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Abstract

It is known that there exists a natural functor Φ from Lie supergroups to super Harish-Chandra
pairs. A functor going backwards, that associates a Lie supergroup with each super Harish-Chandra pair,
yielding an equivalence of categories, was found by Koszul [19], and later generalized by several authors.

In this paper, we provide two new backwards equivalences, i.e. two different functors Ψ˝ and Ψe

that construct a Lie supergroup (thought of as a special group-valued functor) out of a given super
Harish-Chandra pair, so that both Ψ˝ and Ψe are quasi-inverse to the functor Φ .

1 Introduction

To every Lie supergroup G one can associate the pair
`

G0, g
˘

formed by the classical Lie group G0

underlying G and the tangent Lie superalgebra g “ LiepGq of G ; these two objects are “compatible” in a
natural sense, so that their pair is what is called a “super Harish-Chandra pair”, or just “sHCp” for short.
Overall, mapping G ÞÑ

`

G0, g
˘

yields a functor, call it Φ , from the category of Lie supergroups (either
smooth, analytic or holomorphic) to the category of super Harish-Chandra pairs — of smooth, analytic or
holomorphic type respectively. Is there any functor Ψ from sHCp’s to Lie supergroups which be a quasi-
inverse for Φ , so that the two categories be equivalent? And how much explicit such a functor (if any) is ?

A first answer to this question was given by Kostant and by Koszul in the real smooth case (see [18]
and [19]), providing an explicit quasi-inverse for Φ . Later on, Vishnyakova (see [25]) fixed the complex
holomorphic case, and her proof works for the real analytic case as well. More recently, this result was
increasingly extended to the setup of algebraic supergeometry (see [8], [21], [22]). It is worth remarking,
though, that all these subsequent results were, in the end, further improvements of the original idea by
Koszul (while Kostant’s method was a slight variation of that), who defined a Lie supergroup out of a sHCp
`

K` , k
˘

as a super-ringed space, defining the “proper” sheaf of superalgebras onto K` by means of k .

In this paper we present a new solution, namely we provide a new functor Ψ — in two different versions
— from sHCp’s to Lie supergroups that is quasi-inverse to Φ . For this we follow the approach where, instead
of thinking of supermanifolds as being super-ringed manifolds, one treats them as suitable functors, defined
on the category of “Weil superalgebras”. This point of view allows to unify several different approaches to
supergeometry (see [3]) and also to treat the infinite-dimensional setup (see [2]); for a broader discussion
about this, we refer to classical sources as [4], [10], [20], [24] or more recent ones like [3], [5], [7], [23].

Now, if we want a functor Ψ from sHCp’s to Lie supergroups, we need a Lie supergroup GP for each
sHCp P ; to have such a GP (as a functor) we need a Lie group GP pAq for each Weil superalgebra A ,
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whose definition must be natural in A : moreover, one still has to show that the resulting functor have those
additional properties that make it into a Lie supergroup. Finally, all this should aim to find a Ψ that is
quasi-inverse to Φ — and this fixes ultimate bounds to the construction we aim to.

Bearing all this in mind, the construction that we present goes as follows. Given a super Harish-Chandra
pair P “ pG`, gq , for each Weil superalgebra A , we define a group GP pAq abstractly, by generators and
relations: this definition is natural in A , hence it yields a functor from Weil algebras to (abstract) groups,
call it GP — cf. §3.1 and §3.3. As a key step in the work, we prove that GP admits a “global splitting”,
i.e. it is the direct product of G` times a totally odd affine superspace (isomorphic to g1 , the odd part of
g ): as both these are supermanifolds, it turns out that GP itself is a supermanifold as well, hence it is a Lie
supergroup because (as a functor) it is group-valued too — cf. §3.2 and §3.4. One more step proves that
the construction of GP is natural in P , so it yields a functor Ψ from sHCp’s to Lie supergroups: this is our
candidate to be a quasi-inverse to Φ — cf. Theorem 3.2.6 and Theorem 3.4.6.

It is immediate to check that Φ ˝ Ψ is isomorphic to the identity functor onto sHCp’s, while proving
that Ψ ˝ Φ is isomorphic to the identity on Lie supergroups is much more demanding. For this we need to
know that every Lie supergroup G has a “global splitting” on its own: this fact is more or less known among
specialists, but we need it stated in a genuine geometrical form, while it is usually given in sheaf-theoretic
terms — so we work it out explicitly (cf. §2.4). In fact, we find two different formulations of such a result:
this is why, building upon them, we can provide two versions, Ψ˝ and Ψe , of a functor Ψ as required.

Finally, the reader can find a more detailed treatment in the expanded version [17] of this paper. More-
over, specific examples of application can be realized by suitably adapting the constructions of algebraic
supergroups presented in [11], [12], [13], [14] and [15].
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2 Preliminaries

Hereafter we fix notation and terminology for super mathematics, referring to the literature (e.g. [1], [2],
[7], [11], [24]) for further details. We will denote by K the field R or C of real or complex numbers.

2.1 Recollection and notation

2.1.1. Supermodules, superalgebras, Lie superalgebras. We denote by (smod)K , resp. (mod)K , the
category of K–supermodules, resp. K–modules, and by (salg)K , resp. (alg)K — possibly dropping K — the
category of all commutative K–superalgebras, resp. K–algebras. We write Z2 “ t0 ,1u for the group with
two elements and |x| or ppxq pP Z2q for the parity of any homogeneous x in some superspace. For A P (salg) ,

n P N , we call A
rns
1 the A0 –submodule of A spanned by all products ϑ1 ¨ ¨ ¨ϑn with ϑi P A1 for all i . If

JA :“ pA1q is the ideal of A generated by A1 , then JA “ A
r2s
1 ‘ A1 , and A :“ A

L

JA is a commutative

superalgebra which is totally even, i.e. A P (alg) , with an obvious isomorphism A :“ A
L

pA1q – A0

L

A
r2s
1 .

We call Weil superalgebra any finite-dimensional commutative K–superalgebra A such that A “ K ‘
˝
A

where K is even and
˝
A “

˝
A0 ‘

˝
A1 is the nilradical of A (cf. [3] and references therein). Every Weil

superalgebra A is endowed with the canonical morphisms pA : A ÝÑ K and uA : K ÝÑ A associated with

the direct sum splitting A “ K ‘
˝
A ; thus pA ˝ uA “ idK , so pA is surjective and uA is injective. Weil

superalgebras over K form a full subcategory of (salg)K , denoted (Wsalg)K or just (Wsalg) .
We denote by (sLie)K , or just (sLie) , the category of all Lie K–superalgebras. For any g P (sLie)K ,

we use notation Y x2y :“ 2´1 rY, Y s
`

P g0
˘

for Y P g1 . In particular, for V P (smod)K we consider

glpV q :“ EndpV q as a Lie K–superalgebra, with Lie superbracket rA,Bs :“ AB ´ p´1q
|A||B|

BA for
homogeneous A,B P EndpV q ; then Y x2y “ Y 2 for odd Y . If V :“ V0 ‘ V1 with V0 :“ Kp and V1 :“ Kq

we write End
`

Kp|q
˘

:“ EndpV q or gl p |q :“ EndpV q . Every g P (sLie)K defines a functor

Lg : (Wsalg)K ÝÝÝÑ (Lie)K , A ÞÑ LgpAq :“
`

A b g
˘

0
“ pA0 b g0q ‘ pA1 b g1q
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where (Lie)K is the category of Lie K–algebras and the Lie bracket in A b g is
“

a b X , a1 b X 1
‰

:“

p´1q
|X| |a1|

a a1 b
“

X,X 1
‰

(see [7] for details). In particular, all this applies to g :“ EndpV q .
This functorial presentation applies in particular to representations: so, if ϕ : g ÝÑ EndpV q is a

representation of g onto the g–module V , then it induces a natural transformation Lg ÝÑ LEndpV q .

2.1.2. Supermanifolds and supergroups. We consider “supermanifolds” (real smooth, real analytic or
complex holomorphic ones) and the corresponding group objects (i.e. “Lie supergroups”) as described in [3].
If M is any supermanifold, we denote by |M | its underlying topological space and by OM its structure sheaf.
Moreover, by M0 we denote the so-called reduced (classical) smooth manifold associated with M , that can be
thought of as an embedded sub(super)manifold of M itself. We denote the category of (real) smooth, (real)
analytic, or (complex) holomorphic supermanifolds by (ssmfd) , (asmfd) , or (hsmfd) , respectively. In most
cases the distinction between these cases is immaterial, hence we shall often refer only to “supermanifolds”.

Finally, by Lie supergroup (real smooth, real analytic or complex holomorphic) we mean a group object
in the category of supermanifolds (of the same type). These objects, together with the obvious morphisms,
form a subcategory among supermanifolds, denoted (Lsgrp)8

R , resp. (Lsgrp)ωR , resp. (Lsgrp)ωC .

2.1.3. The functorial point of view. We now recall the language of “functor(s) of points”, referring to
[3] for details. For two categories A and B , by rA,Bs we mean the category of all functors between A and
B , whose morphisms are the natural transformations, while Aop will denote the opposite category to A .

Given M P (ssmfd) , its associated functor of points FM : (ssmfd)op ÝÝÑ (set) is defined on objects
by FM pSq :“ HompS,Mq and on morphisms by FM pϕq : FM pSq ÝÝÑ FM pT q , f ÞÑ

`

FM pϕq
˘

pfq :“ f ˝ϕ ,
for S, T P (ssmfd) and ϕ P HompS, T q ; the elements in FM pSq are the “S–points of M ”. Given M,N P

(ssmfd) , Yoneda’s Lemma yields a full and faithful immersion Y : (ssmfd) ÝÝÝÑ
“

(ssmfd)op, (set)
‰

given
on objects by M ÞÑ FM . Similar constructions hold with (asmfd) , resp. (hsmfd) , replacing (ssmfd) .

Following [3], we consider a variant of this construction, that of “A–points” of a supermanifold. To any
M P (ssmfd) we associate its Weil-Berezin (local) “functor of A–points” WM : (Wsalg) ÝÝÑ (A0– smfd)
where (A0– smfd) is a suitable category of “A0–manifolds”. This construction is natural in M , hence it
yields a functor W : (ssmfd)ÝÑ

““

(Wsalg), (A0– smfd)
‰‰

, called Shvarts embedding, that is full and faithful.
Similar constructions and results apply to analytic and to holomorphic supermanifolds as well.

Therefore one can correctly study supermanifolds via their Weil-Berezin functors. In particular, the
Shvarts embedding W preserves products, hence also group objects: this implies (cf. [3], §4) that a super-
manifold M is a Lie supergroup if and only if WM takes values in the subcategory (among A0–manifolds)
of group objects (that we call “Lie A0–groups”).

2.2 Lie supergroups and super Harish-Chandra pairs

Hereafter we recall the notion of super Harish-Chandra pair (=sHCp in short), referring to [7] for details.

2.2.1. Super Harish-Chandra pairs. We call (smooth, analytic or holomorphic) super Harish-Chandra
pair over K any pair pG` , gq such that: (a) G` is a (smooth, etc.) Lie group over K , (b) g P (sLie)K ,
(c) LiepG`q “ g0 and there is an action Ad : G` ÝÝÑ Autpgq which extends the adjoint action of G`

on LiepG`q “ g0 and whose differential is the restriction to LiepG`q “ g0 of the adjoint action of g . All
super Harish-Chandra pairs over K , with their obvious morphisms, form a category, denoted (sHCp)K — or
(sHCp)8

R , (sHCp)ωR or (sHCp)ωC to specify that we are taking smooth, analytic or holomorphic objects.

2.2.2. The super Harish-Chandra pair of a Lie supergroup. Let G be a Lie supergroup (of either
type: smooth, etc.). It is known that its underlying reduced manifold G0 (cf. §2.1.2) is indeed a Lie group
(either smooth, etc., like G is). Even more, the construction G ÞÑ G0 yields a functor from Lie supergroups
(of either type) to Lie groups (of the same type). Moreover, G has a tangent Lie superalgebra LiepGq , whose
construction is natural in G so to define a functor from Lie supergroups to Lie superalgebras (cf. [7]). In
the sequel by LiepGq we will mean both this Lie superalgebra and its associated functor as in §2.1.1. Note
that for A P (Wsalg)K one has LiepGqpAq “ Lie

`

GpAq
˘

, the latter being the tangent Lie algebra to the Lie

group GpAq . Now
`

G0,LiepGq
˘

is a super Harish-Chandra pair — natural in G — so we have functors

Φ : (Lsgrp)8
R ÝÝÑ (sHCp)8

R , Φ : (Lsgrp)ωR ÝÝÑ (sHCp)ωR , Φ : (Lsgrp)ωC ÝÝÑ (sHCp)ωC
given on objects by G ÞÑ

`

G0 ,LiepGq
˘

and on morphisms by ϕ ÞÑ
`

ϕ0 ,Liepϕq
˘

.
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2.3 Special splittings for Lie supergroups

We remind now some special splittings (either “pointwise”, say, or “global” ones) for Lie supergroups:
we will then take them as a model to build up a Lie supergroup out of a given super Harish-Chandra pair.

2.3.1. Pointwise splittings for Lie supergroups. Given a Lie supergroup G , there exists a bunch of
results concerning particular splittings (typically, as semidirect product) of its groups of A–points GpAq .
They are more or less known, see e.g. cf. [6] or [23], but other authors too may have mentioned them.

To begin with, let p : A1 ÝÝÑ A2 and u : A2 ÝÝÑ A1 be morphisms in (Wsalg)K such that p˝u “ idA2 ,
and let G : (Wsalg)K ÝÑ (group) be any functor. Then GpAq canonically splits into a semi-direct product,
namely GpAq “ Im

`

Gpuq
˘

˙ Ker
`

Gppq
˘

– G
`

A2
˘

˙ Ker
`

Gppq
˘

. In particular, when the functor G is in
fact a Lie supergroup, choose A1 :“ A P (Wsalg)K , A2 :“ K with p :“ pA and u :“ uA as in §2.1.1. Then
the splitting GpAq – G

`

A2
˘

˙ Ker
`

Gppq
˘

given above now reads as a canonical splitting of Lie groups

GpAq – G0pKq˙NGpAq , where G0pKq is the ordinary Lie group underlying G and NGpAq :“ Ker
`

G
`

pA

˘˘

.

2.3.2. Pointwise splitting for Lie superalgebras. Consider a Lie K–superalgebra g “ g0 ‘ g1 and
its associated functor Lg : (salg)K ÝÑ (Lie)K as in §2.1.1. Acting like in 2.3.1, for any A P (Wsalg)K
we have Lg pAq “ Im

`

Lg

`

uA

˘˘

i Ker
`

Lg

`

pA

˘˘

, a Lie algebra splitting where the symbol “i ” denotes

the (internal) semi-direct sum of Im
`

Lg

`

uA

˘˘

with Ker
`

Lg

`

pA

˘˘

. Now, definitions give Im
`

Lg

`

uA

˘˘

–

Lg pKq :“
`

K bK g
˘

0
“ g0 , and we fix the simpler notation ng pAq :“ Ker

`

Lg

`

pA

˘˘

. Then

Lg pAq “ g0 i ng pAq @ A P (Wsalg)K (2.1)

In the following, we shall refer to (2.1) as to “pointwise splitting for Lg ” — or simply “for g ” itself.

