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Abstract

We consider the entanglement entropy for a spacetime region and its spacelike
complement in the framework of algebraic quantum field theory. For a Mo&bius
covariant local net (a chiral component of a two-dimensional conformal field theory)
satisfying either a certain nuclearity property or the split property, we consider the
von Neumann entropy for type I factors between local algebras and introduce an
entropic quantity. Then we implement a cutoff on this quantity with respect to
the conformal Hamiltonian and show that it remains finite as the distance of two
intervals tends to zero. We compare our definition to others in the literature.

1 Introduction

Recently, entanglement entropy in quantum field theory has been of remarkable interest
in various context, e.g. in relation with the black hole entropy [BKLS86, CW94, Sre93|
and holographic principle [RT06]. Concrete formulas for the entanglement entropy in
various models have been conjectured and their behaviors have been investigated [CH09].
Actually, the definition of entanglement entropy itself is not straightforward. Let us look
at this issue closely.

In quantum mechanics, one considers a system on a Hilbert space H composed of
the subsystem 1 with Hilbert space H; and its complementary subsystem 2 with Hilbert
space Ha, so that H = H; ® Hy. Then one takes a state ¢ on the full system B(H)
and restricts it to the subalgebra B(#H,) = B(H;) ® Cly,. This corresponds to taking
the global density matrix p, and “tracing out” the inaccessible degrees of freedom of the
subsystem 2 with the partial trace Try, (p,). The von Neumann entropy of the resulting
reduced density matrix is then called the entanglement entropy of the global state with
respect to the subsystem 1, namely,

S1(p) = Sun (pp,1) = Trpy110g po.1,
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where p, 1 = Try, (p,) is the partial trace with respect to the subsystem 2.

In quantum field theory (QFT), defined on R?, it is natural to consider the division of
the whole system into a spacetime region O and its spacelike complement O’. However, the
corresponding factorization of the Hilbert space H = Ho ®Hor does not exist, even for the
free fields: the local algebras of observables are not of type I in the sense of von Neumann
(see [Ara64] for the free fields, [BDF87] for a class of QFT with a nuclearity condition and
[BGLI3| for general conformal field theory), and partial trace does not make sense. Now,
whereas states on type I algebras may have finite entropy, a reasonable generalization of
entropy is infinite for any state on an algebra of type III;. It should be stressed that this
divergence is different from the conventional explanation that the entanglement entropy of
a state is infinite because of increasing contribution of fluctuations of high-energy states
and therefore needs an UV-cutoff, indeed this property is just a consequence of local
algebras being of type III; and independent of states, models or spacetime dimensions.
On the other hand, as we will see, there are some type I factors which arise naturally in
QFT and they do have states with finite entanglement entropy (but unfortunately we do
not have an estimate of the entanglement entropy of the vacuum on these type I factors).
Hence, we need to deal with two issues: non-type I local algebras and UV-divergence.

In physics literature, this is done by the lattice regularization: then the local algebras
are of type I (often just finite-dimensional), and there are not too many high-energy
modes, and indeed the entanglement entropy of the ground state has been estimated in
several cases and some exact results have been claimed (see [CC04] for an overview of
results).

From a mathematical point of view, however, the lattice regularization is not com-
pletely satisfactory. For one thing, there may be many different lattice regularizations
for a given quantum field theory, and it is unclear how intrinsic the value obtained in a
particular regularization is. For another, situations of interest in various contexts, e.g. of
black hole entropy, computations on lattices are not quite available. Therefore, we would
like a direct approach to entanglement entropy based on the continuum.

The notion of entropy is most clearly presented in terms of operator algebras (see
e.g. [OP04]), hence for this purpose, the operator-algebraic approach, or algebraic QFT
[Haa96, Ara99] seems to be the most appropriate. The main ingredient of the theory is
a net of von Neumann algebras {A(O)} indexed by (bounded) regions of the spacetime,
of which each element A(O) C B(H) is the algebra generated by the observables which
can be measured in O, and they are subject to several conditions called the Haag-Kastler
axioms. The entanglement of the vacuum state has been studied in this framework since
the discovery of Bell’s inequality [SW85, SW87| and related with basic properties such
as the Reeh-Schlieder property, see [Yngl5] for a review. On the other hand, defining
entanglement entropy in QFT is already a nontrivial task even for the free field, hence the
usual caveat that no interacting QFT in the physical four dimensions has been constructed
in the Haag-Kastler framework is not a main concern in this respect.

As remarked above, local algebras in AQFT are not of type I, hence the notion of
entanglement entropy must be treated with care. On the other hand, let us point out
that in many examples of Haag-Kastler nets, the split property holds: there are type
I algebras between local algebras of two regions, one included in the other with finite
distance. And the split property is assured when a nuclearity condition holds. A nuclearity
condition, although there are several variations, roughly says that “the number of states”
in a region with restricted energy is small. It should be noted that “the number of states”
is not a precise expression, but the first of such notions, the compactness condition, has



been formulated based on this idea [HS65] and various nuclearity conditions put certain
quantitative restriction on the state space. It is natural to expect that they are useful in
the consideration of entanglement entropy with UV-cutoff.

Indeed, [Nar94|, Narnhofer gave a slightly altered definition of localized entropy of
the vacuum w restricted to an local algebra A(O), using an auxiliary quantity d > 0 as
a regularizing spatial parameter (in the sense that, when § = 0, the author’s definition
would recover the standard, yet divergent definition). Furthermore, it was shown that
if the local net satisfies a stronger version of the nuclearity condition of Buchholz and
Wichmann [BW86], then one could take O growing to the whole Minkowski space, with
0 growing also appropriately, and the entropy would tend to zero, as expected from the
vacuum state. Further relations between nuclearity conditions and entropy have been
investigated in [Nar02]. Another recent result exploiting a nuclearity condition is available
in [HS17], where entanglement entropy between distant regions is estimated without the
need of cutoff regularizations.

Yet, the results claimed by physicists often concern the entanglement entropy between
a region and its spacelike complement, hence they are in contact, and a UV-cutoff is
necessary. In this paper, we try to make sense of it in the framework of AQFT. In order
to concentrate on the implementation of a cutoff, we consider a chiral component of a
two-dimensional conformal field theory which lives on the lightray R and its extension to
the circle S, the one-point compactification of R. The conformal Hamiltonian Ly has a
discrete spectrum, which makes our analysis easier.

Outline of this work

If a conformal Haag-Kastler net (conformal net for short) satisfies the so-called split
property, even though local algebras A(I) are of type III;, we can “approximate it from
the outside” by factor of type I. More concretely, we take a spacing parameter § > 0 and
an interval I; which is obtained by expanding I by . The split property then assures
the existence of a factor R of type I between A(I) and A(I5). As these algebras R are
of type I, the von Neumann entropy can be defined for any state, although we cannot
exclude the possibility that they are infinite for interesting states such as the vacuum.
Yet, we can consider the infimum Hj s of the von Neumann entropies of all states which
dominates the given state restricted to A(I) V A(I;). This resembles the definition of
entanglement entropy when two algebras do not generate the whole B(#H), and in our
case, turns out to be finite under a certain growth condition on the eigenspaces of the
conformal Hamiltonian Ly. Next we introduce H 55, while ¢ is still present, with a new
cutoff parameter E. This cutoff parameter is then used to regularize our considered states
by cutting off the contributions of “conformal energy higher than E”. Since the conformal
Hamiltonian L has a discrete spectrum, many of the calculations can be simplified, and we
acquire an upper bound for H f(; that is independent of . We think that this upper bound
H¥E captures a certain aspect of entanglement entropy with a UV-cutoff E. Actually, the
technical prerequisites for the finiteness of HF are shown to be less restrictive than for its
geometric counterpart: it is only required that the chiral net satisfies the split property.
Our main result is then the finiteness of this cutoff quantity without the regularization by
distance ¢. As the split property implies the modular compactness [BDL90a], the result
that the cutoff gives a finite entropy seems to make sense.

This paper is organized as follows. In Section 2, we present the mathematical tools
to be used, including a brief review of Mobius covariant local nets and of von Neumann
entropy. In particular, we recall the defining properties of our nets of observables in



Section 2.1 and list important assumptions on nuclearity in Section 2.3. In Section 3, we
introduce our definition of regularized entropic quantity for a Mobius covariant local net
satisfying the split property, and prove its finiteness (see Theorem 3.11) given that the
net satisfies the condition 2.10(4) of conformal nuclearity. We finish with our conclusions
in Section 4.

This work has been carried out as a part of the Ph.D. project of the author (Y.O.)
[OtalT].

2 Mathematical preliminaries

In this Section, we introduce our mathematical framework. Section 2.1 recalls Mobius
covariant local nets and their basic properties. In 2.2, we review basic properties of
von Neumann entropy. Notions concerning nuclear maps and their use in AQFT are
summarized in Sections 2.3, 2.4, as well as other related conditions (Definition 2.10).

