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Abstract: This paper discusses the application of two approaches (direct and inverse) to the iden-
tification of volatile substances by means of a gas sensor array in a headspace over nasal mucus
swab samples taken from calves with differing degrees of respiratory damage. We propose a unique
method to visualize sensor array data for quality analysis, based on the spectra of cross mass sen-
sitivity parameters. The traditional method, which requires an initial sensor array trained on the
vapors of the individual substances (database accumulation)—with their further identification in the
analyzed bio-samples through the comparison of the analysis results to the database—has shown
unsatisfactory performance. The proposed inverse approach is more informative for the pattern
recognition of volatile substances in the headspace of mucus samples. The projection of the calculated
parameters of the sensor array for individual substances in the principal component space, acquired
while processing the sensor array output from nasal swab samples, has allowed us to divide animals
into groups according to the clinical diagnosis of their lung condition (healthy respiratory system,
bronchitis, or bronchopneumonia). The substances detected in the gas phase of the nasal swab
samples (cyclohexanone, butanone-2,4-methyl-2-pentanone) were correlated with the clinical state of
the animals, and were consistent with the reference data on disease markers in exhaled air established
for destructive organism processes.

Keywords: gas sensor array; principal component analysis; volatile metabolites; nasal swabs; pat-
tern recognition

1. Introduction

Various mathematical algorithms, from classical chemometrics to computer vision,
have been widely used for data processing from sensor systems [1]. The processing
algorithms for large data arrays generally require cloud resources, while simpler ones
may be incorporated into portable devices, including portable analyzers. Beyond the
traditional method used in search of close or similar samples, based on data distribution in
space, more detailed information is required in order to estimate a sample’s composition,
and the presence of particular compounds and markers within it. Such a task can be
solved by means of traditional analytical chemistry methods, such as the standard additive
method, the internal standard method, or via sensor array training and the identification
of specific responses to the calibration function [2–6]. However, due to the instability and
variability of gaseous mixture compositions (especially the ones emitted from samples of
complex natures), the training method with the cross-selectivity of sensors is inaccurate
for individual substances. Nevertheless, such an approach is still widely used in a great

Chemosensors 2021, 9, 116. https://doi.org/10.3390/chemosensors9060116 https://www.mdpi.com/journal/chemosensors

https://www.mdpi.com/journal/chemosensors
https://www.mdpi.com
https://orcid.org/0000-0002-1137-6973
https://www.mdpi.com/article/10.3390/chemosensors9060116?type=check_update&version=1
https://doi.org/10.3390/chemosensors9060116
https://doi.org/10.3390/chemosensors9060116
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/chemosensors9060116
https://www.mdpi.com/journal/chemosensors


Chemosensors 2021, 9, 116 2 of 16

number of methods for solving classification problems, including those using sensors and
sensor arrays [7–10].

Biological samples of various natures are among the most topical subjects of clinical di-
agnostics research. Highly volatile compounds (VCs) used as biomarkers of both natural and
disturbed metabolism, including destructive processes in bodily organs and inflammation,
refer to compounds of different classes (e.g., ketones, alcohols, aldehydes, hydrocarbons,
S- and N-containing compounds, etc.) [10–22]. One of the traditional metabolite determi-
nation approaches in metabolomics is the untargeted approach, searching for markers of
substances emitted in the process. Several techniques have been used for this purpose; gas
chromatography–mass spectrometry (GC–MS) and gas chromatography–flame ionization
detection (GC–FID), are among the most commonly used. While the maximum number of
metabolites can be defined using the GC–MS and GC–FID methods, the identification takes
place after the experiment, which is problematic since the usage of non-authentic chemical
standards of substances may lead to false or unsatisfactory results [23–27]. Moreover, the
sophisticated and expensive equipment, the long time required for analysis, the need for
sample pre-concentration, the need for the involvement of qualified personnel, and the
scarce possibility of performing online and in-field tests, are the main drawbacks of standard
analytical techniques—such as GC–MS—in metabolomics [11]. Other methods used for VC
analysis and coupled with mass spectrometry as detection techniques include the selected
ion flow tube (SIFT–MS) and proton transfer reaction (PTR–MS) techniques, which enable
real-time measurements but are obstructed by high analysis costs.

The use of chemical gas sensors and sensor arrays as rapid and non-invasive diagnostic
instruments has gained a lot of attention for environmental monitoring, foodstuffs analysis,
testing for ailments, and in clinical analysis—including metabolite detection [28,29]. In the
last case, analysis using various types of sensory systems can significantly simplify and
accelerate the collection of diagnostic information for health assessment, and for monitoring
disease progress and patient state. In the present work, an array of chemical gas sensors in
combination with the untargeted approach to pattern recognition in volatile compounds—
via inflammation markers—was applied for the detection of respiratory dysfunctions in
cattle. More specifically, we conducted laboratory experiments over a two-year period in
an effort to elaborate an express method for the detection of respiratory diseases in calves.
Samples of exhaled breath condensate and nasal swabs from calves were studied as the
research objects [30–33]. The method of projection of the principal components was applied
to the sensor array output data in order to determine the presence of specific substances in
the gaseous phase of the nasal mucus swab samples. The purpose of the research was to
compare the application of direct and inverse approaches to the processing of multivariate
signals obtained from the array of piezoelectric quartz gas sensors in the headspace of
nasal swab samples from calves with differing degrees of respiratory damage, so as to
identify the highly volatile markers of pathological processes within them. While the direct
approach consisted of the projection of the multivariate output of a sensor array for nasal
swab samples in the principal component space—obtained via the processing of the sensor
array’s signals for the vapors of pure substances—by an inverse approach we mean an
opposite solution: the projection of the multivariate signals of a sensor array for vapors of
pure substances onto the principal component space, obtained for the nasal swab samples.