Now note that A “ A0 ‘ A1 with A0 “ K ‘
˝
A0 and A1 “

˝
A1 ; therefore

Lg pAq :“
`

A bK g
˘

0
“

`

A0 bK g0
˘

‘
`

A1 bK g1
˘

“ g0 ‘
` ˝
A0 bK g0

˘

‘
`

A1 bK g1
˘

from which it clearly follows that ng pAq :“ Ker
`

Lg

`

pA

˘˘

“
` ˝
A0bKg0

˘

‘
` ˝
A1bKg1

˘

for all A P (Wsalg)K .
This in turn entails that the Lie algebra ng pAq is nilpotent.

2.3.3. The Lie subgroup NGpAq . Let again G be a Lie supergroup over K , and g :“ LiepGq be its tangent
Lie superalgebra. For any A P (Wsalg)K , the Lie group GpAq and the Lie algebra gpAq :“ LgpAq — also
equal to LiepGqpAq “ Lie

`

GpAq
˘

, cf. §2.2.2 — are linked by the exponential map exp : gpAq ÝÝÑ GpAq

which is a local isomorphism (either in the smooth, analytic or holomorphic sense, as usual). Similarly for
the “even counterparts” we have also the local isomorphism exp0 : g0 ÝÝÑ G0pKq with exp0 “ exp

ˇ

ˇ

g0
if

we think at g0 as embedded into gpAq :“ Lg pAq “ g0 i ng pAq — cf. (2.1).
Now, since the Lie algebra ng pAq is nilpotent — cf. §2.3.2 — its image exp

`

ng pAq
˘

for the exponential

map is a (closed, connected) nilpotent Lie subgroup of GpAq . Furthermore, let us use notation g
`

pA

˘

:“

Lg

`

pA

˘

and g
`

uA

˘

:“ Lg

`

uA

˘

, and consider the diagram

gpAq
exp //

gppAq

��

GpAq

GppAq

��
g0

exp0

//

gpuAq

KK

G0pKq

GpuAq

SS

This diagram is commutative, hence in particular G
`

pA

˘

˝ exp “ exp0 ˝ g
`

pA

˘

, which in turn implies at once

G
`

pA

˘

´

exp
`

ng pAq
˘

¯

“ exp0

´

g
`

pA

˘`

ng pAq
˘

¯

“ exp0
`␣

0g0

(˘

“
␣

1G0pKq

(

because ng pAq :“ Ker
`

g
`

pA

˘˘

;

so in the end exp
`

ng pAq
˘

Ď Ker
`

G
`

pA

˘˘

“: NGpAq .

The fact that exp : gpAq ÝÝÑ GpAq is a local isomorphism, together with pointwise splittings —
namely, gpAq “ g0 i ngpAq and GpAq “ G0pKq ˙ NGpAq — and dim

`

g0
˘

“ dim
`

G0pKq
˘

, jointly imply
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dim
`

ng pAq
˘

“ dim
`

NGpAq
˘

. On the other hand, as ngpAq is nilpotent, its exponential map — i.e., just the
restriction to ng pAq of exp : gpAq ÝÑ GpAq — is actually a global isomorphism of K–manifolds from ng pAq

to exp
`

ng pAq
˘

. It then follows that dim
`

exp
`

ng pAq
˘˘

“ dim
`

NGpAq
˘

. Letting NGpAq
˝
be the connected

component of NGpAq , all the above eventually gives exp
`

ng pAq
˘

“ NGpAq
˝
.

We shall now analyze exp
`

ng pAq
˘

“ NGpAq
˝
, eventually proving that it coincides with NGpAq .

We denote again by G the Weil-Berezin functor of A–points (cf. §2.1.3) of our Lie supergroup G. In
detail, for A P (Wsalg)K the group GpAq of A–points of G is defined as GpAq :“ GA “

Ů

gP|G| GA,g where

|G| is the underlying topological space of G and GA,g :“ Hom(salg)K

`

OG,g , A
˘

, with OG,g being the stalk
of the structure sheaf of G (now thought of as a locally ringed superspace) at the point g P |G| . We adopt
the canonical identification |G| “ GpKq via g ÞÑ evg with evg : OG,g ÝÝÑ K given by f ÞÑ evgpf q :“ fpgq .

For every gA P GA,g we have rgA :“ pA ˝ gA (cf. §2.1.1) which coincides with evg ; moreover, the very

definition gives also rgA :“ pA ˝ gA “ G
`

pA

˘

pgAq . Finally, due to the splitting A “ K ‘
˝
A , for every

gA P GpAq , say gA P GA,g , there exists also a unique map pgA : OG,g ÝÝÑ
˝
A such that gA “ rgA ` pgA .

Now assume gA P NGpAq :“ Ker
`

G
`

pA

˘˘

. Then G
`

pA

˘

pgAq “ 1GA
P GpAq ; therefore — by the

previous analysis — we have rgA “ 1 , whence gA “ 1 ` pgA — which can be read as the sum, in the
natural sense, of maps from OG,1 to A . Now, we can re-write our gA as gA “ 1 ` pgA “ exp

`

Xg
A

˘

with

Xg
A

:“ log
`

gA

˘

“
`8
ř

n“1
p´1q

n`1 pg n
A

n where exp
`

Xg
A

˘

:“
`8
ř

n“0
X n

g
A

M

n! and all powers in these formulas are

given by X n
g
A

pfq :“
`

Xg
A

pfq
˘n

, pg n
A pfq :“

`

pgApfq
˘n

, etc. All this makes sense because Im
`

pgA

˘

P
˝
A , thus pgA

is nilpotent, hence Xg
A

is given by a finite sum and it is nilpotent, so exp
`

Xg
A

˘

is a finite sum too.

By formal properties of exponential and logarithm, since gA : OG,1 ÝÑ A is a (superalgebra) morphism
it follows from the above expansion of gA that Xg

A
: OG,1 ÝÑ A is in turn a derivation; therefore —

cf. §2.2.2 — Xg
A

P Lie
`

GpAq
˘

“
`

LiepGq
˘

pAq “ LgpAq “: gpAq . Finally, by construction we have also

Im
`

Xg
A

˘

P
˝
A . Along with pointwise splitting gpAq “ g0 i ngpAq — see (2.1) for gpAq :“ LgpAq — and

with ngpAq “
` ˝
A0 bK g0

˘

‘
` ˝
A1 bK g1

˘

all this together eventually gives Xg
A

P ngpAq . All in all, we get

Proposition 2.3.4. For any Lie supergroup G and A P (Wsalg)K we have NGpAq “ exp
`

ngpAq
˘

. In
particular, NGpAq is connected nilpotent, and (globally) isomorphic, as a manifold, to ngpAq .

Proof. Our analysis above shows that each gA P NGpAq can be realized as gA “ exp
`

Xg
A

˘

with Xg
A

P

ngpAq ; hence NGpAq Ď exp
`

ngpAq
˘

; conversely, §2.3.3 yields exp
`

ngpAq
˘

“ NGpAq
˝

Ď NGpAq . Thus

NGpAq “ exp
`

ngpAq
˘

as claimed. The last part of the claim then is clear. See also [9] for another proof.

2.4 Global splittings for Lie supergroups

We present now two remarkable splittings for the groups GpAq of “A–points” of a Lie supergroup G ;
these are natural in A , hence give “global splittings” of G as a functor. Such a result is often stated as a
splitting of the structure sheaf (e.g., in [4], [23], [25]), we provide instead a more geometrical proof.

2.4.1. Structure theorem and global splittings for Lie supergroups. Let G be a Lie supergroup over

K , whose tangent Lie superalgebra is g :“ LiepGq , and let A P (Wsalg)K . The powers
˝
Ad of the nilradical

˝
A of A form a descending sequence such that

˝
AN “ 0 for N " 0 (cf. §2.1.1). Then we consider

n
pdq
g pAq :“

´ ˝
Ad bK g

¯

0
“

´

` ˝
Ad

˘

0
bK g0

¯

‘

´

` ˝
Ad

˘

1
bK g1

¯

@ d P N`

this in turn yields a decreasing filtration of Lie subalgebras of ngpAq , with n
pNq
g pAq “ 0 for N " 0 .

Consider the case of an element η Y :“ η b Y P ngpAq with η P A1 , Y P g1 . As η2 “ 0 , if we express
exppη Y q as a formal series we actually have exppη Y q “ 1` η Y . Similarly, for every cX “ cbX P ngpAq

with c P A0 , X P g0 if c2 “ 0 then also the formal series expression of exppcXq reads exppcXq “ 1`cX .
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For later use, we fix a K–basis B of g of the form B :“ B0

Ů

B1 with B0 “
␣

Xj

(

jPJ
, resp. B1 “

␣

Yi

(

iPI
,

being a K–basis of g0 , resp. of g1 . Moreover, we fix any total order ĺ on B — or, equivalently, on I
Ů

J
— such that all elements from B0 are less than those of B1 — in a nutshell, B0 ĺ B1 .

Now consider the K–algebra KxxZ1, Z2yy of formal power series in the non-commutative variables Z1

and Z2 . The Campbell-Baker-Hausdorff formula in KxxZ1, Z2yy is exppZ1q ¨ exppZ2q “ exppZ1 ˚Z2q with
Z1 ˚ Z2 :“ log

`

exppZ1q ¨ exppZ2q
˘

P KxxZ1, Z2yy . More precisely, the formal series expansion of Z1 ˚ Z2

can be re-arranged as a formal series Z1 ˚Z2 “
ř`8

n“1 LnpZ1, Z2q where each LnpZ1, Z2q is a homogeneous

Lie monomial of degree n in the free Lie K–algebra
@

Z1 , Z2

DK
Lie

generated by Z1 and Z2 . In particular, if
one replaces Z1 and Z2 with elements z1 and z2 sitting in some nilpotent Lie algebra, then all but finitely
many of the Lnpz1, z2q’s do vanish, hence z1 ˚ z2 can be written as a finite sum.

Our next goal is another description of NGpAq “ exp
`

ngpAq
˘

. We need an auxiliary result:

Lemma 2.4.2. Let S1, . . . , Sℓ P ngpAq with Si P n
pdiq
g pAq , di P N` ( i “ 1, . . . , ℓ ). Then there exist

T1, . . . , Tk P ngpAq such that Tj P n
pBjq
g pAq with Bj ě daj ` dbj and aj , bj P t1, . . . , ℓu ( j “ 1, . . . , k), and

exp
`

S1 ` ¨ ¨ ¨ ` Sℓ

˘

“ exppS1q ¨ ¨ ¨ exppSℓq exppT1q ¨ ¨ ¨ exppTkq

Proof. Writing all exponentials as formal series (actually finite sums!) the claim follows at once from
definitions by induction on ℓ via a straightforward application of Baker-Campbell-Hausdorff formula.

We can now provide our new description of the subgroup NGpAq “ exp
`

ngpAq
˘

:

Proposition 2.4.3. The subgroup NGpAq “ exp
`

ngpAq
˘

of GpAq is generated by the set

Γ
B

:“
!

exp
`

tjXj

˘

, exp
`

ηiYi

˘

ˇ

ˇ

ˇ
tj P

˝
A0 , ηi P

˝
A1 “ A1 , @ j P J, i P I

)

where
␣

Xj

(

jPJ

Ů
␣

Yi

(

iPI
“ B0

Ů

B1 “ B is the K–basis of g chosen in §2.4.1 above.

Proof. Let n P NGpAq “ exp
`

ngpAq
˘

, say n “ exppZq with Z P ngpAq ; clearly we can assume Z ­“ 0 .

Using our fixed, ordered, K–basis B of g our Z expands into Z “
ř

jPJ t1
j Xj `

ř

iPI η
1
i Yi for some t1

j P
˝
A0

and η1
i P

˝
A1 , by the very definition of ngpAq . By Lemma 2.4.2, this implies that

exppZq “ exp
´

ř

jPJ t1
jXj `

ř

iPI η
1
iYi

¯

“
ÝÑś

jPJ

exp
`

t1
j Xj

˘ÝÑś

iPI

exp
`

η1
i Yi

˘

¨ exp
´

Z
p1q
1

¯

¨ ¨ ¨ exp
´

Z
p1q

k1

¯

for some Z
p1q
1 , . . . , Z

p1q

k1
P ngpAq , where

ÝÑś
jPJ and

ÝÑś
iPI denotes ordered products. Even more, the Lemma

ensures that these Z
p1q

h ’s “lie deeper”, in the decreasing filtration of ngpAq given by the n
pdq
g pAq’s, than the

initial Z we started with: so we can iterate this argument and finally stop after finitely many steps.

2.4.4. Special exponentials in GpAq . Before going on, let us consider elements in GpAq of the form

exp
`

tX
˘

or exp
`

η Y
˘

— with t P A0 such that t2 “ 0 , η P
˝
A1 , X P g0 , Y P g1 . Since both t and η have

square zero, the formal power series expansion of both exp
`

tX
˘

and exp
`

η Y
˘

stops at first order, i.e. it

reads exp
`

tX
˘

“
`

1 ` tX
˘

and exp
`

η Y
˘

“
`

1 ` η Y
˘

respectively. More in general, we consider elements

of the form exppX q , exppYq P exp
`

ngpAq
˘

“ NGpAq with X P
˝
A0b g0 and Y P

˝
A1 b g1 “ A1 b g1 . As

˝
A0

and A1 are nilpotent, the power series expansion of exppX q and exppYq can be seen again as polynomials.
In the next Lemma we collect some identities in GpAq involving these “special exponentials”.