2.1 Mobius covariant local nets

We consider chiral components of conformal field theories in two-spacetime dimensions
following the standard literature (see e.g. [GF93, FJ96] and [Rehl5, Kawl5] for recent
reviews). Several important observables such as the stress-energy tensor or currents in a
two-dimensional conformal field theory decompose into chiral components defined on the
lightrays, and each component can be studied separately, so we take one component of
them. The Poincaré group restricted to one lightray is the the translation-dilation group.
Furthermore, by conformal covariance, the theory defined on the lightray R extends to its
one point compactification S!, and it is covariant under an action of the Mobius group
Mob = PSU(1,1).

In the operator-algebraic approach, we are concerned with the algebras of observables
associated with local regions, and they are (non empty, non dense, open and connected)
intervals on S'. These algebras of observables are required to satisfy a standard set of
properties (the Haag-Kastler axioms with Mobius covariance), which we summarize below.

We denote by Z the set of non-empty, non-dense, connected open intervals of S*. For
I € Z, we denote by I’ its causal complement i.e. the interior of S'\ I. The distance
between two intervals I, [y € Z is their angular distance, i.e. the infimum of a value |0|
such that eI, intersects I (considering S* as a subset of C). Also, for two intervals
I, I, € 7, we say that I; € I, if the closure 1, is contained in I, that is, if I; and I} have
a positive distance.

A Mobius covariant local net consists of a quadruple (A, U, Q, H), where H is the
Hilbert space of the theory, ) € H is a unit vector corresponding to the vacuum state,
U is a strongly continuous unitary representation of Mob on H, and A is a family of von
Neumann algebras acting on H and indexed by elements of Z. Those are supposed to
satisfy the following properties.

1. Isotony. For any pair of intervals I, I € Z, if I} C I, then A(l;) C A(ly).

2. Locality. For any pair of intervals I, I, € Z, if I; N Iy = 0, then [A(]1), A(I3)] =

{0}
3. Covariance. For I € 7 and g € Méb, it holds that AdU(g)(A(1)) = A(gI).



4. Positivity. The generator Ly of the rotation one-parameter group {U(pg) =
ewLO}geR has a positive spectrum.

5. Uniqueness of the vacuum. () is the unique (up to phase) unit vector in H# which
is invariant for U.

6. Cyclicity of the vacuum. 2 is cyclic for the algebra \/, ., A([).

From these axioms, some properties automatically follows.

Discrete spectrum of L,. It holds that sp(Ly) C N.

Reeh-Schlieder property.! The vacuum vector 2 is cyclic for any local algebra
A(I), for I € T.

Haag duality: For any interval I € Z, it holds that A(I)" = A(I’).

Additivity: If {I,, € Z},en is a covering for an interval I C Uyen I, € Z, then
A(I) C Ve A(ln)-

Factoriality. Local algebras are factors of type III;.

These are the most general assumptions, and examples satisfying them are not nec-
essarily “physical”. A pathological example is the infinite tensor product of any given
Méobius covariant local net, which fails to have the stress-energy tensor [CW05, Section
6]. On the other hand, a M&bius covariant local net with a natural stress-energy ten-
sor, and hence conformal (diffeomorphism) covariance, satisfies the modular compactness
condition [BDL90a]: it follows from the conformal covariance through the split property
IMTW16]. Modular compactness says that state space is “small” in a certain sense. In-
deed, many examples studied in the physical literature have the corresponding Mobius
covariant local nets with a strengthened state space property. We discuss this issue briefly
at the end of Section 2.4.

2.2 Von Neumann entropy

Here we make a brief review on von Neumann entropy to set the notation and basic
properties used later in this work (for a nice exposition, see e.g. [OP04]). Let H be
separable Hilbert space, and B(#) the algebra of bounded linear operators on H. Recall
that any normal state ¢ on B(H) corresponds to a unique positive, normalized and trace
class operator (“the density matrix”) p,, € B(#), such that ¢ = Tr(p, - ), where Tr is the
(non-normalized) trace functional.

Proposition 2.1. For a parameter p with 0 < p < 1, there is a constant c, > 0 such that
—tlogt < c,t? (t >0),

where the left-hand side equals 0 at t = 0 by convention. Moreover, the optimal value is
1
% = Tppe

!This property shows aspects of non-independence of the vacuum state, as any other vector state can
be approximated by local operations on it, see [SW85, SW87] for the relation between the Reeh-Schlieder
property and the violation of Bell’s inequality. Another consequence is the impossibility of existence of
an local number operator (as it would have the vacuum vector as an eigenvector).



Proof. By elementary calculus, the differentiable function given by
t € Rsg = —t" Plogt € R

attains its maximum at to = e~Y/(=P) with value ¢, = -. By multiplying the inequal-

(1
ity —t'"Plogt < ¢, by t? we obtain the claimed inequahty O

Let ¢ be a normal state on B(H), and p,, its associated density matrix. Then its von
Neumann entropy is defined as Six(p) := — Tr(p, log(p,)).

Proposition 2.2. Let ¢ be a normal state on B(H). Then Syx(y) has the following
properties.

1. Positivity: For 0 < dim (H) < +oo, then 0 < Syn(¢) < log(dim (H)). Moreover,
Sun(@) = 0 if and only if ¢ is pure.

2. Invariance: If o is a x-automorphism of B(H), then Syx(pc o) = Syn(¢).

3. Concavity: If ¢ = >, A\ppr s a convex decomposition of ¢ (i.e. {pk}ren if a family
of normal states on B(H) and { . > O}ren if a family of positive numbers such that

Y ken e = 1), then

Z)\k w(pr) < Sin <Z Ak%) < Z)\k v (k) Z)\k log Ay

keN keN keN keN

Proof. Positivity and invariance are straightforward from the definition. For a proof of
concavity, see [OP04, Proposition 1.6 and 6.2]. ]

We rephrase the concavity property in the following corollary, which will be used later
in our calculations.

Corollary 2.3. Let {¢y}ren be a family of pure states on B(H), and {\;, > O}xen € I} (N)
be a summable sequence of positive parameters, where at least one of them is non-zero.
Define the non-zero positive functional ¢ acting on B(H) by ¢ = Y, oy Ak Clearly,
its norm is given by ||| = Yoy Ae- Then, the entropy of the state ¢/||p|| satisfies the
following inequality

Sox (ﬁ) log(p(1)) — —— Z A 1og Ay

kEN

The definition of the von Neumann entropy relies on the underlying Hilbert space,
where normal positive functionals can be associated with density matrices. However, by
the properties of Proposition 2.2, one can easily define the von Neumann entropy for
states on an abstract type I factor by the following.

Definition 2.4. Let R be a factor of type I. Then there is a Hilbert space K such that
a #-isomorphism o : B(K) — R exists. Then, for any normal positive functional ¢ on R,
its von Neumann entropy Sg () is defined by

Sr(p) = Snlpe o).



Since the invariance property in Proposition 2.2 holds, the above definition is inde-
pendent on the choice of o, and thus is well-defined.

For general von Neumann algebras (such as local algebras, which are in many cases
factors of type III;), there might not be corresponding density matrices nor traces, so the
usual definition of von Neumann entropy does not make sense. An alternative definition
by means of relative entropy is explained in [OP04, Chapter 6], and shown to diverge for
any normal state for algebras of type II or III [OP04, Lemma 6.10][Nar94, Lemma 2.4].
Our work will exploit the split property and depend only on entropy of algebras of type
L.

2.3 Nuclear maps

In order to discuss the conformal nuclearity condition, we first recall the notions of nuclear
maps, p-nuclear maps, and their nuclearity indices, together with some of their basic
properties. For this Section, we shall take [BDL90a, BDLI0b, FOP05] as reference.

Our interest is only in the case p < 1, where the discussion is much simpler than the
general case. For a generalization to the case 1 < p < oo, see [FOPO05].

Definition 2.5. Let X,Y be Banach spaces and p a parameter with 0 < p < 1. A
bounded linear operator T': X — Y is said to be p-nuclear if there are families {¢y }ren C
X* of linear functionals on X and {&;}reny C Y of vectors in Y such that the following
decomposition holds:

T()=> (),  and > (llgsll - 1) < +oo.

keN keN

Furthermore, any such decomposition is called a p-nuclear decomposition, and we
define 1,(T) as the p-nuclearity index ? of T given by

vp(T) :=inf Y (|gnll - 1417,
k=0

with the infimum taken over all the p-nuclear decompositions as above.
Proposition 2.6. For operators in B(X,Y'), the following hold.

e Consider 0 < p < 1. Then, v,(-) is p-homogeneous and subadditive, namely if Ty, T5
are two operators and A is a scalar, then

vp(NT1) = AP - vp(Th), and v(Ty + 1) < vp(Th) + vp(T3).

e Consider 0 < p < 1. Then the following holds:
vp(RST) < ||R|[”-15(S) - TP (ReB(X),5 € B(X,Y), T € BY)).
e Consider 0 <p < 1. Then, Vp<~)% 1S a quasi-norm, namely, all the axioms for norm

holds except for the triangle inequality, which is replaced by the following, given any
family {Ty , k =1,2,..., N} of operators:

N N % N
1 1—p 1
Vp<Tk)P S Vp < E Tk> S N> E l/p(Tk)P.

k=1

o Consider 0 < p < q<1. Then, p-nuclearity implies q-nuclearity.

