This is the accepted version of the following article "Research challenges in legal-rule and QoS-aware cloud service
brokerage”, which has been published in final form at http://dx.doi.org/10.1016/j.future.2016.11.025

Research Challenges in Legal-rule and QoS-aware Cloud Service Brokerage

Emiliano Casalicchio®!*, Valeria Cardellini®, Gianluca Interino®, Monica Palmiranic

“DIDD, Blekinge Institute of Technology, Sweden
bDICII, University of Rome Tor Vergata, Italy
¢CIRFID, University of Bologna, Italy

Abstract

The ICT industry and specifically critical sectors, such as healthcare, transportation, energy and government, require as mandatory
the compliance of ICT systems and services with legislation and regulation, as well as with standards. In the era of cloud computing,
this compliance management issue is exacerbated by the distributed nature of the system and by the limited control that customers
have on the services. Today, the cloud industry is aware of this problem (as evidenced by the compliance program of many cloud
service providers), and the research community is addressing the many facets of the legal-rule compliance checking and quality
assurance problem.

Cloud service brokerage plays an important role in legislation compliance and QoS management of cloud services. In this paper
we discuss our experience in designing a legal-rule and QoS-aware cloud service broker, and we explore relate research issues.
Specifically we provide three main contributions to the literature: first, we describe the detailed design architecture of the legal-rule
and QoS-aware broker. Second, we discuss our design choices which rely on the state of the art solutions available in literature.
We cover four main research areas: cloud broker service deployment, seamless cloud service migration, cloud service monitoring,
and legal rule compliance checking. Finally, from the literature review in these research areas, we identify and discuss research

challenges.

Keywords: Cloud computing, Autonomic computing, Legislation compliance checking, Optimization, Quality of Service,

Monitoring, Service Migration, Service portability

1. Introduction

In the ICT industry service providers, developers and inte-
grators as well as customers should be aware that law and reg-
ulation introduce functional and non-functional constraints that
must be included by-design inside the systems and maintained
during their operation. In the era of cloud computing, and
specifically in a public cloud scenario, this compliance man-
agement issue is exacerbated, because the customer essentially
outsources data processing and storage to service providers that
could be non-compliant with the customer legislation (e.g., as
regards data protection).

An important role in law/regulation compliance management
of cloud services can be played by a cloud broker [1, 2, 3] that
works as an intermediary in the service procurement process
and as a third party controller during the whole service life
cycle. The broker should provide services to both customers
and cloud service providers, for example: discovery of services
compliant with law and Service Level Agreements (SLAS); run-
time monitoring of service level metrics; monitoring of legisla-

*Corresponding author
Email addresses: emiliano.casalicchio@bth.se (Emiliano
Casalicchio), cardel1ini@ing.uniroma2.it (Valeria Cardellini),
gianluca.interino@gmail.com (Gianluca Interino),
monica.palmirani@unibo.it (Monica Palmirani)
IPart of this research was carried out when Emiliano Casalicchio was at
DICII, University of Rome Tor Vergata

Preprint submitted to Future Generation Computer Systems

tion changes; law and QoS compliance checking during the ser-
vice on-boarding phase and, at run-time, during the service evo-
lution phase; aggregation, composition, optimization, orches-
tration of cloud services.

In this paper we describe the detailed design of a legal-rule
aware cloud service broker in the framework of the Cloud for
Europe initiative [4], and we extensively discuss the emerged
design and research challenges. Specifically, we focus on four
of the most demanding functionalities of the broker, which we
refer to also as design challenges, and that are:

o FI — Legal-rule compliance checking is the broker capa-
bility of verifying (off-line and at run-time) that cloud ser-
vice providers and cloud services are compliant with a le-
gal framework, also as a mix of different supra-national
or national legislations. An example of a tool to check
cloud service law compliance is described in [5]. The
legal-rule compliance must be monitored during the ser-
vice on-boarding phase as well as at run-time, during the
service evolution phase.

o F2 — Legislation dynamic management is the broker ca-
pability of dynamically tracking changes in legislation or
changes in service features that may bring to a violation of
the legal requirements.

e F3— QoS monitoring is the broker capability of monitoring
and analyzing QoS metrics. The monitoring is functional

November 23, 2016

macbook
Casella di testo
This is the accepted version of the following article "Research challenges in legal-rule and QoS-aware cloud service brokerage", which has been published in final form at http://dx.doi.org/10.1016/j.future.2016.11.025

Legal-rule < Legislation <
Compliance Dynamic
Checking 005 Metrics / SLA \\\ Management

\ Monitoring

Compliance checking \

Seamless <
Service
Migration

QoS Monitoring ©

QoS / SLA evaluation

Figure 1: Dependencies among the broker’s components implementing func-
tionalities F1-F4.

both to check legal compliance and to verify that SLAs
are guaranteed. The monitoring mechanism provided by
a broker must be scalable to cope with a huge amount of
data coming from many service instances.

o F4 — Seamless service migration refers to the ability to de-
fine and deploy a cloud service migration plan for the in-
volved services, minimizing the service downtime. Seam-
less service migration relies on standard data formats and
platform-independent computing environments.

An important pillar for both the F3 — QoS monitoring, and
F4 — seamless service migration, is the deployment model of
cloud services and the related technologies, as we will discuss
later in this paper.

Functionalities F1 — F4 are strictly inter-dependent, as repre-
sented in Figure 1. Legal rules influence the service level objec-
tives included in the SLA, the functional requirements (e.g., ser-
vice migration towards another service provider to prevent ven-
dor lock-in) and the structure of the processes behind the ser-
vice implementation. Therefore, F1 influences the SLA metrics
and the monitoring procedures (F3). On its turn, monitoring
of QoS metrics (F3) is not only fundamental for guaranteeing
SLAs, but it also takes part in the dynamic management of leg-
islation compliance (F2). Finally, seamless service migration
(F4) requires QoS monitoring (F3) and legal-rule compliance
checking (F1) support from the broker.

Hence, the need arises for an integrated framework capable
to offer these functionalities and to address the related research
issues in an intertwined and integrated manner.

1.1. Research Contributions

In literature many research works have focused on cloud ser-
vice brokerage by addressing different issues, such as interop-
erability [6, 7], service discovery and matching [8], quality as-
surance and optimization [7, 9, 10, 11, 12], and legislation com-
pliance [13]. However, those works address only one issue at
a time, while only our previous works [3, 14] and this paper
jointly address within a unified framework the design of a bro-
ker that integrates the functionalities F1 — F4.

This paper contributes to the literature as follows:

e We provide a more detailed design architecture of the bro-
ker initially proposed in [3]. The architecture proposed in
our previous research has been largely extended and im-
proved.

e We discuss our broker implementation choices selected
from the state of the art solutions available in literature.
We do not only address F1 — F4, but we also focus on the
mechanisms and technologies for the service deployment,
which are functional to F3 and F4.

e We review the literature and we identify and discuss re-
search challenges in the following areas: cloud broker ser-
vice deployment, seamless cloud service migration, cloud
service monitoring, and legal rule compliance checking.

Our main findings are: we strongly recommend a broker
which plays an active role in the service deployment. We sug-
gest to use container technologies supported by TOSCA-based
orchestration tools to cope with portability and provide seam-
less service migration. TOSCA, Docker, Cloudify and Kuber-
netes are examples of standards and technologies for service
portability, but they are still not mature and the landscape is still
fragmented. Monitoring of containers, assessment of scalabil-
ity and elasticity, and evaluation of consistency in Cloud data
storages are three challenges in QoS monitoring, which is func-
tional to QoS assessment. Models and tools for legal compli-
ance checking and management are available on the scene, but
they are still fragmented and not accessible as a unique frame-
work, and here the main challenge is to deal with different le-
gal tradition sources, legal concepts in different languages, the
interpretation level, and the interface module to allow human
experts to take a decision.

1.2. Paper Organization

To better contextualize the use of the proposed cloud service
broker and to make easily understandable the functionalities we
designed, we consider a real scenario described in Section 2.
The purpose of the scenario is also to make practical and fo-
cused the discussion of the research challenges. In Section 3
we discuss related work on QoS and legal-rule aware cloud ser-
vice brokerage and on related enabling technologies. In Sec-
tion 4 we present the detailed design of the broker. Section 5
focuses on the proposed solution to address the design chal-
lenges. Finally, we discuss research open issues in Section 6
and we conclude with final remarks in Section 7.

2. Reference Scenario

Let us consider, as driving example, the problem of procure-
ment of governmental cloud services, that have functional and
non-functional requirements imposed by European, national
and local legislation and regulation. In this scenario (see Fig-
ure 2), a government agency willing to use a public cloud ser-
vice needs to check the compliance of that service with the leg-
islation framework. Furthermore, it needs to evaluate if the ser-
vice can guarantee the QoS level needed by its customers.

Customers (e.g., Gov. 2 Broker Manager 2 Legal Expert %

Agencies)

Modeling of‘ihe legislation

Services liscovery
Management, Monitoring, Audit

Marketplace

Broker
Infrastructure

Services

legal-ule < Legislation < QoS Assurance <
Compliance Dynamic

System-level
Checking Management

Virtualization
Services

QoS Monitoring <
Senvice

Composition and grati Service Discovery ©
Optimization T

Seamless Service©

Distributed
Applications

Monitoring, deploying

Laws, Regulation SaaS
Service onbodrding, update

Legislators %
(Government)

Cloud Service ~ %
Providers

TDeponmg
Cloud Provider Infrastructures =

Figure 2: Reference scenario.

