, then KM is not upward directed. This is actually
the physical situation we are interested in, since Aharonov–Bohm type effects appear
when the spacetime has a non-trivial fundamental group.

We now introduce the set Z1(AKM ) of 1-cocycles of the observable net, i.e. the
charge transporters. A 1-cocycle of the netAKM is a map assigning to any comparable
pair o ≷ a ∈ KM a unitary operator z(a, o) ∈ A|a,o|, fulfilling the property z(a, o) =
z(o, a)∗ and the cocycle equation

z(ô, o) = z(ô, a) z(a, o) , o ⊆ a ⊆ ô. (5)

The previous definition implies z(o, o) = 1 for any o ∈ KM , since z(o, o) =
z(o, o)z(o, o) and z(o, o) are unitary. 1-cocycles are extended to paths by defining

z(p) := z(o, on) · · · z(o2, o1)z(o1, a) , p = (o, on) ∗ · · · ∗ (o2, o1) ∗ (o1, a) .

Note that z(p) = z(p)∗. Any z ∈ Z1(AKM ) preserves the homotopy equivalence
relation, so that the mapping [p] �→ z(p), [p] ∈ π1(KM, o), is well-defined. By (4),
we get the representation

σz : π1(M, xo) → U(H0), σz([γ ]) := z(pγ ) , [γ ] ∈ π1(M, xo), (6)

where pγ : o → o is a path-approximation of γ . A 1-cocycle z is said to be topologi-
cally trivial whenever σz is the trivial representation.

An intertwiner between two 1-cocycles z, z̃ is a map ta ∈ Aa , a ∈ KM , fulfilling
the relations ta z(p) = z̃(p) to for all p : o → a. The set of intertwiners between z, z̃
is denoted by (z, z̃). The 1-cocycles z, z̃ are said to be unitarily equivalent if there
exists t ∈ (z, z̃) such that ta is unitary for any a ∈ KM . The 1-cocycle z is said to
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be irreducible whenever (z, z) = CI, where I ∈ B(H0) is the identity, and trivial
if it is unitarily equivalent to the trivial 1-cocycle ι(a, o) ≡ I. It is easily seen that
cocycles form the set of objects for a category Z1(AKM ), with the corresponding sets
of intertwiners as arrows. We denote the full subcategory of Z1(AKM ) whose objects
are topologically trivial 1-cocycles by Z1

t (AKM ).

2.3 Charge quantum numbers

The physical content of 1-cocycles is encoded in the charge quantum numbers associ-
ated with their equivalence classes. In this section, we shall recall how these quantum
numbers arise and explain the nature of these charges. As already mentioned, these
results have been proved in [6,32]. There is, however, an important difference: in the
present paper, we assume Haag duality, whilst in the above references a stronger form
of duality is used, the punctured Haag duality. In the appendix, we show succinctly
that Haag duality suffices.

Using the defining properties of the observable net, one can introduce a tensor prod-
uct× (charge composition) and a permutation symmetry ε (statistics), making Z1(A)

and Z1
t (A) symmetric, tensor C∗-categories. In particular, one can identify a subset

of 1-cocycles called objects with finite statistics which turn out to be a finite direct
sum of irreducible 1-cocycles. The unitary equivalence class of any such irreducible
object z is classified by the following charge quantum numbers:

• the statistical phase κ(z) ∈ {−1, 1} distinguishing between Fermi and Bose statis-
tics;

• the statistical dimension d(z) ∈ N giving the order of the (para)statistics;
• the charge conjugation assigning to z a conjugated irreducible 1-cocycle z̄ which
has the same statistical phase and dimension as z.

We stress that objects with statistical dimension 1 obey the Bose/Fermi statistics
according to their statistical phase. We denote the subcategory of 1-cocycles with
finite statistics by Z1

AB(A) and its subcategory of topologically trivial 1-cocycles by
Z1
DHR(A).
To complete the physical interpretation, we need to observe that any 1-cocycle

z ∈ Z1
AB(A) splits in two parts: the charged and the topological component. To see

this, we need a path frame Pe consisting of a collection of arbitrary paths pae : e → a
joining a fixed diamond e, the pole, with any a, and such that pee is the trivial path
(e, e). Once a path frame Pe is given, the charged component of z is a topologically
trivial 1-cocycle zc in Z1

DHR(AKM ) defined as

zc(ã, a) := z(pãe ∗ pea) , a ≷ ã, (7)

where peã is the opposite pãe of pãe. This cocycle encodes the charge content of z as
the maps z �→ zc and (z, z̃) � s → s ∈ (zc, z̃c) define a functor

Z1
AB(AKM ) → Z1

DHR(AKM ), (8)
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preserving the tensor product, the permutation symmetry and, hence, the conjugation.1

On the other end, setting

uz(ã, a) := z(peã ∗ (ã, a) ∗ pae) , ã ≷ a , (9)

one gets a 1-cocycle uz , the topological component of z, taking values in the algebra of
the chosen pole e, i.e. uz(ã, a) ∈ Ae for all ã ≷ a. It encodes the topological content
of z since it defines the same representation (6). Finally, the elements of Z1

AB(AKM )

are completely characterized by their topological and the charged component since

z(ã, a) = (uz��zc)(ã, a) = αãe(uz(ã, a)) · zc(ã, a) , ã ≷ a , (10)

where αãe(A) := zc(pãe) A zc(pãe)∗. The composition �� is called the join. These
constructions depend neither on the choice of the pole e nor on that of the path frame
Pe: different choices lead to equivalent, in the corresponding categories, charged and
topological components.

Now, any 1-cocycle z defines representations of the observable net which are sharp
excitations of the reference one. To be precise, given a diamond o define

ρz(o)a(A) := z(p)Az( p̄) , a ∈ KM, A ∈ Aa, (11)

where p : e → o is an arbitrary path such that e ⊂ a⊥. By (70), given in appendix,
this definition is independent of p, and ρz(o)a : Aa → B(H0) is a unital morphism
satisfying the relation ρz(o)a = ρz(o)ã � Aa for any inclusion a ⊆ ã. This amount to
saying that the family ρz(o) := {ρz(o)a}a∈KM defines a Hilbert space representation

ρz(o) : AKM → B(H0) (12)

in the sense of [33]. Furthermore, always using the property (70), we find that ρz(o)
is localized in o, that is,

ρz(o)a = idAa , a ⊥ o, (13)

and transportable, i.e.

z(p)ρz(o) = ρz(a)z(p), p : o → a, (14)

where the above equation should be read as

z(p) · ρz(o)e(A) = ρz(a)e(A) · z(p), e ∈ KM, A ∈ Ae. (15)

Equation (13) says that ρz(o) describes a charge localized in o, since it equals the
reference representation in the causal complement of o, whereas (14) illustrates the
role of z as a charge transporter along paths. The important point is that the charges
described by AB and DHR cocycles are the same since ρz(o) = ρzc (o) for any
o ∈ KM . This is an immediate consequence of the path independence of the definition

1 The functor is not full, as we may have (z, z̃) � (zc, z̃c) [6].
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of ρz(o) and of the definition of the charged component zc. However, an important
difference arises when the charge is transported from o to a along to different paths
p, q : o → a. If z is of DHR type, then the transport is path-independent,

z(p)ρz(o)z(q̄) = ρz(a),

in fact z(p ∗ q̄) = 1; whilst if z is of AB type, then

z(p)ρz(o)z(q̄) = z(p ∗ q̄)ρz(a) = uz(p ∗ q̄)ρz(a) . (16)

Hence, z(p ∗ q̄)ρz(a) depends on the homotopy equivalence class of the loop p ∗ q̄ .
In particular, z(p ∗ q̄) �= 1 if p ∗ q̄ � 1. We conclude that the Aharonov–Bohm effect
manifests itself in sectors of AB type and, as we shall prove in the next sections, it is
due to a presence of a background flat potential.

2.4 DHR charges andWWW superselection rules

To briefly illustrate how the notion of DHR charge fits the traditional approach of
Wick, Wigner and Wightman (WWW), we assume that our observable net is obtained
by taking the gauge-invariant part of a field net (see [19] for details).

The scenario is that of a Hilbert spaceHphys on which a compact gauge group acts
bymeans of a unitary representationU : G → U(Hphys). It is given a netFKM of von
Neumann algebras Fo ⊆ B(H), o ∈ KM , that are typically generated by smeared
field operators ψ( f ), where ψ is a Wightman field and f are test functions with
supp( f ) ⊆ o. We define the gauge-invariant net F0

KM by setting F0
o := Fo ∩U (G)′,

where U (G)′ is the commutant of U (G). As well-known, Hphys splits into a direct
sum labelled by the irreducible representations κ of G,

Hphys � ⊕κHκ .

The spectral projections Eκ ∈ B(Hphys), EκHphys = Hκ , commute with F0
o for all

o ∈ KM , so F0
KM is reduced on each Hκ by defining πκ(F) := EκF , F ∈ F0

o . The
maps πκ define representations ofF0

KM and yield the superselection sectors according
to the standard WWW approach. In particular, we have the observable net AKM ,
Ao := E0F0

o ⊂ B(H0), where E0 is the projection onto the subspace of G-invariant
vectors H0.