Lemma 2.4.5. Let A P (Wsalg)K , η, η1, η2 P A1 , ηi P A1 (for all i P I ), Y, Y 1 P g1 , X P g0 and
g
0

P G0pAq . Then inside GpAq we have

(a)
`

1 ` η η1 rY, Y 1 s
˘

“ exp
`

η η1 rY, Y 1 s
˘

P G0pAq

(b) p1 ` η Y q g0 “ g0

`

1 ` ηAd
`

g´1
0

˘

pY q
˘

, exp
`
ř

iPI ηiYi

˘

g0 “ g0 exp
`
ř

iPI ηiAd
`

g´1
0

˘

pYiq
˘
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(c)
`

1 ` η1 Y 1
˘ `

1 ` η2 Y 2
˘

“
`

1 ` η2 η1 rY 1, Y 2 s
˘ `

1 ` η2 Y 2
˘ `

1 ` η1 Y 1
˘

(d)
`

1 ` η Y 1
˘ `

1 ` η Y 2
˘

“
`

1 ` η pY 1 ` Y 2q
˘

“
`

1 ` η Y 2
˘ `

1 ` η Y 1
˘

(e)
`

1 ` η1 Y
˘ `

1 ` η2 Y
˘

“
`

1 ` η2 η1 Y x2y
˘ `

1 ` pη1 ` η2qY
˘

(f) p1 ` η Y q p1 ` η1η2Xq “ p1 ` η1η2Xq
`

1 ` η η1η2 rY,Xs
˘

p1 ` η Y q “

“ p1 ` η1η2Xq p1 ` η Y q
`

1 ` η η1η2 rY,Xs
˘

(g) Let ph, kq :“ h k h´1k´1 be the commutator of elements h and k in a group. Then
``

1 ` η Y
˘

,
`

1 ` η1 Y 1
˘˘

“
`

1 ` η1 η rY, Y 1 s
˘

,
``

1 ` η Y
˘

,
`

1 ` η Y 1
˘˘

“
`

1 ` η pY ` Y 1q
˘

``

1 ` η1 Y
˘

,
`

1 ` η2 Y
˘˘

“
`

1 ` η2 η1 Y x2y
˘2

“
`

1 ` η2 η1 2Y x2y
˘

“
`

1 ` η2 η1 rY, Y s
˘

(N.B.: taking the rightmost term in the last identity, the latter is a special case of the first).

(h) For any n P N` , there exist unique T
pnq
0 , T

pnq
1 P

@

Z1 , Z2

DK
Lie

, independent of A , such that:

— T
pnq
0 is a K–linear combination of Lie monomials of even degree greater than n ,

— T
pnq
1 is a K–linear combination of Lie monomials of odd degree greater than n ,

— setting d1 :“ dimpg1q , for any Y 1,Y2 P A1bK g1 we have

exp
`

Y 1
˘

exp
`

Y2
˘

“ exp
´

P
pd1q
0

`

Y 1,Y2
˘

¯

exp
´

Y 1 ` Y2 ` P
pd1q
1

`

Y 1,Y2
˘

¯

with P
pd1q
0 :“ T

p1q
0 ˚ T

p2q
0 ˚ ¨ ¨ ¨ ˚ T

pd1´1q
0 and P

pd1q
1 :“ T

pd1´1q
1 ` ¨ ¨ ¨ ` T

p2q
1 ` T

p1q
1 .

Proof. Writing all exponentials as formal power series (actually finite sum, as noticed above), claims (a)
through (g) follow at once from definitions, via straightforward applications of the Baker-Campbell-Hausdorff
formula. Claim (a) is even simpler, since

`

1 ` η η1 rY, Y 1 s
˘

is just the formal power series expansion of

exp
`

η η1 rY, Y 1 s
˘

, and the latter belong to exp
` ˝
A0 g0

˘

Ď G0pAq .

Claim (h) requires some more work. An equivalent formulation of it is that the identity

Y 1 ˚ Y2 “ P
pd1q
0

`

Y 1,Y2
˘

˚

´

Y 1 ` Y2 ` P
pd1q
1

`

Y 1,Y2
˘

¯

(2.2)

holds true for some uniquely determined Lie polynomials P
pd1q
0 :“ T

p1q
0 ˚ T

p2q
0 ˚ ¨ ¨ ¨ ˚ T

pd1´1q
0 and P

pd1q
1 :“

T
pd1´1q
1 ` ¨ ¨ ¨ ` T

p2q
1 ` T

p1q
1 with the T

piq
0{1’s having the properties mentioned above.

We start working with the product “ ˚ ” in
@

Z1 , Z2

DK
Lie

. As a matter of terminology, we call order of
any non-zero Lie polynomial P in two variables the least degree of a homogeneous monomial occurring with
non-zero coefficient in the standard K–linear expansion of P (while the zero polynomial has order ´8 ).

First we need some technical results. For formal F,G there exist unique R ,S P
@

F,G
DK
Lie

such that

F ˚ G “ R ˚
`

F ` G
˘

, F ` G “ F ˚ S ˚ G (2.3)

and R ,S are Lie polynomials (in F and G ) of order greater than 1: in fact, R is the unique solution
of the equation exppF q exppGq “ exppRq exppF ` Gq , while S is the unique solution of the equation
exppF ` Gq “ exppF q exppSq exppGq , Then the explicit expression of the product “ ˚ ” implies that both
R and S have order greater than 1, as claimed; moreover, both are independent of A and g whatsoever.
Finally, for any Lie polynomial T in two variables there exist unique T0 and T1 such that T “ T0 ` T1

where T0 , resp. T1 , is a K–linear combination of Lie monomials of even, resp. odd, degree.
With repeated applications of (2.3) and of the identity T “ T0 ` T1 we eventually find the expression

Z1 ˚ Z2 “ T
p1q
0 ˚ T

p2q
0 ˚ ¨ ¨ ¨ ˚ T

pn´1q
0 ˚ T pnq ˚

´

T
pn´1q
1 ` ¨ ¨ ¨ ` T

p2q
1 ` T

p1q
1 ` Z1 ` Z2

¯

for arbitrarily big

n P N , where each Lie polynomial Ts has order greater than s . Finally, we can re-write this last formula as

Z1 ˚ Z2 “ P
pnq
0

`

Z1 , Z2

˘

˚ T pnq ˚

´

Z1 ` Z2 ` P
pnq
1

`

Z1 , Z2

˘

¯

(2.4)

for all n P N , with P
pnq
0 :“ T

p1q
0 ˚ T

p2q
0 ˚ ¨ ¨ ¨ ˚ T

pn´1q
0 and P

pnq
1 :“ T

pn´1q
1 ` ¨ ¨ ¨ ` T

p2q
1 ` T

p1q
1 .

But every Lie monomial of degree m ą d1 :“ dimpg1q vanishes on A1bK g1 , hence T pm´1q vanishes
too. It follows that for n “ d1 replacing Y 1 for Z1 and Y2 for Z2 in (2.4) we eventually get (2.2), q.e.d.
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We still need to introduce some auxiliary objects associated with G :

Definition 2.4.6. Let G be a Lie supergroup, as above. For any A P (Wsalg)K , we define:

(a) G´pAq :“
!

śn
s“1

`

1 ` ηsYs

˘

ˇ

ˇ

ˇ
n P N , pηs, Ysq P A1 ˆ g1 @ s P t1, . . . , nu

)

`

Ď GpAq
˘

(b) exp
`

A1bK g1
˘

:“
␣

exp
`

Y
˘ ˇ

ˇ Y P A1bK g1
(

´

Ď G´pAq

¯

(c) N
r2s

G pAq :“ exp
´

A
r2s
1 bK

“

g1, g1
‰

¯

`

Ď NG0

`

A0

˘

“ NGpAq
Ş

G0pAq
˘

(d) for any fixed K–basis
␣

Yi

(

iPI
of g1 (for some index set I ) and any fixed total order in I,

Gă
´pAq :“

"

Ñ
ś

iPI

`

1 ` ηiYi

˘

ˇ

ˇ

ˇ

ˇ

ηi P A1 @ i P I

*

`

Ď G´pAq
˘

where
Ñ
ś

iPI

denotes an ordered product — with respect to the fixed total order in I . ♢

Remark 2.4.7. By definition, exp
`

A1 bK g1
˘

contains the set of generators of G´pAq ; therefore, the

former generates a subgroup
A

exp
`

A1bK g1
˘

E

of GpAq that contains G´pAq . On the other hand, for any
řn

s“1 ηs Ys P A1bK g1 , the formal series expansion of exp
`
řn

s“1 ηs Ys

˘

yields

exp
´

řn
s“1 ηs Ys

¯

“
ś

σPSn

`

1 ` ησp1qYσp1q

L

n!
˘

¨
`

1 ` ησp2qYσp2q

L

n!
˘

¨ ¨ ¨
`

1 ` ησpnqYσpnq

L

n!
˘

that implies
A

exp
`

A1bK g1
˘

E

Ď G´pAq . The outcome is that G´pAq “

A

exp
`

A1bK g1
˘

E

.

From now on, we fix a K–basis
␣

Yi

(

iPI
of g1 (for some index set I ) and we fix in I a total order, as in

Definition 2.4.6(d). Our first result provides new, interesting factorizations for GpAq :

Proposition 2.4.8. Let G be a Lie supergroup as above, let
␣

Yi

(

iPI
be a totally ordered K–basis of g1

(for some total order in the set I ) and let A P (Wsalg)K be any Weil superalgebra. Then:

(a) G´pAq coincides with the subgroup
@

Gă
´pAq

D

of GpAq generated by Gă
´pAq and with the subgroup

@

exp
`

A1bK g1
˘D

generated by exp
`

A1bK g1
˘

;

(b) there exist set-theoretic factorizations (with respect to the group product “ ¨ ”)

G´pAq “ N
r2s

G pAq ¨ Gă
´pAq , G´pAq “ Gă

´pAq ¨ N
r2s

G pAq (2.5)

NGpAq “ NG0

`

A0

˘

¨ Gă
´pAq , NGpAq “ Gă

´pAq ¨ NG0

`

A0

˘

(2.6)

GpAq “ G0pAq ¨ Gă
´pAq , GpAq “ Gă

´pAq ¨ G0pAq (2.7)

(c) there exist set-theoretic factorizations (with respect to the group product “ ¨ ”)

G´pAq “ N
r2s

G pAq ¨ exp
`

A1bK g1
˘

, G´pAq “ exp
`

A1bK g1
˘

¨ N
r2s

G pAq (2.8)

NGpAq “ NG0

`

A0

˘

¨ exp
`

A1bK g1
˘

, NGpAq “ exp
`

A1bK g1
˘

¨ NG0

`

A0

˘

(2.9)

GpAq “ G0pAq ¨ exp
`

A1bK g1
˘

, GpAq “ exp
`

A1bK g1
˘

¨ G0pAq (2.10)

Proof. (a) Remark 2.4.7 proves that
@

exp
`

A1bK g1
˘D

“
@

Gă
´pAq

D

, so we are left to prove
@

Gă
´pAq

D

“

G´pAq . By definition, G´pAq is the subgroup in GpAq generated by
␣

p1 ` η Y q
ˇ

ˇ η P A1 , Y P g1
(

: thus it

is enough to prove that each p1 ` η Y q lies in
@

Gă
´pAq

D

. For Y P g1 let Y “
ř

iPI ciYi be its K–linear

expansion with respect to the basis
␣

Yi

(

iPI
of g1 ; then repeated applications of Lemma 2.4.5(d) yield

p1 ` η Y q “
`

1 ` η
ř

iPI ciYi

˘

“
`

1 `
ř

iPIpci ηqYi

˘

“
ÝÑź

iPI

`

1 ` pci ηqYi

˘

P Gă
´pAq , q.e.d.

(b) This part can be proved much like Proposition 4.2.7 in [16], but now applying Lemma 2.4.5.
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(c) Starting with (2.8), it is enough to prove the left-hand side, i.e. G´pAq “ N
r2s

G pAq ¨ exp
`

A1bK g1
˘

.

First of all, the inclusion N
r2s

G pAq ¨ exp
`

A1bK g1
˘

Ď G´pAq follows at once from (2.5) together with

claim (a) . Moreover, again by claim (a) we have G´pAq “
@

exp
`

A1 bK g1
˘D

so it is enough to prove

that the product of any two generators exp
`

Y 1
˘

and exp
`

Y2
˘

of G´pAq “
@

exp
`

A1 bK g1
˘D

lies in

N
r2s

G pAq ¨ exp
`

A1bK g1
˘

. In fact, this follows at once from the identity in Lemma 2.4.5(h).

The same argument used above also applies to prove (2.9).

Finally, the following chain of identities GpAq “ G0pKq ¨NGpAq “ G0pKq ¨NG0

`

A0

˘

¨ exp
`

A1 bK g1
˘

“

“ G0

`

A0

˘

¨exp
`

A1bKg1
˘

“ G0pAq¨exp
`

A1bKg1
˘

, using the pointwise splitting GpAq – G0pKq˙NGpAq

— cf. §2.3.1 — and (2.9), proves (2.10).

We aim to improve the previous result. We still need a technical result:

Lemma 2.4.9. Given a Lie supergroup G and A P (Wsalg)k , let ζi P A1 ( i P I). Then:

(a) if g :“
Ñ
ś

iPI

`

1 ` ζi Yi

˘

P G0pAq
Ş

Gă
´pAq , then ζi “ 0 for all i P I ;

(b) if g :“ exp
`
ř

iPI ζi Yi

˘

P G0pAq
Ş

exp
`

A1bK g1
˘

, then ζi “ 0 for all i P I .

Proof. (a) Recall (cf. §2.3.3) that, by definition, we have GpAq :“
š

xP|G|

Hom(salg)K

`

O|G|,x , A
˘

; therefore

g :“
Ñ
ś

iPI

`

1 ` ζi Yi

˘

“ 1 `
ř

iPI ζi Yi ` Op2q makes sense, as an expansion of g where Op2q is a short-

hand notation for “additional summands of higher order in the ζi’s ”. Let a :“
`

tζiuiPI
˘

be the ideal of A
generated by the ζi’s; then the previous expansion of g yields a similar expansion rgs2 :“ 1`

ř

iPI rζis2 Yi

inside G
`

A
L

a2
˘

:“
š

xP|G|

Hom(salg)K

`

O|G|,x , A
L

a2
˘

. Moreover, from g P G0pAq
Ş

Gă
´pAq we get rgs2 P

G0

`

A
L

a2
˘
Ş

Gă
´

`

A
L

a2
˘

too, hence — thinking of rgs2 as an A
L

a2 –valued map — also Im
`

rgs2

˘

Ď
`

A
L

a2
˘

0
.

As
␣

Yi

(

iPI
is a K–basis of g1 , there exists a local system of coordinates around the unit point 1

G
P |G| ,

say tyiuiPI , such that Yipyjq “ δi,j @ i, j P I . Then rgs2pyjq :“ 1 `
ř

iPI rζis2 Yipyjq “ rζjs2 , in particular
rgs2pyjq “ rζjs2 P

`

A
L

a2
˘

1
; this together with Im

`

rgs2

˘

Ď
`

A
L

a2
˘

0
implies rζjs2 “ r0s2 P A

L

a2 , i.e.

ζj P a2 “
`

tζiuiPI
˘2

@ j P I : thus ζj P an for n P N , j P I . But an “ 0 for n " 0 , so ζj “ 0 @ j P I , q.e.d.

(b) The same argument as in (a) applies again.

Finally, we are ready to state the main result of the present subsection. Later on, we will refer to the
isomorphisms in part (a) and/or (c) of its statement as to “Global Splittings”.

Theorem 2.4.10. (existence of Global Splittings for Lie supergroups)

Let G be a Lie supergroup, and g its tangent Lie superalgebra.