To carry out such controls, the government agency could ben-
efit from an intermediary (a broker) that offers the access to a
marketplace of services that are certified as being compliant
with the current legislation. Furthermore, the broker allows
the agency to discover services that fit the customers’ func-
tional and non functional needs. Additionally, the broker is in
charge of monitoring and guaranteeing both legislation com-
pliance and QoS assurance/SLA satisfaction at run-time, i.e.,
during the service usage. Finally, the broker must also support
service portability [15] that is, to allow the customer to migrate
an application from a cloud infrastructure and/or platform to
another one with minimal or even without efforts, so to avoid
vendor lock-in and retain the ability for future strategical deci-
sions.

Figure 2 represents the business level view of the broker (we
use the TOGAF representation [16]), that include the actors in-
volved in the scenario, the business functionalities offered by
the broker, and the product available by the marketplace. The
broker is managed by the Broker Manager that is also in charge
of supervising the cloud services enrollment in the marketplace,
in monitoring SLAs and auditing the cloud service providers.
The government agencies are the customers of the broker. They
request for accreditation/registration and for service discovery,
that include specification of the SLA and functional require-
ments. The marketplace emerges from the services exposed by
cloud service providers. The latter generate requests for ac-
creditation, requests for service on-boarding, and notify service
updates. Cloud service providers are monitored by the broker
to verify that the offered SLAs are guaranteed at runtime and to
audit QoS and compliance with law and standards. Legal ex-
pert are in charge of modeling the legislation. Legislators and
the Government are those who define and change laws and reg-
ulations. The broker functionalities are represented as business
services (we show in light green the functionalities considered
in the paper).

We also suppose that the marketplace offers the following
types of services: infrastructure services, system-level virtu-

alization services, distributed applications and Software-as-a-
Service. Infrastructure services are used to setup virtual in-
frastructures. Those services are typically offered by Infras-
tructure as a Service (IaaS) providers. System-level virtual-
ization services (i.e., containers) are needed to implement and
deploy portable applications. Those services are typically of-
fered by Container as a Service (CaaS) or IaaS providers. Con-
tainers have been selected as a universal cloud application and
deployment technology [17] to support seamless service mi-
gration (as detailed in Section 5). Distributed applications
run on top of virtualized infrastructures; typical examples are
client/server applications realized by composing and orchestrat-
ing [aaS/CaaS services.

An example of such a broker is demanded by the Cloud for
Europe initiative [4, 18, 19]. However, the principles behind the
broker we propose are independent from the specific sector of
application; furthermore, the broker can provide functionalities
that are sector agnostic.

3. Related Work

In this section we review the state-of-the-art approaches in
literature, broadly classified into cloud service brokerage re-
lated work and enabling technologies related work.

3.1. Cloud Service Brokerage

According to the NIST definition [1], a cloud broker is “an
entity that manages the use, performance, and delivery of cloud
services, and negotiates relationships between cloud providers
and cloud consumers”. A similar definition is given by Gart-
ner [20], while the concept of autonomicity is introduced in [2],
that envisions a broker capable of performing automatic re-
source provisioning and management, as well as automatic de-
ployment across multiple clouds.

The problem of cloud service brokerage has been addressed
from different perspectives in the literature but, to the best of
our knowledge, no research work addresses explicitly the prob-
lem of legal compliance checking, except for [13] where the au-
thors propose a distributed cloud proxy for monitoring and con-
trolling the cloud service consumption. The aim of the proxy
is to enable compliance to all privacy, legal, and regulatory is-
sues regarding the service consumption. However, the proxy is
comparable to an application layer gateway for cloud comput-
ing service and cannot be exactly classified as a broker.

The need for brokering mechanisms and policies particularly
arises in cloud federation architectures, such as Intercloud [2],
which is the first approach going towards the direction of build-
ing a unified platform composed by federated providers that can
exchange information through super-entities. Service brokering
is expected also to facilitate cloud adoption by simplifying the
matching of users’ needs [8], to rise trust in cloud computing
and to facilitate the procurement of cloud services in the pub-
lic sector providing added-value services [7, 21]. In [22] the
authors describe the concepts of cloud bursting and cloud bro-
kerage and discuss the open management and security issues
associated with the two models. They also present a possible ar-
chitectural framework capable of powering the brokerage based

cloud services; such framework is currently being developed in
the scope of OPTIMIS [23], an EU FP7 project. Cloud Agency,
which is proposed in [24] in the framework of the mOSAIC EU
FP7 project [25], implements a multi-agent brokering mecha-
nism that is vendor agnostic and allows for the deployment of
mOSAIC applications on any cloud infrastructure. In [6] the
same authors present the architecture of the Broker Agent and
its implementation in Cloud Agency for the provisioning of bro-
kering service at the cloud platform layer. A request splitting
algorithm based on a mixed integer programming formulation
is proposed in [10], where the cloud service broker distributes
the user requests across multiple cloud providers.

Some works focus on the assignment of cloud providers’
resources to cloud consumers so to guarantee the consumers’
requirements. In [9] the authors propose a cloud brokerage
approach that optimizes the placement of virtual infrastruc-
tures across multiple cloud providers (each one with a differ-
ent infrastructure offer and pricing policy) and also abstracts
the deployment and management of infrastructure components
in these clouds. A cloud broker that can employ different as-
signment strategies for optimal deployment of virtual services
across multiple clouds, based on different optimization crite-
ria, user constraints, and different environmental conditions is
presented in [26]. Some limitations of this work, where only
one consumer at a time is considered and no preference can be
assigned to non-functional requirements, are overcome in [27].
Their proposed brokering architectures allows cloud consumers
to customize their requirements further to fine level and the as-
signment of consumer’s requirements to provider’s resources is
dynamically managed through a multiple criteria decision mak-
ing approach. However, all these approaches take a narrow per-
spective focused on optimizing the cloud resources allocation,
without considering other issues.

STRATOS [11] is another cloud broker service that permits
to deploy and manage cloud applications on multiple providers,
based on requirements specified in higher level objectives.
STRATOS solves a multi-objective optimization problem and
addresses the runtime adaptation issue. In [28] the authors con-
sider the service brokering at infrastructure (IaaS) level as a
mean to realizing delegation in cloud federations that is, to al-
low IaaS providers to leverage the capabilities available in a
federation. QBROKAGE [21] addresses the problem of scala-
bility and vendor lock-in by exploiting only public information
made available from service providers. The proposed solution
allows the deployment of applications on virtual machines run-
ning on multiple clouds. To this end, the authors propose a
genetic-based approach to choose a set of cloud providers that
can host the application while guaranteeing the QoS negotiated
for the application.

Smart Cloud Broker [12] is a suite of software tools that al-
lows IaaS consumers to evaluate and compare the performance
of services offered by different IaaS providers, and thus sup-
port the selection of the cloud configuration and provider with
the specifications that best meet the user’s requirements. Us-
ing Smart Cloud Broker, prospective cloud users can estimate
the performance of the different cloud platforms by running live
tests against representative benchmark applications under given

load conditions.

In [29] the authors envisage a brokerage framework that of-
fers mechanisms for recommending optimal services to con-
sumers in a platform-agnostic manner. The proposed frame-
work is based on a platform independent description of
consumer-expressed preferences regarding the service delivery.

A broker-based approach similar to that presented in this pa-
per is proposed in [7]. The broker receives from the customer
a call for proposal indicating functional and not functional re-
quirements (expressed through SLA) and returns as result the
best proposal, i.e. the best offer from providers. The SLA
takes into account the price, the time unit, a rating indicating
the best accredited provider, and the minimum accepted avail-
ability. However, the authors do not explicitly consider legal
rules in the adaptation process and do not address the runtime
adaptation problem as we do in this work.

In [8] the authors address the problem of cloud service
matching proposing an OWL-S based cloud services broker.
The complex constraints considered regard service location,
bandwidth, storage, cost, and usage. This solution can be also
used to solve the interoperability problem due to the lack of a
non standard way to expose the providers capabilities. Even
if their approach uses semantic reasoning as our approach, the
authors do not address the legal compliance problem and the
run-time adaptation problem.

Our literature review on service brokerage confirms that none
of the existing solutions addresses, through an integrated and
unified architecture, the functionalities F'1-F4.

3.2. Enabling Technologies

In order to enable a legal-rule and QoS-aware cloud service
broker, two challenging requirements arise as prevalent: i) a
standard way to describe services and their orchestration, and
ii) a portable application environment. These requirements are
baseline for all the four functionalities we consider (F1 ——F4).
We have identified in TOSCA (Topology and Orchestration
Specification for Cloud Application) and application contain-
ers the state of the art solutions that can emerge as de-facto
standards in the current cloud landscape to address the above
design challenges. In what follow, we briefly describe these
technologies and motivate their adoption.

3.2.1. Containers

The cloud industry has a growing interest in system level
virtualization [30]. The idea of containers dates back to 1992
[31] and have matured over the years with the introduction of
Linux namespace [32] and the LXC project [33], a solution
designed to execute full operating system images in containers.
Application containers [34] are an evolution of operating sys-
tem virtualization. Rather than packaging the whole system,
containers package application or even application components
(the so called microservices) which introduce a new granular-
ity level of virtualization and thus become appealing for PaaS
providers [30]. The main idea behind containers is the possibil-
ity of defining a container specific environment where to install
all the library dependencies, the binaries, and a basic configu-
ration needed to run an application.

