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Abstract: We study a large class of suspension semiflows which contains the Lorenz
semiflow. This is a class with low regularity (the return map is piecewise C 1+α and the
return time is piecewise C α) and where the return time is unbounded. We establish the
functional analytic framework which is typically employed to study rates of mixing.
The Laplace transform of the correlation function is shown to admit a meromorphic
extension to a strip about the imaginary axis. As part of this argument we give a new
result, of independent interest, concerning the quasi-compactness of weighted transfer
operators for piecewise C 1+α expanding interval maps.

1. Introduction

Some dynamical systems exhibit very good statistical properties in the sense of, for
example, exponential decay of correlation and the stability of the invariant measure
under deterministic or random perturbations. Such properties have been shown for many
discrete-time dynamical systems and more recently for some flows. Very strong results
now exist for smooth contact Anosov flows [13,15,17,27,39,40]. Good results also
exist for suspension flows over uniformly-expanding Markov maps when the system
is C 2 or smoother [7,11,35]. The above are all rather smooth and regular systems and
arguably not realistic or relevant in many physical systems. There are two important
examples which come to mind: dispersing billiards [14] and the Lorenz flow [29]. The
fine statistical properties of both these systems remain, to some extent, open problems.
We therefore direct our interest to such systems with rather low regularity. Some recent
progress includes the proof of exponential mixing for piecewise-cone-hyperbolic contact
flows [10] and also for a class of three-dimensional singular flows [6].

This is our theme: To make progress on the understanding of the fine results on
statistical properties of systems with low regularity. The primary motivation for this
study is the Lorenz flow mentioned above. This is a smooth three-dimensional singular
hyperbolic flow. Baladi [8] studied suspension semiflows which were inspired by Lorenz
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flows but required that the various quantities were of bounded variation where we require
them to be Hölder (Hölder does not imply bounded variation; e.g. x �→ x sin(1/x)). The
work of Araújo and Varandas [6] proved exponential decay of correlation for a class
of volume-expanding flows with singularities, a class which is inspired by the Lorenz
flow. However their method required the existence of a C 2 stable foliation for the flow.
Unfortunately in the case of the Lorenz flow (for the classical parameters) even the
weak stable foliation of the flow (this is the two-dimensional foliation consisting of
leaves which are spanned by the flow direction and the stable direction) is merely C 1+α .
Consequently there seems to be no hope of extending their strategy to the original
problem. The problem of the stable foliations (of the return map) being merely C 1+α for
Lorenz like flows has been partially tackled by Galatolo and Pacifico [16] followed by
Araújo, Galatolo and Pacifico [3] but results on decay of correlations are limited to the
return map and not the flow. In this paper we make some progress in a complementary
direction. There exist two popular strategies for approaching problems of this type: The
first possible strategy is to construct an anisotropic Banach space in order to study the
flow directly as was done for contact Anosov flows [27] and piecewise-cone-hyperbolic
contact flows [10]. The second possible strategy is to study the Lorenz semiflow (details
given in Sect. 3) which is given by quotienting along the stable manifolds of the flow. At
this stage it is unclear how to construct the space required for the first possibility and we
therefore consider the second. This however requires one to work with a system which
is merely C 1+α . There are many issues involved in studying the quotient flow in this
particular setting. The reader interested in this question should consult the discussion
which is postponed until the end of Sect. 3 after we have introduced the pertinent details
concerning Lorenz flows.

In this paper we focus on a particular class of semiflows which are suspensions
over expanding interval maps. This class includes the Lorenz semiflows. They have low
regularity in the following four ways:

(1) The expansion of the return map may be unbounded. I.e. the derivative of the return
map blows up close to certain points of discontinuity. This bad distortion issue is
seen in both billiard systems and the Lorenz flow.

(2) The reciprocal of the derivative of the return map is merely Hölder continuous.
(3) The return time function is unbounded. This is a direct result of the existence of

fixed points of the flow. However in the case of certain suspension semiflows this
has already been shown to not be a barrier to good statistical properties [11].

(4) The semiflow is merely area-expanding and not uniformly-expanding in the sense
that it is not possible to define a forward invariant conefield which is uniformly
transversal to the flow direction. This puts us in the category of singular hyperbolicity
[31,33].

In order to study the class of flows considered in this paper, and other systems which
are the object of current research, it is crucial to understand whether these above issues
are real barriers to good statistical properties or merely technical difficulties. On this
issue we succeed in making some progress in the present work showing that the listed
issues are not real barriers to the statistical properties, at least in this setting. For proving
exponential decay of correlation for flows there is one particular established approach
which involves studying the Laplace transform of the correlation function. We apply this
strategy to our present setting and show that the Laplace transform of the correlation
function admits a meromorphic extension into the left half plane. This fact is also of
use when studying other statistical properties. In Sect. 2 we define precisely the class of
semiflows we are interested in and state the results. In Sect. 3 we discuss Lorenz flows
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and demonstrate the connection with the class of semiflows we consider. In Sect. 4 we
give a generalisation of the result of Keller concerning function spaces of generalised
bounded variation [25] such that it is possible to apply to our present application. This is
a new result for the essential spectral radius of such transfer operators for these piecewise
C 1+α expanding interval maps and the section is independent of the others. The reader
interested in the comparison of this result to other related results for similar function
spaces should consult the discussion at the beginning of Sect. 4. Sect. 5 contains the
proof of the main result, reducing the problem to the study of certain weighted transfer
operators and then using the results of Sect. 4.

2. Results

For our purposes we define a suspension semiflow to be the triple (�, f, τ ): The set� is an
open interval and {ωi }i∈I is a finite or countable set of disjoint open sub-intervals which
exhaust � modulo a set of zero Lebesgue measure; f ∈ C 1(�̃,�) (for convenience let
�̃ = ⊔

i∈I ωi ) is a bijection onto its image when restricted to each ωi ; τ ∈ C 0(�, R+)

is such that
∫
�

τ(x) dx < ∞. In a moment we will add some stronger assumptions on
the regularity of f and τ but we will never require f to be Markov. We call f the return
map and τ the return time function. Let �τ := {(x, s) : x ∈ �̃, 0 ≤ s < τ(x)} which
we call the state space. For all (x, s) ∈ �τ and t ∈ [0, τ (x) − s] let

�t (x, s) :=
{

(x, s + t) if t < τ(x) − s
( f (x), 0) if t = τ(x) − s.