(a) The restriction of group multiplication in G provides isomorphisms of (set-valued) functors

N
r2s

G ˆ Gă
´ – G´ , NG0 ˆ Gă

´ – NG , G0 ˆ Gă
´ – G

Gă
´ ˆ N

r2s

G – G´ , Gă
´ ˆ NG0 – NG , Gă

´ ˆ G0 – G

N
r2s

G ˆ exp
`

p´q1bK g1
˘

– G´ , NG0 ˆ exp
`

p´q1bK g1
˘

– NG , G0 ˆ exp
`

p´q1bK g1
˘

– G

exp
`

p´q1bK g1
˘

ˆ N
r2s

G – G´ , exp
`

p´q1bK g1
˘

ˆ NG0 – NG , exp
`

p´q1bK g1
˘

ˆ G0 – G

with exp
`

p´q1bK g1
˘

the set-valued functor (Wsalg)K ÝÑ (sets) given by A ÞÑ exp
`

A1bK g1
˘

.

(b) Setting notation d1 :“ dimK
`

g1
˘

“ |I| , there exist isomorphisms of (set-valued) functors A0|d1

K –

Gă
´ and A0|d1

K – exp
`

p´q1bK g1
˘

, given on A–points — for every A P (Wsalg)K — by

A0|d1

K pAq “ A d1
1 ÝÝÑ Gă

´pAq ,
`

ηi
˘

iPI
ÞÑ

Ñ
ś

iPI

p1 ` ηi Yiq

A0|d1

K pAq “ A d1
1 ÝÝÑ exp

`

A1bK g1
˘

,
`

ηi
˘

iPI
ÞÑ exp

`
ř

iPI ηi Yi

˘
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(c) The isomorphisms in (a) and (b) induce further isomorphisms of (set-valued) functors

N
r2s

G ˆ A0|d1

K – G´ , NG0 ˆ A0|d1

K – NG , G0 ˆ A0|d1

K – G

A0|d1

K ˆ N
r2s

G – G´ , A0|d1

K ˆ NG0 – NG , A0|d1

K ˆ G0 – G

Proof. The proof can be done along the same lines followed for Proposition 4.2.11 in [16]. The technical,
accessory results that one needs to exploit are the various Lemmas and Propositions developed so far in the
present subsection: of course they are formally different, but the overall argument is the same.

3 From super Harish-Chandra pairs to Lie supergroups

In this section we provide two different functors Ψ that are quasi-inverse to the functor Φ of §2.2.2. In
both cases, for any super Harish-Chandra pair P, we define as associated ΨpPq :“ GP a suitable functor
from Weil superalgebras to groups, and then prove that it has the “right properties”. Concretely, we follow
the pattern provided by the Global Splitting Theorem for Lie supergroups, which tells us two possible ways
how our would-be Lie supergroup GP should look like: this yields us, eventually, two different recipes.

3.1 Supergroup functors out of super Harish-Chandra pairs: first recipe

For later use, we fix the following notation: given P “ pG` , gq P (sHCp)K , A P (Wsalg)K and c P A0

such that c2 “ 0 , for every X P g0 we set
`

1
G`

` cX
˘

:“ exp
`

cX
˘

P G`pA0q . When no confusion is

possible we will drop the subscript G` and simply write
`

1 ` cX
˘

instead. Similarly, we shall presently

introduce new formal elements of type “
`

1 ` η Y
˘

“ exp
`

η Y
˘

” with η P A1 , Y P g1 .

Definition 3.1.1. Let P :“
`

G` , g
˘

P (sHCp)K be a super Harish-Chandra pair over K .

(a) We introduce a functor G˝
P

: (Wsalg)K ÝÝÑ (group) as follows. For any Weil superalgebra
A P (Wsalg)K , we define G˝

P
pAq as being the group with generators the elements of the set

ΓA :“
␣

g` ,
`

1 ` η Y
˘ ˇ

ˇ g` P G`pAq , pη, Y q P A1ˆg1
(

“ G`pAq
Ť
␣

p1 ` η Y q
(

pη ,Y q P A1̂ g1

and relations (for g1
` , g2

` P G`pAq , η , η1 , η2 P A1 , Y , Y 1 , Y 2 P g1 , c P K )

g1
` ¨ g2

` “ g1
` G̈`

g2
` ,

`

1 ` η Y
˘

¨ g` “ g` ¨
`

1 ` ηAd
`

g´1
`

˘

pY q
˘

`

1 ` η2 Y
˘

¨
`

1 ` η1 Y
˘

“

´

1
G`

` η1 η2 Y x2y
¯

G`

¨
`

1 `
`

η1 ` η2
˘

Y
˘

,
`

1 ` η 0g1

˘

“ 1

`

1 ` η2 Y 2
˘

¨
`

1 ` η1 Y 1
˘

“

´

1
G`

` η1 η2
“

Y 1, Y 2
‰

¯

G`

¨
`

1 ` η1 Y 1
˘

¨
`

1 ` η2 Y 2
˘

,
`

1 ` 0A Y
˘

“ 1

`

1 ` η Y 1
˘

¨
`

1 ` η Y 2
˘

“
`

1 ` η
`

Y 1 ` Y 2
˘˘

,
`

1 ` pc ηqY
˘

“
`

1 ` η pcY q
˘

where the first line means that for generators chosen in G`pAq their product, denoted “ ¨ ”, insideG˝
P

pAq is the

same as in G`pAq , where it is denoted “
G̈`

”; moreover,
´

1
G`

` η1 η2 Y x2y
¯

G`

and
´

1
G`

` η1 η2
“

Y 1, Y 2
‰

¯

G`

are elements of the form
`

1
G`

` cX
˘

with X P g0 , c P A0 and c2 “ 0 as mentioned above.

Moreover, for any morphism f : A1 ÝÑ A2 in (Wsalg)K we let G˝
P

pfq : G˝
P

`

A1
˘

ÝÑ G˝
P

`

A2
˘

be the

group morphism uniquely defined on generators — for all g1
` P G`

`

A1
˘

, η P A1
1 , Y P g1 — by

G˝
P

pfq
`

g1
`

˘

:“ G`pfq
`

g1
`

˘

, G˝
P

pfq
`

1 ` η1 Y
˘

:“
`

1 ` f
`

η1
˘

Y
˘

As the defining relations of each G˝
P

pAq are independent of A , such a G˝
P

pfq is well defined indeed.

(b) We define a functor G˝,´
P

: (Wsalg)K ÝÝÑ (set) on any object A P (Wsalg)K by

G˝,´
P

pAq :“
!

śn
s“1

`

1 ` ηsYs

˘

ˇ

ˇ

ˇ
n P N , pηs, Ysq P A1 ˆ g1 @ s P t1, . . . , nu

)

`

Ď G˝
P

pAq
˘

and on morphism in the obvious way — just like for GP .
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(c) Let us fix in g1 a K–basis
␣

Yi

(

iPI
— for some index set I — and a total order in I . We define a

functor Gă
´ : (Wsalg)K ÝÝÑ (set) as follows. For A P (Wsalg)K we set

Gă
´pAq :“

"

Ñ
ś

iPI

`

1 ` ηiYi

˘

ˇ

ˇ

ˇ

ˇ

ηi P A1 @ i P I

*

`

Ď G˝,´
P

pAq Ď G˝
P

pAq
˘

where
Ñ
ś

iPI

denotes an ordered product — with respect to the fixed total order in I . This defines the functor

Gă
´ on objects, and its definition on morphism is the obvious one (like for G˝

P
) . ♢

Remark 3.1.2. By definition, G˝,´
P

and Gă
´ are subfunctors of G˝

P
. Moreover, every G˝,´

P
pAq is the

subgroup of G˝
P

pAq generated by Gă
´pAq , or by

␣

p1 ` η Y q
(

pη ,Y qPA1ˆg1
. Thus, although Gă

´ depends on the

choice of
␣

Yi

(

iPI
, the supergroup subfunctor that it generates (inside G˝

P
) instead is independent of that.

Next result shows that G˝
P
can also be described using a much smaller set of generators:

Proposition 3.1.3. Let P :“
`

G` , g
˘

P (sHCp)K , and fix in g1 a totally ordered K–basis
␣

Yi

(

iPI
. Then

for every A P (Wsalg)K the group G˝
P

pAq is generated by Γ‚
A :“ G`pAq

Ť
␣`

1`ηi Yi

˘ ˇ

ˇ ηi P A1 , @ i P I
(

.

Proof. Given A P (Wsalg)K , let G‚
P

pAq be the subgroup of G˝
P

pAq generated by Γ‚
A . We will prove that

every generator of the group G˝
P

pAq of the form p1 ` η Y q with pη , Y q P A1 ˆ g1 also belongs to the
subgroup G‚

P
pAq : this then will prove the claim. So let pη , Y q P A1 ˆ g1 ; then, in terms of the K–basis

␣

Yi

(

iPI
of g1 , our Y expands into Y “

řk
s“1 cjsYjs . By repeated applications of relations of the form

`

1 ` η Y 1
˘

¨
`

1 ` η Y 2
˘

“
`

1 ` η
`

Y 1 ` Y 2
˘˘

, we find that the generator p1 ` η Y q in G˝
P

pAq factors as
`

1 ` η Y
˘

“

´

1 ` η
řk

s“1cjsYjs

¯

“
śk

s“1

`

1 ` cjsη Yjs

˘

where the product can be done in any order, as its

factors mutually commute. Now the product in right-hand side does belong to G‚
P

pAq , q.e.d.

3.1.4. Another realization of G˝
P
. In the following, if K is any group presented by generators and

relations, we write K “
@

Γ
D

M

`

R
˘

if Γ is a set of free generators, R is a set of relations among generators

and
`

R
˘

is the normal subgroup in K generated by R . Note that, given a presentation of K of the form

K “
@

Γ
D

M

`

R
˘

“
@

Γ
D

M

`

R1 Y R2

˘

with R “ R1 Y R2 , the Double Quotient Theorem gives

K “
@

Γ
D

M

`

R
˘

“
@

Γ
D

M

`

R1 Y R2

˘

“
@

Γ
D

M

`

R1

˘

O

`

R1 Y R2

˘

M

`

R1

˘

“
@

Γ
D

M

`

R2

˘

(3.1)

where Γ and R2 respectively denote the images of Γ and of R2 in the quotient group
@

Γ
D

M

`

R1

˘

.

Let P “
`

G` , g
˘

P (sHCp)K . For any A P (Wsalg)K , we denote by G
r2s
` pAq the subgroup of G`pAq

generated by the set
␣

p1 ` cXq
ˇ

ˇ c P A
r2s
1 , X P r g1, g1s

(

— cf. §2.1.1 for notation A
r2s
1 . Note then that

G
r2s
` pAq is normal in G`pAq , as one easily sees by construction (taking into account that, as P :“

`

G` , g
˘

is a sHCp, the “adjoint” action of G` onto g maps r g1, g1s into itself). We consider also the three sets

Γ`
A :“ G`pAq , Γ

r2s

A :“ G
r2s
` pAq , Γ´

A :“ Γ
r2s

A

Ť
␣

p1` η Y q
(

pη ,Y q P A1̂ g1

and the sets of relations — for all g` , g1
` , g2

` P Γ`
A , gr2s , g

1
r2s

, g2
r2s

P Γ
r2s

A , η , η1, η2 P A1 , X P rg1, g1s ,

Y, Y 1, Y 2 P g1 , with G̈`
and ¨

G
r2s
`

being the product in G`pAq and in G
r2s
` pAq — given by

R`
A : g1

` ¨ g2
` “ g1

` G̈`
g2

` , Rr2s

A :
`

gr2s

˘

Γ
r2s
A

“
`

gr2s

˘

Γ `
A

R˙
A : gr2s ¨ g` “ g` ¨

`

g´1
` G̈`

gr2s G̈`
g`

˘

,
`

1 ` η Y
˘

¨ g` “ g` ¨
`

1 ` ηAd
`

g´1
`

˘

pY q
˘
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R´
A :

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

g1
r2s

¨ g2
r2s

“ g1
r2s

¨
G

r2s
`

g2
r2s

`

1 ` η Y
˘

¨ gr2s “ gr2s ¨
`

1 ` ηAd
`

g´1
r2s

˘

pY q
˘

`

1 ` η2 Y
˘

¨
`

1 ` η1 Y
˘

“

´

1` η1 η2 Y x2y
¯

¨
`

1 `
`

η1 ` η2
˘

Y
˘

`

1 ` η2 Y 2
˘

¨
`

1 ` η1 Y 1
˘

“

´

1` η1 η2
“

Y 1, Y 2
‰

¯

¨
`

1 ` η1 Y 1
˘

¨
`

1 ` η2 Y 2
˘

`

1 ` η Y 1
˘

¨
`

1 ` η Y 2
˘

“
`

1 ` η
`

Y 1 ` Y 2
˘˘

`

1 ` η 0g1

˘

“ 1 ,
`

1 ` 0A Y
˘

“ 1

RA :“ R`
A

Ť

R´
A

Ť

R˙
A

Ť

Rr2s

A

(in particular, note that the relations of type Rr2s

A just identify each element in Γ
r2s

A with its copy inside

Γ`
A ). Then we define a new group, by generators and relations, namely G˝,´

P
pAq :“

@

Γ´
A

D

M

`

R´
A

˘

.

From the very definition of G˝
P

pAq — cf. Definition 3.1.1 — it follows that

G˝
P

pAq –
@

Γ`
A

Ť

Γ´
A

D

M

`

RA

˘

“
@

Γ`
A

Ť

Γ´
A

D

N

´

R`
A

Ť

R´
A

Ť

R˙
A

Ť

Rr2s

A

¯

(3.2)

indeed, here above we are just taking larger sets of generators and of relations (w.r.t. Definition 3.1.1), but
with enough redundancies as to find a different presentation of the same group.

From this we find a neat description ofG˝
P

pAq by achieving the presentation (3.2) in a series of intermediate
steps, namely adding only one bunch of relations at a time. As a first step, we have

@

Γ`
A

Ť

Γ´
A

D

M

`

R`
A

Ť

R´
A

˘

“
@

Γ`
A

D

M

`

R`
A

˘

˚
@

Γ´
A

D

M

`

R´
A

˘

– G`pAq ˚ G˝,´
P

pAq (3.3)

where G`pAq –
@

Γ`
A

D

M

`

R`
A

˘

by construction and ˚ denotes the free product (of two groups).

For the next two steps we can follow two different lines of action. On the one hand, (3.1) and (3.3)

give
@

Γ`
A

Ť

Γ´
A

D

M

`

R`
A

Ť

R´
A

Ť

R˙
A

˘

–

´

G`pAq ˚ G˝,´
P

pAq

¯

N

´

R˙
A

¯

– G`pAq ˙ G˝,´
P

pAq , where

G`pAq˙G˝,´
P

pAq is the semidirect product of G`pAq with G˝,´
P

pAq w. r. to the “adjoint” action of the former

on the latter. Then G˝
P

pAq –
@

Γ`
A

Ť

Γ´
A

D

M

`

RA

˘

–
@

Γ`
A

Ť

Γ´
A

D

N

´

R`
A

Ť

R´
A

Ť

R˙
A

Ť

Rr2s

A

¯

–

–

´

G`pAq˙G˝,´
P

pAq

¯

N

´

Rr2s

A

¯

–

´

G`pAq˙G˝,´
P

pAq

¯

N

Nr2spAq where Nr2spAq is the normal subgroup

of G`pAq ˙ G˝,´
P

pAq generated by
!