There are several management tools for Linux containers:
LXC, systemd-nspawn, Imctfy, Warden, and Docker [30, 34].
Furthermore, rkt is the container management tool for CoreOS.
The latter is a minimal operating system that supports popular
container systems out of the box. The operating system is de-
signed to be operated in clusters and can run directly on bare
metal or on virtual machines. CoreOS supports hybrid archi-
tectures (e.g., virtual machines plus bare metal). This approach
enables the CaaS solutions that are becoming widely available.

In our scenario (cf. Figure 2), there are many reasons to
elect containers as the building block technology to support
the Seamless Service Migration functionality. First, containers
give the possibility to execute a containerized application on
any platform that supports the container technology. Second,
containers provide a higher level of abstraction for the process
lifecycle management, with the ability not only to start/stop but
also to upgrade and release a new version of a containerized
service. The latter facilitates compliance checking against both
QoS requirements and legislation. Third, containers provide
also a solution to data portability. Docker provides the Docker
Volumes, which are specialized containers intended for data
management and facilitate data portability. Finally, contain-
ers allow to implement orchestration by means of specific plat-
form tools. For example, Kubernetes [35, 17] is an open-source
platform developed by Google for the automating deployment,
scaling, and operations of application containers across clusters
which provide the container-centric infrastructure. Kubernetes
supports run time scaling, seamlessly roll out and resource us-
age optimization.

3.2.2. TOSCA

TOSCA is an OASIS open standard [36] that defines an in-
teroperable meta-model of services and applications, enabling
portability and automated management across cloud providers,
regardless of the underlying platform or infrastructure [37].
These characteristics also facilitate the portable, continuous de-
livery of applications across their entire lifecycle. In short, they
empower a much higher level of agility and accuracy for busi-
ness in the cloud.

The TOSCA meta-model defines both the structure of a ser-
vice (e.g., an application or a cloud infrastructure service) as
well as how to manage it (e.g., deploy, patch and shutdown).
TOSCA’s models are technology agnostic. Indeed, TOSCA’s
artifacts intended as topologies (service structures) and plans
(process models), are portable and can thus be deployed on any
cloud provider infrastructure.

TOSCA is a suitable model to describe services implemented
as containerized applications and to orchestrate them. Fur-
thermore, the TOSCA standard, thanks to its flexibility, allows
to map the container lifecycle. As observed in [38], TOSCA
runtime lifecycle events (create, pre-configure, configure, post-
configure, start and stop) are superset of typical container run-
time events (deploy, init, stop and dispose).

Concerning orchestration, TOSCA allows to define non-
functional behavior or QoS by means of Policies. A Policy
can describe different things like monitoring behavior, payment

conditions, scalability, or continuous availability. The imple-
mentation of these policies are workflows and the TOSCA stan-
dard does not commit to any workflow language to describe the
necessary steps to implement any orchestration process.

Cloudify [39] is an open source cloud orchestration software
platform based on TOSCA. It automates the process of installa-
tion, deployment and also post-deployment such as monitoring,
remediation, and auto-scaling of the application stack. Cloudify
offers a plugin for Docker and Kubernetes.

In our reference scenario (cf. Figure 2) TOSCA is the pillar
to enable service interoperability and portability that require a
standard way to describe services and their orchestration. Inter-
operability and portability allow to implement Service Compo-
sition and Optimization, Service Discovery, and Seamless Ser-
vice Migration.

4. Broker Architecture

The solution we propose can be classified, according to
the NIST definition, as an intermediation — aggregation bro-
ker [40, 41, 42]. The detailed design architecture we present
in this section implement the broker described in the reference
scenario. It is an evolution of the high level architecture pro-
posed in [3], and is organized around four main groups of ser-
vices as depicted in Figure 3: User Interface; Quality Assur-
ance & Optimization; Migration; Legal Execution Framework.

The system architecture is represented using the TOGAF
framework [16] and the ArchiMate modeling language [43].
Put simply, TOGAF is a tool for assisting in the acceptance,
production, use, and maintenance of architectures. ArchiMate
provides uniform representations for diagrams that describe en-
terprise architectures.

In the architecture representation (see Figure 3) we use two
layered views. The Business Layer describes how the business
processes, services, functions and events are related to each
other and with the associated individuals and business units.
This layer is defined to be consisting of Information, Product,
Process and Organization domains. In the Application Layer,
the software applications that support the components in the
business layer, along with the information processed by these
applications, are described. This layer is defined to be consist-
ing of application and data domains.

In the following sections we provide a description of the main
services exposed by the broker and of how these services have
been implemented. We always refer to Figure 3 and implicitly
to our reference scenario (cf. Fig. 2 and Sec. 2). In the text
we use the verbatim font to denote architecture elements, e.g.,
components, services, actors, data objects.

4.1. User Interface

The User Interface group of services represents the access
point for the Cloud Service Providers (SPs), the Customers or
service consumers (SCs), and the Broker Manager. These ac-
tors interact with:

e The Registration & Authentication service that
manages the accreditation with the broker and the authen-
tication for accessing the broker services.

Broker Actors

Customers (e.g., Gov. & Cloud Service Providers % Broker Manager % legal Expert %
Agencies)
— E anllie i -
K | E
Broker Business Layer [[[[[[[%
User Interface ({ { { { { { Ouali%/..ssur ce&O%timization Migration Legal Bxecution Framework
Service || Service On-= Registration & © Contract < QS QoS Assurance < Seamless < Alert Notification = Legal-rule <
Discovery, Comp. boarding Authentication Mgmt. Monitor Service Modeling
&Opt. ~ N ~ ~ aa ~ o Migration A A pa
Dashboard : ! : : /o | : A - T
A SeviceOn- = : . 1 : Seamless = Legal-rule Modeling &=
boarding Sevice =1 Analytics = S ! Knowledge Mgmt.
: 1 : Monitoring ‘ - o
Service Account = Contract = : ‘ Migration R NN >
- . = L Legislation Legal-rule
Discovery Mgmt. Mgmt. Composition& = | Mo -H))
Optimization Dynamic Compliance
| Y A S } ,, Mgmt. Checking
—
Broker Application Layer
User Interface Quality Assurance, Optimization & Migration Logal Executifr] Framework
SD AM ™ Semcg Analytics Compo§|t|t?n & Execution & legal © legdl © Legal Rule ©
Monitoring Optimization Deployment
~ ~ ~ S Reasoner Knowledge Modeler
% A A ; ; ; iy Manager A
' ' ' Monitoring & Analytics & Service Orchestrator £ : N :
| £ | igration E iotion & ; ; :
*D AV cu SIA & Auditor & I\’/Iw|grat|on Sl:cl)scnptlon legal legal ¥ | legal Rule &
Monitor [anager anager Reasoner Knowledge Modeler
: : g] Manager
v ‘ Analyzer %1 CP OPT ;
Accounts Legal-rule & BPMN & " ‘ S
- - y Y L
AL : : L Interpreter Interpreter
‘ : : [: : : Akoma o Leglald o LegalRule
v v ; ; : 5 > Ntoso Knovlle g ML
Castzrl\:)l;ze L Benchmarks SLA Metrics Adaptation / Migration }7 ? R
A Optimization Log Runtime LE ol BPMN Model
j heck L
B Check Logs Ontologies
Service Providers Legend
Monitoring AP! Business @ Business = Application < Application & Data Object Application ©
Service Process Service Component Interface

Figure 3: Detailed design architecture of the legal-rule and QoS-aware cloud service broker (we show in green the services, processes, and components that are
discussed in details in the paper.

e The Service On-boarding service that manages the en- specify their functional and non-functional requirements

rollment of new services in the broker, i.e., it allows the
SPs to submit the service description, the offered SLA
and it allows to start and manage the service on-boarding
phase and the service evolution during the service life cy-
cle. The Service On-boarding process is implemented
by the Service Orchestrator macro-component at the
application layer.

The Contract Mgmt. service manages and stores con-
tracts (Service Provider — Broker, Customer — Broker, and
Customer — Service Provider);

The Service Discovery, Comp. & Opt. Dash-
board provides: a graphical interface allowing the SCs to

as facts for the instantiation of the Legal Knowledge; an
automated service discovery tool to search in the cloud
service metadata registries the services matching the
customers’ needs. This tool returns to the customers the
(possibly aggregated) services matching their require-
ments, sorted by some utility criterion. The services are
ranked on the basis of an acceptance score.

These end-user functionalities are not further discussed in the
paper.

4.2. Quality Assurance and Optimization

The second group of services is the Quality Assurance &
Optimization which is composed of:

e The QoS Assurance service: i) it provides the capabili-
ties to verify off-line the service compliance with the con-
straints imposed by law and regulation. It takes as input
all the information provided by the SP during the service
registration process. ii) It uses the Legal Execution Frame-
work to automatically check (at run-time) the compliance
to legislation in term of non-functional requirements, busi-
ness processes, standard adherence, and other constraints.
iii) It uses the data produced by the monitoring and analyt-
ics processes to asses the QoS level of the services.

e The QoS Monitor service is used by the Broker Manager
and the Customers to continuously monitor the QoS level
of their services and to asses the fulfillment of contract
obligations. The Cloud Service Provider accesses this ser-
vice to stream QoS monitored data through the broker.