(2.1)

Note that �u+t (x, s) = �u ◦ �t (x, s) for all u, t such that each term is defined. The
flow is then defined for all t ≥ 0 by assuming that this relationship continues to hold.

Now we define the class of suspension semiflows which we will study. Firstly we
require that the return map is expanding, i.e. that1 ‖1/ f ′‖L∞(�) < 1. We suppose that
there exist some α ∈ (0, 1) and σ > 0 such that the following three conditions hold.
Firstly we must have some, albeit weak, control on the regularity. We assume that2

x �→ ezτ(x)

f ′(x)
is α-Hölder on �̃ for each �(z) ∈ [−σ, 0] (2.2)

Furthermore we must require sufficient expansion in proportion to the return time. We
assume that3

sup
i∈I

(
‖ 1

f ′ ‖L∞(ωi )

)α

eσ‖τ‖L∞(ωi ) < 1/2. (2.3)

1 In general it is sufficient to suppose that there exists n ∈ N such that ‖1/( f n)′‖L∞(�) < 1. In which
case one simply considers the nth iterate of the suspension flow and proceeds as before, although care must
be taken with assumption (2.2).

2 We say that some ξ : � → C is “α-Hölder on �” if there exists Hξ < ∞ such that |ξ(x) − ξ(y)| ≤
Hξ |x − y|α for all x, y ∈ � with the understanding that this inequality is trivially satisfied if x ∈ ωi , y ∈ ωi ′ ,
i �= i ′ since in this case |x − y| is not finite. Note that Hξ does not depend on i .

3 As per footnote 1 it suffices for this quantity to be strictly less than 1 and then the required estimate will
hold for some iterate.
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Finally, to deal with the possibility of a countable and not finite number of disconnected
components of �, we assume that

∑

i∈I
‖ 1

f ′ ‖L∞(ωi )
eσ‖τ‖L∞(ωi ) < ∞. (2.4)

Note that we never require any lower bound on τ . Let ν denote some f -invariant prob-
ability measure which is absolutely continuous with respect to Lebesgue on �. The
existence of such a probability measure in this setting is known [25] but is also implied
by the results of Sect. 4. For simplicity we assume that this absolutely continuous invari-
ant probability measure is unique. It holds that μ := ν ⊗ Leb /ν(τ) is a �t -invariant
probability measure which is absolutely continuous with respect to Lebesgue on �τ .
Given u, v : �τ → C which are α-Hölder we define for all t ≥ 0 the correlation

ξ(t) := μ(u · v ◦ �t ) − μ(u) · μ(v).

Main Theorem. Suppose the suspension semiflow is as described above, in particular
satisfying the assumptions (2.2), (2.3), and (2.4). Then the Laplace transform of the
correlation ξ̂ (z) := ∫ ∞

0 e−zt ξ(t) dt admits a meromorphic extension to the set {z ∈ C :
�(z) ≥ −σ }.
The proof of this theorem is given in Sect. 5 and is based on the results of Sect. 4. The
argument involves the usual method of twisted transfer operators but for this setting
we require a generalisation of Keller’s previous work [25] on C 1+α expanding interval
maps which is the content of Sect. 4.

Let us recall in detail some closely related results which were mentioned in the
Introduction. Baladi and Vallée [11] (argument later extended to higher dimensions by
Avila et al. [7]) studied suspension semiflows which had return maps which were Markov
and also C 2. They allowed the return time to be unbounded but only in a mild way as
they required τ ′/ f ′ to be bounded. As part of the study of Lorenz-like flows Araújo and
Varandas [6] studied suspension semiflows very similar to the present setting but had to
additionally require that the return map was C 2 rather than our weaker assumption of
C 1+α . We therefore see that our setting is more general and sufficiently general to be used
for the study of the Lorenz flow with the classical parameters (see Sect. 3). However
in each of the above mentioned cases exponential decay of correlation is proven, a
significantly stronger result than is proven in this present work. To obtain results on
exponential decay of correlations would require a stronger estimate at one stage of the
argument; this is the oscillatory cancelation argument as pioneered by Dolgopyat [15].
However it seems likely that such an estimate would require the return time function to
be at least C 1 and not just Hölder as in the setting of the above result. At the end of
Sect. 3 we return to the discussion of this issue in the motivating case of the Lorenz flow.

3. Lorenz Semiflows

Introduced in 1963 as a simple model for weather, the Lorenz flow [29] is a smooth
three-dimensional flow which, from numerical simulation, appeared to exhibit a robust
chaotic attractor. In the late 1970s Afraı̆movič et al. [1] and Guckenheimer and Williams
[19,44] introduced a geometric model of the Lorenz flow and many years later, in 2002,
Tucker [41] showed that the geometric Lorenz flow really was a representative model
for the original Lorenz flow and hence showed that the Lorenz attractor really did exist.
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The attractor is zero volume (Hausdorff dimension ≈ 2.05 [18]), contains the fixed
point at the origin and has a complex Cantor book structure [44]. For some history of
the problem and an explanation of the physical relevance of the system see [43].

This flow has long proved elusive to thorough study. It is not uniformly hyperbolic.
The class of singular hyperbolic flows was introduced and studied in the late 1990s by
Morales et al. [31–33]. This class of flows contains the uniform hyperbolic flows and
also contains the Lorenz attractor. Whereas the uniformly hyperbolic flows are the flows
which are structurally stable as shown by Hayashi [21,22], the singular hyperbolic flows
are the flows which are stably transitive. It is known that singular hyperbolic flows are
chaotic in that they are expansive and admit an SRB measure [4]. Some further results
are known to be limited to the particular case of the Lorenz attractor. It is known to be
mixing [30] and that the Central Limit Theorem and Invariance Principle hold [24]. As
mentioned earlier, a class of Lorenz-like flows has been shown to mix exponentially [6]
although this result is limited to such flows which have C 2 stable foliations, a property
which cannot be expected to hold in general or for the original Lorenz flow.