By standard assumptions for field nets, for any κ and o there is a multiplet Vκ,o,i ∈
Fo, i = 1, . . . , dimκ , ofmutually orthogonal isometries with total support the identity,
transforming according κ and defining the unitaries

z(a, o) := E0

∑
i

Vκ,a,i V
∗
κ,o,i ∈ Aa, o ⊂ a.

These unitaries are charge transporters and define localized endomorphisms ρz(o)
such that ρz(o)◦π0 and πκ are unitarily equivalent representations ofF0

KM . Thus, πκ
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and ρz(o) carry the same physical information, yet ρz(o) has the advantage of being
intrinsecally defined on the observable net AKM .

2.5 Background flat potentials and the AB effect

In this section, we complete the picture drawn in the preceding sections aimed at
explaining the Aharonov–Bohm effect in terms of superselection sectors of local
observables. In particular, we shall prove that the topological component of 1-cocycles
is nothing but the holonomy of a flat connection. To this end, we shall use a result that
has been rediscovered by several authors.2 We refer in particular to a paper by Barrett
[3].

Before proceeding, it is convenient to specify the notion of flat connection. Let G
be a compact Lie group with Lie algebra g and P → M denote a smooth G-principal
bundle. We assume that P is trivialized on any diamond, and that it is locally constant
in the sense that it admits a set of locally constant transition maps

goa : o ∩ a → G, o, a ∈ KM .

Thus, dgoa ≡ 0, and following [25, §I.1-2] we define a flat connection on P as a
collection A of flat g-valued 1–forms Ao defined on o ⊂ M , fulfilling the relations

Aa �o∩a . = g∗
oa Aogoa �o∩a, o ∩ a �= ∅

(see [25, Eq.1.16]). When G = U(1), each goa is a phase and Aa �o∩a= Ao �o∩a ;
thus, the forms Ao can be glued and give a u(1)-valued 1–form that we denote again
by A. Because of flatness, and since u(1) � R, calling Z1

dR(M) the vector space of
closed real 1-forms on M , it holds

A ∈ Z1
dR(M), d A = 0. (17)

Now, following [6], if z ∈ Z1
AB(AKM ) is irreducible with statistical dimension d(z),

the von Neumann algebra

A(M, o) := {z(p) = uz(p) | p : o → o}′′ ⊆ Ao (18)

is a factor of type In with n ≤ d(z), where d(z) is the statistical dimension of z. This
amount to saying that A(M, o) ∩ A(M, o)′ = C1 and

UA(M, o)U∗ = 1H0 ⊗ Mn(C), (19)

for some unitary operator U : H0 → H0 ⊗ C
n . The integer n is an invariant of the

equivalence class of z which is called the topological dimension of z and it is denoted
by τ(z). Letting Po be a path frame and calling holAz (�(ã,a)) ∈ U(n) the holonomy

2 See, for example, [22] and references therein.
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over any closed curve �(ã,a) : xo → xo, xo ∈ o, approximated by poã ∗ (ã, a) ∗ pao,
the following result holds true

Lemma 2.2 Let z be an irreducible 1-cocycle of Z1
AB(AKM ) with topological dimen-

sion n := τ(z) and let Po be a path frame. Then, there exists a smooth U(n)-principal
bundle P z → M with a flat connection Az such that

uz(ã, a) = U∗(1 ⊗ holAz (�(ã,a))
)
U ∈ U(Ao) , ã ≷ a, (20)

where U is the unitary realizing (19).

Proof As observed in the previous section, z and its topological component define the
same representation σz (6) of the fundamental group of M . As the algebra A(M, o)
is a type In factor, there exists an irreducible n-dimensional representation σ of the
fundamental group of M such that

σz([�]) = uz(p�) = U∗(1H0 ⊗ σ([�]))U , [�] ∈ π1(M, xo), (21)

where U is the unitary realizing (19). The key observation is that the mapping � �→
σ([�]) assigning to any closed curve � over xo the unitary σ([�]) ∈ U(n) is a holonomy
map in the sense of Barrett [3, cfr. Section 2.4]. By Barrett’s reconstruction theorem
[3], � �→ σ([�]) is the parallel transport of a flat connection Az on a smooth U(n)-
principal bundle P z , that is, σ([�]) = holAz (�) for any closed curve � : xe → xe.
Explicitly,

P z := M̂ ×σ U(n), (22)

where M̂ is the universal covering of M carrying the well-known right π1(M)-action,
whilst M̂ ×σ U(n) is the quotient of M̂ × U(n) by the equivalence relation (y�, v) �
(y, σ (�)v), y ∈ M̂ , � ∈ π1(M), v ∈ U(n). Hence by (6) and (21) we have that

uz(p�) = U
(
I ⊗ holAz (�)

)
U∗ , (23)

for any loop p� and any closed curve � such that p� is a path approximation of �. Given
a comparable pair ã ≷ a, if we take the loop poã ∗ (ã, a) ∗ pao and a closed curve
�(ã,a) : xo → xo such that poã ∗ (ã, a) ∗ pao is a path-approximation of �(ã,a), the
proof follows from (21), (23) and from the definition of the topological component. ��

It is easily seen that a change of the path frame Po used in the previous proof yields
a representation σ ′ : π1(M, xo′) → U(n) unitarily equivalent to σ . This implies that
we find a flat connection A′z providing, up to conjugation, the same parallel transport
as Az .

Remark 2.3 (The Chern character on Z1
AB(AKM )) Let z denote an irreducible cocycle

and let σ : π1(M) → U(n), n := τ(z), denote the associated representation of the
fundamental group (21). By standard results in differential geometry, σ defines a flat
Hermitean vector bundle Ez → M with rank n,

Ez := M̂ ×σ C
n, (24)
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defined analogously to (22). Using the results in [7], we can define the Chern character

ccs : Z1
AB(AKM ) → Hodd(M, R/Q), ccs(z) := n +

n∑
k

(−1)k−1

(k − 1)! ck(E
z)modQ,

(25)
defined via the Chern–Cheeger–Simons classes ck(Ez) ∈ H2k−1(M, R/Z) [7, §4]
(here, for convenience Hodd(M, R/Q) includes by definition Z as the first direct
summand, so n ∈ Z is regarded as an element of Hodd(M, R/Q)). The interpretation
of ccs(z) is that of a generalized Aharonov–Bohm phase, as we shall see in the next
sections.

From now on, to emphasize the geometric aspects, we shall write

HolAz (ã, a) := uz(ã, a) , ã ≷ a,

instead of the expression appearing in (20).We can state the main result of this section.

Theorem 2.4 Let z be an irreducible 1-cocycle of Z1
AB(AKM )with d(z) = τ(z). Then,

the charged component zc is a multiplet of the type zc = �ζ , where �ζ := ζ ⊕ . . . ⊕ ζ

is a τ(z)-fold direct sum of a topologically trivial 1-cocycle ζ such that d(ζ ) = 1 and
κ(ζ ) = κ(z). Hence,

z(ã, a) =
{
HolAz���ζ

}
(ã, a) , ã ≷ a ,

where Az is the flat connection of the U(n)-principal bundle P z defined by z.

Proof In general, since
∑m

k=1 d(ζk) = d(τ ), the charged component can be written as
a direct sum of m irreducible and topologically trivial 1-cocycles zc = ⊕m

k=1ζk , with
m ≤ d(z) [6]. We prove that m = d(z). First of all observe that

A(M, e) ⊆ (z, z)e := {te , t ∈ (z, z)} ,

where the r.h.s. is a C∗-algebra formed by the component e of the intertwiners of (z, z).
Ifm < d(z), then the dimension of (z, z)e would be smaller that d(z)2 because any ζk
is irreducible. This leads to a contradiction because of the above inclusion and because
the dimension of A(M, e) is τ(z)2 and τ(z) = d(z) by assumption. This implies that
all ζk have statistical dimension 1 and, on account of the same dimensional argument
just used, that all ζk are equivalent. Thus, the proof follows by applying the previous
theorem to (10). ��
We shall refer to Az as the background flat potential associated with z.

Hence, an irreducible 1-cocycle z with statistical dimension d(z) = τ(z) is the
transporter of charge of Fermionic/Bosonic type in the presence of a background field
Az . If, in particular, d(z) > 1 then we see that the charge zc is a multiplet, and the
background field acting upon this multiplet, realizing the AB effect, is non-Abelian.
The background field quantifies how the charge depends on the homotopy equivalence
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of paths when transported along paths. Precisely, referring to (16), if p : o → a and
q : o → a then

z(p) ρz(o) z(q̄) = HolAz (p ∗ q̄) ρz(a),

so the final representation ρz(o) differs from ρz(a) by the factor HolAz (p ∗ q̄) (see
(15) for the notation).

The next result proves that non-Abelian AB effects can appear only in spacetimes
having a non-Abelian fundamental group.

Corollary 2.5 Let z ∈ Z1
AB(AKM )be irreduciblewith topological dimension τ(z) = 1.

Then, HolAz takes values in U(1) and

z(ã, a) = holAz (�(ã,a)) · zc(ã, a) , ∀ã ≷ a . (26)

When π1(M) is Abelian, this holds for any irreducible 1-cocycle.