The QoS Assurance service offers a wide range of func-
tionalities, hence it is realized by means of a set of business
processes, that are: Service Monitoring, Analytics, and
Composition & Optimization. Such processes are imple-
mented by a complex set of application layer services and com-
ponents.

Service Monitoring is implemented by the Monitoring
& Analytics component and is responsible for the continuous
runtime monitoring (SLA Monitor component) of the cloud
services. Monitoring is related to the SLA metrics described in
the SLA Metrics data object. Monitoring will be implemented
mixing push and pull modes. This is required because some
QoS metrics, such as scalability, elasticity and consistency (of
storage systems), are evaluated through a periodic benchmark-
ing activity. The goal of the Analytics component is to put
in place data analysis techniques with goal of predicting and
detecting SLA violations. The component inspects the moni-
tored data, computes direct and indirect metrics, determines if
the SLAs are violated, and/or forecasts the short term value for
those metrics. Hence, the Analytics component can trigger
some form of system adaptation to avoid SLA and legal-rule
violations.

The Service Orchestrator component implements the
Composition & Optimization service and the Execution
& Deployment service. The Service Orchestrator is no-
tified by the Monitoring & Analytics component and the
Legal Reasoner component in case of SLAs/law/regulation
violations. This component is in charge of planning some adap-
tation policy that could involve: service re-configuration, re-
source provisioning, traffic re-routing, service migration. The
service adaptation policy has, of course, the goal of maintaining
the compliance with law and regulation, but also to guarantee
that all the non-functional constraints are satisfied and the bro-
ker and/or customer utility is maximized. Our solution uses a
linear programming approach to optimize the service configu-
ration [14].

The Execution & Deployment application level service is
in charge of: managing the deployment of cloud services sub-
scribed by customers; implementing the decisions determined
by the adaptation policy in order to meet customers require-
ments; and managing the migration of cloud services.

The deployment can be managed in different ways depend-
ing on the type of service. For example, the deployment of an
application can be entirely managed by the broker composing
TaaS or CaaS resources. In case of SaaS, the deployment will
be directly managed by the service provider.

4.3. Migration

The Seamless Service Migration service provides tools
in support of the service migration.

Service migration can be explicitly requested by the
customer or can be suggested by the broker as adapta-
tion action. In both cases migration is governed by the
Seamless Service Migration process, implemented by
the Migration Manager component (part of the Service
Orchestration component). The Migration Manager is
supported by the Monitoring & Analytics component and
by the Legal Reasoner to assess the compliance of the mi-
gration with SLAs and legislation.

As discussed in the next section, seamless service migra-
tion is based on the assumption that applications and data use
portable and interoperable formats and technologies, like con-
tainers and container data volumes.

4.4. Legal Execution Framework

The forth group of services is the Legal Execution
Framework, which is composed of:

e The Alert Notification service, which notifies the
Broker Manager, the Cloud Service Provider and the Cus-
tomers about violations of legal-rules or about changes in
legislation that impact on functional and non-functional
requirements of cloud services.

e The Legal-rule Modeling service enables the de-
scription of law and processes. It is realized by
the Legal-rule Modeling & Knowledge Mgmt. pro-
cess, implemented by the application services Legal
Knowledge Manager and Legal Rule Modeler.

The Alert Notificationis realized by the Legislation
Dynamic Mgmt. process and the Legal-rule Compliance
Checking processes, implemented by the Legal Reasoner
and the Legal Knowledge Manager application layer ser-
vices.

The Legal Reasoner is in charge of evaluating the legis-
lation compliance by means of legal reasoning engines (e.g.,
SPINdle [44]) and business process modeling. The approach
used is both for forward compliance checking [45] in order
to forestall violations and for backward compliance check-
ing [46, 47].

The Legal Rule Modeler service is essentially a set of
tools (e.g., RAWE [48] and LIME editor for rules) to describe
law and processes. Such tools are based on a set of XML
standards (e.g., Akoma Ntoso [49], LegalRuleML [50] and
LIME [51)).

The Legal Knowledge Manager application layer service
is in charge of constantly monitoring and analyzing the law and

regulation landscape, by means of natural language processing
(NLP) tools and legal ontologies oriented to minimize the legal
sources modeling and also to improve the semantic Web query
on legal documents. This service will notify the Legislation
Dynamic Mgmt. in case of any legislation change.

4.5. Data Model

The broker components use and produce many data which
are stored in specific repositories. In the bottom of Figure 3 we
represent the main data objects. Data objects contain the infor-
mation needed to implement each business process. In what
follow we describe only the data object strictly related with
functionalities F1 - F4, that are Benchmark, SLA metrics,
Migration log and the Legal Knowledge.

The Benchmark data object is designed to represent all the
information needed to run the benchmark for scalability and in-
tegrity evaluation (e.g. the dataset for workload generation and
the benchmark configuration parameters) and the benchmark
results.

The SLA metrics data object is designed to represent the
list of metrics and the values for each metric and for each ser-
vice.

The Migration log data object is designed to represent all
the information monitored during a migration process, e.g. start
timestamp for the migration, peers active in the migration, data
successfully migrated, progress of the migration, errors, aborts.

The Legal Knowledge data object aggregates many data
objects that allow to represent the legislation and to assess leg-
islation compliance: Akoma Ntoso and LegalRule ML descrip-
tions of law, OWL ontologies, BPMN model description of le-
gal compliant business processes and the logs of run-time check
of legal rule compliance and dynamic legislation changes.

5. Design Choices

In the section, we discuss the main choices that we have faced
in designing the legal-rule and QoS-aware cloud service bro-
ker. As mentioned in Section 1, our analysis is focused only on
functionalities F1-F4 plus the cloud service deployment model.
Table 1 summarizes the solutions we adopt and the technologies
used to tackle our four design challenges.

5.1. Cloud Service Deployment Model

In the proposed architecture, the broker plays an active role in
the deployment phase of the cloud services subscribed by cus-
tomers, except for SaaS solutions. In our solution we assume
has the broker has the full control on the service deployment
process, since such approach offers many advantages. First, it
makes possible the activation of QoS monitoring agents and,
eventually, the initiation/implementation of reconfiguration ac-
tions to satisfy SLA and maintain legal-rule compliance. Sec-
ond, keeping separated the infrastructure and the container ser-
vices from the applications allows the broker to select the ap-
plication that best fits the customer requirements (both func-
tional and non functional ones) as well as the infrastructure on
which such application will be deployed that allows to match

non-functional requirements regarding the location of data and
computation, regulation, and standard compliance. The selec-
tion, composition, and orchestration of services can be either
human-assisted or automatic [14]. Third, it makes easy to no-
tify the legislation changes and the related corrective actions to
be taken to maintain compliance. Finally, the full control of the
broker permits to suspend an application or an infrastructure
service at any time, so the enforcement process of any policy
violation may be immediately taken.

TOSCA is our state of the art choice to enable this deploy-
ment model and the related benefits, since it provides a common
service description and orchestration format, independent from
the specific technology and vendor-neutral.

Application service providers willing to leverage the bro-
ker functionalities have to comply with the broker deployment
model and therefore have to offer containerized applications.
Until a standard for containers and their orchestration will not
clearly emerge from the ongoing work of standardization bod-
ies and groups, our brokering solution will rely on Docker and
Kubernetes, along with Cloudify.

5.2. Seamless Service Migration

The vendor lock-in is an essential issue in cloud computing,
mainly because there is no agreement on common standards
among cloud providers and/or because proprietary solutions are
often used. One of the goals of our cloud service broker is to
address the vendor lock-in problem by providing service porta-
bility and guaranteeing seamless service migration.

Portability is related both to services and data [52, 15]. Ser-
vice portability is intended as IaaS-to-IaaS (or CaaS-to-CaaS)
portability and is mainly concerned with the transferability of
the application from a computing environment to another. Data
portability aims at allowing the customer to migrate its data
independently from the application. While service portability
implies data portability, the vice-versa does not hold. Portabil-
ity not only is instrumental in avoiding vendor lock-in, but it
also allows to guarantee the continuity of the service in case the
cloud service provider goes bankrupt, and to guarantee optimal
service adaptation by means of service composition and service
migration.

Containers offer a partial solution for both service and data
portability and this is the technology we selected as enabler for
seamless service migration. Containers can be deployed in two
modes: container-on-VM that is, containers run on top of any
virtual machine (VM) provided by any cloud service provider;
or container-on-baremetal that is, containers run directly on
the server OS. The first approach allows to use consolidated
solutions for resource allocation and scaling, but vanishes the
lightweight nature of containers because of the double virtual-
ization layer. The second solution is supported by new OSs,
such as CoreOS. Our design choice does not impose a specific
container deployment approach, hence is up to the cloud service
provider to choose either for a container-on-vm or a container-
on-bare-metal solution.

Another facet of the migration problem is the orchestration
of containers. The orchestration logic has to be moved on the

Table 1: Design challenges, design solutions and supporting technologies.