2This v, should be distinguished from the p-nuclearity (quasi-)norm [T, = VP(T)%.
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2.4 Nuclearity conditions and the split property

In this section, we discuss the conformal nuclearity condition and the split property, as
well as other related conditions which we will exploit. Let us briefly recall its physical
motivations for these conditions. The first of them was the Haag-Swieca compactness
criterion [HS65], a criterion to exclude QFT with “too many states” such as generalized
free fields. It requires that a set of vectors generated from the vacuum by local observables,
when multiplied by a spectral projection of the Hamiltonian, forms a compact set, i.e.,

{ PpaQ) | z € A(O), ||z]| <1} is compact.

The Buchholz-Wichmann energy nuclearity condition [BW86] is a strengthened version
of the above. They replace the sharp cutoff by a smooth damping, requiring nuclearity
instead of compactness, namely, the set {e ##2Q | x € A(O), ||x|| < 1} is nuclear for all
B > 0, where H is the Hamiltonian. One can equivalently formulate this condition as the
nuclearity of the damping map ©; 4 : A(O) 3 z +— e PHzQ) € H. In this work, we adopt
such approach.

For chiral nets, we can consider a variation of the nuclearity conditions using Lg instead
of H, and adopt the nomenclature “conformal nuclearity condition”, which was used in
[BDLO7]. Our precise definition follows.

Definition 2.7. Let (A, U, Q, H) be a Mdbius covariant local net. For I € Z and 8 > 0,
define the damping map ©; 3 : A(I) — H by the following formula:

Orp:x € Al) e ProrQ) € H.

It is known that the energy nuclearity condition implies the conformal nuclearity condi-
tion [BDLO7, Proposition 6.2], and the former is further a consequence of the trace class
condition, namely e?L0 is of trace class for all 3 [BDLO07, Propositions 3.1, 5.3, 6.1]. The
trace class condition refers only to the spectrum of Ly and can be easily checked in exam-
ples, and indeed it holds in almost all known examples, except those which are artifically
large, such as the infinite tensor product of nets [CWO05, Section 6]. Furthermore, the
value e Pl is known as the character of the given conformal net and is very useful in the
representation theory, see [KR87].
With those maps, we define the conformal nuclearity conditions:

(1) Let p € (0,1]. The net satisfies the conformal p-nuclearity condition if for all
I € 7 and B8 > 0, the map Oy g is p-nuclear and, for any f, > 0, there should be a
constant ¢ > 0 such that

logv,(Or5) < (¢/B)™* holds for all g such that 0 < 8 < So.

where ny ), is a positive constants depending only on I and p.

(2) The net satisfies the conformal nuclearity condition if the above holds for p = 1.

Note that we require an estimate on the nuclearity index, additional to the “conformal
nuclearity condition” of [BDLO07, Section 6].

We now address one of the consequences of the conformal nuclearity condition, the
split property. It is an algebraic property that relates to the statistical independence of
two separated local algebras.



Definition 2.8. Let (A, U, 2, H) be a Mobius covariant local net on a separable  Hilbert
space H. The net satisfies the split property if, for any any I;,I, € Z such that
LN =0 (ie I €I}), the following equivalent properties hold:

e the (algebraic) *-homomorphism a ® b € A(1y) ®az A(L2) — a-b e A(ly) V A1)

extends to an #-isomorphism of von Neumann algebras A(l;) ® A(lz) = A(l;) V
A(1).

e the inclusion A([;) C A(Iy) is a standard split inclusion of von Neumann algebras
(with respect to ), i.e. Q is a cyclic vector for A([), A(l3)" and A(I;) N.A(I5), and
there is a von Neumann algebra R which is an intermediate factor type I, namely,

A(l) C R C A(LL)'.

These definitions are indeed equivalent because the underlying Hilbert space is sep-
arable and local algebras are type III factors, hence they are isomorphic if and only if
they are unitarily equivalent (spatially isomorphic). This will be used in the following
without remark. Actually, the second of the statements above forces the separability of
the underlying Hilbert space [DL84, Proposition 1.6].

The intermediate factors of type I will be essential in our later definitions involving
entropy. Since there are many choices of such factors®, we shall adopt the following
notation:

Definition 2.9. For (A, U, ), H) a Mobius covariant local net satisfying the split property,
and Iy, Iy € Z such that [; € I3, we use the symbol (u,R,) to denote a pair of a unitary
operator u : H — H ® H implementing the *-isomorphism A(1;)V A(ly) = A(l;) @ A(l2),
and an intermediate type I factor R, = v*(B(H) ® Cl1)u.

Having stated the nuclearity conditions and the split property, we now make a list of
useful additional assumptions for M6bius covariant local nets.

Definition 2.10. For a Mdébius covariant local net, we can consider the following addi-
tional conditions:

1. There are constants x € (0,1) and C' > 0 such that

dim ker(Ly — N) < Cexp(N¥) (VN € N).

[N}

. Trace class condition: there are positive parameters ¢, C' such that

log Tr(e Py < CB™ as B \,0.

3. Conformal p-nuclearity condition for all 0 < p <1 (see Definition 2.7(1)).

=~

. Conformal nuclearity condition (see Definition 2.7(2)).

(S8

. Split property (Definition 2.8).

Proposition 2.11. For a Mobius covariant local net, there is a chain of implications
between the conditions in Definition 2.10: (1) = (2) = (3) = (4) = (5).

3Separability is needed for the implication from the first to the second.
4There is a canonical choice of such a type I factor [DL84], yet its physical meaning is not very clear
and we consider all such intermediate type I factors.




Proof. We first work on the implication (1) = (2). Consider the parameters C' > 0 and
k € (0,1) such that dim ker(Ly — N) < Cexp(N*). Then,

Tr(e Plo) = Z dim ker(Ly — N)e VN < Z Ce PNTN" — O,

N>0 N>0

_ K
where t:= E e PNFN
N>0

We need to show that ¢ satisfies (a 1/C-scaled) trace class condition as 0. Since
—pBN eventually dominates N*, the trace is always finite. All that is left is to verify the
dependence on . Our strategy is to divide the sum in three parts, the first term, a finite
sum, and a infinite sum with exponential decrease. With a parameter A (to be defined
later), we define the partition Xo = {N =0}, X; ={0 < N < A} and X, = {N > A},
and we divide the upper bound T as follows:

t=to+ti+t;  where t:= Z o BNHEN"
NeXy

The reoccurring exponent can be expressed as —3N + N* = —3N*(N'=* —1/3). The
factor (N'=® — 1/3) is monotonically increasing in N, and positive for N > 1/371/(1=%),
Suppose A > 1/37Y1=5) (yet to be defined) and define B := A'™* —1/3. Then B > 0
and —GN 4+ N* < —BBN" for N > A. With those, the first and last terms ¢, and ¢y of
the upper bound satisfy following inequality:

todty =1+ Z e PNEN" < ¢ Z e BAN" < Z e~ BBN".
N>A N>A NeN

Now, to turn the last term above in a quantity independent of 5, we pick A as following:
A= (2/B)V0, B =1/8.

The sum tg + t5 is then bounded by a constant expressed in the following:

tot+tz <y ™
NeN

The remaining finite sum can be bounded by the number of terms times the supremum
of the summands. We first analyze the exponent —GN + N*. By elementary calculus, it
takes its maximal value at Ny = (x/8)"/ %) and hence one has the upper bound

sup e "NV = exp [((1 —K) m*ﬁ)ﬂ*ﬁ].
N>0

Moreover, the number of terms is #{0 < N < A} = [A] < A = (2/8)Y(3=%). One has
the following bound for the finite part of the sum:

NN 21/(175) . N

t1 < A”e—,@ + oo < ST P [((1 — R) H7E>57ﬁ]
aop
EZ

where the constants ag, ¢y, a1, ¢; are easily identifiable.

exp (a16761> < exp (aoﬁfco + a15761>-
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What is left to prove that log(t) is bounded by C5~¢ as § N\, 0, where ¢,C are
some positive parameters. First, fix a Sy > 0, to which we shall only consider £ such
that 0 < 8 < fp. Also, fix the power ¢ as ¢ := max{co,c;}. Then, for ¢;, one has
aoB7C 4+ a1 7 < ayf~¢ whenever 0 < 8 < By, for some appropriate constant as. Hence
t1 < exp(agB°). Similar arguments allow us to absorb the constant factor ¢y + t5 in an
exponential to+1ts < azexp(azf~°), for 0 < f < [y and a3 an appropriate constant. Then,
t < (1+ as)exp(azf°), and log(t) < log(l + a3) + a2~ °. Again, the constant can be
absorbed as log(1+ a3) < a457¢ for 0 < § < By and some appropriate constant ay. Then,
log(t) < (a4 + a2)p~¢, for 0 < 8 < By. This concludes the proof of (1) = (2).