Proof It is enough to observe that if τ(z) = 1 the topological component takes values in
U(1) and the joining reduces to the multiplication by the so-defined phase. Moreover,
if π1(M) is Abelian, then any irreducible representation of π1(M) is a phase. ��

Now, a principal U(1)-bundle P with a flat connection A is trivial if, and only if,

holA([�]) = exp
(
i
∮

�

A
)
, ∀�, (27)

where here � stands for any closed path onM . That such aP is trivial shall be illustrated
for convenience in the following Sect. 4.1; on the converse, it is well-known that any
trivial bundle has holonomy of the type (27). On the other hand, a flat principal U(1)-
bundle either is trivial or has non-trivial first Chern class in the torsion subgroup of the
singular cohomology H2(M) [17, Sec.3]. Thus, applying Corollary 2.5 we conclude:

Corollary 2.6 Let z ∈ Z1
AB(AKM ) be irreducible with τ(z) = 1, and σ : π1(M) →

U(1) denote the morphism (21). If P z is trivial, then

z(ã, a) = exp
(
i
∮

�(ã,a)

Az
)

· zc(ã, a) , ã ≷ a . (28)

When H2(M) has no torsion P z is always trivial, and (28) holds for all irreducible z
with τ(z) = 1.

By well-known results, the above condition of H2(M) being torsion free is equiv-
alent to the first homology H1(M) being torsion free (see [17, Sec.3] and references
cited therein). This covers the cases of physical interest, such as anti-de Sitter spaces
(H1(M) = Z), de Sitter spaces (H1(M) = 0), and the “Aharanov-Bohm spacetime”
M := (R3\S)×R, where S ∼ R stands for the ideally infinite solenoid (H1(M) = Z).
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3 On the observable net of the free Dirac field

In the previous section, we have shown that the nontrivial topology of the spacetime
induces on the observable net superselection sectors affected by the topology of the
spacetime. These sectors factorize in a part which describes a quantum charge (DHR
charges) and in a topological part ruling the behaviour of the quantum charge when
moved along a path in the same way as it occurs in the Aharonov–Bohm effect.

Our final aim is to show that this is not merely an analogy but the real physical
Aharonov–Bohm effect: wewant to show that the quantization of the freeDirac field in
the presence of a background flat potential gives rise to the same type of superselection
sectors as those described in the abstract analysis of the previous section.

As a preliminary step, in this sectionwe analyze the free Dirac field in a 4-d globally
hyperbolic spacetime without the presence of a background flat potential. We show
that the net of local observables in the representation defined by a pure quasi-free
Hadamard state satisfies all the properties assumed in Sect. 2.1, in particular Haag
duality and (a strengthening) of the Borchers property. Then, we provide an explicit
construction of the superselection sectors of the Dirac field and we show, as expected,
that these are DHR cocycles obeying the Fermi statistics.

3.1 The Dirac operator

It is convenient to recall some notions on spin structures. The existence of any such
structure is guaranteed if and only the second Stiefel–Whitney class of the underlying
manifold w2(M) ∈ H2(M, Z2) vanishes. This is always the case if we consider four-
dimensional globally hyperbolic spacetimes and, in addition the corresponding Dirac
bundle is trivial, namely DM � M×C

4, cf. [23] and references therein.We introduce
also the space E(DM) of smooth sections of DM , the space S(DM) of compactly
supported smooth sections of DM (spinors), and the subspaces So(DM) of those
sections f ∈ S(DM) whose support is contained in a diamond o, supp( f ) ⊂ o.
Similar notions hold for the dual Dirac bundle D∗M ∼= M × (C4)∗. We denote the
space of smooth sections by E(D∗M), that of compactly supported smooth sections
(co-spinors) byS(D∗M) and the subset of smooth sections ofS(D∗M)whose support
is contained in a diamond o denoted by S∗

o (DM).
On top of these structures, we define the Dirac operator D := iγ μ∇μ − m acting

on spinors, where m > 0 is the mass parameter, the γ -matrices are fiberwise linear
maps of DM obeying {γa, γb} = 2gab, while ∇ is the spin-connection. Similarly, we
define the dual Dirac operatorD∗ = −iγ μ∇μ −m acting on co-spinors. Here, duality
refers to the metric induced pairing 〈, 〉 : E(D∗M) × S(DM) → C

〈h, f 〉 :=
∫

M

h · f dμg, h ∈ E(D∗M), f ∈ S(DM) .

Since the Dirac operator is Green hyperbolic, it possesses unique advanced and
retarded fundamental solutions S± : S(DM) → E(DM), such that DS± = S±D =
id on S(DM) while supp(S±( f )) ⊆ J±(supp( f )) for all f ∈ S(DM). The same
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conclusion can be drawn for D∗ and it turns out that the associated advanced and
retarded fundamental solutions S±∗ : S(D∗M) → E(D∗M) obey the structurally
defining property 〈h, S±( f )〉 = 〈S∓∗ (h), f 〉 for any h ∈ S(D∗M) and f ∈ S(DM).
Finally, the corresponding propagators S := S+ − S− and S∗ := S+∗ − S−∗ enjoy

〈S∗(h), f 〉 = −〈h, S( f )〉 , h ∈ S(D∗M), f ∈ S(DM) .

The vector spaces whose elements are spinors and co-spinors are isomorphic via the
Dirac adjoint defined in terms of the gamma matrices as

E(DM) � f �→ f † := f ∗ γ0 ∈ E(D∗M);
E(D∗M) � h �→ h† := γ −1

0 h∗ ∈ E(DM).

Here, we are taking the gamma matrices in the standard representation: γ ∗
0 = γ0 and

γ ∗
k = −γk for k = 1, 2, 3.

3.2 The (CAR) algebra of the Dirac field

There is a fairly vast literature on the CAR algebra and the Dirac quantum field in a
4-dimensional globally hyperbolic spacetime. In the present section, we give a brief
description of these topics and refer the reader to the references [9,11,36] for details.

A convenient approach to quantize the Dirac field and to study the corresponding
representations is the self-dual approach [1]. We consider the following Whitney sum
of bundles

D̃M := DM ⊕ D∗M ,

as well as the space of compactly supported smooth sections S(D̃M) ∼= S(DM) ⊕
S(D∗M). In addition, we extend the Dirac operators and the corresponding propaga-
tors on this space by setting

D̃( f ⊕ h) := Df ⊕ D∗h , f ⊕ h ∈ S(D̃M).

Observe that S(D̃M) is equipped with a positive semi-definite sesquilinear form

( f1 ⊕ h1, f2 ⊕ h2) := ( f1, f2)s + (h1, h2)c , (29)

with

( f1, f2)s := i
∫
M

f †1 S( f2) ; (h1, h2)c := −i
∫
M
S∗(h2)h†1 , (30)

for any fi ⊕ hi ∈ S(D̃M), i = 1, 2 (both (·, ·)s and (·, ·)c are positive semi-definite
sesquilinear forms on S(DM) and S(D∗M), respectively). This form (29) annihilates
on the image of the extended Dirac operator D̃. Taking the quotient we get, up to a
suitable closure, a Hilbert space (h, (, )). Finally, setting

�( f ⊕ h) := h† ⊕ f †, f ⊕ h ∈ S(D̃M)
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one observes that � extends to an anti-unitary operators on h:

(�[ f1 ⊕ h1], �[ f2 ⊕ h2]) = ([ f2 ⊕ h2], [ f1 ⊕ h1]) , [ f1 ⊕ h1], [ f2 ⊕ h2] ∈ h.

We now are ready to give the definition of the CAR algebra.

Definition 3.1 The algebra of the Dirac field is the C∗-algebra C(M) generated by
the unit � and �([ f ⊕ h]) as [ f ⊕ h] varies on the Hilbert space h and satisfying

(i) The map h � [ f ⊕ h] �→ �([ f ⊕ h]) ∈ C(M) is linear;
(ii) Self-duality: �(�([ f ⊕ h])) = �([ f ⊕ h])∗ for any [ f ⊕ h] ∈ h;
(iii) Canonical Anticommutation Relations (CARs):

{�([ f1 ⊕ h1]),�([ f1 ⊕ h2])} = (�[ f1 ⊕ h1], [ f2 ⊕ h2])

for any [ f1 ⊕ h1], [ f2 ⊕ h2] ∈ h.

We draw on the consequences of this definition.
(1)The generators of the CAR algebra encode the Dirac field ψ and the conjugated

Dirac field ψ̄ :

ψ( f ) := �[ f ⊕ 0], f ∈ S(DM); ψ̄(h) := �[0 ⊕ h], h ∈ S(D∗M).

Notice in fact that, since � ◦ D̃ = 0, the fields ψ and ψ̄ satisfy the Dirac equation

ψ ◦ (i /∇ − m) = 0, ψ̄ ◦ (i /∇ + m) = 0.

Furthermore, we have

ψ̄(h) = ψ(h†)∗, h ∈ S(D∗M), (31)

and thus �[ f ⊕ h] = ψ( f ) + ψ(h†)∗ = ψ̄( f †)∗ + ψ̄(h). This implies in particular
that the algebra C(M) can be generated by taking only either the Dirac field or the
conjugated one.

(2) The Dirac field satisfies the usual Canonical Anticommutation Relations:

{ψ( f1)
∗, ψ( f2)} = ( f1, f2)s, {ψ( f1), ψ( f2)} = 0. (32)

From these and (31), it follows that {ψ̄(h), ψ( f )} = (h†, f )s and {ψ̄(h1), ψ̄(h2)} =
0.