2. Materials and Methods
2.1. Device and Sensor Array Characteristics

The analysis of the gas phase over the biosamples was carried out with the odor ana-
lyzer «Diagnost-Bio-8» (Ltd. “Sensino”, Kursk, Russia) in the “frontal analyte input” mode
(frontal spontaneous intake of highly volatile compounds, VCs) in the pre-sensory space of
a closed detection cell), Figure 1. The sensor array included a set of 8-piezoelectric BAW-
type quartz crystal microbalance resonators, with a 10.0 MHz basic oscillation frequency.
In order to vary the sensitivity of the sensors, the silver electrodes of 5 mm diameter used
to hold a quartz crystal were covered with various solid-state nanostructured sorbents
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(«Living system», «LS©», Russia) [30,31]. In particular, sensors 1, 8 were modified with
carboxylate carbon nanotube phases of different masses, marked in the tables and in the
text as MCNT1 and MCNT2; sensors 2, 7 were covered with phases of zirconium nitrate
of different masses (Zr1 and Zr2); sensor 3 had a dicyclohexane-18-crown-6 (DCH18Cr6)
sorbent film; sensors 4, 5 were modified with bio hydroxyapatite phases of different masses
(HA1, HA2), and, finally, sensor 6 was covered with polyethylene glycol succinate (PEGsc).
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Figure 1. General view of the “Diagnostic-Bio-8” device (a); while measuring a sample of nasal swabs (b); the output curves
of the sensors as appears in the software of the device (c).

The coatings were uniformly deposited to the electrodes of piezoelectric quartz res-
onators, fat-free with acetone or chloroform, by immersion in solutions of sorbents. The
deposition included the following steps: (i) the basic oscillation frequency of the piezoelec-
tric resonator, F0, Hz was accurately reordered; (ii) the suspension of 0.5 g of sorbent in
10 mL of solvent was prepared and kept in an ultrasonic bath for 15 min at 90 W power;
(iii) the Ag electrode surfaces of the piezoelectric sensor were exposed to the suspension
for 15 s; (iv) coatings were dried vertically and held in an oven at 50 ◦C for 40 min; (v) the
final coating mass (∆m) mass was calculated by measuring the sensor oscillation frequency
according to the Sauerbrey equation [34]:

∆m =
∆F·A

2.27·10−6·F2
0

(1)

where ∆F is the change in the sensor oscillation frequency after the coating deposition,
MHz; F0 is the base oscillation frequency, MHz; 2.27·10−6 is a calibration constant of
piezoelectric quartz resonator at normal conditions, cm2/g; A is the area of Ag electrodes,
cm2. The film mass deposited on electrodes was up to 20 µg/cm2.

As it was demonstrated in our previous investigations [32], the chosen sensors have
shown a high sensitivity to various classes of highly volatile organic compounds (alcohols,
aldehydes, acids, ketones, amines, arenes, etc.). More details on sensor manufacturing,
including technical characteristics, reproducibility details and sorbents synthesis, are
specified in [33]. The sensor array response was registered in a form of chrono-frequency-
grams–output curves of piezoelectrical quartz sensors within the total time of measurement,
representing the variations of sensor vibration frequency over time (−∆F, Hz) (Figure 1c).
The active measurement time was 80 s, and during this period the baseline responses of
the sensors were stable (±1 Hz).

2.2. Analysed Samples

The nasal swab samples were taken from 5 red-spotted cow breed calves aged from
14 to 20 days; the reselection was made 7 days later (the total number of samples was 10).
The sampling of nasal mucus took within 4–5 s according to the methodology developed
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in our laboratories though the use of the sterile cotton swabs, usually employed in bacteri-
ological research, which were then stored in sterile tubes. Approximately 20–30 min prior
to the analysis, the cotton swabs with collected nasal mucus were extracted from storage
tubes and placed on a glass Petri plate; hereafter, the consecutive samples measurements
were conducted.

2.3. Measurements with Sensor Array

Samples of calves’ nasal swabs were scrutinized with a natural (without forced flow)
frontal input of vapors into the pre-sensory space of the detection cell at 20 ± 1 ◦C. The
time between the moment the cotton swab was removed from the storage tube and the
measurement itself was strictly controlled to 10 s. The measurements were performed in
combined mode: the sensors were kept above a sample with a frontal input of volatile
components into the pre-sensory space during the first 80 s, followed by the spontaneous
desorption of volatile compounds from the sensor coatings in the open detection cell
without sample between 81 s and 200 s. The sorption/desorption of vapors of distilled
water and of twenty-one volatile compounds (p. a. Alfa Aesar), the markers of respiratory
pathologies [10–22], were preliminarily tested in a wide range of concentrations, as shown
in Table 1. During these preliminary tests, on the plate tightly adjacent to the detection cell,
1 to 3 µL of individual substances were injected and the sensor signals were recorded from
the moment the substance was introduced into the detection cell according to the measure-
ment mode described above: the first 80 sec substance vapors sorption were followed by
the spontaneous desorption for the next 120 s. The detection limits of substances, defined
as a significant change (more than 3σ) in sensor signals compared to a blank measurement,
correspond to the values of the minimum concentration of substances in Table 1.

Table 1. Individual substances used for training the gas sensor array and their concentrations ranges.

Compound Abbreviation Min. Concentration.
ppmv

Max. Concentration.
ppmv

Ammonia Am 2.2 6.5
Methylamine MA 3.5 10.4
Benzylamine BA 1.5 4.5
Diethylamine DEA 1.6 4.7

Acetone Ac 2.2 6.7
Methylethylketone MEK 1.8 5.5
4-methylpetanone-2 4MP2 1.3 3.9
5-methylhexanone-2 5MH2 1.2 3.5
1-phenylbutanone-2 1PhB2 1.1 3.3

Cyclopentanone CP 1.8 5.5
Cyclohexanone CH 1.6 4.8

3-methylcyclohexanone 3MCH 1.5 4.5
Acetaldehyde AcAl 2.9 8.7

Ethanol Et 2.8 8.4
Propanol-1 Prop1 2.2 6.5
Butanol-1 But1 1.8 5.3
Butanol-2 But2 1.8 5.3
Pentanol-1 Pent1 1.5 4.5
Acetic acid AAcid 2.5 7.6
Butyric acid BAcid 1.8 5.3
Ethylacetate EtAc 1.7 5.0

Water Water 9.0 25

2.4. Clinical and Laboratory Tests of Calves

The general clinical state of the calves was evaluated at each stage of the investigation
according to the point system (WI score), developed at the University of Wisconsin-Madison
(USA) [35], and followed by the obligatory laboratory control of hematological and bio-
chemical parameters of blood inflammation, such as leukocytosis, the shift of the leukocyte



Chemosensors 2021, 9, 116 5 of 16

formula to the left and the increased concentration of haptoglobin. These last measure-
ments were performed at FSBSE «All-Russian Scientific Research Veterinary Institute of
Pathology, Pharmacology and Therapy», Russia. Additionally, the respiratory failure index
of calves was estimated according to the recommendations given in [36], and a chest X-ray
using a high-frequency portable X-ray device 50Ma (Brand Shinova model MX101) was
performed. All the results of clinical examination and the laboratory analyzes of animals
are available on request.