The implication (2) = (3) follows since, for any I € Z, 0 < p < 1 and 8 > 0, the
inequality 1,(0r5) < Tr(e PPLo) < aexp ((b/p¢) 57¢) holds. The implication (3) = (4) is
trivial. Finally, we refer the proof of (4) = (5) to references, see [GF93, Lemma 2.12],
which translates the arguments of [BDF87, Section 2| to the chiral setting. See also
[BDLO7, Corollary 6.4] for a different proof that holds also in a “distal” case, involving
concepts of modular nuclearity and L?-nuclearity. O]

The p-nuclearity condition was introduced in [BP90], in the investigations of the phase
space in AQFT. Later, in [FOPO05], the formulation is further clarified and meaningfully
defined for p > 1. For chiral nets, the conformal nuclearity condition was studied in
[BDLO7], together with other notions of nuclearity. Also, in [MTW16] it was proved that
the split property follows automatically if the chiral net is Diff | (S')-covariant.

To conclude this section, let us remark that most of known Mobius covariant local
nets with nice properties satisfy the condition (1). For example, as for the U(1)-current
net, the dimension of Ly-eigenspaces grows as the partition function p(/V), which behaves

asymptotically as p(N) ~ 4\/1§N emVEN? [AS64, 24.2.1.111]. The same applies to the Vira-

soro nets with ¢ > 1 [KR87]. Some completely rational nets can be realized as a subnet of
a tensor product of copies of the free fermion net, which is nicely summarized in [Ten16,

Section 4.2], and a similar estimate can be made there.

3 Towards cutoff entropy for a chiral net

Throughout this Section, let (A, U, 2, H) be a Mdbius covariant local net satisfying the
split property (Definition 2.8). Let w = (€2, - Q) be the vacuum state, and Ly the conformal
Hamiltonian. We also fix an interval I € Z.

As mentioned before, when trying to define the entanglement entropy of the vacuum
with respect to I, that is, the quantum entropy of w as a state restricted to A(I), one
has to deal with the fact that A(I) is a von Neumann algebra of type I1I, whose natural
variation of von Neumann entropy is divergent [OP04, Lemma 6.10][Nar94, Lemma 2.4].
Furthermore, one has to deal with UV-divergences expected from the physical literature,
namely one usually introduces a cutoff € and the entropy depends on € (see e.g. [HLW94,
(2.13)]). One therefore needs a certain regularization.

We define our entropic quantities with various regularizations in three steps.

(1) Let § > 0 be a parameter such that |I|+20 < 2w. We put Is = U_s9<5 po(I) € Z the
“augmentation of I by ¢”. It then holds that I € s, and the split property asserts
that there are pairs (u, R,), where R, is a type I factor such that A(I) C R, C A(Is).
We introduce the quantity Hys(w) with the aid of intermediate type I factors R, (note
that, however, this will not be Sg, of Definition 2.4).
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(2) We can estimate Hjs(w) from above, provided the net satisfies condition 2.10(1).
However, this estimate diverges as 0 approaches zero. We then regularize the states
by a cutoff parameter E, and define the regularized quantity H fa(w).

(3) Finally, we consider HF (w) with cutoff E, as the limit of the former as § > 0 goes to
zero. We also state our main result, Theorem 3.11, stating the finiteness of it, with
an upper bound given in terms of the dimensions of eigenspaces of the conformal
Hamiltonian. The proof of it is spread in the later sections.

3.1 The energy function

Before further discussion, we recall an important lemma from [BDF87] which states the
existence of an auxiliary energy function f that will be necessary for our calculations.
While in the original paper f is an almost exponentially decreasing function, namely it
holds for any x € (0,1) that sup,c | f(¢)] exp(|t|*) < oo, it turns out that for our needs
the choice of an energy function becomes more flexible. We reproduce the proof in order
to stress this point.

Lemma 3.1. (¢f. [BDF87, Lemma 2.3]) Let (A,U,Q,H) be a Mdobius covariant local
net. Let o be a parameter such that 0 < o < 1. Then there is an energy function

f:teR— f(t) € R with the following properties:
1. The function f satisfies sup,cg |f(t)| exp (|t|°‘) < oo and f(0)=1/2.

2. If x,y are local operators such that [z, Ade®Lo(y)] = 0 whenever 0] < 1, it holds
that

<Q,ny Q) = <Q> (xf(LO) Y+ yf(LO) .73) Q>

3. Let fs5 be the 0-scaled f, that is, fs(t) := f(0t). Then, for any pair of local operators
z,y such that [z, Ad e (y)] = 0 holds whenever |t| < § (i.e. the distance of their
respective local algebras is larger than 0 ), it holds that

(Q,2y Q) = (Q, (z f5(Lo) y +y f5(Lo) ) ).

Proof. (1)(2): Existence of the function. The argument follows the proof of Lemma
2.3 in [BDF87], with the conformal Hamiltonian L, taking place instead of the Hamilto-

nian H. Consider any two local operators x,y satisfying [z, e?Zoye~%0] = 0 whenever
6 € (—1,1). This implies that
(Q, ze™oyQ) = (Q, ye "H0xQ), t€ (—1,1). (1)

By the positivity of Lg, the left-hand side extends continuously to {¢ € C,Im{ > 0} and
analytically to its interior, and likewise, the right-hand side extends to {¢ € C,Im ¢ < 0}.
Therefore, there is a holomorphic function h defined on P; = C \ ((—o0, —1] U [1, +00))
such that on (—1, 1) it coincides with the function expressed in (1).

Next, fix a constant 7 € (0, 1), and consider the conformal map that takes the disc D =
{w e C,|w| < 1} onto P, := C\ ((—oo, —7] U [1, +0)), given by 2, (w) = 27w/ (w? + 1).

As P, C Py for 7 € (0,1), the function h,(w) := h(z.(w)) is holomorphic on D, and
it is easy to see that h, is continuous and bounded (by ||z|| - [|y||) on D\ {£i}. Therefore,
one can express h.(0) = (€, 2y€2) using Cauchy’s residue theorem by integrating =h. (w)
on a circular path w(s) = re'* € D, with a fixed radius r < 1 and parameter s € (0, 27).

12



Taking r 1, the singularities of h, at i are both represented by s = 7/2, where the
integrand is still bounded. We then have the following equality for all 7 € (0,1):

1 [7 . '
<Q’ ZE'yQ> — %\/ ds <Q, ($61Lor/cos(s)y + yeZLOT/COS(S)J,‘)Q> (2)
0

For a as in the statement, fix a value 8 such that @ < f < 1. There exists a
smooth function g such that § is smooth and supported inside (0, 1) such that g decays
as e’ for |t| large with g(0) = 1 (see [Jaf67] and the references therein for the existence
functions of almost exponential decay with compact Fourier transform, and [Joh15] for
more concrete functions with weaker requirements needed here). One can then multiply
the above equality by §(7) and integrate it against dr to then obtain

(2, 2yQ) = (Q, (xf Lo)y+yf (Lo)x)Q2),
where f is defined by f(t) 1 [ g (t/cos(s)) ds. Putting ¢ = 0 shows that f(0) =
1/2, as we took g(0) = 1. Furthermore f mherlts the decay property from g.
_ Until now, f is a complex-valued function. Yet, it is immediate that the function
f(t) = f(t) has the same property:
< (@ f(Lo)y +yf(Lo)x Q> < y* f(Lo)x" + 2" f(Lo) *)Q,Q>

= (Q, (y* f(Lo)z* 4+ x* f(Lo)y*)2)

= <Q, (x*y*)ﬂ>

= <Q, ny>

Therefore, the real part of f does the same job. In the following, we assume that f is
real.

(3): Scaling. Now, considering the parameter ¢, consider two local operators a,b
satisfying the commutation rule [z, e??Lolye~L0] = 0 whenever § € (—6,5). The previous
discussion follows analogously, except that the equality given by equation (2) holds only
for 6 € (—0,d). With g the same as above, consider its scaling gs such that gs = g(-/9),
and hence gs = dg(6-). Since g5 is now supported in (0, d), multiplying equation (2) by
it and integrating against dr gives the equality

<Q> :CyQ> = <Qa (fo(LO)y + ny(LO):E)Q>7
where now fs(t) = f(dt), thus proving (3). O

3.2 Regularization by distance

First, regarding the von Neumann entropy (as introduced in Section 2.2), we make an
observation which will stand as motivation of our definition.