Here we collect together some known facts [5,41] in order to show that the Lorenz
flow reduces to a suspension semiflow of the class introduced in Sect. 2. The Lorenz
flow �t : R

3 → R
3 is defined by the system of differential equations:

⎧
⎨

⎩

ẋ1 = −σ x1 + σ x2

ẋ2 = r x1 − x2 − x1x3

ẋ3 = x1x2 − bx3

where σ = 10, r = 28 and b = 8
3 are the so-called classical parameter values. The

flow is uniformly volume contracting and possesses three fixed points; in particular the
origin is a fixed point of saddle type with one positive eigenvalue ζ1 and two negative
eigenvalues −ζ2, and −ζ3, where

ζ1 = (
√

1201 − 11)/2 ≈ 11.8,

ζ2 = (
√

1201 + 11)/2 ≈ 22.8, ζ3 = 8/3 ≈ 2.67.

Note that 0 < ζ3 < ζ1 < ζ2. There is a forward invariant open set U which contains the
origin but is bounded away from the other two fixed points. The set U is a torus of genus
two, the holes centred around the two excluded fixed points. Eventually all trajectories
enter this set. The maximal invariant set � := ⋂

t≥0 �tU (the attractor) has zero volume
due to the volume contraction of the flow and also contains the unstable manifold of the
origin. There exists a one-dimensional stable foliation. In the available literature there is
some confusion over the regularity of the various invariant foliations but is it universally
agreed that the two dimensional weak-stable foliation (equivalently the stable foliation
of the return map to a suitable Poincaré section) is differentiable with Hölder derivative
and the stable foliation of the flow is at least Hölder. Let γ ∈ (0, 1) be such that the
weak stable foliation is C 1+γ and the stable foliation is C γ .

The C 1+γ regularity of the weak-stable foliation seems to be unavoidable. Note
that if the Lorenz flow is sufficiently dissipative (the eigenvalues must satisfy ζ2/ζ1 >

ζ3/ζ1 + k), then the stable manifolds for the return map would be C k [5, §3.3.4.1]. Alves
and Soufi [2] consider Lorenz-like flows where one may take k = 2 for their study
of statistical stability. Unfortunately this is not the case for the Lorenz flow with the
classical parameters.

Quotienting along the stable manifolds one may reduce the three dimensional flow
to a suspension semiflow over a piecewise expanding map. This procedure is described
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in [24,30]. By an appropriate choice of coordinates we may assume that the return map
is defined on the interval � = (−1, 1) with a single point of discontinuity at the origin.
Let f : �\{0} → � denote the return map and let τ : �\{0} → R+ denote the return
time.

The return map f is piecewise C 1+γ and is expanding for some iterate. Consequently
there exists an invariant measure for the quotient map f which is absolutely continuous
with respect to Lebesgue. This measure allows one to construct an SRB measure for the
original flow. This process is described in [42, §7] (although it is there claimed that the
density of the invariant measure for the quotient map is of bounded variation although
it will merely be of generalised bounded variation).

Non-resonance of the eigenvalues, by Sternberg [37], means that it is possible to C ∞
linearise the flow in a neighbourhood of the singularity (actually it is possible to C 2

linearise all close flows [24, Rem. 2.1]). This allows precise estimates on the suspension
semiflow. By [24, Prop. 2.6] we have the estimates

τ(x) = − 1
ζ1

ln |x | + τ0(x), f ′(x) = |x |−(1−β) g(x), (3.1)

where β = ζ3/ζ1 ∈ (0, 1), τ0 ∈ C γ (�), g ∈ C βγ (�), and infx g(x) > 0. It is
convenient to subdivide the set �\{0} into small subintervals and so for each j ∈ N let
ω+

j := (e−( j+1), e− j ), and ω−
j := (−e− j ,−e−( j+1)). This is merely a means of having

some form of weak distortion control on the combination of return map and return time,
that in some sense the behaviour of the system is similar in each of the above defined
intervals: Alternatively one could rephrase conditions (2.3) and (2.4). However we take
advantage of the fact that we can cut the system wherever we like since discontinuities
are allowed.

We must verify that the conditions (2.2), (2.3), and (2.4) are satisfied for this suspen-
sion semiflow. We choose α := min{γβ, (1 − β)/(2 − β)} and σ > 0 such that

σ < αζ1(1 − β), (3.2)

the larger the better. Note this implies that α ∈ (0, 1
2 ) and that

σ ≤ ζ1(1 − β − α). (3.3)

Let �(z) ∈ [−σ, 0]. According to (3.1),

e−zτ(x)

f ′(x)
= |x | z

ζ1
+1−β

g(x)−1e−zτ0(x),

and we know that x �→ g(x)−1e−zτ0(x) is C γβ . Further note that �(z/ζ1 + 1 − β) ≥
−σ/ζ1 + 1 − β ≥ α by (3.3). Note that yζ − xζ = ζ

∫ y
x sζ−1 ds for all x, y ∈ R and so

for y ≥ x we have

yζ − xζ ≤ |ζ |
∫ y

x
s�(ζ )−1 ds = |ζ |

�(ζ )
(y�(ζ ) − x�(ζ )).