2.5. Data Treatment

The maximum changes in the vibration frequency of sensors, ∆Fmax (Figure 1c),
were calculated from the sensors’ chrono-frequency-grams registered with the device
software, which were then used to calculate the parameters of sorption efficiency A(i/j)
(where I, j are the numbers of sensors in the array) [37,38]. More details on A(i/j) parameter
estimation is given in our recent work [39]. Briefly, A(i/j) determines the sorption efficiency
of an individual compound as the ratio of the maximum signals of a pair of sensors in a
determined range of concentrations for a fixed measurement time:

A(i/j) = ∆Fmax,i/∆Fmax, j (2)

where ∆Fmax,i(j) represents the changes in the oscillation frequency of sensors i and j,
respectively, expressed in Hz. The parameters A(i/j) are independent from the analyte
concentration and are permanent in the range of the linear response and constant sensi-
tivity of sensors; it is necessary to assume a priori the concentration range of the defined
substances. In order to identify one substance in a mixture, at least one A(i/j) value is
required. Overall, for each sample, there were calculated 28 sorption efficiency parameters
A(i/j), corresponding to all the possible combinations of 8 sensors without repetitions.

Data processing was carried out with the Unscrambler program (v.10.0.4. CAMO
software AS, Oslo, Norway) using principal component analysis (PCA) with the full cross-
validation of models. The singular value decomposition (SVD) algorithm was employed in
PCA. Mathematical applications of the SVD include computing the pseudoinverse, matrix
approximation, and determining the rank, range, and null space of a matrix. In order
to compare the data obtained at the sorption of pure substances and nasal swabs, the
projected PCA was implemented. The results from sample projections onto an existing
PCA model can be interpreted in the same way as usual PCA results. For this, however,
the loadings values must be fixed based on the established PCA model. Then, the new data
were projected through the fixed PCA loadings and the new scores were computed for the
projected samples. The main difference of the projected PCA compared to standard PCA
results is that the variance plot now depicts calibration, validation and projection.

3. Results and Discussion
3.1. The Clinical State of the Calves

Prior to the sensory analysis, the health state and the degree of respiratory organ
damage according to the results of the clinical and laboratory tests were established for
each calf in each test point. Table 2 summarizes the established diagnoses. Moreover, in
order to evaluate the similarity of respiratory system conditions in animals with analogous
clinical diagnosis, the results of clinical and laboratory tests were processed by PCA, as
shown in Figure 2. On a PCA score plot, reported in Figure 2 and representing 71% of total
variance on the first and second principal components, PC1 and PC2, the three groups
of animals can be clearly distinguished. Group 1 (green circled) includes an animal № 4
(involving two control points—№ 4.1, № 4.2) and animal № 5 (involving the first control
point—№ 5.1) and represents the group without clinical symptoms of a lung damage.
Group 2 (red circled) contains animals № 2 and № 3 (two control points—№ 2.1, 2.2, 3.1,
3.2) in an acute phase of pneumonia. Group 3 (blue circled) corresponds to chronic lung
damage, and it is represented by animal № 1 (involving two control points). As it can be
noted from Table 2, group 1 includes animals with bronchi inflammation (№ 4.2 and №
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5.1); however, according to clinical indicators, slight deviations from a healthy state are
observed, which do not specify the necessity of any drug treatment.

Table 2. The degree of damage to the respiratory system of calves according to the results of clinical
and laboratory tests.

Sample Number Date of Investigation Diagnosis

1.1 16 January 2020 Bilateral bronchopneumonia (chronical)
1.2 22 January 2020

2.1 16 January 2020 Bilateral bronchopneumonia
2.2 23 January 2020

3.1 16 January 2020 Bilateral bronchopneumonia
3.2 23 January 2020

4.1 18 January 2020 Healthy respiratory system
4.2 24 January 2020 Bronchitis

5.1 18 January 2020 Bronchitis
5.2 24 January 2020 Right-sided pneumonia

Chemosensors 2021, 9, x FOR PEER REVIEW 6 of 16 
 

 

total variance on the first and second principal components, PC1 and PC2, the three 
groups of animals can be clearly distinguished. Group 1 (green circled) includes an animal 
№ 4 (involving two control points—№ 4.1, № 4.2) and animal № 5 (involving the first 
control point—№ 5.1) and represents the group without clinical symptoms of a lung dam-
age. Group 2 (red circled) contains animals № 2 and № 3 (two control points—№ 2.1, 2.2, 
3.1, 3.2) in an acute phase of pneumonia. Group 3 (blue circled) corresponds to chronic 
lung damage, and it is represented by animal № 1 (involving two control points). As it 
can be noted from Table 2, group 1 includes animals with bronchi inflammation (№ 4.2 
and № 5.1); however, according to clinical indicators, slight deviations from a healthy 
state are observed, which do not specify the necessity of any drug treatment.  

Table 2. The degree of damage to the respiratory system of calves according to the results of clini-
cal and laboratory tests. 