Design challenge Solution

Supporting technologies

Cloud service deployment model

Full control of the broker on IaaS/CaaS service deploy-

TOSCA, Docker, Kubernetes,

(MaaS) solution

ment Cloudify
Seamless service migration Container as for data and application portability; TOSCA
to define a portable model of orchestration logic
Monitoring A mix of push and pull monitoring models; ser- | Zabbix, Nagios, Prometheus,

vice providers should expose a Monitoring-as-a-Service

YCSB, TPC-VMS, TPCx-HS,
TPCx-BB, BUNGEE

Legal-rule compliance checking; legislation
dynamic management

Modeling of law phase to populate the Legal Knowledge
base; Run-time checking phase based on the Legislation
Dynamic Management process

Eunomos, LIME, RAWE, SPIN-
dle, Regorus

TaaS/CaaS service provider. A solution to this problem can be
the adoption of TOSCA, that provides a way to define a portable
model of orchestration logic. Cloudify and Kubernetes are the
candidate technological solutions to the problem.

As regards data portability, Docker, which is the major im-
plementation of container technology, provides the Docker Vol-
umes, which are specialized containers intended for data man-
agement and keep all the nice features of portability of simple
containers.

5.3. QoS Monitoring

Monitoring is one of the main challenges in cloud (e.g., [53,
541) and multi-cloud environments [55], that is the context in
which our cloud service broker operates. In [55] the authors
clearly state that a multi-cloud monitoring service should pro-
vide push-based and/or pull-based options.

In order to monitor QoS properties and assure the SLA fulfill-
ment, we select a combination of the pull-based and the push-
based model. The pull-based approach foresees that the broker
actively queries the deployed applications in order to obtain in-
formation about the QoS level and health status of the applica-
tion. The pull-based monitoring can be implemented in two dif-
ferent modes, that we call active and passive. The passive mode
foresees that the broker queries the service provider monitoring
system to get the required monitored metrics and events. In this
case, the main issue is the broker difficulty in customizing the
metrics. In the active mode, the service provider furnishes the
broker with a testing workload and proper benchmark tools and
the broker will periodically run tests to evaluate the applica-
tion performance and ensure SLA compliance. This approach
may be used to evaluate key and challenging properties of the
cloud environment, like elasticity [56] and consistency of data
storage [57], whose related metrics can be negotiated as service
level objectives (SLOs) in the SLA agreed with the consumers.
However, its main drawbacks are the additional traffic and load
it may impose on the service provider infrastructure and plat-
form; furthermore, the active mode is not truly at runtime, so
the detection of problematic event patterns and the subsequent
triggering of corrective adaptation actions may be delayed.

The push-based model foresees that the application and in-
frastructure providers monitor the QoS metrics specified in each

Service Provider Push-based

Monitoring and Analytics 1

Service Provider —© Throughput

Monitoring Interface —— s @ Auditor %1
monitor bl
Reliabilit;
? Analyzer & Y
| -0
Pu5h l?ased Availability
Monitoring AP i i
(Maa$) P
Benchmarks SIAMetrics <>— SewviceTime
Active Pull- ©
based ? ?
Monitoring ctive pull-based
Elasticit Consistenc .
Interface Y ¥ Consist
e onsistency
Monitor-as-a-Service €] Storage
(MaaS) Performance Elasticity

Figure 4: Detailed design of the Monitoring & Analytics component. The Data
Objects represent the metrics collected using the push-based approach (e.g., ser-
vice time, throughput, availability) and active pull-based approach (e.g., elas-
ticity, consistency).

SLA for each customer and actively push notifications regard-
ing the monitored metrics and events to the broker’s monitoring
server through real-time oriented communication. Essentially,
the service provider should expose a Monitoring-as-a-Service
(MaaS) solution.

In our broker we opt for a mix of push and pull models (see
Figure 4). The services are mainly monitored using a push-
based approach; this choice requires the service providers to
offer a MaaS service available at least for the broker. Active
pull-based measurements can be periodically taken by the bro-
ker to perform an audit of the quality of the measures provided
by the service provider MaaS. The audit is needed to establish
trustworthiness among the consumers and the providers (and
the broker itself).

The specific frameworks used for implementing the push-
based monitoring are selected by the cloud service providers.
Examples of frameworks are: Zabbix [58], Nagios [59], and
Prometheus [60]. Furthermore, major cloud providers have
their own customized monitoring systems. As regards the tools
and benchmarks to support pull-based monitoring it is difficult
to provide a comprehensive list because their choice depends on
the type of offered cloud service. For example, for NoSQL data
storage systems YCSB [61] is a popular benchmark tool that

allows also to evaluate consistency. Performances of databases
running in virtualized environments can be also measured us-
ing the TPC-VMS suite [62], while TPCx-HS [63] and TPCx-
BB [64] can be used to benchmark Hadoop run-time, Hadoop
Filesystem API compatible systems, and MapReduce layers.
As regards elasticity, BUNGEE [65] is a tool for benchmark-
ing the elasticity of IaaS cloud services.

Details about the Monitoring & Analytics component
and the related data objects are represented in Figure 4. The
component accesses the service provider API that are split
in: push-based monitoring API (the MaaS), to get QoS met-
rics measurements, and active pull-based monitoring interfaces,
to measure metrics such as elasticity and consistency of data
stores, or simply measure performances for audit purposes.
Monitored data are stored into corresponding data objects, one
for each metric (a small example is provided) for online and
off-line processing by the Analyzer and the Auditor.

5.4. Legal-rule Compliance Checking and Legislation Dy-
namic Management

The legal compliance checking life cycle is based on two
main phases (see Figure 5), the Modeling phase and the Run-
time phase, that are two parallel and interacting processes. The
first can be triggered by the legal experts or by the run-time
phase process, while the latter uses the output of the modeling
phase that is, the legal rules.

In the Modeling phase, as soon as a new command is in-
troduced by law (e.g., new informed consent procedure, new
archiving method), the models of the business processes that
are regulating all the cloud services should be refined accord-
ing to this modification. The legal knowledge resources where
to discover obligations, permissions, rights, prohibitions, penal-
ties, and reparations are mainly the law, the contracts, and the
case-law documents.

In the Run-time phase the cloud service broker (and cloud
service providers joining the marketplace) must invoke the
Legislation Dynamic Management process that uses the Legal
Knowledge Base for checking if the specific service requested
is lawful and policy compliant (cf. Figure 5). This mechanism
could be used when a service customer requires a service (for-
ward) or after the service delivery in order to check a possible
not eligible behavior (backward). This double approach per-
mits either to avoid the violation of the legal provisions before
the service delivery, from the beginning of the system opera-
tion, or to repair a possible violation after the delivery of the
service.

Backward and forward legal compliance checking are inte-
grated with business process modeling and are modeled adopt-
ing a legal-by-design approach. Backward legal compliance
checking detects the violation after that the process is activated.
It is an ex-post analysis of the log file for detecting if some-
thing was not properly managed. The cloud service providers
should pass to the business process modeling engine all the
events as log file. The Forward legal compliance checking ap-
proach allows to verify the compliance checking both in the de-
sign/modeling phase and in the run-time phase. This permits in
the design/modeling phase to define correct business processes

10

Modeling phase =

Selection of legal A Definition of A Tuning of NPLA Production of A
resource legal ontology tools Legal Rules
4
| v
Legal Expert % Legal rules
7
; Run-time phase =
Cloud Service & g e
¢ Compatibilit
Provider Detection of Law A orr:saolnl v
changes - k
ws © Production of Compatibility A
" N
Assurance ——> ol " e Alert (Law

checking

(Broker) violation)

Figure 5: Interaction between the legal-rule compliance checking and legisla-
tion dynamic management processes.

according to the law regulations and in the run-time phase to
prevent the violation of the law.

In both backward and forward approaches the steps of the
life cycle are the following (cf. Figure 5):

1. A legal expert selects resources (all the legislation, reg-
ulation, policy, contract, case-law) pertinent with the ap-
plication domain (e.g., all the privacy regulation) using a
particular tool called Eunomos [66].

2. A legal knowledge engineer provides the first core of le-
gal domain ontology of the domain (e.g., privacy, digital
identification, cloud computing, etc.).

3. The computational linguists and the engineers tune the
NLP tools on the base of the language of the legal doc-
uments.

4. Using the web specialized editors LIME and RAWE, the
legal expert models the text transforming it into legal rules
by using deontic and defeasible logic. In this phase the
editors are supported by NLP tools and by legal ontology.

5. The legal engine SPINdIe produces the compliance check-
ing with the existing business processes that represent the
cloud computing services. In this phase, requests are re-
ceived from the broker to check the compliance of aggre-
gated and mediated services, both in the on-boarding and
in the evolution phase.

6. The legal compliance checking module Regorus [67] pro-
vides a report about the business processes not in line with
the law. The report produces a list for priority, of justifica-
tions and evidence, of the legal original text related to. The
report includes also some possible solutions for correcting
the business process that breaks the law (e.g., introduce a
new consent module, a new information web page). Right
now the report is validated by a legal experts in the LIME
editor in order to propagate the correct rule. The main
challenge in this research is to automate this phase pro-
ducing a report that will feed directly the broker modules
in charge of adapting the services.

7. Periodically, the Eunomos crawler detects the
law/regulation changes. New law or fragment of
law/regulation/legal material is detected and the NLP
tools extract from the new law the modifications that
are applied to the existing legal documents database for

producing the updated version. A new updated legal
ontology is produced using learning ontology techniques
and the rules affected by the modifications are easily
retrieved by the legal rule base and the legal knowledge
expert tunes them using RAWE editor.