Consequently x �→ ezτ(x)/ f ′(x) is α-Hölder on (0, 1) and similarly on (−1, 0). We
must now show that (2.3) and (2.4) also hold. By (3.1) we have the simple estimates
(identical estimates hold for the ω−

j )

‖ 1
f ′ ‖L∞(ω+

j )
≤ Ce− j (1−β), ‖τ‖L∞(ω+

j )
≤ C + 1

ζ1
( j + 1),
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for some C > 0. This means that

‖ 1
f ′ ‖α

L∞(ω+
j )

eσ‖τ‖L∞(ωi ) ≤ Ce− j[α(1−β)−σ/ζ1]eσ/ζ1

(perhaps by increasing C) and by (3.2) we know that α(1 − β) − σ/ζ1 > 0. This
means that (2.4) is satisfied and (2.3) is satisfied for all large j . Unfortunately we are
not quite done since we have not shown that (2.3) is satisfied for all j and we have
not shown that ‖1/ f ′‖L∞(�) < 1. We do know however that there exists n ∈ N such
that ‖1/( f n)′‖L∞(�) < 1. Consequently we instead consider the nth iterate suspension
semiflow. I.e. we consider the return map f n and the return time τ +τ ◦ f + · · ·+τ ◦ f n−1.
This does not change the flow we study, it is merely a choice of coding. Care must be
taken by the Hölder continuity assumption (2.2). It is to be expected that this is now
only satisfied by decreasing α > 0 since it is the composition of Hölder continuous
functions. We now fix this smaller value of α and choose σ > 0 correspondingly smaller
as required above (3.2). Condition (2.4) remains satisfied, but now for the new return
map and new return time function with the obvious refinement of the partition. Condition
(2.3) is still satisfied by the iterate for all but a finite number of terms. However since
‖1/( f n)′‖L∞(�) < 1 it is possible to choose σ > 0 sufficiently small such that the
condition is satisfied. The above estimates mean that the results of the main theorem of
this paper apply to the Lorenz semiflows. It is likely that the choice of α ∈ (0, 1) and
σ > 0 by the above procedure is far from optimal. In principle the rigorous numerics
approach of Tucker could be used to obtain values which were close to optimal.

We make a few more comments about this particular suspension semiflow. This sus-
pension semiflow presents the difficulty that the return time is not bounded but moreover
τ ′/ f ′ is not bounded and will not be bounded for any iterate. (Such a condition is cru-
cially required in [7,11].) This means that the semiflow is not uniformly expanding in the
sense of the existence of an invariant conefield, uniformly bounded away from the flow
direction, inside of which there is uniform expansion. Lorenz semiflows as discussed
above are our main application although we study a more general class of suspension
semiflows.

A natural and important question is to what extent the meromorphic extension result
of the previous section can be improved in the setting of the Lorenz attractor. In particular,
how could one show exponential decay of correlation for the Lorenz attractor? As briefly
mentioned earlier, the remaining estimate required would be a stronger bound on the
spectral radius of the twisted transfer operator (see Sect. 5) for large imaginary values
in the weight of the transfer operator. This is the oscillatory cancellation argument of
Dolgopyat [15]. The regularity of the return time function is key for such an argument.
The result of this paper does not require the return time to be better than Hölder but
it seems unlikely that the above mentioned oscillatory cancellation estimate could be
proved with regularity less than C 1. This is because the cancellation method works like
an oscillatory integral with the return time appearing as one key part of the integrand.

There is hope that the return function for the Lorenz semiflow is differentiable. As
usual in such situations the regularity of the foliation depends on the balance between
the expansion and contraction in the complementary invariant subspaces [23]. In many
situations it cannot be hoped for invariant foliations to be better than Hölder [20]. For
an Anosov flow it is easy to show that codimension one invariant foliations are C 1+α,

but the foliation we are interested in is codimension two. For three dimensional con-
tact Anosov flows one may show that the stable foliation of the flow is C 1+α by using
crucially the contact structure; this in particular includes the case of geodesic flows on
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surfaces of negative curvature.4 The evidence is therefore not inspiring for our aim.
However the Lorenz attractor does not preserve volume, it is actually highly dissipative.
It seems possible that one can take advantage of this fact to give an improved estimate
of the regularity of the stable foliation for the Lorenz attractor.

4. Generalised Bounded Variation

We must consider the weighted transfer operators associated to expanding maps of the
interval which have countable discontinuities and for which the inverse of the derivative
and the weighting are merely Hölder continuous. This means that we cannot study
the transfer operator acting on any relatively standard spaces. One possibility is the
generalised bounded variation introduced by Keller [25] and used for expanding interval
maps. However he does not consider the case when there are countable discontinuities
and also does not consider the case of general weights. Saussol [36] used the same
spaces for multi-dimensional expanding maps and showed that a countable number of
discontinuities (as opposed to finite) are allowable but again did not study general classes
of weights and furthermore required the derivative of the map to be bounded. These are
the spaces we will use in this section. Although not proven in the above mentioned
references, with delicate estimates these spaces, as we will prove in this section, are
useful for our application. Recently several people have worked on possible alternatives
for solving the problem at hand and similar problems. The results of this section are able
to favourably settle this question. In particular the following three options were studied.
(1) Thomine [38] uses Sobolev space (with fractional exponent) and uses extensively
complex interpolation between Banach spaces for many of the calculations. He is able
to treat piecewise expanding maps of any dimension. The work is the natural restriction
to expanding maps of the ideas used for hyperbolic maps by Baladi and Gouëzel [9].
Unfortunately the maps are required to have derivatives which are uniformly bounded
from above and below. (2) Liverani introduced a norm [26] which he studied [28] in
the context of piecewise expanding maps of the interval. There is a simple definition
for the norm in terms of integrals against test functions that are Hölder continuous. He
can study piecewise expanding maps of the interval which have a countable number
of discontinuities and also allows the case where the derivative of the map blows up
and the case where the weighting of the transfer operator is not bounded but there is a
condition that links the Hölder regularity of the weighting in the transfer operator to the
rate at which the derivative and weighting blows up. (3) The author also developed an
alternative Banach space [12] for studying these problems. The Banach space is a very
natural object in that it is equivalent to the space given by real interpolation between L1

and BV. This has the benefit that it is very easy to work with. Also this approach allows the
study of similar settings as the space of Liverani but unfortunately also suffers from the
same limitations. Consequently each of these options suffers from some problem which
prevents the use in this present setting without imposing undesirable further conditions
on the semiflow we wish to study. One particular problem is that we cannot guarantee
that the weighting is bounded (see Sect. 5) and consequently we cannot guarantee that
the weighted transfer operator is bounded on L1. Keller’s Banach space of generalised

4 In general the contact structure merely implies that the stable foliation enjoys the same regularity as the
weak-stable foliation (similarly for the unstable). This means that for higher dimensional Anosov flows the
contact structure is not sufficient to obtain C 1+α regularity for the stable and unstable foliations. Nonetheless,
using the contact structure, it is possible to carry out the oscillatory cancellation argument in such situa-
tions [27].
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bounded variation [25] is contained within L∞, a distinct difference to the available
alternatives [12,28]. This suggests the possibility that the transfer operator is bounded
on this space even when not bounded on L1. In the remainder of this section we see that
this speculation is shown to be correct.