Sample Number Date of Investigation Diagnosis 
1.1 16 January 2020 Bilateral bronchopneumonia (chronical) 
1.2 22 January 2020 
2.1 16 January 2020 Bilateral bronchopneumonia 
2.2 23 January 2020 
3.1 16 January 2020 Bilateral bronchopneumonia 
3.2 23 January 2020 
4.1 18 January 2020 Healthy respiratory system 
4.2 24 January 2020 Bronchitis 
5.1 18 January 2020 Bronchitis 
5.2 24 January 2020 Right-sided pneumonia 

The nasal mucus from calves was then analyzed with the piezoelectric sensor array. 
The mucus samples for analysis were collected twice with a one-week interval from all 
five calves with different diagnoses in respect to the animal’s health state. Nasal mucus, 
as a biosample, is not stable in its quality and quantity content. The volatile composition 
of the gaseous phase over the mucus depends on the amount of water in a sample and the 
sample’s viscosity. For this reason, it is impossible to use the absolute values of sensor 
signals in order to compare the qualitative composition of the gas phase over the tested 
samples. We hence have decided to use a different approach through the calculation of 
sensor efficiency parameters A(i/j) for individual volatile compounds and by employing 
the projection of sensor array output data to the PCA space obtained by the processing of 
signals of a sensor array for vapors of pure substances. Additionally, the efficiency of the 
inverse procedure, consisting in the projection of multivariate signals of a sensor array for 
vapors of pure substances onto the principal component space, obtained for the nasal 
swabs samples was estimated.  

 
Figure 2. Classification of calves according to the clinical and laboratory indicators. Figure 2. Classification of calves according to the clinical and laboratory indicators.

The nasal mucus from calves was then analyzed with the piezoelectric sensor array.
The mucus samples for analysis were collected twice with a one-week interval from all
five calves with different diagnoses in respect to the animal’s health state. Nasal mucus,
as a biosample, is not stable in its quality and quantity content. The volatile composition
of the gaseous phase over the mucus depends on the amount of water in a sample and
the sample’s viscosity. For this reason, it is impossible to use the absolute values of sensor
signals in order to compare the qualitative composition of the gas phase over the tested
samples. We hence have decided to use a different approach through the calculation of
sensor efficiency parameters A(i/j) for individual volatile compounds and by employing
the projection of sensor array output data to the PCA space obtained by the processing
of signals of a sensor array for vapors of pure substances. Additionally, the efficiency of
the inverse procedure, consisting in the projection of multivariate signals of a sensor array
for vapors of pure substances onto the principal component space, obtained for the nasal
swabs samples was estimated.

3.2. Sensors Efficiency Parameters A(i/j) for Individual Volatile Compounds

The approach based on the calculation of A(i/j) sensor parameters of sorption efficiency
has shown its effectiveness and reliability for solving identification tasks for individual
highly volatile molecules in gas mixtures [29,37–39]. The fundamental difference of the
proposed approach to substance identification from the one proposed earlier for the anal-
ysis of equilibrium gas phases is that the referent values for substance identification are
determined taking into account wide limits of substance concentrations (from 1 ppm to
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10 ppm) and the number of parameters for which the calculated value falls into the ref-
erence values for the substance. The reproducibility of the maximum sensor signals in
vapors of the selected test substances was estimated by the coefficients of variation, which
did not exceed 25% for the lower range of concentrations of substances reported in Table 1.
With an increase in the concentration of substances in the detection cell, the coefficient of
sensor signal variation was lower than 6.5% [36,40]. Table 3 represents referent limits of
A(i/j) parameters for various classes of volatile compounds in the wide range. The set of
A(i/j) parameters is unique for each substance, and it is defined by the presence and by the
amount of the substance in the gas phase over a biosample.

Table 3. Reference values of sorption efficiency parameters A(i/j) for different classes of volatile substances in the concentra-
tion ranges indicated in Table 1.

A(i/j) Water Ethyl-Acetate Acetone Ketones Alcohols Acetaldehyde Organic Acids Ammonia Amines

