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EXPONENTIAL MIXING FOR SKEW PRODUCTS

WITH DISCONTINUITIES

OLIVER BUTTERLEY AND PEYMAN ESLAMI

Abstract. We consider the 2D skew product F : (x, u) �→ (f(x), u + τ(x)),
where the base map f is a piecewise C 2, covering and uniformly expanding
the map of the circle, and the fibre map τ is piecewise C 2. We show that
this system mixes exponentially when τ is not cohomologous (via a Lipschitz
function) to a piecewise constant.

1. Introduction and results

In the study of dynamical systems, establishing the rate of mixing of a given
system is of foremost importance. It is a fundamental property describing the
rate at which information about the system is lost. More importantly the rate of
mixing (or typically slightly stronger information which is obtained whilst proving
the rate of mixing) can be used to prove many other statistical properties (see, for
example, [19, §9] and [7, Chapter 7]). Furthermore, of physical relevance, these
strong results associated to good rates of mixing are crucial when studying weakly
coupled systems [11, 22].

Rate of mixing results were first obtained for expanding maps and for hyperbolic
maps (see [23] and references within), then also for slower mixing, nonuniformly
hyperbolic systems (e.g., [30,32,33]). In the case of hyperbolic flows or skew prod-
ucts like the one studied here one direction is completely neutral, with no expansion
or contraction. These systems are not hyperbolic but merely partially hyperbolic.
In these situations there is a mechanism at work, different from hyperbolicity, but
which is nonetheless sufficient for producing good statistical properties including ex-
ponential rate of mixing. Dolgopyat [10], extending work of Chernov [8], succeeded
in developing technology for studying this neutral mechanism and consequently
proved exponential mixing for mixing Anosov flows when the stable and unstable
invariant foliations are both C 1. Using and developing these ideas, various results
followed [2,5,26,31]. However all the above systems were rather smooth or at least
Markov.

Our knowledge concerning this same neutral mechanism in systems with discon-
tinuities is less than satisfactory at present. Baladi and Liverani [4] prove expo-
nential mixing for piecewise smooth 3D hyperbolic flows which preserve a contact
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2 OLIVER BUTTERLEY AND PEYMAN ESLAMI

structure; Obayashi [27] proves exponential mixing for certain suspension semiflows
over expanding interval maps with discontinuities; Gouëzel [17] proves exponential
mixing for certain skew products where the base map is nonuniformly expanding
with discontinuities. In both the last works, the base map is required to admit an
induced map which is Markov, uniformly expanding, and has exponential tails (i.e.,
a Young tower).

In this article we study the 2D skew product map of T2 which we denote by F .
It is defined as follows. The base map f is a map on T1 which is required to be
piecewise C 2. By this we mean that there exists a finite set of disjoint open intervals
{Ik}k which covers T1 except for a finite number of points and that f :

⋃

k Ik → T1

is C 2 on each connected component of the domain and admits a C 2 extension to
the closure of each Ik. Also f is required to be uniformly expanding and covering.1

The fibre map τ :
⋃

k Ik → R is similarly required to be C 2 on each connected
component of the domain and admit a C 2 extension to the closure of each Ik. Let
Jk := Ik × T1. The skewproduct F :

⋃

k Jk → T2 is defined by2

F : (x, u) �→ (f(x), u+ τ (x)).

At no stage do we require the map to be Markov, nor do we work with tower
constructions to reduce to the Markov case. Since the map f is piecewise C 2 and
uniformly expanding it is known that there exists ν, an f -invariant probability mea-
sure which is absolutely continuous with respect to Lebesgue. Since the dynamics
in the fibres is nothing more than a rigid rotation this means that µ := ν × Leb
is an F -invariant probability measure on T2. Given observables g, h : T2 → C the
correlation is defined as usual by Corg,h(n) := µ(g · h ◦ Fn) − µ(g) · µ(h). We say
that F : T2 → T2 mixes exponentially if, for each α ∈ (0, 1), there exists ζ > 0,
C > 0 such that3 |Corg,h(n)| ≤ C ‖g‖

Cα ‖h‖
Cα e−nζ for every g, h ∈ C α(T2,C)

and n ∈ N. We say that τ is cohomologous to a piecewise constant if there exists
Lipschitz θ : T1 → R and piecewise constant χ : T1 → R such that τ = θ ◦f−θ+χ.
Moreover the discontinuities of χ occur only at points where either f or τ is dis-
continuous.