4.1. The Banach space. The following definitions are identical to [25] with minor
changes of notation. For any interval S and h : S → C let

osc [h,S] := ess sup {|h(x1) − h(x2)| : x1, x2 ∈ S} ,

where the essential supremum is taken with respect to Lebesgue measure on S2. Let
Bε(x) := {y ∈ R : |x − y| ≤ ε}. If α ∈ (0, 1) and � is some finite or countable union
of open intervals, let

|h|Bα
:= sup

ε∈(0,ε0)

ε−α

∫

�

osc [h, Bε(x) ∩ �] dx, (4.1)

where ε0 > 0 is some fixed parameter. Hence let

Bα :=
{

h ∈ L1(�) : |h|Bα
< ∞

}
.

The seminorm defined above will depend on ε0 > 0 although the sets Bα do not. It is
known [25, Thm. 1.13] that this set is a Banach space when equipped with the norm

‖h‖Bα
:= |h|Bα

+ ‖h‖L1(�),

that Bα ⊂ L∞(�), and that the embedding

Bα ↪→ L1(�) is compact. (4.2)

4.2. Piecewise expanding transformations. As before, we suppose that � is an open
interval and {ωi }i∈I is a finite or countable set of disjoint open sub-intervals which
exhaust � modulo a set of zero Lebesgue measure (for convenience let �̃ = ⊔

i∈I ωi )
and that we are given

f ∈ C 1(�̃,�)

which is bijective when restricted to each ωi . We further suppose that we are given
ξ : � → C which we call the weighting. We require that

‖1/ f ′‖L∞(�) ∈ (0, 1), (4.3)

furthermore that
∑

i∈I
‖1/ f ′‖L∞(ωi )

‖ξ‖L∞(ωi )
< ∞, (4.4)

and finally that ξ
f ′ : � → C is α-Hölder. I.e. there exist Hξ < ∞ and α ∈ (0, 1) such

that
∣
∣
∣

ξ
f ′ (x) − ξ

f ′ (y)

∣
∣
∣ ≤ Hξ |x − y|α for all x, y ∈ ωi for each i ∈ I. (4.5)
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For convenience let fi : ωi → � denote the restriction of f to ωi . As usual the weighted
transfer operator is given, for each h : � → C, by5

Lξ h(x) :=
∑

i∈I

(
ξ · h

f ′

)

◦ f −1
i (x) · 1 f ωi (x). (4.6)

By (4.4) we know that Lξ : L∞(�) → L∞(�) is well defined even though, since we
do not require ‖ξ‖L∞(�) < ∞, we cannot guarantee that the operator is well defined on
L1(�).

The purpose of this section is to prove the following new result which is a generali-
sation of the work of Keller [25] to the case of countable discontinuities and unbounded
weightings.

Theorem 4.1. Suppose the transformation f : � → � and the weighting ξ : � → C

are as above and satisfy (4.3), (4.4) and (4.5). Then Lξ : Bα → Bα is a bounded
operator with essential spectral radius not greater than 2λ, where

λ := sup
i∈I

‖1/ f ′‖α
L∞(ωi )

‖ξ‖L∞(ωi )
.

By a standard argument (see for example [27, p.1281]) the essential spectral radius
estimate of the above theorem follows from the compact embedding (4.2) and the Lasota-
Yorke type estimate contained in the following theorem. In the case where ‖ξ‖L∞(�) <

∞, an elementary estimate shows that ‖Lξ‖L1(�) ≤ ‖ξ‖L∞(�) and so, once the essential
spectral radius estimate has been shown, this implies that the spectral radius is not greater
than ‖ξ‖L∞(�).

Theorem 4.2. Suppose that f and ξ are as per the assumptions of Theorem 4.1. Then
for all δ > 0 there exists Cδ < ∞ such that

∥
∥Lξ h

∥
∥

Bα
≤ (2 + δ)λ ‖h‖Bα

+ Cδ‖h‖L1(�) for all h ∈ Bα.

The remainder of this section is devoted to the proof of the above theorem. This estimate
is an extension of the result of Keller [25] to our setting. The proof follows a similar
argument to Keller’s original with various additional complications, in particular because
of the weighting ξ and the possibility that I is merely countable. As such we are forced
to redo the proof but when possible we refer to the relevant theorems and lemmas which
we can reuse.

4.3. Proof of Theorem 4.2. We may assume that δ ≤ 1. First ε0 > 0 must be carefully
chosen and it is convenient to divide the index set as I = I1 ∪ I2. By (4.4) we may
choose a finite set I1 ⊂ I such that

∑

i∈I2

‖1/ f ′‖L∞(ωi )
‖ξ‖L∞(ωi )

≤ λδ

16
, (4.7)

where I2 := I\I1. Let � := 32δ−1 + 2. Choosing ε0 sufficiently small we ensure that

| f ωi | ≥ ε0� for all i ∈ I1 (4.8)

5 For any set, e.g. A, we let 1A denote the indicator function of that set.
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and that

εα
0 ≤ δλ

8(8 + δ)Hξ�
. (4.9)

(The reason for this particular choice will subsequently become clear (4.18).) If | f ωi | >

2ε0� for some i ∈ I1 we chop ωi into pieces such that ε0� ≤ ∣
∣ f ω j

∣
∣ ≤ 2ε0� for all the

resulting pieces. If | f ωi | > 2ε0� for some i ∈ I2, we chop ωi into pieces as before but
in this case we move the resulting pieces into the set I1. This means that the estimate
(4.7) remains unaltered. Note that I1 may no longer be a finite set. To conclude we have
arranged so that (4.7), (4.8), and (4.9) hold and furthermore that

| f ωi | ≤ 2ε0� for all i ∈ I. (4.10)

Fix h ∈ Bα . We start by noting that by the definition (4.1) of the seminorm and the
definition (4.6) of the transfer operator