A(1/2) 1.3–1.6 0.44–0.80 0.50–0.80 0.56–0.71 0.33–0.67 0.50–0.75 1.0–1.5 1.0–1.2 0.38–1.5
A(1/3) 1.6–2.3 1.0–1.2 1.3–0.75 0.82–1.3 0.67–1.2 1.0–1.5 1.5–2.0 1.3–2.5 1.0–2.0
A(1/4) 0.60–0.80 0.44–0.64 0.5–0.8 0.56–0.80 0.43–0.75 0.57–1.0 0.63–1.0 0.8–1.3 0.6–1.0
A(1/5) 0.83–1.3 1.0–1.3 0.75–1.3 0.75–1.7 1.0–1.5 1.5–2.0 1.0–1.5 1.3–1.8 1.2–3.0
A(1/6) 1.7–2.7 1.0–1.3 1.3–1.7 1.3–1.7 1.0–1.5 1.3–2.0 1.6–2.0 1.3–2.0 1.3–1.6
A(1/7) 1.0–1.5 0.50–0.78 0.50–0.80 0.50–0.83 0.43–0.86 0.67–1.0 1.0–1.3 0.80–1.4 0.50–1.0
A(1/8) 0.45–0.60 0.11–0.18 0.08–0.20 0.11–0.19 0.07–0.18 0.21–0.26 0.36–0.50 0.44–1.0 0.67–1.0
A(2/3) 1.2–1.7 1.7–2.3 1.4–1.8 1.6–2.2 2.1–3.0 2.0 1.0–2.0 1.3–3.0 1.0–2.3
A(2/4) 0.40–0.63 0.89–1.1 0.88–1.2 0.82–1.4 1.0–1.6 1.1–2.0 0.63–1.0 0.8–1.3 0.5–1.1
A(2/5) 0.75–1.0 1.4–2.3 1.3–2.0 1.8–3.4 1.8–3.5 2.0–3.0 1.0–1.3 1.3–1.5 0.8–2.0
A(2/6) 1.2–1.8 2.5–3.0 1.7–2.3 1.9–3.3 2.3–3.8 2.0–3.0 1.3–2.0 1.3–2.0 1.0–2.7
A(2/7) 0.75–1.3 1.1–1.3 0.86–1.4 1.0–1.4 1.2–1.6 1.3–1.5 0.8–1.3 0.80–1.2 0.57–1.2
A(2/8) 0.32–0.45 0.23–0.29 0.15–0.28 0.19–0.27 0.24–0.34 0.42–0.47 0.29–0.44 0.44–0.86 0.27–0.50
A(3/4) 0.28–0.38 0.44–0.63 0.50–0.83 0.55–0.75 0.50–0.75 0.57–1.0 0.29–0.67 0.29–1.0 0.43–1.5
A(3/5) 0.88–1.5 0.83–1.3 0.75–1.3 1.0–2.2 0.83–1.5 1.0–1.5 0.40–1.0 0.50–1.0 0.6–1.3
A(3/6) 0.6–1.3 1.3–1.7 1.0–2.0 1.2–1.7 1.0–1.7 1.0–1.5 1.0–1.3 0.7–1.5 0.89–1.5
A(3/7) 0.50–0.71 0.50–0.71 0.57–0.83 0.61–0.71 0.50–0.75 0.67 0.40–0.80 0.40–0.75 0.43–0.83
A(3/8) 0.19–0.38 0.11–0.16 0.10–0.19 0.11–0.19 0.10–0.15 0.21–0.24 0.14–0.29 0.22–0.33 0.12–0.33
A(4/5) 1.3–2.0 2.0–3.0 1.3–1.8 1.6–3.0 1.5–2.5 1.5–2.3 1.3–1.6 1.0–1.8 1.6–2.0
A(4/6) 2.3–3.8 2.7–3.0 1.7–2.1 1.8–2.5 1.7–3.0 1.5–2.3 1.7–2.7 1.5–2.3 1.3–2.5
A(4/7) 1.6–2.0 1.1–1.5 0.71–1.3 0.84–1.3 0.83–1.3 0.8–1.2 1.0–1.6 0.75–1.4 0.33–1.7
A(4/8) 0.72–0.83 0.22–0.32 0.13–0.30 0.16–0.32 0.17–0.26 0.21–0.41 0.36–0.62 0.33–1.0 0.08–0.75
A(5/6) 1.4–2.3 1.0–1.8 1.0–1.7 0.71–1.3 1.0–2.0 0.75–1.3 1.3–2.5 1.0–1.5 0.50–1.3
A(5/7) 0.83–1.3 0.38–0.78 0.43–0.83 0.32–0.67 0.43–0.81 0.50–0.67 0.75–1.3 0.60–0.80 0.40–0.79
A(5/8) 0.37–0.55 0.09–0.18 0.07–0.20 0.05–0.15 0.08–0.16 0.14–0.24 0.27–0.44 0.33–0.57 0.04–0.50
A(6/7) 0.50–0.83 0.38–0.50 0.29–0.67 0.37–0.67 0.38–0.60 0.50–0.67 0.40–0.60 0.50–0.60 0.33–0.64
A(6/8) 0.22–0.31 0.08–0.11 0.07–0.13 0.07–0.15 0.07–0.12 0.14–0.21 0.14–0.31 0.22–0.43 0.08–0.42
A(7/8) 0.38–0.45 0.17–0.25 0.14–0.28 0.17–0.26 0.16–0.27 0.29–0.35 0.31–0.44 0.44–0.71 0.17–0.75

To identify a substance or a group of substances, a kind of a spectrum is formed out of
all sets of A(i/j) parameters ordered in a strictly defined sequence. As a result, the cross
mass-sensitivity parameter spectra are obtained, as shown in Figure 3. In the spectrum,
the position number of the sensor in the array is used as a reference point; nevertheless,
when the order of the sensors changes, analytical information is not lost, but only the
sequence of parameters in the row is adjusted. It is apparent from the example on Figure 3
that the proposed spectra differ for various substances greatly, wherein absolute values
of A(i/j) parameters in the spectra may change depending on the vapor concentration in a
detection cell; yet the spectra shape—the ratio of A(i/j) parameter values relative to each
other—remains the same for the exact substance. In this way, the application of the A(i/j)
parameters spectra allows one to solve the identification tasks through the employment of
the cross-sensitive sensor array.
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Figure 3. Spectra of A(i/j) cross mass-sensitivity parameters for vapors of (a) cyclohexanone and (b) distilled water.

3.3. Sensors Efficiency Parameters A(i/j) for Individual Volatile Compounds

At the first step, the uniqueness of the cross mass-sensitivity parameter spectra for
vapors of pure substances was evaluated by PCA analysis. Data array for the individual
substances was preliminarily auto-scaled in order to reduce the influence of random
errors. On the PCA score plot in Figure 4a, representing the two first PCs with a total
explained variance of 70%, the several groups of individual compounds, such as distilled
water, organic acids, ammonia and methylamine, as well as normal alcohols C3–C5, heavy
ketones, including cyclic ones, and other substances are clearly separated. Meanwhile,
the score plot of the first and third PCs did not provide any additional information on the
separation of substances into groups.
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As it can be seen from the loadings plot, reported in Figure 4b, the most significant
influence on for the PC1 were the A(i/j) parameters for the eighth and second sensors,
modified with MCNT2 and Zr1 coatings correspondingly, while for the PC2, the A(i/j)
parameters for the fourth and fifth sensors with the biohydroxyapatite coating gave the
highest influence. Additionally, the biohydroxyapatite coated sensors have shown the
greatest sensitivity to vapors of alcohols, acids, aldehydes, and acetone. Sensors 2 and 7
coated with zirconium oxide nitrate have revealed the high sensitivity to the vapors of
nitrogen- and sulfur-containing compounds; sensor 1 coated by processed MCNT1 showed
a selective response to the vapors of both cyclic and heavy ketones, and alcohols. Notably,
the differentiation of substances increases with coating mass variation. Therefore, the
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selected sensor set is suitable for the detection of volatile metabolites in the gas phase,
including the ones connected to destructive processes, and can be applied to control the
appearance and accumulation of particular substances the calf’s nasal swabs.

3.4. Qualitative Evaluation of the Headspace Composition over the Nasal Swabs Samples

In the next step, the output of gas sensor array over the nasal swab’s samples were
projected on principal component space obtained with A(i/j) spectra in order establish the
similarity of the mucus gas phase composition for calves with different clinical conditions.
Additionally, the spectra of cross mass-sensitivity parameters A(i/j) were used to determine the
different volatile substances in mucus samples. Wherein, since the different mucus samples’
analysis was carried out on different days, to reduce the influence of the time drift of sensors
in the array with an open detection cell, the matrix of A(i/j) parameters were normalized and
scaled to the standard deviation by the days of the experiment. Thereafter, the data array for
nasal swabs samples was auto-scaled the same as the data for individual substances.