(3) The algebra C(M) is acted upon by U(1) as a gauge group. The mapping
[ f ⊕ h] �→ [ζ f ⊕ ζ̄h], which leaves invariant the scalar product and commutes with
the conjugation � for any ζ ∈ U(1), induces an action U(1) � ζ �→ ηζ ∈ Aut(C(M))

where
ηζ (�([ f ⊕ h])) = �(ζ f ⊕ ζ̄h). (33)

In particular, ηζ (ψ( f ) = ζψ( f ) and ηζ (ψ̄(h) = ζ̄ ψ̄(h). We denote by η− the
automorphism induced by ζ = −1.
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(4) Finally,wenote thatψ is aC∗-valueddistributionwhenS(DM) is equippedwith
the topology of test-functions (the same holds true for ψ̄). In fact by the CARs (32),
we have ψ( f )∗ψ( f ) = −ψ( f )ψ( f )∗ + ( f , f )s�. So, ψ( f )∗ψ( f )ψ( f )∗ψ( f ) =
ψ( f )∗ψ( f ) ( f , f )s� because ψ( f )ψ( f ) = 0. Using the C∗ property of the norm,
we get

‖ψ( f )∗ψ( f )‖2 = ‖ψ( f )∗ψ( f )ψ( f )∗ψ( f )‖ = ‖ψ( f )∗ψ( f )‖( f , f )s
⇐⇒ ( f , f )s = ‖ψ( f )∗ψ( f )‖ = ‖ψ( f )‖2 ,

and the proof follows by the continuity of (·, ·)s with respect to the test function
topology.

3.3 Quasi-free Hadamard states

We describe the net of the Dirac field in the representation associated with a pure and
gauge invariant quasi-free Hadamard state.We show that the net satisfies twisted Haag
duality and the local algebras are type III factors. As a consequence, the resulting net of
local observables in the vacuum (zero charge) representation verifies all the properties
assumed in Sect. 2.1.

To begin with, we consider a pure quasi-free state ω of the algebra C(M) and the
corresponding GNS triple (H, π,�) (see [1]). Here, H is the antisymmetric Fock
space associated with a closed subspace of Ph defined by an orthogonal projection
P , the base projection enjoying the relation �P = (1 − P)�; π is an irreducible
representation of the CAR algebra on the Hilbert spaceH and � is a unit norm vector
H such that ω(·) = (�, π(·)�). To ease notation, we keep symbols �, ψ and ψ̄ to
denote the generator of the CAR algebra, theDirac field and its conjugate, respectively,
in the Fock representation. Finally, if ω is also gauge invariant ω ◦ η = ω, then there
exists a unitary representationU : U(1) → U(H) such that for any ζ ∈ U(1), it holds
U (ζ )� = �

U (ζ )�([ f ⊕ h])U (ζ )∗ = �([ζ f ⊕ ζ̄h]). (34)

In addition, U (ζ )ψ( f )U (ζ )∗ = ζψ( f ) and U (ζ )ψ̄(h)U (ζ )∗ = ζ̄ ψ̄(h).
So given a pure and gauge invariant quasi-free state of the CAR algebra and

H, π, ω,U as above, the net of local Dirac fields is the correspondence F : KM �
o → Fo ⊆ B(H) associating the von Neumann algebra

Fo := {�([ f ⊕ h]) : [ f ⊕ h] ∈ S̃o(DM)}′′ ,

to any diamond o. The net FKM satisfies isotony, Fo ⊆ Fõ for any o ⊆ õ, but not
causality because of the CARs. This is replaced by twisted causality

F t
o ⊆ F ′

a , a ⊥ o .
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whereF t
o is the von Neumann algebra defined asF t

o := Ũ−FoŨ∗− in terms of the twist
operator Ũ−:

Ũ− := 1

1 + i
(1 + iU−) such that Ũ−�(·)Ũ∗− = iU−�(·).

Theorem 3.2 The net of the Dirac field FKM in a Fock representation induced by a
pure and gauge invariant quasi-free state satisfies twisted Haag duality

F t
o = ∩{F ′

a : a ⊥ o} , o ∈ KM . (35)

Proof The proof relies on abstract twisted duality and on a density result. We recall
that for the CAR algebra in a Fock representation, abstract twisted duality holds for
any closed subspace which is invariant under the conjugation defining the abstract
CAR algebra [4, Theorem 7.1]. Observing that the closure ho of S̃o(DM) in h is �

invariant for any o, abstract twisted duality in our case reads as

F t
o = F(

(ho)c)′ ,

where (ho)c is the orthogonal complement of ho in the Hilbert space of the Cauchy
data h (cfr Theorem 7.1 of [4]). So, it is enough to prove ∪{S̃a(DM) : a ⊂ o⊥} is
dense in (ho)c where o⊥ is the causal complement of the diamond o.

We now need two observations. First, any diamond o is of the form D(G) with
G ⊂ � where � is a spacelike Cauchy surface and G is an open relatively compact
subset of G diffeomorphic to an open 3-ball with cl(G) � � . So, it is easily seen that
o⊥ = I (� \ cl(G)) where I stands for the chronological set. Secondly, the Hilbert
space h is isomorphic to the Hilbert space L2(�, C

4)⊕ L2(�, (C4)∗) with the scalar
product (u1 ⊕v1, u2 ⊕v2) := ∫

�
(u†1/nu2 +v2/nv

†
1) d� where nμ is the timelike future

pointing normal vector to the Cauchy surface. In particular, the isomorphism relies on
the following identity

([ f1 ⊕ h1], [ f2 ⊕ h2]) =
∫

�

(
(S f1)

†/n(S f2) + (S∗h2)/n(S∗h1)†
)
d� .

On these grounds, it is enough to prove that the spaceC∞
0 (G, C

4)⊕C∞
0 (�\cl(G), C

4)

is dense in L2(�, C
4) and similarly for the dual. This follows from a partition of unity

argument, similarly to [21, Prop. III.1] for Majorana fields, because G is a relatively
compact open subset of � with a smooth boundary. ��
A class of quasi-free states for quantum fields on curved spacetimes having several
physically meaningful applications is that of Hadamard states [26] (see also [18]). The
existence of pure quasi-free and gauge invariant Hadamard states has been shown in
[15]. The local algebras of the Dirac field in a representation defined by such a state
are type III factors [21].3 This property is stronger than the Borchers property since

3 Actually the authors give a stronger characterization of the local algebras showing that these are III1
factors.
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for any o ∈ KM any projection E ∈ Fo is equivalent in Fo to the identity, i.e. there
exists V ∈ Fo s.t. V ∗V = E and VV ∗ = 1 (V is an isometry).

Definition 3.3 We take as a reference representation for the Dirac field, the repre-
sentation defined by a pure quasi-free and gauge invariant Hadamard state.

As shown above, the netFKM is isotonous, satisfies twisted Haag duality and the local
algebras Fo are type III factors.

We define the observable net. To this end, we consider the spectral subspaces

Fn
o := {T ∈ Fo : U (ζ )TU (ζ )∗ = ζ nT , ∀ζ ∈ U(1)}′′, n ∈ Z. (36)

For the grade n = 0, any F0
o is a von Neumann algebra which is gauge invariant

and such that [T , S] = 0 for T ∈ F0
o and S ∈ F0

a with a ⊥ o. This yields the net
of local observables F0

KM : KM � o → F0
o ⊆ B(H) which satisfies isotony and

causality. The local observable algebras F0
o inherit from Fo the properties of being

type III factors, see for instance [21].
Finally, we have to take into the game the zero-charge “vacuum” representation of

the net of local observables. The vacuum Hilbert space H0 is the subspace

H0 := closure {A� : A ∈ F0
o , o ∈ KM} ⊆ H, (37)

and the vacuum representation π0 : F0
KM → B(H0) is defined as

π0(A) := AE0 , A ∈ F0
o , o ∈ KM , (38)

defined in terms of the projection E0 onto H0. Since E0 is an element of (F0
o )′ for

any diamond o and since the local algebras F0
o are type III factors, π0 is faithful and

the von Neumann algebras

Ao := π0(F0
o ) ⊆ B(H0), o ∈ KM . (39)

turn out to be type III factors. We call the correspondence AKM : KM � o → Ao ⊆
B(H0) the net of local observables in the vacuum representation. So, AKM is an
irreducible net satisfying isotony, causality and whose local algebras Ao are type III
factors. Furthermore, it is a well known fact [10] that as the net of fieldsFKM satisfies
twisted Haag duality, the net AKM satisfies Haag duality.

Remark 3.4 The net of local observables o �→ F0
o encodes all the physical content of

the theory. Very briefly, gauge-invariant Wick polynomials of the field, like the Dirac
current, when evaluated on test functions supported in a region o yield unbounded self-
adjoint operators affiliated with the von Neumann algebra F0

o i.e., the corresponding
spectral projections belong, by twisted Haag duality, to the algebraF0

o , see [13,14,27]
and references therein for technical details.
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3.4 Charge transporters of the free Dirac field

Having established that the observable net AKM of the Dirac field in the vacuum
representation satisfies the same properties as those assumed in Sect. 2.1, now we
construct the charge transporters of the Dirac field, which provide the DHR-sectors
for AKM .