Our main result is the following.

Theorem 1. Let F : T2 → T2 be a piecewise-C 2 skew product over an expanding
map as described above. If τ is not cohomologous to a piecewise constant, then F
mixes exponentially.

The remainder of this document is devoted to the proof of the above theorem.
The basic idea is from Dolgopyat [10]. However we combine the best technology
from the subsequent articles [2,5,26,31] in order to deal with the present difficulties,
in particular the problems arising from the discontinuities.

In the case where τ is Lipschitz cohomologous to a piecewise constant function,
the skew product might be mixing or might not. In the mixing case arbitrarily slow
mixing rates are possible just as for suspension semiflows with piecewise constant

1Covering means that for every subinterval ω ⊂ T1 there exists some n such that fnω covers
a full measure subset of T1. Covering implies that the unique absolutely continuous invariant
probability density is bounded away from zero [24].

2Here and throughout the document, if u ∈ T1, s ∈ R, then we consider u + s ∈ T1 in the
natural sense that T1 = R�Z.

3The space of α-Hölder functions on T2 taking values in C is denoted by Cα(T2,C) and the

Hölder norm defined as ‖h‖
Cα := supx �=y

|h(x)−h(y)|
|x−y|α

+ supx |h(x)|.
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EXPONENTIAL MIXING FOR SKEW PRODUCTS 3

return time functions [29]. See [16] for the case of skew products over Markov
expanding maps where τ takes just two values. A polynomial rate of mixing is
proven dependent on the Diophantine ratio of these two values. In an alternative
direction, slow rates of mixing can be the result of a nonuniformly expanding base
map, as opposed to the uniform expansion required in our setting: If the base map
fails to mix exponentially, then the skew product will also fail to mix exponentially.

We note that the issue of the discontinuities can be approached by using a tower
construction and so reducing to the case of a base map which is Markov. This
is what has been done by Obayashi [27] and Gouëzel [17]. However one problem
with such tower constructions is that the tower is very sensitive to changes in
the underlying system, a phenomenon which could cause problems when one is
interested in determining the behaviour of statistical properties under perturbation
of the original system. Nevertheless some results on the stability of the system are
possible, even using methods which involve tower constructions [1, 3, 14]. However
many other stability results are of interest, for example, the following question:
Is it possible to choose the constants ζ, C > 0 which appear in the definition of
exponential mixing such that an open set of skew products mixes at this uniform
rate? There are suggestions [23] that answering this question could be possible
with the direct strategy used in this article, whereas the possible sensitivity of tower
constructions to perturbations suggest that such an approach could be problematic.
Moreover, it is unclear how to use a tower structure when studying a hyperbolic
base map, as opposed to an expanding base map, whereas the approach used in
the present work has a chance to be extended to such a setting. We note that
in both the papers [17, 27], the condition of not being cohomologous to a locally
constant function is put on the induced fibre map (or return time), with respect
to the induced base map. In this present work we are able to put this condition
directly on the original fibre map with respect to the original base map.

From a technical point of view we are forced in two opposing directions in the
proof. To deal with discontinuities we are forced to consider densities of rather low
regularity. However we also need to take advantage of Dolgopyat’s oscillatory can-
cellation argument, which requires some good degree of regularity for the density.

The result for skew products is closely related to the analogous result for sus-
pension semiflows. At a techincal level this can be seen from the twisted transfer
operator (introduced below (2.1)), which is the same object used when studied in
the context of skew products or flows (see, for example, [6]), with exactly the same
estimates being required.