3.4.1. Projection of Cross Mass-Sensitivity Parameters Spectra for Nasal Swabs Samples
onto the Principal Components Space for Spectra of Individual Substances

The nasal swab sample from calf № 3 on the first day of the experiment was excluded
from the sampling as an outlier due to its anomalous properties, probably connected with
contamination of the sample during transportation. Based on the results of the projection,
it was found that the explained variance by the first principal component is equal to 5%,
which indicates the low similarity of spectrum changes of the parameters of the cross
mass-sensitivity for biosamples and individual substances, as shown in Figure 5.
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Hence, the sample separation takes place in the second principal component mainly.
Wherein, the spectra from almost all nasal swab samples were projected into one group,
close in principal component space to the spectra of vapors of diethyl amine, 1-phenylbuta-
none-2, acetaldehyde, and acetone. The projections of the samples from calf № 2 were
placed near the projection for acetaldehyde vapor. In the second monitoring point, the
samples for calves № 3, 4, and 5 were close to vapors of 1-phenyl-butanone-2 in the principal
component space, while the projection of calf № 4.1’s sample was close only to acetone
projection. The percentage of the explained variance for the first two principal components
(34%) for nasal swab samples when projecting on the PCA model for individual substances
indicates that the greatest alterations and differences in the substance spectra do not
coincide with the spectra changes for nasal mucus samples.
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The poor identification and description of the real biosamples based on the model
for individual substances might be explained by the significant impact from the matrix of
the biosample itself, which influences the redistribution of volatile components and their
ratio in the gas phase, and thus alters A(i/j) parameters. Physical and chemical properties
of individual compounds are incomparable with analogous properties for the biosample
matrix. Evidently, the application of the traditional direct approach using the PCA model
based on individual substances is unsatisfactory, since the sample grouping of nasal swabs
from calves does not confirm their clinical state and the established diagnosis. Therefore,
we decided to apply an inverse approach: to project the cross mass-sensitivity parameters
spectra for individual substances onto the principal component space of real biosamples.

3.4.2. Projection of Cross Mass-Sensitivity Parameters Spectra for Individual Substances on
the Principal Component Space Obtained on Real Biosamples

At first, the PCA model was constructed for nasal swab samples. As it is apparent
from Figure 6, on a PCA score plot represented by the first two PCs with explained variance
of 65%, the groups of samples consistent with different clinical states and diagnoses of the
animals can be clearly distinguished.
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Accounting for the third principal component allows one to increase the explained
variance up to 83%, and it also permits the isolation of chronic pathologies, which is
reflected in the similarity of the samples in the plot for animal № 1 in different control
points. The loadings of parameters A(i/j) for sensor 7 coated with MCNT2 film, for bio
hydroxyapatite HA1, HA2 films of sensors 4,5, and the PEGsc film-modified sensor 8 were
highest in distinguishing amines of various structures, and had the greatest impact on the
two first principal components (Figure 7), as well as for the PCA model for individual
substances (see Figure 4b). Since the distribution of nasal swabs along the first PC coincides
well with the clinical states of animals, A(i/j) parameters for sensor signals result in being
informative not only for the determination of compound markers of pathological processes,
but very probably may also discriminate the composition of the volatile fraction of the
biosamples matrix (mucin. proteins).
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Figure 7. Loadings plot of the PCA model for samples of nasal swabs of calves by the spectra of the
parameters of the cross mass-sensitivity A(i/j).

In order to better visualize the differences in the gas phase content over the mucus sam-
ples, we pointed out of the total set of A(i/j) parameters which can maximally differentiate
the differences associated with the clinical condition of an animal in the chemical content of
gas phase of the samples. For this, the most representative loadings, and hence the most
informative A(i/j) parameters for which in both plots the load value exceeds 0.2 for the first
or second principal components were selected from the loadings plot in Figures 4b and 7.
In total, six parameters were selected: A(1/3), A(1/4), A(1/5), A(2/6), A(5/7), and A(6/8). To cal-
culate the influence of the mucus sample matrix on the composition of the volatile fraction,
the significant parameters of the PCA model for the vapors of the individual substances
(loading value is 0.1–0.2 according to the first or second principal components), which
coincide with the loading values with parameters of the PCA model for the samples of nasal
swabs, namely A(2/8), A(6/7), A(6/8), A(7/8), were additionally chosen.

Next, from the selected ten parameters, the new spectra of cross mass-sensitivity for
two extreme states (the calf with bronchopneumonia (№ 5.2) and the calf demonstrating
respiratory health (№ 4.1)) were built, as shown in Figure 8a. Due to the high affinity of
sensors with MCNT and HA films to volatile biomolecules, for the visual evaluation of
differences in parameter spectra of cross mass-sensitivity, the values of parameters A(1/3),
A(2/6), A(5/7), A(6/7) were scaled to the maximum values of the corresponding parameters
in biosamples and individual substances. These spectra reflect A(i/j) parameters, which
collectively differ the most for the gas phase composition over nasal swab samples of
the calves in different clinical condition. Using the similar set, we built spectra of cross
mass-sensitivity for vapors of pure individual substances. It was established that the water
spectrum (Figure 8b) is qualitatively similar to the spectrum of nasal swab samples for the
conditionally healthy calf (sample № 4.1), while the cyclohexanone spectrum (Figure 8c),
being a marker of destructive processes [19,20], looks like a spectrum of a biosample of
the calf № 5.2 with bronchopneumonia. The identity of these spectra may indicate the
correctness of the proposed approach of narrowing the information area for individual
substances by calculated parameters for nasal swab samples.

Finally, the cross mass-sensitivity parameter spectra for individual substances were
projected onto the principal component space for nasal swab samples. As it can be seen from
Figure 9, in the obtained projection, the explained variance for individual substances is quite
small (around 11%), yet the logical dependence of the change in the sorption properties
of substances is reflected along the first principal component in the plot: water < alcohols,
acids < ethers, light ketones, aldehydes < heavy ketones, cyclic compounds.