We start by taking for any o ∈ KM a normalized spinor fo of So(DM), that is
( fo, fo)s = 1. With this choice, any ψ( fo) turns out to be a partial isometry of Fo

since, as it is easily verified by (32), the operators ψ( fo)ψ( fo)∗ and ψ( fo)∗ψ( fo)
are projections. Notice, in particular, that ψ( fo) is a partial isometry of the spectral
subspace F1

o , see (36). We can now make ψ( fo) equivalent to a unitary of the same
spectral subspace. To this end, we note that both the projections ψ( fo)ψ( fo)∗ and
ψ( fo)∗ψ( fo), since gauge invariant (34), belong to the algebra F0

o which is a type III
factor. Hence, there exist Wo, Vo ∈ F0

o s.t.

Vo
∗Vo = 1, VoV

∗
o = ψ( fo)ψ( fo)

∗, W ∗
o Wo = 1, WoW

∗
o = ψ( fo)

∗ψ( fo).

The operator
ϕo := W ∗

o ψ( fo)Vo, o ∈ KM (40)

is a unitary in Fo and an element of F1
o because by construction ηζ (ϕo) = ζϕo,

ζ ∈ U(1). The operators ϕo do not fulfill the CARs (32). Nevertheless, if a ⊥ o,
A ∈ F0

o and F ∈ Fa , then [A, F] = 0, so that

ϕ∗
o ϕa = V ∗

o ψ( fo)
∗Wo W

∗
a ψ( fa)Va = V ∗

o ψ( fo)
∗ W ∗

a Woψ( fa)Va
= V ∗

o W
∗
a ψ( fo)

∗ψ( fa)WoVa = −V ∗
o W

∗
a ψ( fa)ψ( fo)

∗WoVa
= −ϕa ϕ∗

o

and similarly for the other CARs. In conclusion, for all o ⊥ a

ϕ∗
o ϕa = −ϕa ϕ∗

o , ϕo ϕa = ϕa ϕo, ϕo ∈ (F0
a )′. (41)

Now, we define the charge transporter z associated with the Dirac field as

z(a, o) := π0(ϕ
∗
aϕo) = E0ϕ

∗
aϕo, o ⊆ a, (42)

where π0 is the vacuum representation. Clearly, z is localized and z(a, o) ∈ Aa for
any o ⊆ a, satisfies the 1-cocycle identity

z(õ, a) z(a, o) = π0(ϕ
∗
õϕaϕ

∗
aϕo) = z(õ, a), a ⊆ o ⊆ õ,

and

z(p) = z(o, on) · · · z(o2, o1)z(o1, a) = π0(ϕ
∗
oϕon · · ·ϕ∗

o1ϕa) = π0(ϕ
∗
oϕa) (43)

for any path p : a → o, and for o = a we find z(p) = 1. Thus, z is topologically
trivial, z ∈ Z1

t (AKM ).
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Lemma 3.5 The following assertions hold true:

(i) the definition of the 1-cocyle z is independent from the choice of the normalized
spinors;

(ii) z ∈ Z1
DHR(AKM ) and obeys the Fermi statistics, i.e. it has statistical dimension

d(z) = 1 and statistical phase κ(z) = −1.

Proof (i) Let go ∈ So(DM), o ∈ KM , be another choice of normalized spinors.
As above, denote with So and To the isometries of F0

o making the operator χo :=
T ∗
o ψ(go)So a unitary of Fo and of F1

o . Then, z
′(a, o) := π0(χ

∗
aχo) is a 1-cocycle of

Z1
t (AKM ) which is unitary equivalent to z. In fact, to := π0(χoφ

∗
o ) is a unitary of Ao

for any o satisfying taz(a, o) = π0(χ
∗
aφa)π0(φ

∗
aφo) = π0(χ

∗
aφo) = z′(a, o)to, i.e.

t : KM ∈ o → to ∈ Ao is a unitary intertwiner of (z, z′).
(i i) It is enough to prove that the symmetry intertwiner ε ∈ (z × z, z × z) is such

that εa = −1 for all a, where

εa := z(q)∗ × z(p)∗ · z(p) × z(q),

p : a → õ and q : a → o are paths with o ⊥ õ, and × is the tensor product of
Z1(AKM ) [32, Theorem 4.9]. The latter is defined by the expressions

z(q)∗ × z(p)∗ := z(q)∗ z(p1)z(p)∗z(p1)∗, z(p) × z(q) := z(p) z(p1)z(q)z(p1)
∗,

with p1 : o1 → a, o1 ⊥ |q|. According to these relations, we may take o ⊥ a,
õ = a and p : a → a the trivial path. So, z(p) = 1. Moreover, by (43) we have
z(q) = π0(ϕ

∗
oϕa). Finally, we may take o1 causally disjoint from o and a and z(p1) =

π0(ϕ
∗
a ϕo1). In this way,

z(p)∗ × z(q)∗ · z(p) × z(q) = π0( ϕ∗
a ϕo ϕ∗

a ϕo1 ϕ∗
o1 ϕa · ϕ∗

a ϕo1 ϕ∗
oϕa ϕ∗

o1 ϕa )

= π0( ϕ∗
a ϕo ϕ∗

a ϕo1 ϕ∗
oϕa ϕ∗

o1 ϕa )

= −π0( ϕ∗
a ϕo ϕ∗

a ϕ∗
o ϕo1 ϕa ϕ∗

o1 ϕa )

= π0( ϕ∗
a ϕo ϕ∗

a ϕ∗
o ϕa ϕo1 ϕ∗

o1 ϕa )

= −π0( ϕ∗
a ϕo ϕ∗

o ϕ∗
a ϕa ϕa ) = −1,

having used repeatedly (41) for the relations o1 ⊥ o, a and o ⊥ a. We conclude that
εa = −1, and this completes the proof. ��
Thus, the superselection sector associated with z has the same charge quantum number
as an electron. We now define the charge transporter associated with the conjugated
Dirac field. In analogy to what has been done for ψ , we choose a co-spinor ho ∈
S(D∗M) with (ho, ho)c = 1 for any o ∈ KM and set ϕ̄o := W̄ ∗

o ψ̄(ho)V̄o, where
W̄ ∗

o , V̄o are the isometries of F0
o making ϕ̄o a unitary of Fo and an element of the

spectral subspace F−1
o . Then, we define

z̄(a, o) := π0(ϕ̄
∗
a ϕ̄o) , o ⊆ a . (44)
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In complete analogy to what has been shown for z, one can prove that z̄ is independent
from the choice of the normalized co-spinor and it is a topologically trivial 1-cocycle
obeying the Fermi statistics: d(z̄) = 1 and κ(z̄) = −1.

We now prove that z̄ is the conjugate of z in the sense of the theory of superselection
sectors.

Lemma 3.6 z̄ is the conjugate of z in the category Z1
DHR(AKM ).

Proof This amounts to verifying triviality of the tensor product (z × z̄) defined as

(z × z̄)(o, a) := z(o, a) z(p1)z̄(o, a)z(p1)
∗ , a ⊆ o,

where p1 : o1 → a, with o1 ⊥ o, a, is an arbitrary path as in the previous proof
[6,32]. As z and z̄ do not depend on the choice of the normalized spinors and co-
spinors, respectively, it is enough to prove the above triviality for a suitable choice of
the normalized co-spinors. So if fo,Wo andVo are the normalized spinor and isometries
defining ϕo, we take ho := f †o and notice that (ho, ho)c = ( f †o , f †o )c = ( fo, fo)s = 1.
Furthermore, as ψ̄(ho) = ψ(h†o)∗ = ψ( fo)∗, we may take, for the definition of φ̄,
W̄o := Vo and V̄o := Wo. Then, ϕ̄o := V ∗

o ψ( fo)∗Wo = ϕ∗
o and

(z × z̄)(o, a) = π0( ϕ∗
o ϕa ϕ∗

a ϕo1 ϕ̄
∗
o ϕ̄a ϕ∗

o1 ϕa ) = π0(ϕ
∗
o ϕo1ϕo ϕ∗

a ϕ∗
o1 ϕa )

= π0( ϕ∗
o ϕo1 ϕ∗

o1 ϕo ϕ∗
a ϕa ) = 1

where we have used the fact that o1 is causally disjoint from a and o and that ϕo ϕ∗
a is

an observable. ��
Remark 3.7 Performing tensor powers z×n and z̄×n , n ∈ N, we obtain a structure
Z1
ec(AKM ) of DHR-sectors labelled by Z, where positive integers are associated with

z×n and negative integers to z̄×n (we define z0 as the reference representation). Using
the techniques explained in the present section, it is easily seen that z×n may be
defined starting from products of field operators ψ( f1) · · ·ψ( fn), and similarly z̄×n

with products of conjugate field operators. Thus, it is natural to interpret Z1
ec(AKM )

as the charge superselection rule.

4 Dirac fields in background flat potentials

The Aharonov–Bohm effect concerns the behaviour of electrically charged quantum
particles in a space M where a classical background potential A is defined, with
the property of having vanishing electromagnetic tensor F := d A. This amounts
to saying that A is a closed de Rham 1-form, d A = 0, and we say that A is a flat
background potential. Existence of non-trivial flat background potentials is equivalent
to the property of having a non-trivial de Rham cohomology, H1

dR(M) �= 0. By
standard results, this implies that π1(M) �= 0.