Steps 1-4 characterize the preparatory modeling phase, while
steps 5-7 describe the run-time query phase and are cyclically
repeated.

6. Research Challenges

Notwithstanding the solutions that we have selected to tackle
the design challenges, there are some research challenges and
open issues that call for an effort from the scientific community.
Table 2 summarizes, for each research area of our interest, the
research challenges and the state of the art solutions.

6.1. Deployment and Migration of Services

The service deployment and seamless service migration are
two strictly related research and technological challenges. In-
deed, the choice of a specific deployment model impacts on the
selection of proper models and technologies to enable portabil-
ity (and vice-versa).

Portability, intended as both service portability and data
portability, is a hot research topic in cloud computing [52, 15].
Different approaches have been proposed so far: middleware
based solutions, e.g., [68] and the mOSAIC platform [25]; soft-
ware engineering approaches, e.g., [69]; semantic approaches,
e.g. [70]; and containers [71, 72], that are the focus of our paper.

The cloud industry recognizes containers as a new and
promising solution for service portability, but the landscape
is still fragmented despite the increasing adoption and support
across major cloud providers. The Docker project has served to
make the Docker image format a de facto standard for many
purposes. However, this is only a first step toward a more
standardization framework. In 2015, the Open Container Ini-
tiative [73] was founded with the aim of defining a more for-
mal, open, industry specification and standardization of the
container’s runtime and format. Such specification should be
not bound to higher level constructs, such as a particular client
or orchestration stack, not tightly associated with any particular
vendor or project, and portable across a wide variety of oper-
ating systems, hardware, CPU architectures, public clouds. It
would enable portability across compliant runtimes, and pro-
vide a robust stand-alone runtime that can directly consume the
specification and run a container. Unfortunately, the standard-
ization process is still at its early stage.

Another issue concerning the wide adoption of containers as
a portability standard is the fragmented landscape of orchestra-
tion frameworks, as observed in [74]. Cloudify and Kubernetes
are the main TOSCA compliant implementations that allow the
orchestration of Docker containers. However, how to execute
and orchestrate containers in a distributed environment without
leveraging on hypervisors is still an open issue. Core OS is a
first step toward this direction, but it is a young solution and
again it is affected by the standardization problem.

11

6.2. Monitoring of Cloud Services

QoS monitoring in horizontal (i.e., multi-cloud) and verti-
cal (i.e., cross-layer) dimensions of cloud architectures present
many challenges [55]. The monitoring system should be capa-
ble to accept data from multiple heterogeneous sources and data
should be represented in standard formats. The monitoring sys-
tem should be scalable to cope with a large number of services
to be monitored in near-real time and the services could be de-
ployed on geographically distributed systems. The monitoring
infrastructure itself should rely on a cloud infrastructure so to
elastically scale. Moreover, data stream processing and com-
plex event processing techniques can be leveraged to extract in
real-time aggregated metrics from the large volume of detailed
monitoring data and perform their analysis.

While the monitoring at the infrastructure layer is a mature
field, the monitoring at the application layer requires further in-
vestigation. A first issue is determined by the need to observe
applications independently from the infrastructure in use and
aggregate QoS data from distributed application components
that can be spread among multiple clouds. Another issue is re-
lated to the correlation and integration of cross-layer monitored
data, that come from the application layer and the underlying
platform and infrastructure layers, also considering that mon-
itorable information at the lower layers could be limited, es-
pecially in public clouds. Some research efforts have recently
explored this direction. CLAMBS is an application monitoring
and benchmarking as-a-service framework proposed in [75]; it
enables QoS monitoring and benchmarking of cloud applica-
tion components hosted on multiple clouds and across multi-
ple cloud layers. The Ceiloesper framework presented in [76]
has the goal to combine together cross-layer cloud monitoring
and data stream analysis techniques. The Smart CloudMonitor
in [77] is a performance monitoring tool that provides cross-
layer performance monitoring capabilities by capturing both the
application performance and the infrastructure performance.

In our reference scenario, where cloud service providers ex-
pose Monitoring-as-a-Service solutions, there is also the chal-
lenge to allow the definition of customizable metrics according
to the broker and consumers’ needs. Finally, trust and security
issues related to monitoring are still two open issues.

A further challenge which is independent of the inter-cloud
scenario is the monitoring of containers, that includes moni-
toring of the containerized environment (i.e., of the applica-
tion) and monitoring of the container engine/platform. Moni-
toring techniques and tools used for the operating system and
application levels do not allow to catch a wide range of QoS
metrics and health state metrics for containers. Docker of-
fers the docker stat command that returns CPU and mem-
ory utilization for each running container. More detailed CPU,
memory and network statistics can be accessed through the
/containers/(id) /stats APL In [78] the authors modify
Docker and Docker Swarm in order to monitor the I/O capacity
and utilization of the containers with the goal of controlling the
QoS level of a Docker cluster.

Finally, the evaluation of key cloud QoS properties such
as elasticity is an open challenge for hypervisor-based cloud

Table 2: Research challenges and state of the art solutions.

Research area Research challenges State of the art solutions
. Service portability [52, 15, 68, 25, 69, 70,71, 72]
ch‘,l:;(liets)zocliil(szle;:;\clfcgegi(g)}r/:tliirg’ Standard container format and data volume [73, 34]
Container orchestration [74, 39, 35, 17]
Application level monitoring [75]
Cross-layer monitoring [76,77]
Cloud service monitoring Container monitoring [78]
Elasticity monitoring [79, 80, 56, 79, 81]
Data consistency [57]
. . Scalable and run-time legal reasonin, [82]
Legal-rule compliance checking Multilingual access andgmanagemeft of legal con- | [83, 84, 85]
cepts management

platforms and a completely unexplored field for operating sys-
tem/application level virtualization.

Elasticity, which denotes the capability of autonomously
adapting the system capacity to workload changes as exact, fast
and cheap as possible, is a complex metric because it embeds
multiple components, that is scalability, accuracy, time, and
cost [79]. In addition, a plethora of factors may affect the elas-
ticity provided by a system and there is not a simple and easy
way to quantify this key performance indicator, which should
be agnostic with respect to the measured system (e.g., no as-
sumptions about the infrastructure, the technologies and strate-
gies used for providing elasticity). Notwithstanding the recent
research works in the literature devoted to the definition of elas-
ticity metrics, e.g., [80, 56, 79, 81], it appears to us that there
is not yet a mature representative metric that can be easily and
unanimously adopted in the real reference scenario where our
broker should operate. In addition, we observe that, to the best
of our knowledge, no public cloud provider specifies some elas-
ticity metric as SLO in its offered SLA.

Besides elasticity, another example of advanced QoS prop-
erty which is of interest when using storage cloud services is
data consistency [57]. In the cloud scenario, where storage sys-
tems tend to adopt the eventual consistency model, which re-
laxes consistency guarantees in favor of availability and latency
tradeoffs as required by the CAP theorem, the runtime monitor-
ing of the consistency level (and of the degree of inconsistency)
cannot be neglected. Indeed, consistency guarantees offered by
the storage system impacts on the design and performance of
applications that rely on them.

6.3. Legal Rule Compliance Checking and Management

One of the most relevant challenges that arise in the defini-
tion of the Legal Execution Framework of the proposed bro-
ker is how to manage legal concepts in different languages [83,
84, 85], the interpretation level, and the interface modules for
permitting human experts to take the final decisions. Further-
more, the large number of legal rules stresses the Legal Rea-
soner module and requires to define smart solutions for provid-
ing reasonable answers to real-time queries coming both from
the service providers and consumers. To this end, parallel rea-
soning approaches can be considered [82].

12

7. Conclusions

In this paper we have proposed the detailed design of a legal-
rule and QoS-aware cloud service broker and explored some
research challenges that arise from its design. The main open
issues from our analysis can be summarized as follows.

Technologies and de-facto standards for service portability
are exiting from their infancy stage, but are not yet mature and
widely adopted, especially in public clouds. Specifically, the
standardization of container technologies and the orchestration
of containers in a large-scale distributed environment represent
the main open issues.

QoS assessment relies on QoS monitoring and analysis. We
have explored the monitoring issues and some main challenges
have emerged: monitoring of containers and assessment of key
cloud QoS properties, such as elasticity and consistency pro-
vided by data storage systems. QoS monitoring techniques for
containers are in their infancy and operating system level mon-
itoring tools cannot be successfully applied. Furthermore, the
trend towards the design of applications that use microservices
running as containerized processes can exacerbate the complex-
ity of monitoring, because the number of application compo-
nents to be monitored will largely increase and these compo-
nents could be deployed across geographically distributed data
centers. Monitoring and assessment of key cloud properties
such as elasticity and consistency still represent an open issue:
notwithstanding the increasing amount of recent research ef-
forts on the definition of related metrics and benchmarks, there
is not yet a standard and largely adopted solution.

The runtime adaptation continues to be a challenging is-
sue [86]. Although the large amount of research work con-
ducted in the last fifteen years from the field of autonomic com-
puting in the areas of service-oriented and cloud systems and
services and the promising results therein obtained, the large-
scale heterogeneous and multi-layered cloud environment in
which the Cloud service broker will operate introduces deeply
challenging problems for the design of effective runtime adap-
tation techniques.