Remark 3.2. Given two normal states ¢, on B(H), we say ¢ = 1 if there is a positive
number ¢ > 0 such that tp > 1, and equivalently, if there is a positive number A\ €
(0,1] such that ¢ > A (here, t = 1/X). The concavity of the von Neumann entropy
(Proposition 2.2) asserts that Syn(¢) > ASyn(¢). We therefore have

1

SVN(lp) lgf A S (@)7

where the infimum runs over all states ¢ to which there is a positive parameter A, € (0, 1]
such that ¢ > A . Clearly, equality holds since ¢ = ¢ with Ay, = 1.
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Turning back to conformal nets, we recall the split property (Definition 2.8). Consider
an interval I € Z and a positive parameter § > 0. Let Is = U_s-9<5 po(I) be the the
“augmentation of I by §”, where |I|+2§ < 27 so that it holds that Is € Z,I € I5. By the
split property, there are pairs (u, R,) as in Definition 2.9, where v : H — H ®H is unitary
such that u(zy)u* = x ®y for any pair (z,y) € A(I) x A(l;)', and R, = v*(B(H) @ C1)u
is an intermediate type I factor.

Since the entanglement entropy is can be defined through the formula of von Neumann
for type I factors R, (denoted accordingly as Sg,, see Definition 2.4), one can consider
the following.

Definition 3.3. Consider a normal state ¢ on B(#H). For I € Z and § > 0 (such that

Is € T), we define
1

H = inf inf —§ ,
1) = inf inf 55 (o)
The first infimum runs over all pairs (u, R,) as in Definition 2.9, and the second infimum
runs over all normal states ¢ over B(#) to which there is a positive number A\, € (0, 1]

such that ¢ > A\, 1 when restricted to A(I) vV A(l5)".
Remark 3.4. Let us consider type I situations. Let B(H) = B(H1) ® B(Hs) ® B(H3) ®

B(Hy4), and v be a pure state on B(H;)@B(H,). We take a state 1 on B(H) which extends
. As 1 is pure, it must be of the form ¢ = ¢ ® . Let us denote by Sj the von Neumann
entropy of a state in B(H) restricted to the component k& (k might be multiple). It is easy
to see that Sy 3(¥) = S1(¥) + Ss5(p), and Ss(p) can be zero if we take a tensor product
¢ = p3® 4 of pure states. Hence for a pure state 1) we have Sx () = inf; S.x (1)) where
inf runs over all extended state to a type I factor B(H) (H is not necessarily fixed). We
believe that this justifies our Definition 3.3.

Furthermore, let us point out that there are several possible definitions of entanglement
entropy which coincide with the von Neumann entanglement entropy when the state is
pure, see e.g. [VP98, Theorem 3]. As our main purpose is type I1I algebras which admit no
normal pure state, we have to make a choice. See [HS17] for a different choice, analogous

to that of [VP98, Section D.1]

The definition 3.3 relies on pairs (u, R,) and the von Neumann entropy of states ¢
restricted to R,. We do the actual calculations through the unitary u, considering @oAd -
as a state on ‘H ® H and restricting it to the first tensor component. We state this fact
in the following lemma.

Lemma 3.5. Consider 1 a normal state in B(H). For 6 > 0 fized, let (u,R,) be as in
Definition 2.9. Let ¢ be a normal positive functional on B(H®H) such that o Ad ,« >
on A(I)V A(Is)'. Then,
¥
p(1) - 5 (m) > Hps(¢),
where Sy is the von Neumann entropy of a state on B(H) ® B(H) restricted to the first
tensor component.

Proof. Call ¢ = o Ad,~ and ¢1(-) = ¢(- ® 1). From definitions 3.3, we have H; 5(¢)) <

¢(1) Sr, (¢/¢(1)). It suffices to show that S, (¢/¢(1)) = Si(p/e(1)) = Sin(e1/e1(1)),
and by Definition 2.4, it suffices to show that there is an #-isomorphism o : R,, — B(H)

such that ¢ = ¢y 00. Then, o defined by 0! : z € B(H) — u*(z ® 1)u € R, satisfies the
requirement. ]
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Our main objective in this section is to prove the following.

Proposition 3.6. Let be a Mébius covariant local net satisfying the condition 2.10(1),
i.e. there are constants r € (0,1) and C > 0 such that dim ker(Ly — N) < Ce™". Then,
for the vacuum state w restricted to I € I with regularization parameter § (such that
Is € Z, the quantity Hys(w) is finite. More precisely,

H;s(w) < Cslog Cs + S,

where Cs and S5 are given by

Cs =Y _ 2dim (Hy)|fs(N)],

N2>0

Ss=>_ ddim (Hy) (_ |f5(2N)| log !fs(QN)y) |

N>0

with f the energy function as in Lemma 3.1 with some « satisfying 0 < k < o < 1.

The split property guarantees the existence of a unitary operator us : H — H @ H
intertwining A(1) V A(Is)" and A(I) ® A(1s)’, and it follows from the assumption 2.10(1).
Therefore, the quantity Hys(w) can be defined as above.

Proof. We fix a parameter a such that 0 < kK < a < 1 and invoke Lemma 3.1 to obtain an
energy function f : R — R such that sup,cg |e/!” f(t)| < +oco. Since dim ker(Ly — N) <
CeN"™ by hypothesis, this implies that f(Lg) is a trace class operator. Recall that, for
r € A(l),y € A(ls), the following holds:

w(ry) = w(x fs(Lo)y +yfs(Lo)x) = (2, (xf5(Lo)y + yfs(Lo)z) ).

Define 05 as the self-adjoint linear functional on B(H ® H) given by the following
formula:

05(z @y) == (Q, (xfs(Lo)y + yfs(Lo)x) ). (3)

Normality follows from the trace class property of f(Lg), and self-adjointness from the
reality of f.

The vacuum state w and the functional f5;0Ad ,x coincide in A(I)V.A(I5)’, so one might
be tempted to invoke Lemma 3.5 and state that Hjs(w) < S1(5). However, one should
note that #; is only positive when restricted to the above-mentioned algebra. Nevertheless,
one can decompose it as 05 = 65 — 65, where 65 1 are positive functionals on B(H @ H)
(this will not be the Jordan decomposition, the detailed construction of 65 + will be given
below, in particular on equation (5)). Hence, restricted to A() ® A(1s)’, one has 85 =
05 + 05— = wo Adx + 05, and therefore, after normalizing it to ég,i = 05./||05+|, one
has that 05 o Ad,, > (1/]0s54]|)w. By Lemma 3.5, one has the inequality

Hi5(w) < (165457, (05,4 © Ad ) = (18541151 (5.+)-

It suffices then to identify the positive functional 65, and find and an upper bound
for the entropy Si(6s-). This will be addressed on the following.
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The auxiliary functional 65, and an estimate of entropy

We first further analyze the properties of 65 to appropriately define a decomposition
05 = 054+ — 05_. The conformal Hamiltonian L, has discrete eigenvalues N € N with
eigenspaces Hy = ker(Ly— N) of finite dimension dim (Hy). Let {®,}, be an orthonormal
basis which consists of the eigenvectors of Ly with eigenvalues [,, € N. Then, following
the definition of 5 as in Equation (3), one has

=D f3(ln) ((Q, 2®,) (@0, yQ) + (Q, YD) (P, 202)) (4)
neN
We proceed by decomposing the terms given by (Q, 2®,)(®,, y2) + (2, y®@,,) (P, Q)
as a linear combination of positive terms. First, we note that the n-sum has a special
value at n = 0, which account for the state w ®w, with multiplicity one since f5(0) = 1/2.
We therefore focus on the terms corresponding to n > 0.
We introduce ¢y, as pure states on H, defined as the following for £ = 0, 1,2,3 and
n > 0:

(Q+i*0,)  (Q+i*,) |
Pl = <Ilﬂ+z’@ I et e, ||> (@ +0,), - (@+F8,),

where the second equality follows since €2 and ®,, are orthogonal to each other.
Standard algebraic manipulations show that the following polarizations hold for n > 0:

3

k
(o) = Tdual@)  and  (@n,y0) = Z iy

k=0

For n > 0, the terms (Q, x®,,)(®,, yQ2) and (Q, yP,,) (P, x§2) appearing in ;5 can then
be written as a linear sum of positive functionals as follows:

<Qa xCI) n7 yQ Z ¢k n (+m) gbk-‘rm,n (y),

kmO

<vaq) > CI)n,ZL’Q Z ¢kn ’ >(7m)¢k+mm(y)'

kmO

And hence:
<ny®n><®my9> + <Q7yCI) q)n,:L‘Q Z¢kn ¢kn ) ¢k+2,n(y)) .