Passing to a relativistic setting, the scenario we adopt for describing quantum inter-
actions with the flat background potential A is given a spinor field on a globally
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hyperbolic spacetimeM , fulfilling theDirac equationwith interaction A. In the present
section,we construct such interactingDirac fields and show that they can be interpreted
as superselection sectors of a given reference free Dirac field.

4.1 Preliminaries on flat potentials

We start by collecting some properties of flat potentials, closed de Rham forms A ∈
Z1
dR(M), in particular their relations with flat line bundles, andwe establish amapping

A �→ Â with Â a real 1-cocycle in the cohomology of KM . This will be useful in the
discussion of AB-sectors of the observable net of the free Dirac field.

As a first step, we note that, since diamonds o ∈ KM are simply connected, there
are C∞ local primitives φ : o → R such that

dφo(x) = A(x) , x ∈ o ∈ KM .

If a, o ∈ KM and a ∩ o �= ∅, then {dφo − dφa}(x) = A(x) − A(x) = 0, thus
the function φo − φa is constant on each connected component of o ∩ a (that is,
φo − φa : o ∩ a → R is locally constant). On these grounds, defining

goa(x) := ei(φo−φa)(x) ∈ U(1) , x ∈ a ∩ o, (45)

we get a family of locally constant functions fulfilling the cocycle relations goagac =
goc, as it can be trivially verified on each overlap o ∩ a ∩ c �= ∅. The next result is
standard in geometry: for a proof, we refer the reader to [39]:

Lemma 4.1 Let A ∈ Z1
dR(M). Then, g := {goa}, defined as in (45), is a set of transition

maps for the flat line bundle LA := M̂ ×σ C defined as in (24), where

σ([�]) := exp i
∮

�

A, [�] ∈ π1(M).

Let now

πo : LA �o → M × C, o ∈ KM,

denote local charts such that goaπa = πo on o ∩ a. The previous Lemma implies that
the relation e−iφoπo = e−iφaπa holds for any a ∩ o �= ∅. Thus, the maps e−iφoπo :
LA �o→ M × C, o ∈ KM , glue in the correct way and they induce the bundle
isomorphism ϑ : LA → M × C defined as

ϑ �o := e−iφoπo, o ∈ KM . (46)

Note that ϑ locally looks like the multiplication by e−iφo . Let now a ⊆ o; then φo−φa

is a constant real function on a and we define

Âoa := φo − φa ∈ R, Âao := − Âoa, a ⊆ o. (47)
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The relations Âco + Âoa = Âca are clearly fulfilled for all a ⊂ o ⊂ c ∈ KM , that is,
Â is a real cocycle in the cohomology of KM . Note that by definition (45), we have

goa = ei Âoa , a ⊆ o. (48)

The cocycle Â can be used to express the holonomy of A. In view of [38, Eq.4.7], given
a loop γ : [0, 1] → M and pγ = (on, on−1) ∗ · · · ∗ (o1, o0) a poset approximation of
γ , we have ∮

γ

A = Â pγ :=
n∑

i=1

Âoi oi−1 . (49)

4.2 The Dirac field interacting with a background flat potential

We construct a quantumDirac field interacting with a background flat electromagnetic
potential, and we describe it in terms of a family of Dirac fields locally defined on
diamonds. These fields yield a “local coordinate” description of the interacting field
and will play an important role at the level of the associated nets of von Neumann
algebras.

The interacting field shares with twisted fields in the sense of Isham [2,23] the
property of being defined on the space of sections of a twisted bundle. Yet it is not
exactly a field of this type as we shall see in the following lines.

Let A = (Aμ) ∈ Z1
dR(M). Our task is the construction of a Dirac field ψA such

that

ψA ◦ (i /∇ + /A − m) = 0,

where /A is defined in local frames as γ
μ
o Aμ, and since the local Dirac matrices γ

μ
o

can be arranged to form a section of T ∗M ⊗ endDM , we have /A ∈ S(endDM).
We note, that if ψA is given, then for any o ∈ KM and f ∈ So(DM) it turns out

0 = ψA((i /∇ + /A − m)(eiφo f ))
= ψA(−γ

μ
o (∂μφo)eiφo f + ieiφo /∇ f + ( /A − m)(eiφo f ) )

= ψA(eiφo (− /A f + i /∇ f + ( /A − m) f ) )

= ψA(eiφo((i /∇ − m) f ) ).

Thus, applying the local gauge transformation ψA → ψA,o := ψA ◦ eiφo , we find that
ψA,o, as a field evaluated on the test space So(DM), solves the free Dirac equation.

The idea of the previous computation is that A appears as an exact 1–form on each
(simply connected) diamond o ∈ KM , thus it can be represented locally as a local
gauge transformation making ψA a free Dirac field. Thus, to construct our field ψA,
it comes natural to reverse the above argument and to start with a free Dirac field
ψ : S(DM) → B(H) and then to define

ψo : So(DM) → B(H), ψo( f ) := ψ(e−iφo f ), o ∈ KM .
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This implies

0 = ψ((i /∇ − m)(e−iφo f )) = ψ(γ
μ
o (∂μφo)eiφo f + ieiφo /∇ f − m(eiφo f ) )

= ψ(eiφo(( /A + i /∇ − m) f ) ) = ψo((i /∇ + /A − m) f ),

(50)
for f ∈ So(DM). Thus, each ψo is a local solution of the Dirac equation with
interaction A. Yet for a ⊆ o and f ∈ Sa(DM) we find ψo( f ) = ψ(e−iφo f ) =
ψ(e−i Âoa e−iφa f ), and we conclude

ψo( f ) = e−i Âoa ψa( f ), f ∈ Sa(DM), a ⊆ o . (51)

The above relations show that there is a topological obstruction to gluing the local
fields ψo, encoded by the cocycle Â. To get a globally defined and interacting Dirac
field, we introduce the twisted Dirac bundle

DAM := DM ⊗ LA → M,

which, by Lemma 4.1, is endowed with “local charts” πo : (DAM)|o → DM |o,
o ∈ KM . Here to be concise, we make an abuse of notation by identifying πo and
ido ⊗ πo, where ido is the identity of DM |o. Note that end(DAM) � endDM .

In the following lines, we collect some simple properties of DAM . First, we note
that sections ς ∈ S(DAM) are in one-to-one correspondence with families {ςo},
where each ςo := πo ◦ ς |o is a section of DM |o and the relations ςo = goaςa hold
for o ∩ a �= ∅ with goa defined in (45). Secondly, we note that tensoring (46) by the
identity of DM induces the isomorphism

ϑ : S(DAM) → S(DM) (52)

such that ϑ(ς) = e−iφoςo for all o ∈ KM and ς ∈ S(DAM) with supp(ς) ⊆ o. In
particular, by definition of Â, we have

ei Âoa · ida = πo ◦ π−1
a = goa, a ⊆ o. (53)

Thus, if ς ∈ Sa(DAM), then

ςo = ei Âoaςa, a ⊆ o. (54)

Defining
ψA,a(ς) := ψa(ςa) = ψ(e−iφaςa), ς ∈ Sa(DAM), (55)

we have that if a ⊆ o then, combining (51) and (54),

ψA,o(ς) = ψo(ςo) = ei Âoaψo(ςa) = ei Âoa e−i Âoaψa(ςa)

= ψA,a(ς) , ς ∈ Sa(DAM).
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Theprevious computation shows that the operatorψA,a(ς) is independent of the choice
of a ∈ KM such that supp(ς) ⊆ a. By (52) we find e−iφaςa = ϑ(ς), implying that
each ψA,a extends to the well-defined field

ψA : S(DAM) → B(H), ψA := ψ ◦ ϑ.

Remark 4.2 In the previous expression, ψA appears as a field defined on DAM rather
than DM . This kind of field was introduced and studied by Isham [2,23]. Note that
ψA fulfills the CARs

{ψA(ς1)
∗, ψA(ς2)} = i

∫
M

ϑ(ς1)
† S(ϑ(ς2)), ς1, ς2 ∈ S(DAM).