Models and tools for legal compliance checking and man-
agement are available but they are still fragmented and not ac-
cessible as a unique framework, and here the main challenge

is to deal with different legal tradition sources, legal concepts
in different languages, the interpretation level and the interface
module for permitting the final decision by human experts.

Acknowledgments

The work of E. Casalicchio is part of the research project
“Scalable resource-efficient systems for big data analytics”
funded by the Knowledge Foundation (grant: 20140032) in
Sweden. The work of V. Cardellini, G. Interino and M. Palmi-
rani is partially supported by the project: Realization of a Re-
search and Development Project (PCP) on “Cloud for Europe”
- Tender Num. 5843932 - CUP C58113000210006. The au-
thors thank also F. Fiorentino from NTT Data Italia s.r.1. for the
fruitful technical discussions.

References

(1]

(2]

[3]

[4]
(5]

[6]

[7]

[8]

[91

(10]

(11]

[12]

(13]

[14]

(15]

[16]

F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, D. Leaf, NIST
cloud computing reference architecture, NIST special publication 500
(2011) 292.

N. Grozev, R. Buyya, Inter-cloud architectures and application brokering:
taxonomy and survey, Softw. Pract. Exp. 44 (3) (2014) 369-390.

E. Casalicchio, M. Palmirani, A cloud service broker with legal-rule com-
pliance checking and quality assurance capabilities, Procedia Computer
Science 68 (2015) 136-150, 1st Int’l Conf. on Cloud Forward: From Dis-
tributed to Complete Computing.

Cloud for Europe (C4E), http://www.cloudforeurope.eu (2015).
B. D. Martino, G. Cretella, A. Esposito, Towards a legislation-aware
cloud computing framework, Procedia Computer Science 68 (2015) 127—
135, 1st Int’l Conf. on Cloud Forward: From Distributed to Complete
Computing.

A. Amato, S. Venticinque, Multi-objective decision support for brokering
of cloud SLA, in: Proc. of 27th Int’l Conf. on Advanced Information
Networking and Applications Workshops, WAINA *13, 2013, pp. 1241
1246.

A. Amato, B. Di Martino, S. Venticinque, Cloud brokering as a service,
in: Proc. of 8th Int’l Conf. on P2P, Parallel, Grid, Cloud and Internet
Computing, 3PGCIC ’13, IEEE, 2013, pp. 9-16.

L. D. Ngan, R. Kanagasabai, OWL-S based semantic cloud service bro-
ker, in: Proc. of IEEE 19th Int’1 Conf. on Web Services, ICWS *12, 2012,
pp- 560-567.

J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, I. M. Llorente,
Cloud brokering mechanisms for optimized placement of virtual ma-
chines across multiple providers, Future Gener. Comput. Syst. 28 (2)
(2012) 358-367.

I. Houidi, M. Mechtri, W. Louati, D. Zeghlache, Cloud service delivery
across multiple cloud platforms, in: Proc. of 2011 IEEE Int’l Conf. on
Services Computing, SCC ’11, 2011, pp. 741-742.

P. Pawluk, B. Simmons, M. Smit, M. Litoiu, S. Mankovski, Introducing
STRATOS: A cloud broker service, in: Proc. of IEEE 5th Int’l Conf. on
Cloud Computing, CLOUD ’12, 2012, pp. 891-898.

M. B. Chhetri, S. Chichin, Q. B. Vo, R. Kowalczyk, Smart cloud broker:
Finding your home in the clouds, in: Proc. of IEEE/ACM 28th Int’l Conf.
on Automated Software Engineering, ASE *13, 2013, pp. 698-701.

D. Thatmann, M. Slawik, S. Zickau, A. Kiipper, Towards a federated
cloud ecosystem: Enabling managed cloud service consumption, in: Eco-
nomics of Grids, Clouds, Systems, and Services, Vol. 7714 of LNCS,
Springer, 2012, pp. 223-233.

E. Casalicchio, An autonomic legal-rule aware cloud service broker, in:
Proc. of 2015 Int’l Conf. on Cloud and Autonomic Computing, ICCAC
’15, 2015, pp. 216-219.

D. Petcu, A. Vasilakos, Portability in clouds: approaches and research op-
portunities, Scalable Computing: Practice and Experience 15 (3) (2014)
251-270.

The Open Group, TOGAF, https://www.opengroup.org/togaf.

13

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]
[34]
[35]
[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

D. Bernstein, Containers and cloud: From LXC to Docker to Kubernetes,
IEEE Cloud Computing 1 (3) (2014) 81-84.

AgID, Annex IV (B) Technical Specification: federated certified service
brokerage of EU public administration cloud, http://www.agid.gov.
it/cloudforeurope (2015).

A. Longo, M. Zappatore, M. A. Bochicchio, B. Livieri, N. Guarino,
D. Napoleone, Cloud for Europe: The experience of a tenderer, in: Proc.
of 30th Int’l Conf. on Advanced Information Networking and Applica-
tions Workshops, WAINA ’16, 2016, pp. 153-158.

Gartner, Cloud services brokerage (CSB), http://www.gartner.com/
it-glossary/cloud-services-brokerage-csb (2015).

G. F. Anastasi, E. Carlini, M. Coppola, P. Dazzi, QBROKAGE: A genetic
approach for QoS cloud brokering, in: Proc. of IEEE 7th Int’l Conf. on
Cloud Computing, CLOUD ’14, 2014, pp. 304-311.

S. Nair, et al., Towards secure cloud bursting, brokerage and aggregation,
in: Proc. of IEEE 8th European Conf. on Web Services, ECOWS ’10,
2010, pp. 189-196.

OPTIMIS, OPTIMIS: Optimized Infrastructure Services, EU FP7 project,
http://www.optimis-project.eu (2013).

A. Amato, B. Di Martino, S. Venticinque, Evaluation and brokering of
service level agreements for negotiation of cloud infrastructures, in: Proc.
of 2012 Int’l Conf. on Internet Technology and Secured Transactions,
2012, pp. 144-149.

mOSAIC, mOSAIC: Open source API and platform for multiple Clouds,
EU FP7 project, http://www.mosaic-cloud.eu (2013).

J. L. Lucas-Simarro, R. Moreno-Vozmediano, R. S. Montero, 1. M.
Llorente, Scheduling strategies for optimal service deployment across
multiple clouds, Future Gener. Comput. Syst. 29 (6) (2013) 1431-1441.
D. Rane, A. Srivastava, Cloud brokering architecture for dynamic place-
ment of virtual machines, in: Proc. of IEEE 8th Int’l Conf. on Cloud
Computing, CLOUD 15, 2015, pp. 661-668.

D. Villegas, et al., Cloud federation in a layered service model, J. Comput.
Syst. Sci. 78 (5) (2012) 1330-1344.

S. Veloudis, A. Friesen, I. Paraskakis, Y. Verginadis, I. Patiniotakis, Un-
derpinning a cloud brokerage service framework for quality assurance and
optimization, in: Proc. of IEEE 6th Int’l Conf. on Cloud Computing Tech-
nology and Science, CloudCom ’14, 2014, pp. 660—663.

R. Dua, A. R. Raja, D. Kakadia, Virtualization vs containerization to sup-
port PaaS, in: Proc. of 2014 IEEE Int’l Conf. on Cloud Engineering, IC2E
’14, 2014, pp. 610-614.

R. Pike, D. Presotto, K. Thompson, H. Trickey, P. Winterbottom, The use
of name spaces in plan 9, SIGOPS Oper. Syst. Rev. 27 (2) (1993) 72-76.
E. W. Biederman, Multiple instances of the global Linux namespaces, in:
2006 Ottawa Linux Symposium, 2006.

Linux Containers, Linux Containers - LXC,
linuxcontainers.org/lxc/introduction (2016).

D. Merkel, Docker: Lightweight Linux containers for consistent develop-
ment and deployment, Linux J. 2014 (239).

Kubernetes, http://kubernetes.io (2016).

OASIS, Topology and orchestration specification for cloud applications,
Tech. Rep. Version 1.0, OASIS Standard (2013).

T. Binz, U. Breitenbiicher, O. Kopp, F. Leymann, TOSCA: Portable auto-
mated deployment and management of cloud applications, in: Advanced
Web Services, Springer, 2014, pp. 527-549.

H. Surti, D. Palma, K. Thangavelu, P. Lipton, S. Moser, Understanding
TOSCA and containers, Tech. Rep. Version 1.0, OASIS Topology and
Orchestration Specification for Cloud Applications (TOSCA) TC (2014).
Cloudify, Cloudify: pure-play cloud orchestration & automation based on
TOSCA, http://getcloudify.org (2016).

A.J.H. Simons, et al., Advanced service brokerage capabilities as the cat-
alyst for future cloud service ecosystems, in: Proc. of 2nd Int’l Workshop
on CrossCloud Systems, CCB ’14, ACM, 2014.

F. Fowley, C. Pahl, L. Zhang, A comparison framework and review of
service brokerage solutions for cloud architectures, in: Service-Oriented
Computing — ICSOC 2013 Workshops, Vol. 8377 of LNCS, Springer,
2014, pp. 137-149.

Broker@Cloud, Enabling continuous quality assurance and optimization
in future enterprise cloud service brokers (Broker@Cloud), FP7-ICT EU
project, http://www.broker-cloud.eu (2012).