Chemosensors 2021, 9, 116 12 of 16

Chemosensors 2021, 9, x FOR PEER REVIEW 12 of 16 
 

 

the calf № 5.2 with bronchopneumonia. The identity of these spectra may indicate the 
correctness of the proposed approach of narrowing the information area for individual 
substances by calculated parameters for nasal swab samples.  

 
Figure 8. The truncated spectra of cross mass-sensitivity parameters for the gas phase over sam-
ples of nasal swabs: (a) water vapor (b) and cyclohexanone vapor (c). 

Finally, the cross mass-sensitivity parameter spectra for individual substances were 
projected onto the principal component space for nasal swab samples. As it can be seen 
from Figure 9, in the obtained projection, the explained variance for individual substances 
is quite small (around 11%), yet the logical dependence of the change in the sorption prop-
erties of substances is reflected along the first principal component in the plot: water < 
alcohols, acids < ethers, light ketones, aldehydes < heavy ketones, cyclic compounds.  

 
Figure 9. The results of the projection of the spectra of the cross mass-sensitivity parameters for 
individual substances on the PCA model for nasal swab samples. 

Since calf № 4 was a respiratory healthy subject in the first point, the volatile markers 
of inflammation processes were not detected in its nasal swabs, and presence of other 
metabolites was below the 1ppmv. Therefore, the projection of cross mass-sensitivity pa-
rameter spectra for individual substances demonstrated the correspondence of the gas 

Figure 8. The truncated spectra of cross mass-sensitivity parameters for the gas phase over samples
of nasal swabs: (a) water vapor (b) and cyclohexanone vapor (c).

Chemosensors 2021, 9, x FOR PEER REVIEW 12 of 16 
 

 

the calf № 5.2 with bronchopneumonia. The identity of these spectra may indicate the 
correctness of the proposed approach of narrowing the information area for individual 
substances by calculated parameters for nasal swab samples.  

 
Figure 8. The truncated spectra of cross mass-sensitivity parameters for the gas phase over sam-
ples of nasal swabs: (a) water vapor (b) and cyclohexanone vapor (c). 

Finally, the cross mass-sensitivity parameter spectra for individual substances were 
projected onto the principal component space for nasal swab samples. As it can be seen 
from Figure 9, in the obtained projection, the explained variance for individual substances 
is quite small (around 11%), yet the logical dependence of the change in the sorption prop-
erties of substances is reflected along the first principal component in the plot: water < 
alcohols, acids < ethers, light ketones, aldehydes < heavy ketones, cyclic compounds.  

 
Figure 9. The results of the projection of the spectra of the cross mass-sensitivity parameters for 
individual substances on the PCA model for nasal swab samples. 

Since calf № 4 was a respiratory healthy subject in the first point, the volatile markers 
of inflammation processes were not detected in its nasal swabs, and presence of other 
metabolites was below the 1ppmv. Therefore, the projection of cross mass-sensitivity pa-
rameter spectra for individual substances demonstrated the correspondence of the gas 

Figure 9. The results of the projection of the spectra of the cross mass-sensitivity parameters for
individual substances on the PCA model for nasal swab samples.

Since calf № 4 was a respiratory healthy subject in the first point, the volatile markers
of inflammation processes were not detected in its nasal swabs, and presence of other
metabolites was below the 1ppmv. Therefore, the projection of cross mass-sensitivity
parameter spectra for individual substances demonstrated the correspondence of the gas
phase composition over this sample only to water vapors. According to the model, mass-
sensitive parameter spectra for samples from calves with acute bronchopneumonia (№ 2.1,
2.2, 5.2) are closest to spectra of heavy ketones, cyclic compounds (1-phenyl- butanon-2, 3-
methylcyclohexanone, benzyl amine); sample № 3.2 is the closest to spectra of butyric acid,
acetaldehyde, ethanol, which indicates the presence of pathogenic agents and destructive
processes in organs and tissues [18–20]. Parameter spectra of mass-sensitivity for butanol-2,
4-methylpentanone-2 and 5-methyl hexanone-2 are close to spectra for samples of acute
bronchitis (4.2, 5.1), which indicates the metabolism alterations in the upper respiratory
tract and the presence of inflammation [22]. In chronic lung damage (calf № 1 in two control
points), the A(i/j) spectra are near the spectra for ethyl acetate, pentanol-1, propanol-1,
butyric acid and water. When considering the image shift of nasal swab samples from an
animal in the space of principal components in dynamics, it is possible to observe that
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the deterioration of the clinical condition of the animal is accompanied by an increase in
the amount of heavy branched and cyclic ketones, amines and alcohols. This corresponds
to the reference data [16,22] and to X-ray results of the chests of the calves (for calves,
it is 1 < 3 < 2 increased area of lung damage). To quantify the degree of similarity of
the truncated spectra of the cross mass-sensitivity of nasal swab samples and individual
substances, the similarity parameters δ, estimating the degree of coincidence of the two
sets of parameters A(i/j), were calculated according to the [40], and the obtained values are
listed in Table 4.

Table 4. The similarity parameter δ for cross mass-sensitivity spectra of nasal swabs samples and individual pure substances.

Pure Substance
Nasal Swab Sample

1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2

Ammonia 0.168 0.185 0.236 0.212 0.063 * 0.197 0.171 0.101 0.192 0.287
Methylamine 0.008 0.069 0.032 0.059 0.091 0.069 0.076 0.040 0.067 0.057
Benzylamine 0.204 0.189 0.223 0.200 0.322 0.190 0.234 0.253 0.194 0.250
Diethylamine 0.111 0.227 0.095 0.216 0.129 0.223 0.224 0.102 0.220 0.083

Acetone 2 ppmv 0.175 0.176 0.322 0.344 0.313 0.249 0.250 0.290 0.256 0.293
Acetone 7 ppmv 0.286 0.714 0.358 * 0.750 * 0.243 * 0.135 0.343 0.429 * 0.081 0.386 *