`

gr2s , g
´1
r2s

˘

)

gr2sPΓ
r2s
A

. Thus G˝
P

pAq “

´

G`pAq ˙ G´pAq

¯

N

Nr2spAq .

Similarly, we find also that
@

Γ`
A

Ť

Γ´
A

D

N

´

R`
A

Ť

R´
A

Ť

Rr2s

A

¯

–

´

G`pAq ˚ G˝,´
P

pAq

¯

N

´

Rr2s

A

¯

–

– G`pAq ˚
G

r2s
` pAq

G˝,´
P

pAq where G`pAq ˚
G

r2s
` pAq

G˝,´
P

pAq is the amalgamated product of G`pAq and G˝,´
P

pAq

over G
r2s
` pAq w.r.t. the natural monomorphisms G

r2s
` pAq ãÝÝÑ G`pAq and G

r2s
` pAq ãÝÝÑ G˝,´

P
pAq . Then

G˝
P

pAq –
@

Γ`
A

Ť

Γ´
A

D

M

`

RA

˘

–
@

Γ`
A

Ť

Γ´
A

D

N

´

R`
A

Ť

R´
A

Ť

Rr2s

A

Ť

R˙
A

¯

–

–

´

G`pAq ˚
G

r2s
` pAq

G˝,´
P

pAq

¯

N

´

R˙
A

¯

–

´

G`pAq ˚
G

r2s
` pAq

G˝,´
P

pAq

¯

N

N˙pAq

where N˙pAq is the normal subgroup of G`pAq ˚
G

r2s
` pAq

G˝,´
P

pAq generated by

!

g`

`

1 ` η Y
˘

g´1
`

`

1 ` ηAdpg`qpY q
˘´1

)g`PG`pAq

pη,Y qPA1ˆg1

Ť

!

g` gr2s g`

`

g` G̈`
gr2s G̈`

g`

˘´1
)gr2sPΓ

r2s
A

g`PG`pAq
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Thus G˝
P

pAq “

´

G`pAq ˚
G

r2s
` pAq

G˝,´
P

pAq

¯

N

N˙pAq for all A P (Wsalg)K ; in functorial terms, this reads

G˝
P

“

´

G` ˙ G˝,´
P

¯

N

Nr2s and G˝
P

“

´

G` ˚
G

r2s
`

G˝,´
P

¯

N

N˙ , or G˝
P

“ G` ˙
G

r2s
`

G˝,´
P

where the last, (hopefully) more suggestive notation G˝
P

“ G` ˙
G

r2s
`

G˝,´
P

tells us that G˝
P
is the “amalgamate

semidirect product” of G` and G˝,´
P

over their common subgroup G
r2s
` .

3.2 The supergroup functor G˝
P
as a Lie supergroup

We aim now to proving that the functor G˝
P

is actually a Lie supergroup. We keep notations as

before, in particular for every A P (Wsalg)K we denote by G
r2s
` pAq the subgroup of G`pAq generated by

␣

p1 ` cXq
(cPA

r2s
1

XPr g1,g1s
— cf. §2.1.1 for notation A

r2s
1 . We begin with a “factorization result” for G˝

P
:

Proposition 3.2.1. Let P :“
`

G` , g
˘

P (sHCp)K be a super Harish-Chandra pair over K , let
␣

Yi

(

iPI
be

a totally ordered K–basis of g1 (for our fixed order in I) and A P (Wsalg)K . Then:

(a) letting
@

Gă
´pAq

D

be the subgroup of G˝
P

pAq generated by Gă
´pAq , we have

@

Gă
´pAq

D

“ G˝,´
P

pAq

and there exist set-theoretic factorizations (with respect to the group product “ ¨ ”)

G˝,´
P

pAq “ G
r2s
` pAq ¨ Gă

´pAq , G˝,´
P

pAq “ Gă
´pAq ¨ G

r2s
` pAq

(b) there exist set-theoretic factorizations (with respect to the group product “ ¨ ”)

G˝
P

pAq “ G`pAq ¨ Gă
´pAq , G˝

P
pAq “ Gă

´pAq ¨ G`pAq

Proof. Claim (a) is the exact analogue of (2.5), and claim (b) the analogue of (2.7), in Proposition 2.4.8(b).
In both cases the proof (up to trivialities) is identical, so we can skip it.

3.2.2. The representation G˝
P

ÝÝÑ GLpV q . When discussing the structure of a Lie supergroup G,
the factorization G “ G0 ¨ Gă

´ was just a intermediate step; Proposition 3.2.1 above gives us the parallel
counterpart for G˝

P
. This factorization result for G is improved by the “Global Splitting Theorem” —

i.e. Theorem 2.4.10 — that, roughly speaking, states that for any g P GpAq the factorization pertaining
to G0pAq ¨ Gă

´pAq has uniquely determined factors, and similarly any element in Gă
´pAq has a unique

factorization into an ordered product of factors of the form
`

1 ` ηi Yi

˘

. Both results are proved by showing
that two factorizations of the same object necessarily have identical factors; in other words, distinct choices
of factors always give rise to different elements in GpAq or in Gă

´pAq . This last fact was proved using the
concrete realization of GpAq as a special set of maps, namely GpAq :“

Ů

xP|G| Hom(salg)K

`

O|G|,x , A
˘

; indeed,

this algebra is rich enough to “separate” different elements of GpAq itself just looking at their values as A–
valued maps. When dealing with G˝

P
pAq instead, that is defined abstractly, such a built-in realization is not

available: our strategy then is to replace it with a suitable “partial linearization”, namely a representation
of G˝

P
pAq that, although not being faithful, is still “rich enough” to (almost) separate elements.

Let P “
`

G` , g
˘

P (sHCp)K be given; as before, we fix a K–basis
␣

Yi

(

iPI
of g , where I is an index set

in which we fix some total order, hence the basis itself is totally ordered as well.

Recall that the universal enveloping algebra Upgq is given by Upgq :“ T pgq

M

J where T pgq is the tensor

algebra of g and J is the two-sided ideal in T pgq generated by the set (using notation zx2y :“ 2´1 rz, zs )
!

x y ´ p´1q
|x| |y|

y x ´ rx, ys , z2 ´ zx2y
ˇ

ˇ

ˇ
x, y P g0

Ť

g1 , z P g1

)

It is known then — see for instance [24], §7.2 — that one has splitting(s) of K–supercoalgebras

Upgq – Upg0q bK
Ź

g1 –
Ź

g1 bK Upg0q (3.4)

and
Ź

g1 has K–basis
␣

Yi1 ^ Yi2 ^ ¨ ¨ ¨ ^ Yis

ˇ

ˇ s ď |I| , i1 ă i2 ă¨ ¨ ¨ă is
(

.
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Now let 1l be the (one-dimensional) trivial representation of g0 . By induction from g0 to g we can
consider the induced representation V :“ Ind g

g0
p1l q , that is a g–module. Looking at 1l and V respectively

as a module over Upg0q and over Upgq , taking (3.4) into account we get

V :“ Ind g
g0

p1l q “ Upgq b
Upg0q

1l –
Ź

g1 b
K
1l –

Ź

g1 (3.5)

The last one above is a natural isomorphism of K–superspaces, uniquely determined once a specific element
b P 1l is fixed to form a K–basis of 1l itself: the isomorphism is ω b b ÞÑ ω for all ω P

Ź

g1 .

This and its outcome give rise to similar functorial counterparts, for the Lie algebra valued K–superfun-
ctors Lg0 and Lg , as well as for the K–superfunctors associated with Upg0q and Upgq , in the standard way,
namely A ÞÑ A0bKUpg0q and A ÞÑ

`

A bK Upgq
˘

0
“ A0bKUpgq0

À

A1bKUpgq1 for all A P (Wsalg)K .

On the other hand g0 “ Lie pG`q , and 1l is also the trivial representation for G` , as a classical Lie group.
Then the representation of g on the space V also induces a representation of the super Harish-Chandra pair
P “ pG`, gq on the same V , in other words V bears also a structure of pG`, gq–module — in the obvious
sense: we have a morphism pr̀ , ρq : pG` gq ÝÑ

`

GLpV q, glpV q
˘

of super Harish-Chandra pairs. We will
write again ρ for the representation map ρ : Upgq ÝÑ EndKpV q giving the Upgq–module structure on V .

Our key step now is that the above pG`, gq–module structure on V “integrates” to aG˝
P
–module structure.

Proposition 3.2.3. Retain notation as above for the pG`, gq–module V . There exists a unique structure of
(left) G˝

P
–module onto V which satisfies the following conditions: for every A P (Wsalg)K , the representation

map r˝
P,A

: G˝
P

pAq ÝÑ GLpV qpAq is given on generators of G˝
P

pAq — namely, all g` P G`pAq and p1`ηi Yiq

for i P I , ηi P A1 — by r˝
P,A

pg`q :“ r̀ pg`q , r˝
P,A

p1 ` ηi Yiq :“ ρp1 ` ηi Yiq “ id
V

` ηi ρpYiq , or in
other words g`.v :“ r̀ pg`qpvq and p1 ` ηi Yiq.v :“ ρp1 ` ηi Yiqpvq “ v ` ηi ρpYiqpvq for all v P V pAq .
Overall, this yields a morphism a K–supergroup functors r˝

P
: G˝

P
ÝÑ GLpV q .

Proof. This follows from the whole construction, and from the very definition of G˝
P
. Indeed, by definition

of representation for the super Harish-Chandra pair P we see that the operators r˝
P,A

pg`q and r˝
P,A

p1`ηi Yiq

on V — associated with the generators of G˝
P

pAq — do satisfy all relations which, by Definition 3.1.1(a),
are satisfied by the generators themselves. Thus they uniquely provide a well-defined group morphism
r˝
P,A

: G˝
P

pAq ÝÑ GLpV qpAq as required. The construction is clearly functorial in A , whence the claim.

The advantage of introducing the representation rP of G˝
P

on V is that it allows us to “separate” the
“odd points of G˝

P
pAq from each other and from the even ones”.

We are now ready to state and prove the “global splitting theorem” for G˝
P
(cf. Theorem 2.4.10):

Proposition 3.2.4.

(a) The restriction of group multiplication in G˝
P
provides isomorphisms of (set-valued) functors

G` ˆ Gă
´ – G˝

P
, Gă

´ ˆ G` – G˝
P

, G
r2s
` ˆ Gă

´ – G˝,´
P

, Gă
´ ˆ G

r2s
` – G˝,´

P

(b) There exists an isomorphism of (set-valued) functors A0|d1

K – Gă
´ , with d1 :“ |I| “ dimK

`

g1
˘

,
given on A–points — for every A P (Wsalg)K — by

A0|d1

K pAq “ A d1
1 ÝÑ Gă

´pAq ,
`

ηi
˘

iPI
ÞÑ

Ñ
ś

iPI

p1 ` ηi Yiq

(c) There exist isomorphisms of (set-valued) functors

G` ˆ A0|d1

K – G˝
P

, G
r2s
` ˆ A0|d1

K – G˝,´
P

, and A0|d1

K ˆ G` – G˝
P

, A0|d1

K ˆ G
r2s
` – G˝,´

P

given on A–points — for every A P (Wsalg)K — respectively by

`

g` ,
`

ηi
˘

iPI

˘

ÞÑ g` ¨
Ñ
ś

iPI

p1 ` ηi Yiq and
``

ηi
˘

iPI
, g`

˘

ÞÑ
Ñ
ś

iPI

p1 ` ηi Yiq ¨ g`
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Proof. The proof is quite close to (half of) that of Theorem 2.4.10, the difference being the use of the
representation V of §3.2.2. For completeness we present it shortly, sketching (a) and (b), whence (c) follows.

(a) It is enough to prove the first identity for G˝
P

(all other are similar). Thus our claim is: for any
A P (Wsalg)K , if ĝ` ĝ´ “ ǧ` ǧ´ for ĝ` , ǧ` P G`pAq and ĝ´ , ǧ´ P Gă

´pAq , then ĝ` “ ǧ` and ĝ´ “ ǧ´ .

From ĝ` ĝ´ “ ǧ` ǧ´ we get g :“ ĝ´ ǧ´1
´ “ ĝ´1

` ǧ` P G`pAq , as G`pAq is a subgroup. Writing

ĝ´ “
Ñ
ś

iPI

`

1` η̂i Yi

˘

and ǧ´ “
Ñ
ś

iPI

`

1` η̌iYi

˘

we get g :“ ĝ´ ǧ´1
´ “

Ñ
ś

iPI

`

1` η̂iYi

˘

Ð
ś

iPI

`

1´ η̌iYi

˘

P G`pAq .

Let a :“
`␣

η̂
i
, η̌

i

(

iPI

˘

be the ideal of A generated by the η̂
i
’s and the η̌

i
’s, set A

πn

ÝÝ�A
L

an for

the quotient map and ra sn :“ πnpaq for a P A , then G˝
P

pAq
Gpπnq

ÝÝÝÝÑG˝
P

`

A
L

an
˘

for the associated group

morphism and rysn :“ G˝
P

pπnqpyq for every y P G˝
P

pAq . Now, the defining relations for Gă
´

`

A
L

a 2
˘

yield

rgs2 “
Ñ
ś

iPI

`

1 ` rη̂is2 Yi

˘

¨
Ð
ś

iPI

`

1 ´ rη̌is2 Yi

˘

“
Ñ
ś

iPI

`

1 ` rαis2 Yi

˘

P Gă
´

`

A
L

a 2
˘

with αi :“ η̂i ´ η̌i (@ i P I ) .

Next step then is to let rgs2 act onto b P V
`

A
L

a 2
˘

; we write Ȳ for the image of Y.b through the

isomorphism V “
Ź

g1. b –
Ź

g1 . Then rgs2 . b “
Ñ
ś

iPI

`

1 ` rαis2 Yi

˘

. b “ b `
ř

iPI rαis2 Ȳi P V
`

A
L

a 2
˘

since rαhs2 rαks2 “ r0s2 P A
L

a 2 ; on the other hand, rgs2 . b “ b as rgs2 P G`

`

A
L

a 2
˘

and G` acts trivially

on V . Therefore, noting that
␣

b
(

Y
␣

Ȳi

(

iPI
is part of the chosen basis of V , we get rαis2 “ r0s2 P A

L

a 2 ,

i.e. αi P a2 , for all i P I . By the same argument we find rgs3 “
Ñ
ś

iPI

`

1 ` rαis3 Yi

˘

P G˝
P

`

A
L

a 3
˘

hence

rgs3 . b “ b `
ř

iPI rαis3 Ȳi P V
`

A
L

a 3
˘

, which in turn implies αi P a3 , for all i P I . Iterating this process
we find αi P an for all n P N , i P I ; as an “ t0u for n " 0 (since a is generated by finitely many odd
elements) we end up with αi “ 0 , i.e. η̂i “ η̌i , for all i P I . This means ĝ´ “ ǧ´ , whence ĝ` “ ǧ` too.