∣
∣Lξ h

∣
∣
Bα

= sup
ε∈(0,ε0)

ε−α

∫

�

osc
[
Lξ h, Bε(x) ∩ �

]
dx

≤ sup
ε∈(0,ε0)

∑

i

ε−α

∫

�

osc
[(

ξ ·h
f ′

)
◦ f −1

i · 1 f ωi , Bε(x) ∩ �
]

dx . (4.11)

To proceed we take advantage of several estimates which have already been proved
elsewhere. Firstly by [25, Thm. 2.1] for each i ∈ I1, since | f ωi | ≥ (32δ−1 + 2)ε0 by
(4.8) and | f ωi | ≥ 4ε0, we have that

∫

�

osc
[(

ξ ·h
f ′

)
◦ f −1

i · 1 f ωi , Bε(x) ∩ �
]

dx

≤ (2 + δ
4 )

∫

f ωi

osc
[(

ξ ·h
f ′

)
◦ f −1

i , Bε(x) ∩ f ωi

]
dx

+
ε

ε0

∫

f ωi

∣
∣
∣
ξ ·h
f ′

∣
∣
∣ ◦ f −1

i (x)dx . (4.12)

For i ∈ I2 (where | f ωi | may be small) we use the following, more basic estimate. By
[36, Prop. 3.2 (ii)] for each i ,

osc
[(

ξ ·h
f ′

)
◦ f −1

i · 1 f ωi , Bε(x) ∩ �
]

≤ osc
[(

ξ ·h
f ′

)
◦ f −1

i , Bε(x) ∩ f ωi

]
· 1 f ωi

+ 2‖ ξ ·h
f ′ ‖

L∞(ωi )
1Fi,ε (x),

where Fi,ε denotes the set of all points x ∈ � which are within a distance of ε of the
end points of the interval f ωi . Since |∫ f ωi

1Fi,ε (x) dx | ≤ 2ε the above implies that
∫

�

osc
[(

ξ ·h
f ′

)
◦ f −1

i · 1 f ωi , Bε(x) ∩ �
]

dx

≤
∫

f ωi

osc
[(

ξ ·h
f ′

)
◦ f −1

i , Bε(x) ∩ f ωi

]
dx

+ 4ε‖ξ‖L∞(ωi )
‖h‖L∞(�)‖1/ f ′‖L∞(ωi )

. (4.13)

Note that the integral term in the middle line of the above equation is identical to the
integral term of the middle line of (4.12). We also require the following basic estimate
for the osc [·, ·] of a product.
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Lemma 4.3. Suppose S ⊂ � is an interval, g1 : S → C, g1 : S → C and y ∈ S. Then

osc [g1 · g2,S] ≤ |g1(y)| · osc [g2,S] + 2‖g2‖L∞(S) · osc [g1,S] .

Proof. Suppose x1, x2, y ∈ S. It suffices to observe that

(g1 · g2)(x1) − (g1 · g2)(x2) = g1(y) (g2(x1) − g2(x2))

+ g2(x1) (g1(x1) − g1(y)) + g2(x2) (g1(y) − g1(x2)) .

��
This means in particular that (this is the term which appears in the middle lines of

(4.12) and (4.13))

∫

f ωi

osc
[(

ξ ·h
f ′

)
◦ f −1

i , Bε(x) ∩ f ωi

]
dx

≤
∫

f ωi

∣
∣
∣

ξ
f ′

∣
∣
∣ ◦ f −1

i (x) · osc
[
h ◦ f −1

i , Bε(x) ∩ f ωi

]
dx

+2‖h‖L∞(ωi )

∫

f ωi

osc
[

ξ
f ′ ◦ f −1

i , Bε(x) ∩ f ωi

]
dx . (4.14)

Recalling (4.11) and applying the estimates of (4.12), (4.13) and (4.14) we have

∣
∣Lξ h

∣
∣
Bα

≤ sup
ε∈(0,ε0)

(
A1,ξ,h(ε) + A2,ξ,h(ε) + A3,ξ,h(ε) + A4,ξ,h(ε)

)
, (4.15)

where we have definded for convenience

A1,ξ,h(ε) := ε−α(2 + δ
4 )

∑

i∈I

∫

f ωi

∣
∣
∣

ξ
f ′

∣
∣
∣ ◦ f −1

i (x) · osc
[
h ◦ f −1

i , Bε(x) ∩ f ωi

]
dx,

A2,ξ,h(ε) := 2ε−α(2 + δ
4 )

∑

i∈I
‖h‖L∞(ωi )

∫

f ωi

osc
[

ξ
f ′ ◦ f −1

i , Bε(x) ∩ f ωi

]
dx,

A3,ξ,h(ε) := 4ε1−α‖h‖L∞(�)

∑

i∈I2

‖1/ f ′‖L∞(ωi )
‖ξ‖L∞(ωi )

,

A4,ξ,h(ε) := ε1−α

ε0

∑

i∈I1

∫

f ωi

∣
∣
∣
ξ ·h
f ′

∣
∣
∣ ◦ f −1

i (x) dx .

The remainder of the proof involves independently estimating each of these four terms.
We start by estimating A1,ξ,h(ε). Let σi := ‖1/ f ′‖L∞(ωi )

∈ (0, 1) by assumption

(4.3). Since f −1
i Bε(x) ⊆ Bσi ε( f −1

i x) we have that

osc
[
h ◦ f −1

i , Bε(x) ∩ f ωi

]
= osc

[
h, f −1

i Bε(x) ∩ ωi

]

≤ osc
[
h, Bσi ε(yi ) ∩ ωi

]
, (4.16)
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where yi := f −1
i x . We change variables in the integral and so

A1,ξ,h(ε) ≤ ε−α(2 + δ
4 )

∑

i∈I

∫

ωi

|ξ | (yi ) · osc
[
h, Bσi ε(yi ) ∩ ωi

]
dyi

≤ ε−α(2 + δ
4 )‖ξ‖L∞(ωi )

∫

�

osc
[
h, Bσi ε(y) ∩ �

]
dy

≤ σα
i (2 + δ

4 )‖ξ‖L∞(ωi )
|h|Bα

≤ (2 + δ
4 )λ |h|Bα

. (4.17)

Now we estimate A2,ξ,h(ε). By [25, Lem. 2.2] we have the estimate

‖h‖L∞(ωi )
≤ ε−1

0

∫

ωi

osc
[
h, Bε0(x)

]
dx + |ωi |−1 ‖h‖L1(ωi )

.