In Equation (4), the above terms show up in 65 multiplied by fs(l,,). Aside from the
value [,, = 0 for which we know f5(0) = 1/2, each f5(l,)) might be positive or negative (as
we noted, we can and do take a real f).

We then just need to be cautious about the sign of fs(l,,). Thus, we define:

a5 (k) ::{ 1 if f(;(k:).>0 bs(k) ::{ 1 if fg(k)'<0

0 otherwise 0 otherwise
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Then, for each n at most one of the indices as(l,,) and bs(l,,) is 1, and it holds that
fs(k) = (as(k) — bs(k)) - | fs(k)|. Summing all terms, we obtain

by =wuw+ Y Z Isllo)l @ (5(0a) i + bs(1a)bis2)

n>0 k=0

J/

¢k n @ (as5(1n) Prg2m + bs(ln) Prn)

J/

Hence we get the desired decomposition 85 = 05 — 05_ with 051 defined as

96+ =w®w+ Z Z | (/51 n ( 5(ln)¢l,n + b5<ln)¢l+2,n> .
n>0 [=0

b= S IO )+ b)) 5
n>0 [=0

With the definition of equation (5) in hands, we now focus on estimating the entropy

S1(Os.+/1105+11)-
Define 75 as the positive functional 5 restricted to the first tensor component. It is
then expressed as follows:

75(2) =054 (2 ® 1) = w(x +ZZ| ¢,m z)  for z € B(H). (6)

n>0 k=0

This decomposition of 75 into pure states ¢y, is indeed convergent in norm, because we
assume that the net satisfies the condition 2.10(1), i.e. dim (Hy) grows bounded by an
almost exponential function C exp(N*) for some C' > 0 and x € (0,1).

The above decomposition into vector states enables us to invoke Corollary 2.3. We
first note that, since the operator 65 1 is not normalized, so is 75 not normalized. One can

calculate its norm Cj := ||75|| = ||s+ ]| = 054+ (L @ 1) as
=Y 2dim (Hx)lf5(N)],
N>0

because every factor |fs(NN)|/2 appears 4dim (Hy), where the factor 4 is due to the sum
in k. Likewise, with the fact that all ¢y, are pure states, the same Corollary 2.3 tells us
that the von Neumann entropy can be bounded as follows:

s (7 ) <o - 30 M) (1N LAY

N>0

where the term N = 0 can be dropped in the second term because it corresponds to w
which is normalized. This expression gives indeed a finite number, thanks to the condition
2.10(1). Indeed, dim (Hy) < Cexp(N*), while |f‘5 I < ) exp(—N®) with some Cy > 0
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1—¢
and hence ‘f‘s U og ‘f‘s I <c. <|f5 ) = C.Cyexp(—(1—¢)N®) for 0 < € < 1, where

Ce > 01is Such that Slogs < C.s'7¢. Therefore, dim (Hy )lf‘S(N)| log |f5( I decays fast as
N — 00 because k < « and is summable. In other words, we have the upper bound for
His(w) as follows:

H],(g(w) < C(; logCQ; — Z4d1m (HN) . ( |f5<2N)| log |f5(2N)| ) .

N>0

3.3 Implementing cutoff

We now consider a cutoft parameter £. We need this since the above quantity Hjs
is expected to diverge when the spatial separation ¢, taken as a variable parameter,
approaches zero. We first define the regularization of states, and with those, we define
the regularized entropy.

For any E > 0, let Pgr denote the spectral projection of the conformal Hamiltonian L
with respect to the set [0, E]. The set { Pg}g~o is then an increasing family of projections
(acting on H) indexed by a parameter F > 0, such that Pg strongly converges to the
unity as E goes to infinity.

Definition 3.7. Let ¢ be a normal positive functional on B(H), and let (u,2R,) be as in
Definition 2.9. For £ € N, the regularized functional ¢** is defined as

¢ =1 € B(H) = ¢ ((u*(Pr @ 1)u) z (u*(Pr ® 1)u)) € C.

For ¢ a normal positive functional on B(H ® H) (e.g. for ¢ a normal state on B(H) as
above, and ¢ = ¢ o Ad,,), the regularized functional ¢” (here independent of (u,%R,)) is
defined as

=2 cBHOH)— p(Pp®1)z(Pr®1)) € C.

For a fixed normal state ¢ and a fixed pair (u,fR,), the regularized functionals ¢
are normal positive contractions, and after normalization, ¢¥“/||¢"*| are again normal
states. As the state ¢ is normal, both ¢&* and ¢&*/|¢"*|| converge, as E — +oo, to
the original state ¢ in the weak™ topology. The same reasoning holds analogously for ¢
a normal state on B(H @ H). In the case of ¢ = ¢ o Ad,, the restriction of ¢¥** to R,
“corresponds” to the restriction of ¥ to the first tensor component (denoted as (¢%)1),
which in turn is equal to ¢1(Pg - Pg). The last converges to ¢; in the weak* topology,
as I/ — +o0.

Definition 3.8. Consider ¢ a state on B(H). For I € 7, > 0 (with [; € J) and E > 0,
the regularized entropy H Ib;; of ¢ is defined by

P | u u
Hys(v) == inf inf A—¢Smu (@™ /lle™])) -

(u,R)

Here, the first infimum takes into account all pairs (u, JR,) as in Definition 2.9. The second
infimum runs over all normal states ¢ over B(#) to which there is a parameter A\, € (0, 1]
such that ¢¥* > Ay %" holds when restricted to A(I) V A(Is)'.
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Proposition 3.9. For a Mdébius covariant local net with the split property (Definition
2.8), the quantity Hfé(w) with cutoff E has an upper bound independent of 6. More
precisely,

Hﬁ;(u}) < Cg log Cg+ Sg < +00,

Cg = 2sup{\f )|} Z dim ker(Ly — N)

N=0

_ £ @I _
SE—42121£){| log L0 ‘} Zdlm ker(Ly — N)

where

with f an energy function as in Lemma 3.1.

Proof. Recall the functionals 65, and 75 defined by equations (5) and (6), respectively.
The functional 6f7, = 654 ((Pp® 1) - (P ® 1)), regularized as in Definition 3.7, is a
normal positive functional which converges to 65 in the weak™ topology, as E — oo.
Also, its restriction to the first tensor component is just 75 (Pg - Pg), which we denote
by 7s5,5. Whereas 05 and 7; are only guaranteed to be well-defined if the net satisfies
condition 2.10(1), the regularized functionals 6% b+ and 75 p are well-defined even if the net
only satisfied the split property. And since 05 Lo Adys > w?, by arguments analog to
Lemma 3.5, it follows that |75 g||Sun(7s.2/]7s, E||) is an upper bound for the regularized
entropy given by Definition 3.8. By these reasons, from here on we do not need the
requirement of condition 2.10(1), and only require the net to satisfy the split property.

We now focus on estimating Syx(7s.z/||75.£|]). From 75 = 05 (- ® 1) as expressed in
equation (6) and considering that all @, are eigenvectors of Ly with eigenvalue [,,, the
only non-vanishing terms of 75z are those corresponding to ¢;, such that /,, < E. One
then has, after cutoft,

IL.<E 3
o5 (@ t2 L
>0

k=0

¢kn x) (zeB(H)).

The formula above allows us to use Corollary 2.3, and therefore, the entropy S,x(77/||7%)
of the normalized state can be estimated by the following:

T, 1
SyN (£> <log(csg) + —Ss.k,
|75, Cs.1

where ¢; p and S; g are respectively the norm ||75 g|| and the “non normalized entropy”

defined by

E
Co.i = ||l = Y 2dim (Hy) | f5(N)]

N=0

Ssp =Y 4dim (Hy) (_|f5(2N)| log Ifg(QN)y)

N=1

As currently presented, the upper bound for S, (75 £/||75.£||) still depends on 6. How-
ever, ¢s g and S;p can be respectively bounded by constants Cr and Sg that are inde-
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pendent of 9, given by the following:

E
C = 2| fllo Zdim (M),

Zdlm (Hw)-

Therefore, joining the above to the bound of Syx(7s.£/||75.£(|), one finally has:

Sp =

S
SoN (Té—E) <logCg + ZE < too.
75,2l 5.8

Hence, by arguments analog to Lemma 3.5, and by noting that 1 < ¢; 5 < Cg (the first
inequality holds because of the term N = 0) and S5 g < Sg, we obtain
H5(w) < Cplog Cp + Sg.

The upper bound Cglog Cr + Sg above is finite and independent from ¢, thus proving
the claim. O]

Moreover, if condition 2.10(1) holds, the bound can be more explicit. The condition
implies dy := dim ker(Ly — N) < cel¥" < ce for some ¢ > 0 and x € (0,1). Then
Sv_oe < e for some ¢ > 0. Thus, we have HFj(w) < ¢’Ee”, for E > 1 and some
" > 0.