(b) By construction there exists a morphism Θă : A0|d1

K ÝÝÑ Gă
´ of set-valued functors given on A–

points — for A P (Wsalg)K — by the map Θă
A : A0|d1

K pAq :“ Aˆd1
1 ÝÝÑ Gă

´pAq ,
`

ηi
˘

iPI
ÞÑ

Ñ
ś

iPI

`

1` ηi Yi

˘

,

that is actually surjective, and we need to prove that is also injective. Now, let
`

η̂i
˘

iPI
,
`

η̌i
˘

iPI
P Aˆd1

1 be

such that Θă
A

`̀

η̂i
˘

iPI

˘

“ Θă
A

`̀

η̌i
˘

iPI

˘

, i.e.
Ñ
ś

iPI

`

1 ` η̂i Yi

˘

“
Ñ
ś

iPI

`

1 ` η̌i Yi

˘

. Then we repeat the argument

in (a), now with ĝ` :“ 1 “: ǧ` , which gives η̂i “ η̌i for all i P I , i.e.
`

η̂i
˘

iPI
“
`

η̌i
˘

iPI
, q.e.d.

3.2.5. The Lie supergroup structure of G˝
P
. Given P P (sHCp)K and A P (Wsalg)K , Proposition

3.2.4(c) yields a bijection ϕ ˝
A : G`pAq ˆ A0|d1

K pAq
–

ãÝÝÝÝÝ�G˝
P

pAq whose restriction to G`pAq , identified
with G`pAq ˆ

␣

p0qiPI

(

, is the identity — onto the copy of G`pAq naturally sitting inside G˝
P

pAq .
Now, G`pAq is by definition an A0–manifold (cf. [3]), of the same type (real smooth, etc.) as the sHCp

P :“ pG`, gq it pertains to; on the other hand, A0|d1

K pAq carries natural, canonical structures of A0–manifold
of any possible type (real smooth or real analytic if K “ R , complex holomorphic if K “ C ), in particular
then also of the type of G`pAq . Then we know that there is also a canonical “product structure” of A0–

manifold — of the same type of G`pAq , i.e. of P — onto the Cartesian product G`pAq ˆ A0|d1

K pAq . Using

the bijection ϕ ˝
A above we push-forward this canonical A0–manifold structure of G`pAq ˆ A0|d1

K pAq onto
G˝

P
pAq , which then is turned into an A0–manifold on its own, still of the same type as P . Strictly speaking,

this structure of A0–manifold on G˝
P

pAq formally depends on the choice of Gă
´ , hence of a totally ordered

K–basis of g1 , as this choice enters in the construction of ϕ ˝
A . However, thanks to the special form of the

defining relations of G˝
P

pAq it is straightforward to show that changing such a basis amounts to changing
local charts for the same, unique A0–manifold structure; hence the structure is independent of such a choice.

Now, using the above structure of A0–manifold on G˝
P

pAq for each A P (Wsalg)K , given a morphism f :
A1 ÝÑ A2 in (Wsalg)K it is straightforward to check that the group morphism G˝

P
pfq : G˝

P
pA1q ÝÑ G˝

P
pA2q

is a morphism of A1
0–manifolds, hence it is a morphism of A0–manifolds (cf. [3]). Thus G˝

P
is also a functor

from Weil K–superalgebras to A0–manifolds (real smooth, real analytic or complex holomorphic as P is).

At last, again looking at the commutation relations in G˝
P

pAq , we see that the group multiplication and
the inverse map are “regular” (i.e., “real smooth”, “real analytic” or “complex holomorphic” depending on
the type of P ); indeed, this is explicitly proved by calculations like those needed in the proof of Proposition
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3.2.1(b) — that we skipped, so refer instead to the proof of Proposition 2.4.8(b). Thus they are morphisms
of A0–manifolds, so G˝

P
pAq is a group element among A0–manifolds, i.e. it is a Lie A0–group; hence (cf.

§2.1.3) the functor G˝
P
is a Lie supergroup (of real smooth, real analytic or complex holomorphic type as P).

Eventually, the outcome of this discussion — and core result of the present section — is the following
statement, which provides a “backward functor” from sHCp’s to Lie supergroups:

Theorem 3.2.6. The recipe in Definition 3.1.1 provides functors

Ψ˝ : (sHCp)8
R ÝÑ (Lsgrp)8

R , Ψ˝ : (sHCp)ωR ÝÑ (Lsgrp)ωR , Ψ˝ : (sHCp)ωC ÝÑ (Lsgrp)ωC

given on objects by P ÞÑ Ψ˝pPq :“ G˝
P

and on morphisms by
´

pϕ` , φq : P 1 ÝÝÑ P2
¯

ÞÑ

´

Ψ˝
`

pϕ` , φq
˘

: Ψ˝
`

P 1
˘

:“ G ˝
P1 ÝÝÑ G ˝

P2 “: Ψ˝
`

P2
˘

¯

where the functor morphism Ψ˝
`

pϕ` , φq
˘

: Ψ˝
`

P 1
˘

:“ G ˝
P1 ÝÝÑ G ˝

P2 “: Ψ˝
`

P2
˘

is defined by

Ψ˝
`

pϕ` , φq
˘

A
: g1

` ÞÑ ϕ`

`

g1
`

˘

,
`

1 ` η Y 1
˘

ÞÑ
`

1 ` η φ
`

Y 1
˘˘

(3.6)

for all A P (Wsalg)K , g1
` P G1

`pAq , η P A1 , Y 1 P g1 , with P 1 “
`

G1
` , g1

˘

and P2 “
`

G2
` , g2

˘

.

Proof. What is still left to prove is that the given definition for Ψ˝
`

pϕ` , φq
˘

actually makes sense. Now,

(3.6) above fixes the values of our would-be morphism Ψ˝
`

pϕ` , φq
˘

A
on generators of Ψ˝

`

P 1
˘

pAq :“ G ˝
P1 pAq :

a direct check shows that all defining relations among such generators are respected, thus providing a group
morphism as required. However, we must still show that this is a morphism of A0–manifolds too.

Let
␣

Y 1
i

(

iPI
and

␣

Y 2
j

(

jPJ
be totally ordered K–bases of g1

1 and g2
1 . Accordingly, both G ˝

P1 pAq and

G ˝
P2 pAq admit factorizations as in Proposition 3.2.4(a), hence any g1 P G ˝

P1 pAq uniquely factors into g1 “

g1
` ¨

ÝÑź

iPI

`

1 ` ηi Y
1
i

˘

; then Ψ˝
`

pϕ` , φq
˘

A

`

g1
˘

“ ϕ`

`

g1
`

˘

¨
ÝÑź

iPI

`

1 ` ηi φ
`

Y 1
i

˘˘

and from this, letting

φ
`

Y 1
i

˘

“
ř

jPJ ci,j Zj — with ci,j P K — we get Ψ˝
`

pϕ` , φq
˘

A

`

g1
˘

“ ϕ`

`

g1
`

˘

¨
ÝÑź

iPI

ś

jPJ

´

1 ` ηi ci,j Zj

¯

.

Now we must re-order the result according to the factorization of G ˝
P2pAq of the form G` ˆ Gă

´ ; in doing

this, when we reorder the factor
ÝÑź

iPI

ś

jPJ

`

1 ` ηi ci,j Zj

˘

we find, via calculations as for Proposition 2.4.8(b),

an outcome of the form
n
ś

r“1

`

1 ` ar Xr

˘

G2
`

¨
ÝÑź

jPJ

`

1 ` αj Zj

˘

where the Xr’s belong to g2
0 , the ar’s are (even)

polynomial expressions in the ηi’s, the αj ’s are (odd) polynomial expressions in the ηi’s. This implies that

the map
ÝÑź

iPI

`

1`ηi Y
1
i

˘

ÞÑ
n
ś

r“1

`

1 ` ar Xr

˘

G2
`

¨
ÝÑź

jPJ

`

1`αj Zj

˘

is a map of A0–manifolds from
`

G ˝
P1

˘ă

´
pAq

to G ˝
P2pAq . But ϕ` : G1

`pAq ÝÝÑ G2
`pAq is a map of A0–manifolds too, by assumptions; this along with

all the previous analysis eventually implies that Ψ˝
`

pϕ` , φq
˘

A
is a map of A0–manifolds as claimed.

3.3 Supergroup functors out of super Harish-Chandra pairs: second recipe

In this subsection we construct a second functor, denoted Ge
P
, which we later prove is a Lie supergroup:

this is in fact a “sibling alternative” to the functor G˝
P

considered in §3.1 above. As a matter of notation,
recall that for any P “ pG` , gq P (sHCp)K , A P (Wsalg)K and X P A0 bK g0 there exists a well-defined
expG p̀X q P G`pA0q ; furthermore, if in particular X P A 2

1 bKg0 , then the formal series expansion of exppX q

can be actually realized as a finite sum. When no confusion is possible we shall drop the subscript G` and
simply write exppX q instead. Similarly, we shall presently introduce new formal elements of type “ exppYq ”
with Y P A1 bK g1 . Finally, we extend the built-in G`–action onto g1 to a (same-name) G`–action onto
A1 bK g1 by Adpgq

`
řn

s“1 ηsYs

˘

:“
řn

s“1 ηs AdpgqpYsq for all
řn

s“1 ηsYs :“
řn

s“1 ηs b Ys P A1 bK g1 .

Definition 3.3.1. Let P :“
`

G` , g
˘

P (sHCp)K be a super Harish-Chandra pair over K .

(a) We introduce a functor Ge
P

: (Wsalg)K ÝÝÑ (group) as follows. For any Weil superalgebra
A P (Wsalg)K , we define Ge

P
pAq as being the group with generators the elements of the set
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ΓA :“
␣

g` , exppYq
ˇ

ˇ g` P G`pAq , Y P A1 bK g1
(

“ G`pAq
Ť

␣

exppYq
(

YPA1bKg1

and relations (for g` , g1
` , g2

` P G`pAq , Y ,Y 1 ,Y2 P A1bK g1 )

g1
` ¨ g2

` “ g1
` G̈`

g2
` , expp0q “ 1 , exp

`

Yq ¨ g` “ g` ¨ exp
`

Ad
`

g´1
`

˘

pYq
˘

exp
`

Y 1
˘

¨ exp
`

Y2
˘

“ exp
´

P
pd1q
0

`

Y 1,Y2
˘

¯

¨ exp
´

Y 1 ` Y2 ` P
pd1q
1

`

Y 1,Y2
˘

¯

with P
pd1q
0 and P

pd1q
1 as given in Lemma 2.4.5(h). This yields the functor Ge

P
on objects.

To define Ge
P
on morphisms, for any morphism f : A1 ÝÑ A2 in (Wsalg)K we define the group morphism

Ge
P

pfq : Ge
P

`

A1
˘

ÝÑ Ge
P

`

A2
˘

to be the unique one given — for g1
` P G`

`

A1
˘

, η P A1
1 , Y 1 P A1

1bK g1 — by

Ge
P

pfq
`

g1
`

˘

:“ G`pfq
`

g1
`

˘

, Ge
P

pfq
`

exp
`

Yq
˘

:“ exp
`

fpYq
˘

where f
`

Y 1
˘

:“
řn

s“1 f
`

η1
s

˘

Ys for all Y 1 :“
řn

s“1 η
1
s Ys P A1

1bK g1 .

(b) We define a functor Ge,´
P

: (Wsalg)K ÝÝÑ (set) on any object A P (Wsalg)K by

Ge,´
P

pAq :“
A

exp
`

A1bK g1
˘

E

`

Ď Ge
P

pAq
˘

— the subgroup of Ge
P

pAq generated by exp
`

A1bK g1
˘

:“
␣

exppYq
(

YPA1bKg1
— and on morphisms in the

obvious way. By definition, Ge,´
P

can be thought of as subfunctor of Ge
P
. ♢

3.3.2. Another realization of Ge
P
. Given a super Harish-Chandra pair P “

`

G` , g
˘

P (sHCp)K , we
present now another way of realizing the K–supergroup Ge

P
introduced in Definition 3.3.1(a): this mimics

what we did in §3.1.4, so we keep the same kind of notation and are a bit shorter.

For any fixed A P (Wsalg)K , we denote by G
x2y
` pAq the subgroup of G`pAq generated by the set

␣

exppX q
ˇ

ˇ X P A
r2s
1 bK r g1, g1s

(

. Then one easily sees that G
x2y
` pAq is normal in G`pAq . Consider also

Γ `
A :“ G`pAq , Γ

x2y

A :“ G
x2y
` pAq , Γ ´

A :“ Γ
x2y

A

Ť

exp
`

A1bK g1
˘

and the five sets of relations (for all g` , g1
` , g2

` P Γ `
A , gx2y , g

1
x2y

, g2
x2y

P Γ
x2y

A , Y,Y 1,Y2 P A1 bK g1 )

R`
A : g1

` ¨ g2
` “ g1

` G̈`
g2

` , Rx2y

A :
`

gx2y

˘

Γ
x2y
A

“
`

gx2y

˘

Γ `
A

R˙
A : gx2y ¨ g` “ g` ¨

`

g´1
` G̈`

gx2y G̈`
g`

˘

, exppYq ¨ g` “ g` ¨ exp
`

Ad
`

g´1
`

˘

pYq
˘

R´
A :

$

’

’

&

’

’

%

g1
x2y

¨ g2
x2y

“ g1
x2y

¨
G

x2y
`

g2
x2y

, exppYq ¨ gx2y “ gx2y ¨ exp
`

Ad
`

g´1
x2y

˘

pYq
˘

, expp0q “ 1

exp
`

Y 1
˘

exp
`

Y2
˘

“ exp
´

P
pd1q
0

`

Y 1,Y2
˘

¯

exp
´

Y 1 ` Y2 ` P
pd1q
1

`

Y 1,Y2
˘

¯

with P
pd1q
0 and P

pd1q
1 as given in Lemma 2.4.5(h)

RA :“ R`
A

Ť

R´
A

Ť

R˙
A

Ť

Rx2y

A

Then we define a new group, by generators and relations, namely Ge,´
P

pAq :“
@

Γ´
A

D

M

`

R´
A

˘

.