By assumption (4.5) we know that osc
[

ξ
f ′ , Bσi ε(yi ) ∩ ωi

] ≤ 2Hξ σ
α
i εα and so, changing

variables as per (4.16), we have
∫

f ωi

osc
[

ξ
f ′ ◦ f −1

i , Bε(x) ∩ f ωi

]
dx ≤

∫

ωi

osc
[

ξ
f ′ , Bσi ε(yi ) ∩ ωi

]
dyi

≤ 2 |ωi | Hξ σ
α
i εα.

Combining the above two estimates means that

A2,ξ,h(ε)≤4(2+ δ
4 )Hξ

∑

i∈I
σα

i

(

ε
−(1−α)
0 |ωi | ε−α

0

∫

ωi

osc
[
h, Bε0(x)

]
dx +‖h‖L1(ωi )

)

.

By the expanding assumption (4.3) and by (4.10) we know that |ωi | ≤ σi | f ωi | ≤
2σiε0�. Using also (4.9) this means that for all i ∈ I,

4(2 + δ
4 )Hξ σ

αε
−(1−α)
0 |ωi | ≤ 8(2 + δ

4 )Hξ‖1/ f ′‖1+α
L∞(�)ε

α
0 �

≤ δ
4λ.

Consequently we have shown that

A2,ξ,h(ε) ≤ δ
4λ |h|Bα

+ 4(2 + δ
4 )Hξ‖1/ f ′‖α

L∞(�)‖h‖L1(�). (4.18)

Now we estimate A3,ξ,h(ε). Using again [25, Lem. 2.2] we have the estimate

‖h‖L∞(�) ≤ ε
−(1−α)
0 |h|Bα

+ |�|−1 ‖h‖L1(�). (4.19)

This means that

A3,ξ,h(ε) ≤ 4

(

|h|Bα
+

ε1−α
0

|�| ‖h‖L1(�)

)
∑

i∈I2

‖1/ f ′‖L∞(ωi )
‖ξ‖L∞(ωi )

.

By (4.7) we know that
∑

i∈I2
‖1/ f ′‖L∞(ωi )

‖ξ‖L∞(ωi )
≤ λδ

16 , and so

A3,ξ,h(ε) ≤ δ
4λ |h|Bα

+

(
ε1−α

0 δ

4 |�| λ

)

‖h‖L1(�). (4.20)
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Now we estimate A4,ξ,h(ε). Using again the assumption (4.4) we may choose a finite
set I3 ⊂ I1 such that

∑

i∈I4

‖1/ f ′‖L∞(ωi )
‖ξ‖L∞(ωi )

≤ δε0

4
λ,

where I4 := I1\I3. We therefore estimate, using also a change of variables yi := f −1
i x ,

A4,ξ,h(ε) ≤ ε−α
0

∑

i∈I1

∫

f ωi

∣
∣
∣
ξ ·h
f ′

∣
∣
∣ ◦ f −1

i (x) dx

≤ ε−α
0

∑

i∈I3

∫

ωi

|ξ · h| (yi ) dyi + ε−α
0

∑

i∈I4

‖ ξ

f ′ ‖
L∞(ωi )

‖h‖L∞(�).

Using (4.19) to estimate ‖h‖L∞(�), this means that for all ε ∈ (0, ε0) we have

A4,ξ,h(ε) ≤ δ

4
λ |h|Bα

+

(

ε−α
0 |�|−1 sup

i∈I3

‖ξ‖L∞(ωi )

)

‖h‖L1(�). (4.21)

Summing the estimates of (4.17), (4.18), (4.20), and (4.21) we have shown that
∣
∣Lξ h

∣
∣
Bα

≤ (2 + δ)λ |h|Bα
+ Cδ‖h‖L1(�)

for all h ∈ Bα , where

Cδ := 4(2 + δ
4 )Hξ‖ 1

f ′ ‖α

L∞(ωi )
+

1

εα
0 |�| sup

i∈I3

‖ξ‖L∞(ωi )
+

λε1−α
0 δ

4 |�| .

This completes the proof of Theorem 4.2.

5. Twisted Transfer Operators

In this section we follow the standard “twisted transfer operator” approach to studying
flows. We will take steps to allow the transfer operator results of the previous section to be
applied to the original problem of the meromorphic extension of the correlation function.
Throughout this section we suppose that we are given a suspension semiflow (�, f, τ )

which satisfies the assumptions of the Main Theorem, in particular assumptions (2.2),
(2.3), and (2.4). First we show that a condition named exponential tails in [7] holds also
in this setting.

Lemma 5.1.
∫
�

eστ(x) dx < ∞.

Proof. We estimate
∫
�

eστ(x) dx ≤ ∑
i∈I |ωi | eσ‖τ‖L∞(ωi ) . Since also we have that

|ωi | ≤ ‖1/ f ′‖L∞(ωi )
|�| then the supposition (2.4) implies the lemma. ��

For all t ≥ 0 let At := {(x, s) ∈ �τ : s + t ≥ τ(x)} and Bt := �τ\At . Hence we
may write

μ(u · v ◦ �t ) = μ(u · v ◦ �t · 1At ) + μ(u · v ◦ �t · 1Bt ). (5.1)

Exponential decay for the second term is simple to estimate.
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Lemma 5.2. C < ∞ exists such that
∣
∣μ(u · v ◦ �t · 1Bt )

∣
∣ ≤ C |u|∞ |v|∞ e−σ t for all

u, v : �τ → C bounded and t ≥ 0.