To evaluate the Dirac equation on ψA, it is convenient to give a description of /∇
as an operator on sections of S(DAM) explicitly presented as tensors ς = f ⊗ s,
f ∈ S(DM), s ∈ S(LA). To this end, we define d := ϑ−1dϑ , where ϑ is defined in
(46) and d : C∞(M, C) → S(T ∗M ⊗ C) is the complex exterior derivative. In this
way, we obtain a connection d on LA compatible with the inner product of S(LA) in
the sense that d(〈 s, s′ 〉) = 〈 ds, s′ 〉 + 〈 s, ds′ 〉, s, s′ ∈ S(LA). The Leibniz rule for
the Dirac connection leads to the following extension:

∇( f ⊗ s) := ∇ f ⊗ s + f ⊗ ds ∈ S(DAM ⊗ T ∗M). (56)

Before constructing the associated Dirac operator, we introduce some useful objects.
We start with the normalized section eiφ ∈ S(LA) obtained by applying the inverse
of (46) to the constant section 1 of M × C. Note that by definition eiφo = πo ◦ eiφ |o
for all o ∈ KM (and this justifies our notation). Hence, we can write

ϑ(s) = 〈eiφ, s 〉, s ∈ S(LA), (57)

having regarded the complex function 〈eiφ, s 〉 as a section of M × C. We can write
explicitly the complex 1–form Xs := d(〈eiφ, s 〉) ∈ S(T ∗M ⊗ C),

Xs = −i A · 〈eiφ, s 〉 + 〈eiφ, ds 〉, (58)

having used i∂μφo = i Aμ and the fact that 〈 ·, · 〉 is conjugate linear in the first
variable. Also note that ds ∈ S(LA⊗T ∗M), so the pairing 〈eiφ, ds 〉 yields a complex
1–form. Applying a contraction with local Dirac matrices γ

μ
o , we get an operator

/Xs ∈ S(endDM),

/Xs( f ) = −i /A f · 〈eiφ, s 〉 + 〈eiφ, � f ⊗ ds 〉, f ∈ S(DM),

where, in local frames over o ∈ KM ,

� f ⊗ ds := γ μ
o f ⊗ ∂μs ∈ S(DAM). (59)
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Here, ∂μ has lower indices, thus ∂μs lives in LA ⊗ T M and contraction by γ
μ
o drops

components in T ∗M and T M . Moreover, pairing by eiφ yields 〈eiφ, � f ⊗ /ds 〉 ∈
S(DM). With the notation (59), pairing (56) with the Dirac matrices yields

/∇( f ⊗ s) = /∇ f ⊗ s + � f ⊗ ds. (60)

In conclusion,

/∇ ◦ ϑ( f ⊗ s) = /∇( f · 〈eiφ, s 〉) = ( /∇ f ) · 〈eiφ, s 〉) + /Xs( f )

= /∇ f · 〈eiφ, s 〉 − i /A f · 〈eiφ, s 〉 + 〈eiφ, � f ⊗ ds 〉
= ϑ( ( /∇ − i /A) f ⊗ s + � f ⊗ ds )

= ϑ( ( /∇ − i /A)( f ⊗ s) ),

having written /A( f ⊗ s) := ( /A f ) ⊗ s and used (57), (58), (60). This implies

(i /∇+ /A−m)ψA( f⊗s) = ψ(ϑ( (i /∇+ /A−m) ( f⊗s) )) = ψ((i /∇−m)(ϑ( f⊗s))) = 0,
(61)

as expected. Note that if one starts with the field ψA, then defining for all o ∈ KM

ψo : So(DM) → B(H), ψo( f ) := ψA(π−1
o ( f ))

we get a family of fields fulfilling (51) (see (53)). Moreover, the chain of identities (50)
shows that each field ψo ◦ eiφo fulfills the free Dirac equation and, again by (53), the
family {ψo ◦ eiφo} glue in the correct way to define a free Dirac field ψ := ψA ◦ ϑ−1.
In conclusion:

• We accomplished our task of constructing a Dirac field ψA interacting with A, by
paying the price of switching from DM to the twisted Dirac bundle DAM ;

• ψA is equivalently described by the family {ψo} fulfilling (51) and such that each
ψo is gauge-equivalent to a free field ψ .

4.3 Charge transporters and Aharonov–Bohm effect

In the present section, we compare the net defined by ψ and the ones defined by the
interacting fields ψA, verifying that they all define the same observable netAKM . We
show that any interacting field defines an irreducible 1-cocycle in Z1

AB(AKM ) obeying
the Fermi statistics and having topological dimension one.

As a first step, recalling (55), we define

FA,o := {ψo( f ), f ∈ So(DM)}′′, o ∈ KM .

Clearly, FA,o = Fo, where Fo is the von Neumann algebra generated by the free
field ψ . The additional information carried by A is, instead, encoded by (51), which
imposes to define the *-monomorphisms joa : FA,a → FA,o,

joa(T ) := η(e−i Âoa ) (T ) = U (e−i Âoa ) T U (ei Âoa ) , a ⊆ o, (62)
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where η is the gauge action (33) andU is the corresponding unitary action on the Fock
space (34). This definition allows to recover the relation between the locally defined
fields ψo,

joa(ψa( f )) = e−i Âoaψa( f ) = ψo( f ), f ∈ Sa(DM),

and by applying (47) and subsequent remarks, we find

joa ◦ jae = joe, e ⊆ a ⊆ o. (63)

The pair (FA, j) is called the field net twisted by A, and, at the mathematical level, it
defines a precosheaf [38]. These objects are more general than nets since, instead of
the inclusion maps, we have the non-trivial *-monomorphisms joa . As a consequence,
if To ∈ FA,o and Ta ∈ FA,a , then the correct way to perform their product is

Tojoa(Ta) ∈ FA,o. (64)

We define the gauge-invariant von Neumann algebras

F0
A,o := {S ∈ FA,o : U (ζ )S = SU (ζ ), ∀ζ ∈ U(1)} , o ∈ KM .

This implies joa(S) = S for all S ∈ F0
A,a , thus F0

A is a net, coinciding with the

gauge-invariant subnet F0 of the free Dirac field since F0
A,o = F0

o for all o ∈ KM .
We now pass to the construction of charge transporters starting from the twisted

field net (FA, j). To this end, we note that the operators ϕo, o ∈ KM , defined in (40),
can be regarded as unitaries ϕo of FA,o carrying charge 1. To construct the associated
charge transporters, we invoke (64) and define

z(o, a) := π0(ϕ∗
o joa(ϕa)) = π0(e−i Âoaϕ∗

oϕa) , a ⊆ o . (65)

Here, z(a, o) is a unitary of Ao and by (63) it fulfills the cocycle relations,

z(o, a) z(a, e) = z(a, e), e ⊆ a ⊆ o,

thus we get a 1-cocycle z ∈ Z1(AKM ).
Recalling the definitions of charged and topological component of a 1-cocycle

given in Sect. 2.2, we can now prove the following theorem which yields a converse
for Corollary 2.6.

Theorem 4.3 Let AKM denote the observable net of the free Dirac field and let A ∈
Z1
dR(M). Then, the cocycle z defined by (65) is an element of the category Z1

AB(AKM )

satisfying

z(o, a) = exp
(

− i
∮

�(o,a)

A
)

· zc(o, a), a ⊆ o. (66)
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The charged component zc obeys the Fermi statistics, and the holonomy of z is given
by

z(p�) = exp
(

− i
∮

�

A
)

I , [�] ∈ π1(M). (67)

Proof The holonomy of z is readily computed by using (49), (43) and (65):

z(p�) := z(on, on−1) · · · z(o1, o0) = e−i Â p� I = exp
{

− i
∮

�

A
}

I,

where p� = (a, on−1) ∗ · · · ∗ (o1, a) is a path-approximation of the loop � : x → x ,
x ∈ a ∈ KM . Concerning the first part of the theorem, given a path frame Pe and
recalling the definitions of topological and charged component given in Sect. 2.3 we
have

zc(o, a) = z(poe ∗ pea) = π0(ei( Â poe− Â pae )ϕ∗
oϕa

) = ei( Â poe− Â pae )π0(ϕ∗
oϕa) .

Defining the unitary ta := e−i Â pae I for any a ∈ KM , we find tozc(o, a) = π0(ϕ∗
oϕa)ta

for any inclusion a ⊆ o. So zc is unitary equivalent to the DHR cocycle (42) obeying
the Fermi statistics. Finally, from the splitting formula (10) and from the above relation
we get

z(ã, a) = αãe
(
uz(ã, a)

)
zc(ãa) = αãe

(
z(peã ∗ (ã, a) ∗ pae)

)
zc(ãa)

= αãe

(
exp

(
− i

∮
�oa

A
)
I

)
zc(ã, a) = exp

(
− i

∮
�oa

A
)
zc(ã, a).

��
We stress that the connection 1–form Az defined by z in the sense of Corollary 2.5

is gauge equivalent to A up to a singular cocycle, that is, Az stands in the same de
Rham class of A modulo a cohomology class ξ z ∈ H1(M). In fact, by iterating (26)
over the path approximation p�, we obtain

z(p�) = exp
(

− i
∑
i

∮
�(oi oi−1)

Az
)

· zc(p�) = exp−i
∮

�

Az · I ,

having used topological triviality of zc, that is, zc(p�) = I. Thus, by applying (67),
we arrive to

exp
(

− i
∮

�

A
)

= exp
(

− i
∮

�

Az
)

(68)

for all loops �. Since the exponential map has kernel Z, and since any singular 1–cycle
can be interpreted as a loop, we find (2π i)−1

∮
c AmodZ = (2π i)−1

∮
c A

z modZ, for
all 1–cycles c. The previous equality says that A and Az define the same differential
character in the sense of Cheeger and Simons, thus by the third exact sequence of [7,
Theorem 1.1] we conclude that the de Rham cohomology class of A − Az defines by
integration the desired class ξ z ∈ H1(M).
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4.4 Twisted nets and cocycles

Indeed, the notion of twisted net can be given for arbitrary families σoa ∈ U(1),
a ⊆ o ∈ KM , fulfilling the cocycle relations σoaσae = σoe. By the results in [31],
this is equivalent to giving the morphism

σ : π1(M) → U(1), σ ([�]) := σ(p�) := σaon−1 · · · σo1a,

where p = (a, on−1)∗. . .∗(o1, a) is a path-approximation of the loop � : [0, 1] → M .
We call σ a topological twist ofFKM . Defining joa := η(σoa) � Fa , we get the desired
twisted field net, that we denote by (Fσ , j), Fσ,o := Fo, ∀o ∈ KM . By the results in
[34,35], a twisted field net is nothing but a representation ofFKM on the net of Hilbert
spaces Uoa : Ha → Ho, a ⊆ o, withHo ≡ H, o ∈ KM , and Uoa := U (σoa), o ⊆ a,
or, equivalently, a representation of FKM over the flat Hilbert bundle H → M with
fibre H and monodromy U ◦ σ : π1(M) → U(H).