Methylethylketone 0.314 0.688 0.158 0.679 0.260 0.137 0.457 0.500 0.096 0.160
4-methylpetanone-2 0.218 0.403 0.350 0.331 0.280 0.322 0.389 0.158 0.397 0.081
5-methylhexanone-2 0.221 0.333 0.273 0.261 0.279 0.335 0.320 0.331 0.327 0.188
1-phenylbutanone-2 0.177 0.194 0.175 0.184 0.243 0.191 0.192 0.086 0.188 0.071

Cyclopentanone 0.336 0.358 0.381 0.445 0.313 0.433 0.349 0.325 0.352 0.339
Cyclohexanone 0.132 0.284 0.269 0.290 0.297 0.283 0.138 0.253 0.288 0.291

3-methylcyclohexanone 0.324 * 0.434 * 0.466 0.443 0.303 0.432 * 0.419 0.418 0.427 * 0.369
Acetaldehyde 0.026 0.035 0.104 0.120 0.142 0.136 0.048 0.016 0.029 0.033

Ethanol 0.039 0.326 0.160 0.242 0.220 0.328 0.314 0.052 0.228 0.069
Propanol-1 0.188 0.257 0.218 0.210 0.227 0.258 0.248 0.158 0.253 0.231
Butanol-1 0.269 0.292 0.256 0.298 0.251 0.311 0.303 0.149 0.289 0.166
Butanol-2 0.150 0.167 0.159 0.157 0.149 0.165 0.165 0.067 0.163 0.072
Pentanol-1 0.166 0.278 0.175 0.277 0.234 0.279 0.183 0.142 0.182 0.248
Acetic acid 0.123 0.141 0.059 0.171 0.029 0.150 0.122 0.055 0.148 0.083
Butyric acid 0.085 0.056 * 0.179 * 0.054 * 0.084 0.201 * 0.061 0.139 * 0.055 0.144 *
Ethyl acetate 0.254 0.292 * 0.304 0.378 0.303 * 0.293 0.281 * 0.276 0.285 0.317

Water 0.711 * 0.712 * 0.488 * 0.496 * 0.026 0.498 * 0.722 * 0.405 * 0.709 * 0.438 *

* samples for which the values of more than three parameters coincided with the reference values for individual substances.

Parameters δ were calculated according to the Equation (3):

δ =

∣∣∣∣∣∣∣
∑n

i=1 f (xi, yi)

n·max
[1...n]

f (xi, yi)

∣∣∣∣∣∣∣ (3)

where f (xi, yi) =

{ xi
yi

, i f xi
yi
> 1

− xi
yi

, i f xi
yi
< 1

, xi, yi—values of parameters A(i/j) for biosample and

test-substance, respectively; n—number of parameters A(i/j), by which comparison is made.
It was established that the value higher than 0.444 for 10 similarity parameter δ indicates a
significant coincidence (by t-test, p ≤ 0.05) of the spectra of the cross mass-sensitivity for
nasal swab samples with the spectra for individual substances. In this case, the coincidence
of more than three identification parameters and a high value of the similarity parameter
unambiguously indicates the presence of a substance in the gas phase. It was found also
that a large amount of acetone (7 or more ppmv) and methyl ethyl ketone was reliably
identified in the gas phase over samples of nasal swabs from calves with respiratory
inflammation (samples № 1.2., 2.2., 4.2). Additionally, 3-methylcyclohexanone was present
in the gas phase of nasal swab samples from calves with a chronic source of infection
(samples № 1.1, 1.2, 2.1, 3.2, 5.1), while cyclopentanone was identified in the gas phase over
samples from calves with bronchopneumonia (№ 2.2). Water vapor was identified in all
samples except sample 3.1. due to its pollution.
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4. Conclusions

In the present work, the application of a piezoelectric gas sensor array in combination
with a frontal sample input have allowed one to evaluate the presence and negative
dynamics in animal health state alterations down to severe cases of bronchopneumonia.
It was demonstrated that the volatile fraction of nasal mucus swab samples, tested with
the sensor array, contains useful information on the presence of strongly marked sources
of inflammation in a calf’s body. The employed sensor array was highly informative for
the evaluation of metabolism of the upper respiratory tract, and also for distinguishing
chronic or subclinical forms of respiratory diseases. Taking into account the simplicity
in operation, fast response time, the no need for sample pretreatment and user-friendly
software, the array can be applied in situ (directly in a farm) to monitor an animal’s health
state. An application of spectra of cross mass-sensitivity parameters A(i/j), calculated on
the signals of the sensor array, has allowed one to differentiate and identify water and
metabolite vapors of natural and pathogenic processes in the tested biosamples. The
traditional approach for the identification of substances in biosamples, which is used in
other analytical methods that include mandatory preliminary sample pretreatment and
data post-processing via chemometrics methods, cannot be applied while analyzing the
samples without sample preparation. The proposed approach of the parameter spectra
projection of cross mass-sensitivity for test substances on the principal component space,
obtained from similar spectra for swab biosamples (inverse projection), describes the
presence of metabolites in the gas phase more adequately and corresponds to the results of
the clinical and laboratory studies, especially when assessing changes in the clinical state of
an animal, which proves the correctness of the suggested approach. Moreover, the proposed
method can be used to narrow the information area in the case of an untargeted search
for metabolites; the inverse projection algorithm can be used to process a large number
of results for bioassays. The regression models may be constructed in order to predict
specific metabolites quantitatively. The reproducibility, limit of detection and sensitivity
of the analysis will depend on cross mass-sensitivity parameters A(i/j), calculated from
the signals of the sensors array. When comparing the direct and inverse approaches for
the pattern recognition of volatile compounds in the gas phase over biological samples,
the adequate approach reflecting the state of biological samples is the inverse. Its main
advantage in comparison with the direct methodology is an increase in the sensitivity of
substance recognition due to the extraction of the most significant information from the
data set for test substances, which correlates with the clinical state of the animal. We believe
that the sensitivity and specificity of substance identification as binary response variables
using the inverse algorithm will be higher and check this hypothesis in the following study.
However, the disadvantage is the necessity to build a PCA model for biosamples that
correctly classifies the samples on the score plot. Currently, the tests on developed method
application for routine swab analysis are run in our laboratories and will be presented in
the next article.
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