Directly from Definition 3.3.1 it follows that

Ge
P

pAq –
@

Γ`
A

Ť

Γ´
A

D

M

`

RA

˘

“
@

Γ`
A

Ť

Γ´
A

D

N

´

R`
A

Ť

R´
A

Ť

R˙
A

Ť

Rx2y

A

¯

(3.7)

but we can also achieve the presentation (3.7) in a series of intermediate steps. As a first step, we have

@

Γ`
A

Ť

Γ´
A

D

M

`

R`
A

Ť

R´
A

˘

“
@

Γ`
A

D

M

`

R`
A

˘

˚
@

Γ´
A

D

M

`

R´
A

˘

– G`pAq ˚ Ge,´
P

pAq (3.8)
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where G`pAq –
@

Γ`
A

D

M

`

R`
A

˘

by construction and ˚ denotes the free product (of two groups).

For the next two steps we can follow two different lines of action. The first one gives

@

Γ`
A

Ť

Γ´
A

D

M

`

R`
A

Ť

R´
A

Ť

R˙
A

˘

–

´

G`pAq ˚ Ge,´
P

pAq

¯

N

´

R˙
A

¯

– G`pAq ˙ Ge,´
P

pAq

because of (3.1) and (3.8), where G`pAq˙Ge,´
P

pAq is the semidirect product of G`pAq with Ge,´
P

pAq . Then
@

Γ`
A

Ť

Γ´
A

D

M

`

RA

˘

–
@

Γ`
A

Ť

Γ´
A

D

N

´

R`
A

Ť

R´
A

Ť

R˙
A

Ť

Rx2y

A

¯

–

´

G`pAq ˙ G˝,´
P

pAq

¯

N

´

Rx2y

A

¯

–

–

´

G`pAq˙G˝,´
P

pAq

¯

N

Nx2ypAq , where Nx2ypAq is the normal subgroup of G`pAq ˙ Ge,´
P

pAq generated

by
!

`

gx2y , g
´1
x2y

˘

)

gx2yPΓ
x2y
A

. This and (3.7) together yield Ge
P

pAq “

´

G`pAq ˙ G´pAq

¯

N

Nx2ypAq .

On the other hand, (3.1) and (3.8) jointly give

@

Γ`
A

Ť

Γ´
A

D

N

´

R`
A

Ť

R´
A

Ť

Rx2y

A

¯

–

´

G`pAq ˚ Ge,´
P

pAq

¯

N

´

Rx2y

A

¯

– G`pAq ˚
G

x2y
` pAq

Ge,´
P

pAq

with G`pAq ˚
G

x2y
` pAq

Ge,´
P

pAq the amalgamated product of G`pAq and Ge,´
P

pAq over G
x2y
` pAq . Then

@

Γ`
A

Ť

Γ´
A

D

M

`

RA

˘

–
@

Γ`
A

Ť

Γ´
A

D

N

´

R`
A

Ť

R´
A

Ť

Rx2y

A

Ť

R˙
A

¯

–

–

´

G`pAq ˚
G

x2y
` pAq

Ge,´
P

pAq

¯

N

´

R˙
A

¯

–

´

G`pAq ˚
G

x2y
` pAq

Ge,´
P

pAq

¯

N

N˙pAq

where N˙pAq is the normal subgroup of G`pAq ˚
G

x2y
` pAq

Ge,´
P

pAq generated by

!

g` exppYq g´1
` exp

`

Adpg`qpYq
˘´1

)g`PG`pAq

YPA1bKg1

Ť

!

g` gx2y g`

`

g` G̈`
gx2y G̈`

g`

˘´1
)gx2yPΓ

x2y
A

g`PG`pAq

All this along with (3.7) eventually gives Ge
P

pAq “

´

G`pAq ˚
G

x2y
` pAq

Ge,´
P

pAq

¯

N

N˙pAq for every A P

(Wsalg)K . In functorial terms this means Ge
P

“

´

G` ˙Ge,´
P

¯

N

Nx2y and Ge
P

“

´

G` ˚
G

x2y
`

Ge,´
P

¯

N

N˙ ,

or Ge
P

“ G` ˙
G

x2y
`

Ge,´
P

so that Ge
P
is the “amalgamate semidirect product” of G` and Ge,´

P
over G

x2y
` .

3.4 The supergroup functor Ge
P
as a Lie supergroup

We aim now to prove that the functor Ge
P
is actually a Lie supergroup. We follow in the footsteps of in

§3.2, so we can be somewhat shorter. We begin with the following “factorization result” for Ge
P
:

Proposition 3.4.1. Let P :“
`

G` , g
˘

P (sHCp)K be a super Harish-Chandra pair over K . Then there
exist group-theoretic factorizations

(a) Ge,´
P

pAq “ G
x2y
` pAq ¨ exp

`

A1bK g1
˘

, Ge,´
P

pAq “ exp
`

A1bK g1
˘

¨ G
x2y
` pAq

(b) Ge
P

pAq “ G`pAq ¨ exp
`

A1bK g1
˘

, Ge
P

pAq “ exp
`

A1bK g1
˘

¨ G`pAq

Proof. Claim (a) is the exact analogue of (2.8), and claim (b) the analogue of (2.10), in Proposition 2.4.8(c).
In both cases the proof (up to details) is the same, so we can skip it.
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3.4.2. The representation Ge
P

ÝÝÑ GLpV q . Let P “
`

G` , g
˘

P (sHCp)K be any given super Harish-
Candra pair over K . Just like we did for G˝

P
in §3.2.2, we need for Ge

P
as well a suitable linear representation

V , which we now define along the same lines, keeping the same notation.

Let Upgq be the universal enveloping algebra of g , and let V :“ Ind g
g0

p1l q “ Upgq b
Upg0q

1l –
Ź

g1 be

the g–representation induced from the trivial representation 1l of g0 — as in (3.5). As we saw in §3.2.2, there
is a morphism pr̀ , ρq : pG` gq ÝÑ

`

GLpV q, glpV q
˘

of sHCp’s making V into a pG`, gq–module; again by ρ
we denote also the representation map ρ : Upgq ÝÑ EndKpV q giving the Upgq–module structure on V , and
similarly (in a functorial way) for the representation maps of

`

A bK g
˘

0
and

`

A bK Upgq
˘

0
onto

`

A bK V
˘

0
.

We will now show that the pG`, gq–module structure on V can be “integrated” to a Ge
P
–module structure.

Proposition 3.4.3. Retain notation as above for the pG`, gq–module V . There exists a unique structure of
(left) Ge

P
–module onto V which satisfies the following conditions: for every A P (Wsalg)K , the representation

map r e
P,A

: Ge
P

pAq ÝÑ GLpV qpAq is given on generators of Ge
P

pAq — namely, all g` P G`pAq and exppYq

for i P I , Y P A1bK g1 — by r e
P,A

pg`q :“ r̀ pg`q , r e
P,A

`

exppYq
˘

:“ ρ
`

exppYq
˘

“ exp
`

ρpYq
˘

, that

is g`.v :“ r̀ pg`qpvq and exppYq.v :“ exp
`

ρpYq
˘

pvq — with exp
`

ρpYq
˘

being a finite sum — for all
v P V pAq . Overall, this yields a morphism of K–supergroup functors r e

P
: Ge

P
ÝÑ GLpV q .

Proof. By definition of representation for the sHCp P , the operators r e
P,A

pg`q and r e
P,A

`

exppYq
˘

on V satisfy
all relations which, by Definition 3.3.1(a), are satisfied by the generators of Ge

P
pAq . Thus they define a unique

group morphism r e
P,A

: Ge
P

pAq ÝÑ GLpV qpAq , functorial in A by construction, whence the claim.

We are now ready to state the “global splitting theorem” for Ge
P
(cf. Theorem 2.4.10):

Proposition 3.4.4.

(a) The restriction of group multiplication in Ge
P
provides isomorphisms of (set-valued) functors

G` ˆ exp
`

p´q1bK g1
˘

– Ge
P

, exp
`

p´q1bK g1
˘

ˆ G` – Ge
P

G
x2y
` ˆ exp

`

p´q1bK g1
˘

– Ge,´
P

, exp
`

p´q1bK g1
˘

ˆ G
x2y
` – Ge,´

P

(b) For any fixed K–basis
␣

Yi

(

iPI
of g1 , there exists an isomorphism of (set-valued) functors A0|d1

K –

exp
`

p´q1bK g1
˘

, with d1 :“ dimK
`

g1
˘

“ |I| , given on A–points, for A P (Wsalg)K , by

A0|d1

K pAq “ A d1
1 ÝÝÝÑ exp

`

A1bK g1
˘

,
`

ηi
˘

iPI
ÞÑ exp

`
ř

iPI ηi Yi

˘

(c) There exist isomorphisms of (set-valued) functors

G` ˆ A0|d1

K – Ge
P

, G
x2y
` ˆ A0|d1

K – Ge,´
P

, and A0|d1

K ˆ G` – Ge
P

, A0|d1

K ˆ G
x2y
` – Ge,´

P

given on A–points — for every A P (Wsalg)K — respectively by
`

g` ,
`

ηi
˘

iPI

˘

ÞÑ g` ¨ exp
`
ř

iPI ηi Yi

˘

and
``

ηi
˘

iPI
, g`

˘

ÞÑ exp
`
ř

iPI ηi Yi

˘

¨ g`

Proof. Like for Proposition 3.2.4, the proof is very close to (half of) that of Theorem 2.4.10, with a few,
technical differences that involve the representation V of §3.4.2; the necessary changes can easily be dealt
with much like in the proof of Proposition 3.2.4. Details are left to the reader.

3.4.5. The Lie supergroup structure of Ge
P
. For any given P P (sHCp)K and A P (Wsalg)K , by Propo-

sition 3.4.4(c), we have a particular bijection ϕ e
A : G`pAq ˆ A0|d1

K pAq
–

ãÝÝÝÝÝ�Ge
P

pAq whose restriction to
G`pAq , identified with G`pAq ˆ

␣

p0qiPI

(

, is the identity — onto the copy of G`pAq inside Ge
P

pAq .
Now, G`pAq is by definition an A0–manifold (cf. [3]), of the same type (real smooth, etc.) as P :“

pG`, gq ; on the other hand, A0|d1

K pAq carries canonical structures of A0–manifold of any type (real smooth,
etc.), then also of the type of G`pAq . So there exists also a canonical “product structure” of A0–manifold

— of the same type of P — onto G`pAqˆA0|d1

K pAq . Then we push-forward — through ϕ e
A — this canonical

A0–manifold structure of G`pAq ˆ A0|d1

K pAq onto Ge
P

pAq , which then is an A0–manifold on its own.
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Using the above mentioned structure of A0–manifold on Ge
P

pAq for each A P (Wsalg)K , given a morphism
f : A1 ÝÑA2 in (Wsalg)K we can check that the corresponding group morphism Ge

P
pfq : Ge

P
pA1qÝÑGe

P
pA2q

is a morphism of A1
0–manifolds, hence it is a morphism of A0–manifolds (cf. [3]). Thus Ge

P
is also a functor

from Weil K–superalgebras to A0–manifolds (real smooth, real analytic or complex holomorphic as P is).

Finally, looking at the commutation relations in Ge
P

pAq we find that the group multiplication and the
inverse map are “regular” (i.e., “real smooth”, “real analytic” or “complex holomorphic”, according to the
type of P ): this is proved via calculations like those used to prove Proposition 3.4.1(b) or Proposition
2.4.8(c). So Ge

P
pAq is a group element among A0–manifolds, i.e. it is a Lie A0–group; thus (cf. §2.1.3), the

functor Ge
P
is a Lie supergroup (of real smooth, real analytic or complex holomorphic type as P is).

Eventually, the outcome of this discussion — the key result of the present section — is the following
statement, which provides a second “backward functor” from sHCp’s to Lie supergroups:

Theorem 3.4.6. The recipe in Definition 3.3.1 provides functors

Ψe : (sHCp)8
R ÝÑ (Lsgrp)8

R , Ψe : (sHCp)ωR ÝÑ (Lsgrp)ωR , Ψe : (sHCp)ωC ÝÑ (Lsgrp)ωC

given on objects by P ÞÑ ΨepPq :“ Ge
P

and on morphisms by
´

pϕ` , φq : P 1 ÝÝÑ P2
¯

ÞÑ

´

Ψe
`

pϕ` , φq
˘

: Ψe
`

P 1
˘

:“ G e
P1 ÝÝÑ G e

P2 “: Ψe
`

P2
˘

¯

where the functor morphism Ψe
`

pϕ` , φq
˘

: Ψe
`

P 1
˘

:“ G e
P1 ÝÝÑ G e

P2 “: Ψe
`

P2
˘

is defined by

Ψe
`

pϕ` , φq
˘

A
: g1

` ÞÑ ϕ`

`

g1
`

˘

, exp
`

Y 1
˘

ÞÑ exp
`

φ
`

Y 1
˘˘

(3.9)

for all A P (Wsalg)K , g1
` P G1

`pAq , Y 1 P A1bK g1
1 , with P 1 “

`

G1
` , g1

˘

and P2 “
`

G2
` , g2

˘

.

Proof. We are left to prove that the given definition for Ψe
`

pϕ` , φq
˘

does make sense: all the rest is
proved by our previous analysis or is trivial. Now, (3.9) above fixes the values of our would-be morphism
Ψe

`

pϕ` , φq
˘

A
on generators of Ψe

`

P 1
˘

pAq :“ G e
P1 pAq : a direct check shows that all defining relations

among such generators — in G e
P1 pAq — are mapped to corresponding relations in G e

P2 pAq , thus yielding a
well-defined group morphism. In particular, this follows from the special properties of the Lie polynomials

P
pd1q
0 and P

pd1q
1 and of their factors/summands T

psq
0 and T

psq
1 mentioned in Lemma 2.4.5(h).

However, we must still show that each such Ψe
`

pϕ` , φq
˘

A
is a morphism of A0–manifolds too.

Both groups G e
P1 pAq and G e

P2 pAq admit factorizations of type G` ˆ exp
`

A1bK g1
˘

, as in Proposition

3.4.4(a): so any g1 P G e
P1 pAq uniquely factors into g1 “ g1

` ¨ exp
`

Y 1
˘

; then Ψe
`

pϕ` , φq
˘

A
maps g1 onto

Ψe
`

pϕ` , φq
˘

A

`

g1
˘

“ Ψe
`

pϕ` , φq
˘

A

`

g1
` ¨ exp

`

Y 1
˘˘

“ ϕ`

`

g1
`

˘

¨ exp
`

φ
A

`

Y 1
˘˘

(3.10)

where φ
A

`

Y 1
˘

stands for the image of Y 1 for the map φ
A
: A1bK g1

1 ÝÝÑ A1bK g2
1 obtained by scalar

extension from φ
ˇ

ˇ

g1
1
: g1

1 ÝÝÑ g2
1 . As both ϕ` and exp ˝φ

A
˝
`

exp
ˇ

ˇ

A1b g1

˘´1
are maps of A0–manifolds,

from (3.10) we deduce that Ψe
`

pϕ` , φq
˘

A
is a map of A0–manifolds too, q.e.d.