Proof. Since μ is given by a formula in terms of the measure ν which is absolutely
continuous with respect to Lebesgue, C < ∞ exists such that, letting Dt := {x ∈ � :
τ(x) − t > 0}, we have

∣
∣μ(u · v ◦ �t · 1Bt )

∣
∣ ≤ C |u|∞ |v|∞

∫

�

(τ(x) − t) · 1Dt (x) dx (5.2)

for all t ≥ 0. For y ∈ R we define k(y) equal to y if y ≥ 0 and equal to 0 otherwise.
This definition means that (τ (x) − t) · 1Dt (x) ≤ k(τ (x) − t). Since ln y ≤ y for all
y > 0 it follows that ln(σ y) = ln σ + ln y ≤ σ y and so y ≤ σ−1eσ y for all y > 0. The
case y ≤ 0 is simple and so we have shown that k(y) ≤ σ−1eσ y for all y ∈ R. This
means that

(τ (x) − t) · 1Dt (x) ≤ σ−1eσ(τ(x)−t), for all x ∈ �.

We conclude using the above with (5.2) since
∫

eστ(x) dx < ∞ by Lemma 5.1. ��
In order to proceed we must estimate the other term in (5.1) and so it is convenient

to define

ρ(t) := μ(u · v ◦ �t · 1At ). (5.3)

Note that
∣
∣μ(u · v ◦ �t · 1At )

∣
∣ ≤ |u|∞ |v|∞ for all t ≥ 0. For all z ∈ C such that

�(z) > 0 we consider the Laplace transform of the above function

ρ̂(z) :=
∫ ∞

0
e−ztρ(t) dt. (5.4)

Additionally for any u : �τ → C and z ∈ C let

ûz(x) :=
∫ ∞

0
e−zsu(x, s) ds (5.5)

for all x ∈ �. Furthermore for all n ∈ N let τn := ∑n−1
k=0 τ ◦ f k . Since the invariant

measure ν is absolutely continuous with respect to Lebesgue there exists a density
h0 ∈ L1(�) such that μ(η) = ∫

�

∫ τ(x)

0 η(x, s) ds h0(x) dx for all bounded η : �τ → C.
As in [7,11,34,35] we have the following representation of the Laplace transform in
terms of an infinite sum.

Lemma 5.3. For all z ∈ C such that �(z) > 0 and all |u|∞ < ∞, |v|∞ < ∞,

ρ̂(z) =
∞∑

n=1

∫

�

(h0 · û−z · e−zτn · v̂z ◦ f n)(x) dx .
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Proof. Recall that h0 ∈ L1(�) is the density of the f -invariant measure ν. For all
�(z) > 0,

ρ̂(z) =
∫ ∞

0

∫

�

∫ τ(x)

0
e−zt u(x, s)v ◦ �t (x, s)1At (x, s)h0(x) ds dx dt

=
∞∑

n=1

∫

�

∫ τ(x)

0

∫ τn+1(x)−s

τn(x)−s
e−zt u(x, s)v ◦ �t (x, s)h0(x) dt ds dx .

We change variables letting t ′ = t−τn(x)+s and note that when t ∈ [τn(x)−s, τn+1(x)−
s] then �t (x, s) = ( f n x, t − τn(x) + s). This means that

ρ̂(z) =
∞∑

n=1

∫

�

e−zτn(x)

(∫ τ(x)

0
ezsu(x, s) ds

)

×
(∫ τ( f n x)

0
e−zt ′v( f n x, t ′) dt ′

)

h0(x) dx .

Recalling the definition (5.5) for û−z and v̂z we conclude. ��
We now relate the sum given by Lemma 5.3 to the twisted transfer operators. For all

z ∈ C such that �(z) ∈ [−σ, 0] let ξz : � → C be defined as

ξz := e−zτ . (5.6)

We consider the map f : � → � with the weighting ξz . It is immediate that the
assumptions imposed on the semiflow imply that the pair f and ξz satisfy the assumptions
of Theorem 4.1. Consequently the transfer operator Lz : Bα → Bα (for convenience
we now write Lz for Lξz ) and which is given by the formula

Lzh(x) :=
∑

i∈I

(
e−zτ · h

f ′

)

◦ f −1
i (x) · 1 f ωi (x)

has essential spectral radius strictly less than 1. Let B(Bα,Bα) denote the space of
bounded linear operators mapping Bα to Bα .

Lemma 5.4. The operator valued function z �→ (id − Lz)
−1 ∈ B(Bα,Bα) is mero-

morphic on the set {z ∈ C : �(z) ∈ [−σ, 0]}.
Proof. We know that Lz ∈ B(Bα,Bα) has essential spectral radius less than 1 for
all �(z) ∈ [−σ, 0] and so is of the form Lz = Kz + Az , where Kz is compact, the
spectral radius of Az is strictly less than 1 and KzAz = 0. Furthermore both z �→ Kz ∈
B(Bα,Bα) and z �→ Az ∈ B(Bα,Bα) are holomorphic operator-valued functions.
Note that

(id − Lz) = (id − Kz)(id − Az),

and that (id − Az) is invertible. By the Analytic Fredholm Theorem z �→ (id − Kz)
−1

is meromorphic on the set {z ∈ C : �(z) ∈ [−σ, 0]}. ��
Lemma 5.5. The operator valued function z �→ ∑∞

n=1 L n
z ∈ B(Bα,Bα) is meromor-

phic on the set {z ∈ C : �(z) ∈ [−σ, 0]}.
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Proof. We note that
∑∞

n=1 L n
z = (id − Lz)

−1Lz and apply Lemma 5.4. ��
Proof of the Main Theorem. By Lemma 5.2 it suffices to know that ρ̂ admits the relevant
meromorphic extension. Since, as usual for transfer operators, we have that

∫

�

L n
z h1(x) · h2(x) dx =

∫

�

h1(x) · h2 ◦ e−zτn(x) ◦ f n(x) dx,

the formula for ρ̂(z) given by Lemma 5.3 means that

ρ̂(z) =
∞∑

n=1

∫

�

L n
z (h0û−z)(x) · v̂z(x) dx .

This equality was shown to hold for all �(z) > 0. But since the right-hand side is
meromorphic on the set {z ∈ C : �(z) ∈ [−σ, 0]}, we have shown that the left-hand
side admits such an extension. ��
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