The Open Group, The ArchiMate® Enterprise Architecture Mod-
eling Language, http://www.opengroup.org/subjectareas/

https://

[44]

(45]

[46]

[47]

(48]

(49]

[50]

[51]

(52]

[53]

[54]

[55]

[56]

[57]

(58]
[59]
[60]
[61]

[62]
[63]
[64]

[65]

[66]

[67]

[68]

[69]

[70]

enterprise/archimate-overview.

H.-P. Lam, G. Governatori, The making of SPINdle, in: Rule Interchange
and Applications, Springer, 2009, pp. 315-322.

G. Governatori, The Regorous approach to process compliance, in:
EDOC Workshop, 2015, pp. 33—40.

M. El Kharbili, Business process regulatory compliance management so-
lution frameworks: A comparative evaluation, in: Proc. of 8th Asia-
Pacific Conference on Conceptual Modelling, Vol. 130 of CRPIT, ACS,
2012, pp. 23-32.

S. C. Tosatto, P. Kelsen, Q. Ma, M. E. Kharbili, G. Governatori, L. W. N.
van der Torre, Algorithms for tractable compliance problems, Frontiers
of Computer Science 9 (1) (2015) 55-74.

M. Palmirani, L. Cervone, O. Bujor, M. Chiappetta, RAWE: An editor for
rule markup of legal texts, in: Joint Proc. of 7th Int’l Rule Challenge, Vol.
1004 of CEUR Workshop Proceedings, 2013.

UNDESA, Akoma Ntoso, XML for parliamentary, legislative and judi-
ciary documents, http://wuw.akomantoso.org (2015).

OASIS, LegalRuleML, enabling legal arguments to be created, eval-
uated, and compared using rule representation tools, https://www.
oasis-open.org/committees/legalruleml (2015).

CIRSFID and University of Bologna, Language independent markup ed-
itor (LIME), http://lime.cirsfid.unibo.it (2015).

B. D. Martino, G. Cretella, A. Esposito, Advances in applications porta-
bility and services interoperability among multiple clouds, IEEE Cloud
Computing 2 (2) (2015) 22-28.

G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A. Menych-
tas, T. Varvarigou, A self-adaptive hierarchical monitoring mechanism
for clouds, J. Syst. Softw. 85 (5) (2012) 1029-1041.

J. Montes, A. Sanchez, B. Memishi, M. S. Pérez, G. Antoniu, GMonE:
A complete approach to cloud monitoring, Future Gener. Comput. Syst.
29 (8) (2013) 2026-2040.

M. Smit, B. Simmons, M. Litoiu, Distributed, application-level moni-
toring for heterogeneous clouds using stream processing, Future Gener.
Comput. Syst. 29 (8) (2013) 2103-2114.

M. Becker, S. Lehrig, S. Becker, Systematically deriving quality metrics
for cloud computing systems, in: Proc. of 6th ACM/SPEC Int’l Conf. on
Performance Engineering, ICPE °15, 2015, pp. 169-174.

D. Bermbach, S. Tai, Benchmarking eventual consistency: Lessons
learned from long-term experimental studies, in: Proc. of 2014 IEEE Int’1
Conf. on Cloud Engineering, IC2E * 14, 2014, pp. 47-56.

Zabbix, http://www.zabbix.com (2016).

Nagios, https://www.nagios.org (2016).

Prometheus, https://prometheus.io (2016).

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Bench-
marking cloud serving systems with YCSB, in: Proc. of 1st ACM Symp.
on Cloud Computing, SoCC 10, 2010, pp. 143-154.

W. D. Smith, S. Sebastian, Virtualization performance insights from TPC-
VMS, Tech. rep., Intel Corporation (2013).

TPC, TPC Express Benchmark HS (TPCx-HS), http://www.tpc.org/
tpcx-hs/ (2016).

TPC, TPC Express Benchmark BB (TPCx-BB), http://www.tpc.org/
tpcx-bb/ (2016).

N. R. Herbst, S. Kounev, A. Weber, H. Groenda, BUNGEE: An elasticity
benchmark for self-adaptive IaaS cloud environments, in: Proc. of 10th
Int’l Symp. on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS ’15, IEEE, 2015, pp. 46-56.

G. Boella, R. Muthuri, L. Humphreys, Managing legal resources in open
government and e-democracy: Eunomos - an Al and law response, in:
Proc. of Int’l Conf. for E-Democracy and Open Government, CeDEM
*14, Verlagshaus Monsenstein und Vannerdat OHG, 2014.

G. Governatori, S. Shek, Regorous: A business process compliance
checker, in: Proc. of 14th Int’l Conf. on Artificial Intelligence and Law,
ICAIL *13, ACM, 2013, pp. 245-246.

E. M. Maximilien, A. Ranabahu, R. Engehausen, L. C. Anderson, Toward
cloud-agnostic middlewares, in: Proc. of 24th ACM SIGPLAN Conf.
Companion on Object Oriented Programming Systems Languages and
Applications, OOPSLA 09, 2009, pp. 619-626.

J. Miranda, J. Guillén, J. M. Murillo, C. Canal, Assisting cloud service
migration using software adaptation techniques, in: Proc. of IEEE 6th
Int’l Conf. on Cloud Computing, CLOUD ’13, 2013, pp. 573-580.

E. Kamateri, et al., Cloud4SOA: A semantic-interoperability PaaS so-

14

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

lution for multi-cloud platform management and portability, in: Proc.
of 2nd European Conf. on Service-Oriented and Cloud Computing, Vol.
8135 of LNCS, Springer, 2013, pp. 64-78.

S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, L. Peterson, Container-
based operating system virtualization: A scalable, high-performance al-
ternative to hypervisors, SIGOPS Oper. Syst. Rev. 41 (3).

W. Felter, A. Ferreira, R. Rajamony, J. Rubio, An updated performance
comparison of virtual machines and Linux containers, in: Proc. of 2015
IEEE Int’] Symp. on Performance Analysis of Systems and Software, IS-
PASS ’15, 2015, pp. 171-172.
Open Container Initiative,
(2016).

A. Tosatto, P. Ruiu, A. Attanasio, Container-based orchestration in cloud:
State of the art and challenges, in: Proc. of 9th Int’l Conf. on Complex,
Intelligent, and Software Intensive Systems, CISIS °15, 2015, pp. 70-75.
K. Alhamazani, R. Ranjan, P. P. Jayaraman, K. Mitra, F. Rabhi, D. Geor-
gakopoulos, L. Wang, Cross-layer multi-cloud real-time application
QoS monitoring and benchmarking as-a-service framework, IEEE Trans.
Cloud Comput.To appear.

D. Bruneo, F. Longo, C. C. Marquezan, A framework for the 3-D cloud
monitoring based on data stream generation and analysis, in: Proc. of
2015 IFIP/IEEE Int’l Symp. on Integrated Network Management, IM ’15,
2015, pp. 62-70.

M. B. Chhetri, S. Chichin, Q. B. Vo, R. Kowalczyk, Smart CloudMonitor
- providing visibility into performance of black-box clouds, in: Proc. of
IEEE 7th Int’l Conf. on Cloud Computing, CLOUD 14, 2014, pp. 777—
784.

S. McDaniel, S. Herbein, M. Taufer, A two-tiered approach to I/O quality
of service in Docker containers, in: Proc. of 2015 IEEE Int’l Conf. on
Cluster Computing, CLUSTER 15, 2015, pp. 490—491.

M. Beltran, Defining an elasticity metric for cloud computing environ-
ments, in: Proc. of 9th EAI Int’l Conf. on Performance Evaluation
Methodologies and Tools, VALUETOOLS 15, 2016, pp. 172-179.

N. R. Herbst, S. Kounev, R. Reussner, Elasticity in cloud computing:
What it is, and what it is not, in: Proc. of 10th Int’l Conf. on Autonomic
Computing, ICAC *13, USENIX, 2013, pp. 23-27.

E. F. Coutinho, P. A. Rego, D. G. Gomes, J. N. de Souza, Physics and
microeconomics-based metrics for evaluating cloud computing elasticity,
J. Netw. Comput. Appl. 63 (2016) 159-172.

F. Cerutti, I. Tachmazidis, M. Vallati, S. Batsakis, M. Giacomin, G. Anto-
niou, Exploiting parallelism for hard problems in abstract argumentation,
in: Proc. of 29th Int’l Conf. on Atrtificial Intelligence, AAAI ’15, 2015,
pp. 1475-1481.

E. Francesconi, G. Peruginelli, E. Steigenga, D. Tiscornia, A semantic
approach to support cross border e-justice, in: The Semantic Web: ESWC
2014 Satellite Events, Vol. 8798 of LNCS, Springer, 2014, pp. 204-208.

D. Bourcier, P. De Filippi, Cloud computing: New research perspectives
for computers and law, in: Al Approaches to the Complexity of Legal
Systems - Models and Ethical Challenges for Legal Systems, Legal Lan-
guage and Legal Ontologies, Argumentation and Software Agents, Vol.
7639 of LNAI, Springer, 2012, pp. 73-92.

E. Francesconi, G. Peruginelli, Transnational access to legal informa-
tion document identification standards for case law, AIDAinformazioni
34 (33).

R. Ranjan, B. Benatallah, S. Dustdar, M. P. Papazoglou, Cloud resource
orchestration programming: Overview, issues, and directions, IEEE In-
ternet Comput. 19 (5) (2015) 46-56.

https://www.opencontainers.org