3.5 The new equivalences (sHCp) – (Lsgrp) .

In Section 3 we introduced two functors, denoted Ψ˝ and Ψe , from sHCp’s to Lie supergroups. We will
now show that both these two functors are quasi-inverse to the “natural” functor Φ considered in Section 2.2,
so that (together with Φ ) they provide equivalences between the categories of sHCp’s and of Lie supergroups.

We begin with the first half of our task, namely proving that Φ ˝ Ψ – id(sHCp) for Ψ P
␣

Ψ˝,Ψe
(

.

Proposition 3.5.1. Let Φ and Ψ P
␣

Ψ˝,Ψe
(

be as in §2.2.2 and in Theorems 3.2.6 and 3.4.6.

Then Φ˝Ψ˝ – id (sHCp) , where “ (sHCp) ” must be read as either (sHCp)8
R , or (sHCp)ωR , or (sHCp)ωC ,

and Φ and Ψ must be taken as working onto the corresponding types of Lie supergroups or sHCp’s.
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Proof. This follows almost directly from definitions: we sketch the case of Ψ˝, that of Ψe being similar.
Consider a super Harish-Chandra pair P :“

`

G` , g
˘

, and let G˝
P

“ Ψ˝pPq , so that
`

Φ ˝ Ψ˝
˘

pPq “

Φ
`

G˝
P

˘

“
``

G˝
P

˘

0
, Lie

`

G˝
P

˘˘

. Then
`

G˝
P

˘

0
“ G` just by construction. In addition, the definition of Lie pGq

and Proposition 3.2.4 together yield Lie
`

G˝
P

˘

“ Lie
`

G`ˆGă
´

˘

“ Lie
`

G`

˘

‘Te

`

Gă
´

˘

“ Lg0 ‘Lg1 “ Lg

hence, identifying Lg “ g , simply Lie
`

G˝
P

˘

“ g . Thus
`

Φ ˝ Ψ˝
˘

pPq “ Φ
`

G˝
P

˘

“
``

G˝
P

˘

0
,Lie

`

G˝
P

˘˘

–
`

G` , g
˘

“ P , i.e. Φ ˝ Ψ˝ acts on objects — up to natural isomorphisms — as the identity, q.e.d.

Now let pϕ`, φq : P 1 “
`

G1
` , g1

˘

ÝÝÑ
`

G2
` , g2

˘

“ P2 be a morphism of sHCp’s and ϕ :“ Ψ˝
`

pϕ`, φq
˘

the corresponding (via Ψ˝) morphism of supergroups; we aim to prove that
`

Φ ˝ Ψ˝
˘`

pϕ`, φq
˘

“ Φpϕq

coincides, up to the natural isomorphisms
`

Φ ˝Ψ˝
˘`

P 1
˘

– P 1 and
`

Φ ˝Ψ˝
˘`

P2
˘

– P2 , with pϕ`, φq itself.

By definition Φpϕq :“
`

ϕ
ˇ

ˇ

pG
P1 q

0

, dϕ
˘

, and ϕ
ˇ

ˇ

pG
P1 q

0

“ Ψ˝
`

pϕ` , φq
˘ˇ

ˇ

G1
`

“ ϕ` by construction. Moreover,

like in the proof of Theorem 3.2.6, using the factorizations GP1 “ G1
` ˆ G1,ă

´ and GP2 “ G2
` ˆ G2,ă

´ we find

that onto Te

`

GP1

˘

“ Te

`

G1
`

˘

‘ Te

`

G1,ă
´

˘

“ g0 ‘ g1 “ g our dϕ acts by dϕ
ˇ

ˇ

g0
“ dϕ` “ φ

ˇ

ˇ

g0
and

dϕ
ˇ

ˇ

g1
“ φ

ˇ

ˇ

g1
; this gives dϕ “ dϕ

ˇ

ˇ

g0
‘ dϕ

ˇ

ˇ

g1
“ φ0 ‘φ1 “ φ , hence Φpϕq :“

`

ϕ
ˇ

ˇ

pG
P1 q

0

, dϕ
˘

“
`

ϕ` , φ
˘

.

The second half of our task is proving that Ψ˝Φ is isomorphic to the identity functor on Lie supergroups:

Proposition 3.5.2. Let Φ and Ψ P
␣

Ψ˝,Ψe
(

be as in §2.2.2 and in Theorems 3.2.6 and 3.4.6.

Then Ψ˝˝Φ – id (Lsgrp) , where “ (Lsgrp) ” must be read as either (Lsgrp)8
R , or (Lsgrp)ωR , or (Lsgrp)ωC ,

and Φ and Ψ must be taken as working onto the corresponding types of Lie supergroups or sHCp’s.

Proof. We begin again by looking at Ψ˝ . Given a Lie supergroup G , set g :“ Lie pGq and P :“ ΦgpGq “

pG0, gq . We look at Ψ˝
`

ΦpGq
˘

“ Ψ˝pPq “: G˝
P
, and prove that it is naturally isomorphic to G . For any

A P (salg)k , by abuse of notation we denote with the same symbol any g
0

P G0pAq as belonging to GpAq

— via the embedding of G0pAq into GpAq — and as an element of G˝
P

pAq . With this convention, we easily
see that Lemma 2.4.5 yields the following: there exists a unique group morphism ϕ

A
: G˝

P
pAq ÝÝÝÑGpAq

such that ϕ
A

p g
0
q “ g

0
for all g

0
P G0pAq and ϕ

A

`

p1 ` η Y q
˘

“ p1 ` η Y q for all η P A1 , Y P g1 .
Due to the factorization (2.7) in Proposition 2.4.8, we have also that the morphism ϕ

A
is surjective. Even

more, the Global Splitting Theorem for G (Theorem 2.4.10) and for G˝
P
(Proposition 3.2.4) together imply

that the morphism ϕ
A
is also injective, hence it is a group isomorphism. Finally, all these ϕ

A
’s are clearly

natural in A , thus altogether they provide an isomorphism between G˝
P

“ Ψ˝
`

ΦpGq
˘

and G , q.e.d.

The case of Ψe is dealt with similarly, using the parallel results for Ge
P
to those applied for G˝

P
: namely,

Lemma 2.4.5, formula (2.10) instead of (2.7), Proposition 3.4.4 instead of Proposition 3.2.4, etc.

To finish with, all the above jointly give the following, main result:

Theorem 3.5.3. Let Φ and Ψ P
␣

Ψ˝,Ψe
(

be as in §2.2.2 and in Theorems 3.2.6 and 3.4.6.
Then Ψ˝ and Ψe are quasi inverse to Φ , so they provide category equivalences

(sHCp)8
R – (Lsgrp)8

R , (sHCp)ωR – (Lsgrp)ωR , (sHCp)ωC – (Lsgrp)ωC

3.6 Linear case and representations.

We shall now briefly discuss the fallout, in representation theory, of the existence of a an equivalence
between Lie supergroups and sHCp’s, in particular when realized via the functors Ψ˝ and Ψe of §3.

3.6.1. The linear case. Assume that the Lie supergroup G is linear, i.e. it embeds into some GLpV q , where
V is a suitable superspace (in other words, there exists a faithful G–module V ). Then G0 and g :“ LiepGq

embed into EndpV q , and the relations linking them such that pG0, gq is a super Harish-Chandra pair are
relations among elements of the unital, associative superalgebra EndpV q . Conversely, one can formally define
a “linear sHCp” as being any sHCp pG0, gq such that both G0 and g embed into some EndpV q , and the
compatibility relations linking G0 and g hold true as relations inside EndpV q itself — mimicking what is
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done in [16], Definition 4.2.1(b), in the algebraic setup. The above then tells us that, if G is linear, then its
associated sHCp ΦpGq “: P is linear too — both being linearized via their faithful representation onto V .

On the other hand, let us start with a linear sHCp, say P “ pG`, gq : so the latter is embedded (in
the obvious sense) into the sHCp

`

GL0pV q, glpV q
˘

for some V . Thus for A P (Wsalg)K both G`pAq and

AbK g are embedded into
`

EndpV q
˘

pAq , with relations among them — inside
`

EndpV q
˘

pAq — induced by

the very notion of linear sHCp. Now consider in
`

EndpV q
˘

pAq all elements exppη Y q “ p1 ` η Y q — with

η P A1 , Y P g1 — that actually belong to
`

GLpV q
˘

pAq : moreover, G`pAq Ď
`

GLpV q
˘

pAq too. Therefore,

we can take inside
`

GLpV q
˘

pAq the subgroup G˝,V
P

pAq generated by G`pAq and by all the p1 ` η Y q’s.

A trivial check shows that the elements from G`pAq and the p1 ` ηiYiq’s enjoy all relations that enter
in the very definition G˝

P
pAq : thus, there exists a (unique) group epimorphism ϕ˝

A
: G˝

P
pAq ÝÝÝÑG˝,V

P
pAq

such that ϕ˝
A

p g` q “ g` and ϕ˝
A

`

p1 ` η Y q
˘

“ p1 ` η Y q for all g` P G`pAq , η P A1 , Y P g1 .
On the other hand, G˝,V

P
pAq acts faithfully on V — indeed, it is “linearized by V ”. This allows one

to show that the like of the Global Splitting Theorem — cf. Theorem 2.4.10 and Proposition 3.2.4 — does
hold true for G˝,V

P
pAq , via the same analysis and arguments used in the proofs of those results but for one

change: the linearization of G˝,V
P

pAq has to replace the following key ingredients:

(1) in the proof of Theorem 2.4.10, one has that GpAq :“
š

xP|G| Hom(salg)K

`

O|G|,x , A
˘

,

(2) in the proof of Proposition 3.2.4 (and lemmas before), G˝
P

pAq is acting onto V :“ Ind g
g0

p1lq — cf. (3.5).

In fact, in both cases — of eitherGpAq orG˝
P

pAq — the group under examination is realized as a group of maps
and these are rich enough to “separate (enough) points” so as to guarantee the uniqueness of factorization(s)
that is the core part of the Global Splitting Theorem. In the case of G˝,V

P
pAq instead, its built-in linearization

provides a similar realization as “group of maps”, and this again allows to separate enough points to get
global splitting(s) for G˝,V

P
pAq too. Finally, thanks to the Global Splitting Theorem for G˝

P
pAq and for

G˝,V
P

pAq , one can apply again the arguments used in the proof of Proposition 3.5.2 and successfully prove
that the above group (epi)morphism ϕ˝

A
: G˝

P
pAqÝÝÝÑG˝,V

P
pAq is also injective, hence it is an isomorphism.

By construction all these isomorphisms ϕ˝
A

are natural in A , hence they give altogether a functor iso-

morphism ϕ˝ : G˝
P

–
ÝÝÑG˝,V

P
. Therefore G˝

P
– G˝,V

P
, which means that we found a different, concrete

realization of G˝
P
, that is now constructed explicitly as the linear Lie supergroup G˝,V

P
.

In a parallel way, still starting with a linear sHCp P “ pG`, gq embedded into
`

GL0pV q, glpV q
˘

, we

consider in
`

EndpV q
˘

pAq all elements of the form exppYq with Y P A1bK g1 and then take the subgroup

Ge,V
P

pAq of
`

GLpV q
˘

pAq generated by G`pAq and by all the exppYq’s. Acting like above we find that there

exists a group epimorphism ϕe
A
: Ge

P
pAq ÝÝÝÑGe,V

P
pAq such that ϕe

A
p g` q “ g` , ϕe

A

`

exppYq
˘

“ exppYq ,
for all g` P G`pAq and Y P A1bK g1 . Even more, still by the same method as above we find that all these

ϕe
A
’s are in fact isomorphisms, natural in A , hence they define a functor isomorphism ϕe : Ge

P

–
ÝÝÑGe,V

P
.

This gives yet another concrete realization of Ge
P
, now explicitly realized as the linear Lie supergroup Ge,V

P
.

Finally, the very construction also shows, indeed, that G˝,V
P

“ Ge,V
P

.

3.6.2. Induction from G0 to G . Let G be a supergroup (of any type), with classical subsupergroup G0 ,
and V be any G0–module. We shall now present an explicit construction of the induced G–module IndG

G0
pV q .

The G0–module V is also a g0–module, hence one has the induced g–module Ind g
g0

pV q , that one can

realize as Ind g
g0

pV q “ Ind
Upgq

Upg0q
pV q “ Upgq bUpg0qV . This bears also a unique structure of G0–module

which is compatible with the g–action and coincides with the original G0–action on K bUpg0qV – V given
from scratch. Indeed, we can describe explicitly thisG0–action, as follows. First, definitions give Ind g

g0
pV q “

UpgqbUpg0qV “
Ź

g1 bKV — see (3.4) — with the g0–action given by x.pybvq “ adpxqpyqbv`ybpx.vq

for x P g0 , y P
Ź

g1 , v P V , where by ad we denote the unique g0–action on
Ź

g1 by algebra derivations
induced by the adjoint g0–action on g1 . Second, this action integrates to a (unique) G0–action given by
g0.py b vq :“ Adpg0qpyq b pg0.vq for g0 P G0 , y P

Ź

g1 , v P V , where we write Ad for the G0–action on
Ź

g1 by algebra automorphisms induced by the adjoint G0–action on g1 .
The key point is that the above G0–action and the built-in g–action on Ind g

g0
pV q are compatible, in that

they make Ind g
g0

pV q into a module for the sHCp P :“ pG0 , gq “ ΦpGq . Then for Ψ P
␣

Ψ˝,Ψe
(

, since

Ψ
`

pG0 , gq
˘

– G , clearly Ind g
g0

pV q bears a unique structure of G–module which corresponds to the previous
P–action. In down-to-earth terms what happens is the following. The action of P :“ pG0 , gq “ ΦpGq onto
W :“ Ind g

g0
pV q is given by the G0–action (induced by that on V ) and a compatible g–action. Then for

22



any A P (Wsalg)K we have also that all of A1 bK g1 “acts” onto A bK W : thus well-defined operators
p1 ` η Y q and exppYq — with pη , Y q P A1 ˆ g1 , Y P A1bK g1 — exist in

`

GLpW q
˘

pAq . One checks that
these p1 ` η Y q’s, or the exppYq’s, altogether enjoy among themselves and with the operators given by the
G0–action all relations that enter in the definition of either Ψ˝pPq :“ G˝

P
or ΨepPq “ Ge

P
— thus in both

cases we get an action of ΨpPq on W , extending the initial one by G0 : but ΨpPq “ G , so we are done.
Thus we define as IndG

G0
pV q the space W :“ Ind g

g0
pV q endowed with this G–action: one checks that

this construction is functorial in V and has the universal property making it adjoint of “restriction” (from
G–modules to G0–modules), so it can be correctly called “induction” functor. In addition, if the G0–module
V is faithful then the G–module IndG

G0
pV q is faithful too: this means that if G0 is linearizable, then G is

linearizable too; in fact, from a linearization of G0 we can construct (via induction) a linearization of G too.
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