3.4 Lifting the regularization by distance

Finally, we consider the quantity HE with cutoff E a limit of the above when taking ¢§ as
a parameter approaching zero (and hence I5 approaching I).

Definition 3.10. Consider ¢ a normal state on B(H). For I € Z and a cutoff parameter

E > 0, we define:
E R E
Hyp (¢) = (151{{% Hl,a(w

if the limit exists, where H[’; is as in Definition 3.8.

Theorem 3.11. For a Mdébius covariant local net with the split property (Definition 2.8),
HE(w) can be bounded from above. More precisely,

HF(M) < C’ElogC'E + Sg < +00,

Cg = 2sup{\f )|} Zdlm ker(Lg — N)

N=0

_ 111 _
SE—4S£121%){| log L0 ‘} Zdlm ker(Ly — N)

where

with f an energy function as in Lemma 3.1.

The theorem is actually a mere corollary of Proposition 3.9, but is indeed the main
result of this work. We have thus established the finiteness of the regularized entanglement
entropy for a Mobius covariant local net satisfying the split property, that is, a relativistic
chiral component of a quantum field in the algebraic setting.
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4 Conclusions and final remarks

In the present work, we focused our attention on chiral components of two-dimensional
CFT, namely the Mobius covariant local nets. Provided the split property holds, we
have given a sensible definition for regularized entropic quantities restricted to an interval
I € 7. Considering the vacuum state, we also provided an upper bound with a conformal
energy cutoff E.

We recapitulate our definitions and comment on them a little further. Taking an
interval I and a small separation parameter §, we consider all intermediate pairs (u, R,)
between A(7) and A(l5), and all states ¢ that majorize w when restricted to A(1) V A(Ij),
that is, everywhere besides a vicinity of the boundary of the intervals I and I5. The
quantity Hy s regularized by § (Definition 3.3) considers then the infimum of all entropies
of the states ¢ on R,. With a cutoff F/, our quantity H ij(; (Definition 3.8) considers the
infimum of all entropies of ¢ restricted to R, but “adjoined” by the projection u*(Pr®1)u.
Lastly, the quantity H¥ with cutoff E is obtained by the limit § N\, 0 (Definition 3.10).
As 0 approaches zero, the local algebras A(I) and A(Is) are very close to each other,
hence the quantity calculated here should reflect the property of entanglement between
A(I) and its commutant A(7)" = A(I') of the given state. The infimum on the majorizing
states, however, excludes those with too much aberrant behavior near the boundary, in
particular split states on A(I) V A(I5) are not counted. Furthermore, we can avoid the
trouble with type III local algebras by considering intermediate type I factors. Our cutoff
with respect to the conformal Hamiltonian L is implemented naturally by applying Pp®1
to the state, where H and H ® H are identified by the intermediate type I factor between
A(I) C A(I;) and the spectral projection Pg of Ly. We obtained indeed that our HF is
finite with some estimate as a function of F.

Let us compare our results with the physics literature. Considering the U(1)-current
model, our estimates are of the order of Ee”, which have a much worse divergence than the
estimates 3 log(l/a) of Holzhey-Larsen-Wilczek [HLW94, CC04], where [ is the length of
the interval (in the real line picture) and a is the lattice spacing, hence % should correspond
to the energy cutoff E. Not only that, our results do not even display a dependence on the
interval length [. The technical reason for such aspects of our result is that our estimates
depend only on an orthonormal basis of eigenvectors of the conformal Hamiltonian, a
“very global” operator. Here, sharper estimates ought to take into consideration the
characteristics of each local algebra A(I), to bring a bound dependent in [. In short,
there is a room for improving our estimate, and log(l/a)-behaviour might be obtained
somehow.

Yet, also in another operator-algebraic work on entanglement entropy [HS17], the
log(l/a)-dependence could not be obtained, where a is the distance between two intervals,
considered as the UV-cutoff. Actually, in general, there are several possible definitions
of entanglement entropy which coincide with each other when the state is pure (see e.g.
[VP98, Theorem 3]). It is unclear to which definition the lattice approach corresponds.
This suggests that the expression of the entanglement entropy in the physics literature is
specific to the lattice regularization, and it is not straightforward to reproduce it directly
in the continuum.

Another interesting question is how to adapt the methods provided here to theories in
higher dimensions, and implement cutoff with respect to the Hamiltonian H. In contrast
to the conformal Hamiltonian Ly, the usual Hamiltonian H does not have a discrete
spectrum, yet energy nuclearity conditions and some ideas from the present paper might
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help defining an appropriate cutoff. As the energy nuclearity index contains a natural
dependence on the size of the region, a successful approach should lead to an estimate of
entropy depending also the region. Furthermore, the behaviour of dim (Ly — N) is related
with the central charge of a conformal net if one assumes modularity [KLO05], hence the
central charge ¢ appears in a natural way, in accordance with the physics literature.

A further different approach would be as in [Nar94], where a quantity that should
correspond to our Hjs(w) is defined, and expected to be finite (the proof required a p-
nuclearity condition, and implicitly assumed the concavity of the one-subalgebra entropy
of Connes-Narnhofer-Thirring). In fact, at finite separation ¢, this might even be prefer-
able to our Definition 3.3, since it does not have to consider all pairs (u, R,,) of the split
property. The problem in this setting is how to include a true “energy cutoft” that tames
the divergence in 6.

Acknowledgments

Y.O. wishes to express his gratitude to Yasuyuki Kawahigashi for his continuous support
and incentive, and to Narutaka Ozawa for his hospitality at RIMS. Y.T. thanks Daniela
Cadamuro, Roberto Longo and Ko Sanders for stimulating discussions.

Y.O. was supported by the Kokuhi-ryugaku scholarship of MEXT, Japan; Leading
Graduate Course for Frontiers of Mathematical Sciences and Physics; and Hakushi Katei
Kenkyu Suikou Kyouiku Seido of The University of Tokyo. Y.T.was supported by the
JSPS overseas research fellowship.

References

[Ara64] H. Araki, von Neumann algebras of local observables for free scalar field, J. Mathe-
matical Phys. 5, 1-13 (1964), https://dx.doi.org/10.1063/1.1704063.

[Ara99] H. Araki, Mathematical theory of quantum fields, volume 101 of International Series
of Monographs on Physics, Oxford University Press, New York, 1999,

[AS64] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas,
graphs, and mathematical tables, volume 55 of National Bureau of Standards Applied
Mathematics Series, U.S. Government Printing Office, Washington, D.C., 1964.

[BDF87] D. Buchholz, C. D’Antoni and K. Fredenhagen, The universal structure of local
algebras, Comm. Math. Phys. 111(1), 123-135 (1987), http://projecteuclid.org/
euclid.cmp/1104159470.

[BDL90a] D. Buchholz, C. D’Antoni and R. Longo, Nuclear maps and modular structures. L.
General properties, J. Funct. Anal. 88(2), 233-250 (1990), https://dx.doi.org/10.
1016/0022-1236(90)90104-S.

[BDLI0b] D. Buchholz, C. D’Antoni and R. Longo, Nuclear maps and modular structures. II.
Applications to quantum field theory, Comm. Math. Phys. 129(1), 115-138 (1990),
https://projecteuclid.org/euclid.cmp/1104180648.

[BDLO7] D. Buchholz, C. D’Antoni and R. Longo, Nuclearity and Thermal States in Conformal
Field Theory, Communications in Mathematical Physics 270(1), 267-293 (2007),
https://arxiv.org/abs/math-ph/0603083.

22


https://dx.doi.org/10.1063/1.1704063
http://projecteuclid.org/euclid.cmp/1104159470
http://projecteuclid.org/euclid.cmp/1104159470
https://dx.doi.org/10.1016/0022-1236(90)90104-S
https://dx.doi.org/10.1016/0022-1236(90)90104-S
https://projecteuclid.org/euclid.cmp/1104180648
https://arxiv.org/abs/math-ph/0603083

[BGL93] R. Brunetti, D. Guido and R. Longo, Modular structure and duality in confor-
mal quantum field theory, Comm. Math. Phys. 156(1), 201-219 (1993), http:
//projecteuclid.org/euclid.cmp/1104253522.

[BKLS86] L. Bombelli, R. K. Koul, J. Lee and R. D. Sorkin, Quantum source of entropy
for black holes, Phys. Rev. D 34, 373-383 (Jul 1986), https://doi.org/10.1103/
PhysRevD.34.373.

[BP90] D. Buchholz and M. Porrmann, How small is the phase space in quantum field theory?,
Ann. Inst. H. Poincaré Phys. Théor. 52(3), 237-257 (1990), http://www.numdam. org/
item?id=ATIHPA_1990__52_3_237_0.

[BWS86] D. Buchholz and E. H. Wichmann, Causal independence and the energy-level density
of states in local quantum field theory, Comm. Math. Phys. 106(2), 321-344 (1986),
http://projecteuclid.org/euclid.cmp/1104115703.