Let us now return on the observable netAKM and consider the charge 1DHR-sector
(42), that here we denote by z1(o, a) := π0(ϕ

∗
oϕa), a ⊆ o.

Theorem 4.4 LetAKM denote the observable net of the free Dirac field. Then, there is
a one-to-one correspondence between sectors z ∈ Z1

AB(AKM )with charge component
z1 and topological dimension 1, and twisted field nets (Fσ , j).

Proof Let σoa ∈ U(1), a ⊆ o, denote a cocycle and σ : π1(M) → U(1) denote the
associated topological twist of (Fσ , j). Then, in accord with (65) we define

z(o, a) := π0(ϕ∗
ojoa(ϕa)) = σoaz1(o, a) , a ⊆ o .

A straightforward verification then shows that z ∈ Z1
AB(AKM ) has the desired prop-

erties. Conversely, let z ∈ Z1
AB(AKM ) as in the statement of the Theorem. For all

[�] ∈ π1(M), we set σ([�]) := holAz (�) ∈ U(1) and we define the associated twisted
field net (Fσ , j). The cocycle z′ defined by σ as in the previous part of the previous
theorem is then given by

z′(o, a) = HolDz (�(o,a)) · z1(o, a),

and Corollary 2.5 implies z = z′. ��
Considering in particular topological twists arising from closed 1–forms, we obtain

the following Theorem, which resumes the results of the last two sections:

Theorem 4.5 LetAKM denote the observable net of the free Dirac field. Then, for any
closed de Rham form A ∈ Z1

dR(M) there are:

1. A twisted Dirac field ψA : S(DAM) → B(H) solving the Dirac equation with
interaction A;

2. A twisted field net (FA, j) with topological twisting σ := exp−i
∮
A;
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3. A cocycle zA ∈ Z1
AB(AKM ) with charge component z1 and holonomy

zA(p�) = exp
{

− i
∮

�

A
}

I , [�] ∈ π1(M), (69)

where p� is a path approximation of �.

If H1(M) has no torsion elements, then any irreducible z ∈ Z1
AB(AKM ) with charge

component z1 and topological dimension 1 is equivalent to a cocycle of the type zA.

Proof The twisted Dirac field ψA has been constructed in Sect. 4. Starting from ψA,
we constructed in (62) the twisted field net (FA, j), having the required twisting. The
cocycle zA is obtained by the previous theorem and has the form

zA(o, a) = exp
{

− i
∮

�(o,a)

A
}

· zc(o, a), a ⊆ o,

from which (69) follows. Finally, if H1(M) has no torsion, then by the considerations
after (27) we conclude that any holonomy σ : π1(M) → U(1) is of the desired type
exp−i

∮
A. ��

5 Conclusion and outlooks

In the present paper, we studied the superselection sectors defined on curved space-
times [6] by analyzing them in the specific model of the observable net of the free
Dirac field. We provided the expected physical interpretation of the sectors, show-
ing that they correspond to background flat potentials interacting with Dirac fields.
The correspondence is essentially one-to-one, because potentials having the same
Aharonov–Bohm phase define the same sector, and the phase is the actual observable
quantity. The picture is then completed in terms of twisted field nets, whose inclusion
morphisms are designed to reproduce the relative phases that appear when one tries to
describe the interacting Dirac field in terms of “local charts” (51). Twisted field nets
are, on turns, in one-to-one correspondence with superselection sectors.

For the physical interpretation of our results, a crucial point is that the background
flat potentials can be reconstructed having merely as input the localized loop observ-
ables (6) defined by the sectors. Thus, the potential is a byproduct of the sector, which,
as well-known, corresponds to a state of the observable net, in general affected by the
spacetime topology. We then conclude that the potential is codified in the preparation
of the state.
In particular, in the case of the classical Aharonov–Bohm effect, we argue that:

• When the experimenter shields the solenoid, the space where the charged particles
are confined acquires a non-trivial topology, with fundamental group Z.

• Switching on the magnetic field �B inside the solenoid makes the system fall into
a superselection sector of AB type, labelled by the Aharonov–Bohm phase γ �→
exp−i

∮
γ
A. This fits the abstract discussion byMorchio and Strocchi [28], as well
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as old results in path-integral quantization (see [22] and references cited therein).
Thus, the presence of the non-trivial potential A, d �A = �B, is regarded as part of
the preparation of the state: if the experimenter switches off the magnetic field,
�B = 0, then we have a topologically trivial sector.

The lesson that we learn is that A is interpreted as a generalized DHR-charge of
Aharonov–Bohm type and can be reconstructed using exclusively localized observ-
ables.

Finally, we remark that for the construction of our interacting fieldψA it is essential
that the twisting bundle LA is topologically trivial. Yet in general the twisting bundle

Lz := M̂ ×σ C
n,

where σ : π1(M) → U(n) is as usual the holonomy representation defined by z ∈
Z1
AB(AKM ), is non-trivial. This may occur when:

1. n = 1 and the homology H1(M) has torsion;4

2. n > 1, a case that appears for π1(M) non-Abelian or for Dirac fields with non-
Abelian gauge group. Under this hypothesis, the argument for proving triviality
of LA fails. We note that this is the case of explicit physical interest: for example,
two parallel solenoids in the Aharanov-Bohm apparatus yield π1(M) isomorphic
to the free group with two generators.

Even if there exists no problem in defining the twisted field net (Fσ , j) in these cases,
we believe that it is desirable from the point of view of physical interpretation to
construct the interacting field in correspondence of the sector, thus this point is object
of a work in progress. One possible approach may be to embed Lz into some trivial
bundle M × C

m , which always exists for m great enough. As an alternative, we may
directly take twisted Dirac bundles of the type DzM := DM ⊗ Lz and construct a
twisted Dirac field ψz : S(DzM) → B(H) in sense of Isham.
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A Results on topological sectors

This appendix is devoted to proving that one can avoid using punctured Haag duality
in the analysis of superselection sectors; only Haag duality is enough.

We consider the observable net AKM defined in a representation satisfying Haag
duality. The key property of 1-cocycles that we need in this appendix is the following:
for any pair a, a1 ∈ KM in the causal complement of o ∈ KM one has that [6,
Corollary 1]

z(q) ∈ A′
o , q : a → a1 . (70)

which is a consequence of homotopy invariance of 1-cocycles and of pathwise con-
nectedness of the causal complement of a diamond.

Lemma A.1 Let AKM be a causal net satisfying Haag duality. Given an inclusion of
diamonds o ⊆ õ, let a ⊥ õ and p : a → o. Then, the following properties hold:

(i) The adjoint action z(p)Aõz( p̄) is independent of the choice of p and a.
(ii) z(p)Aõz( p̄) ⊆ Aõ.

Proof (i) If q : a1 → o with a1 ⊥ õ observe that

z(p)Az( p̄) = z(q)z(q ∗ p)Az( p̄ ∗ q)z(q̄) = z(q)Az(q̄) , A ∈ Ao

where we have used (70) as q̄ ∗ p : a → a1 and a, a1 are in the causal complement of
õ. (i i) Here, we use Haag duality. Take o1 ⊥ õ and B ∈ Ao1 . Since o1 ⊥ õ, we can
find a1 with a1 ⊥ õ, o1 and a path q : a1 → o. By the just proved result, we have that
for any A ∈ Aõ

z(p)Az( p̄)B = z(q)Az(q̄)B = z(q)ABz(q̄) = z(q)BAz(q̄)

= Bz(q)Az(q̄) = Bz(p)Az( p̄)

where, again, we have used (70) as q : a1 → o and a1, o are in the causal complement
of o1. ��

We can now prove [32, Lemma 4.5(i)].

Proposition A.2 Let AKM be a causal net satisfying Haag duality. Given o, a ∈ KM
with o ⊥ a. Then, for any inclusion ã ⊆ a and any path p : ã → o there holds

z(p)A′
az( p̄) ⊆ A′

a .

Proof Take B ∈ Aa , A ∈ A′
a and p as in the statement. By assumption, we have that

p̄ : o → ã and that o ⊥ ã. By the previous Lemma, we have that z( p̄)Bz(p) ∈ Aa ;
hence,

z(p)Az( p̄)B = z(p)Az( p̄)Bz(p)z( p̄) = z(p)z( p̄)Bz(p)Az( p̄) = Bz(p)Az( p̄) ,

completing the proof. ��
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This result implies that (11) gives an endomorphism ρz(o)ã : A′
a → A′

a for any
ã ⊆ a and o ⊥ a and that we can reply the analysis of superselection sectors without
making use of punctured Haag duality.
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