[CCO04] P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat.
Mech. Theory Exp. (6), 002, 27 pp. (electronic) (2004), https://arxiv.org/abs/
hep-th/0405152.

[CHO09] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys.
A 42(50), 504007, 45 (2009), https://arxiv.org/abs/0905.2562.

[CW94] C. Callan and F. Wilczek, On geometric entropy, Phys. Lett. B 333(1-2), 55-61
(1994), https://arxiv.org/abs/hep-th/9401072.

[CWO05] S. Carpi and M. Weiner, On the uniqueness of diffeomorphism symmetry in conformal
field theory, Comm. Math. Phys. 258(1), 203-221 (2005), https://arxiv.org/abs/
math/0407190.

[DL84] S. Doplicher and R. Longo, Standard and split inclusions of von Neumann algebras,
Invent. Math. 75(3), 493-536 (1984), https://eudml.org/doc/143108.

[FJ96] K. Fredenhagen and M. Jor8, Conformal Haag-Kastler nets, pointlike localized fields
and the existence of operator product expansions, Comm. Math. Phys. 176(3), 541-554
(1996), https://projecteuclid.org/euclid.cmp/1104286114.

[FOP05] C. J. Fewster, I. Ojima and M. Porrmann, p-nuclearity in a new perspective, Lett.
Math. Phys. 73(1), 1-15 (2005), https://arxiv.org/abs/math-ph/0412027.

[GF93] F. Gabbiani and J. Frohlich, Operator algebras and conformal field theory, Comm.
Math. Phys. 155(3), 569-640 (1993), http://projecteuclid.org/euclid.cmp/
1104253398.

[Haa96] R. Haag, Local Quantum Physics, Springer, second edition, 1996.

[HLW94] C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in con-
formal field theory, Nuclear Phys. B 424(3), 443-467 (1994), https://arxiv.org/
abs/hep-th/9403108.

[HS65] R. Haag and J. A. Swieca, When does a quantum field theory describe particles?,
Comm. Math. Phys. 1, 308-320 (1965), https://projecteuclid.org/euclid.cmp/
1103758947.

[HS17] S. Hollands and K. Sanders, FEntanglement and entanglement entropy in algebraic
QFT, (2017), in preparation.

23


http://projecteuclid.org/euclid.cmp/1104253522
http://projecteuclid.org/euclid.cmp/1104253522
https://doi.org/10.1103/PhysRevD.34.373
https://doi.org/10.1103/PhysRevD.34.373
http://www.numdam.org/item?id=AIHPA_1990__52_3_237_0
http://www.numdam.org/item?id=AIHPA_1990__52_3_237_0
http://projecteuclid.org/euclid.cmp/1104115703
https://arxiv.org/abs/hep-th/0405152
https://arxiv.org/abs/hep-th/0405152
https://arxiv.org/abs/0905.2562
https://arxiv.org/abs/hep-th/9401072
https://arxiv.org/abs/math/0407190
https://arxiv.org/abs/math/0407190
https://eudml.org/doc/143108
https://projecteuclid.org/euclid.cmp/1104286114
https://arxiv.org/abs/math-ph/0412027
http://projecteuclid.org/euclid.cmp/1104253398
http://projecteuclid.org/euclid.cmp/1104253398
https://arxiv.org/abs/hep-th/9403108
https://arxiv.org/abs/hep-th/9403108
https://projecteuclid.org/euclid.cmp/1103758947
https://projecteuclid.org/euclid.cmp/1103758947

[Jaf67] A. M. Jaffee, High-Energy Behavior in Quantum Field Theory. I. Strictly Localizable
Fields, Phys. Rev. 158, 1454-1461 (Jun 1967), http://www.slac.stanford.edu/
cgi-wrap/getdoc/slac-pub-0249.pdf.

[Joh15] S. G. Johnson, Saddle-point integration of Coy “bump” functions, (August 2015),
https://arxiv.org/abs/1508.04376.

[Kaw15] Y. Kawahigashi, Conformal field theory, tensor categories and operator algebras, J.
Phys. A 48(30), 303001, 57 (2015), https://arxiv.org/abs/1503.05675.

[KR87] V. G. Kac and A. K. Raina, = Bombay lectures on highest weight representations
of infinite-dimensional Lie algebras, volume 2 of Advanced Series in Mathematical
Physics, World Scientific Publishing Co. Inc., Teaneck, NJ, 1987.

[KLO5] Yasuyuki Kawahigashi and Roberto Longo. Noncommutative spectral invariants and
black hole entropy, Comm. Math. Phys., 257(1):193-225 (2005). https://arxiv.org/
abs/math-ph/0405037.

. Morinelli, Y. Tanimoto an . Weiner, Conformal covariance and split property,
MTW16] V. Morinelli, Y. Tani d M. Wei Conf 1 i d spli
(2016), https://arxiv.org/abs/1609.02196, to appear in Commun. Math. Phys.

[Nar94] H. Narnhofer, Entropy density for relativistic quantum field theory, Reviews in Math-
ematical Physics 06(05a), 1127-1145 (1994), http://www.worldscientific.com/
doi/abs/10.1142/S0129055X94000390.

[Nar02] H. Narnhofer, Entanglement, split and nuclearity in quantum field theory, Rep.
Math. Phys. 50(1), 111-123 (2002), https://dx.doi.org/10.1016/S0034-4877 (02)
80048-9.

[Otal?] Y. Otani, Entanglement Entropy in Algebraic Quantum Field Theory, Ph.D. Thesis
(2017), The University of Tokyo.

[OP04] M. Ohya and D. Petz, Quantum Entropy and Its Use, Theoretical and Mathematical
Physics, Springer Berlin Heidelberg, 2004.

[Reh15] K.-H. Rehren, Algebraic conformal quantum field theory in perspective, in Advances
in algebraic quantum field theory, Math. Phys. Stud., pages 331-364, Springer, Cham,
2015, https://arxiv.org/abs/1501.03313.

[RT06] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from the
anti-de Sitter space/conformal field theory correspondence, Phys. Rev. Lett. 96(18),
181602, 4 (2006), https://arxiv.org/abs/hep-th/0603001.

[Sre93] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71(5), 666-669 (1993), https:
//arxiv.org/abs/hep-th/9303048.

[SW85] S. J. Summers and R. Werner, The vacuum violates Bell’s inequalities, Phys. Lett. A
110(5), 257-259 (1985), https://dx.doi.org/10.1016/0375-9601(85)90093-3.

[SW87] S. J. Summers and R. Werner, Maximal violation of Bell’s inequalities is generic
in quantum field theory, Comm. Math. Phys. 110(2), 247-259 (1987), http://
projecteuclid.org/euclid.cmp/1104159237.

[Ten16] J. Tener, Geometric realization of algebraic conformal field theories, (2016), https:
//arxiv.org/abs/1611.01176.

[VP98] V. Vedral and M. B. Plenio. Entanglement measures and purification procedures,
Phys. Rev. A, 57:1619-1633 (1998). https://arxiv.org/abs/quant-ph/9707035.

24


http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-0249.pdf
http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-0249.pdf
https://arxiv.org/abs/1508.04376
https://arxiv.org/abs/1503.05675
https://arxiv.org/abs/math-ph/0405037
https://arxiv.org/abs/math-ph/0405037
https://arxiv.org/abs/1609.02196
http://www.worldscientific.com/doi/abs/10.1142/S0129055X94000390
http://www.worldscientific.com/doi/abs/10.1142/S0129055X94000390
https://dx.doi.org/10.1016/S0034-4877(02)80048-9
https://dx.doi.org/10.1016/S0034-4877(02)80048-9
https://arxiv.org/abs/1501.03313
https://arxiv.org/abs/hep-th/0603001
https://arxiv.org/abs/hep-th/9303048
https://arxiv.org/abs/hep-th/9303048
https://dx.doi.org/10.1016/0375-9601(85)90093-3
http://projecteuclid.org/euclid.cmp/1104159237
http://projecteuclid.org/euclid.cmp/1104159237
https://arxiv.org/abs/1611.01176
https://arxiv.org/abs/1611.01176
https://arxiv.org/abs/quant-ph/9707035

[Yngl5] J. Yngvason, Localization and Entanglement in Relativistic Quantum Physics, in The
Message of Quantum Science: Attempts Towards a Synthesis, edited by P. Blanchard
and J. Frohlich, pages 325-348, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015,
https://arxiv.org/abs/1401.2652.

25


https://arxiv.org/abs/1401.2652

	Introduction
	Mathematical preliminaries
	Möbius covariant local nets
	Von Neumann entropy
	Nuclear maps
	Nuclearity conditions and the split property

	Towards cutoff entropy for a chiral net
	The energy function
	Regularization by distance
	Implementing cutoff
	Lifting the regularization by distance

	Conclusions and final remarks