In a separate work [12], the second author proves a stretched-exponential mix-
ing rate for skew products where the base map is C 1+α on a countable partition
and the fibre map is piecewise C 1. The weaker assumptions mean that sup |f ′| is
not necessarily finite and the invariant density for f is not bounded away from 0.
Such bounds are used for example in Section 3 on transversality. Also the mere
C 1 regularity of the fibre map τ prevents one from using the type of oscillatory
cancellation lemma that is used in this article (Lemma 15). The approach of [12]
is based on the introduction of complex standard pairs and allows the author to
obtain a stretched-exponential version of Proposition 2 without functional analytic
estimates such as Lemma 1.

Section 2 concerns the estimate of the norm of twisted transfer operators reducing
the problem to a single key estimate (Proposition 2). In Section 3 the key notion of
transversality is discussed and a certain estimate (Proposition 3) is shown to hold in
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4 OLIVER BUTTERLEY AND PEYMAN ESLAMI

the case when τ is not cohomologous to a piecewise constant. The key oscillatory
cancellation estimate (Proposition 2) is proven in Section 4, crucially using the
transversality estimate from Section 3. Finally, in Section 5, the estimate on the
twisted transfer operators is used to produce an estimate of exponential mixing.

2. Preparation for the main estimate

From this point onwards we will assume that λ̃ := inf f ′ > 2. In general it would
suffice to assume that there exists n ∈ N such that inf (fn)′ > 1. In that case we
would simply consider a sufficiently large iterate m such that inf (fm)′ > 2 and

proceed as now. Let Λ := sup |f ′| ≥ λ̃. For future convenience let Jn := |(fn)′|
−1

.
The twisted transfer operator, for all b ∈ R, n ∈ N, is given by the formula

(2.1) L
n
b h(y) =

∑

x∈f−n(y)

Jn(x) · h(x) · e
ibτn(x).

A simple estimate shows that ‖L n
b h‖

L1(T1) ≤ ‖h‖
L1(T1). We will work extensively

with functions of bounded variation due to the suitability of this function space for
discontinuities. The Banach space is denoted (BV, ‖·‖

BV
), variation is defined by

Var(h) := sup
{∫

T1 h · η′ : η ∈ C 1(T1,C), |η| ≤ 1
}

, and ‖·‖
BV

:= Var(·) + ‖·‖
L1(T1)

as usual. We have the following Lasota-Yorke inequality.

Lemma 1. There exists λ > 1, Cλ > 0 such that, for all n ∈ N, b ∈ R, h ∈ BV,

‖L n
b h‖

BV
≤ Cλλ

−n ‖h‖
BV

+ Cλ(1 + |b|) ‖h‖
L1(T1) .

Proof. The proof is essentially standard (see for example [19]), but it is important
to note the factor of |b| which appears in front of the L1 norm.

We already know that ‖Lbh‖L1 ≤ ‖h‖
L1 . Note that

Var(h) = sup

{∫

T1

h · η′ : η ∈ C
1(T1,C), |η| ≤ 1

}

.

Consequently we must estimate
∫

T1 Lbh · η′ =
∫

T1 h · (eibτ · η′ ◦ f). In order to do
this note that (for convenience we denote J := J1 = 1/ |f ′|)

[

J · η ◦ f · eibτ
]′
= J ′ · η ◦ f · eibτ + ibτ ′ · J · η ◦ f · eibτ + (eibτ · η′ ◦ f).

This means that
∣

∣

∣

∣

∫

T1

Lbh · η′
∣

∣

∣

∣

≤ ‖J ′‖
L∞ ‖h‖

L1 + |b| ‖τ ′ · J‖
L∞ ‖h‖

L1

+

∣

∣

∣

∣

∫

T1

h ·
[

J · η ◦ f · eibτ
]′
∣

∣

∣

∣

.

The remaining problem is that [J · η ◦ f · eibτ ] could be discontinuous. Therefore
we introduce the quantity φ : T1 → R which is piecewise affine (discontinuous
only where [J · η ◦ f · eibτ ] is discontinuous) and such that ([J · η ◦ f · eibτ ]− φ)(x)
tends to 0 as x approaches any discontinuity point. This means that [J · η ◦ f ·
eibτ − φ] is continuous and piecewise4 C 1. Note that ‖φ‖

L∞ ≤ ‖J‖
L∞ and so

∥

∥[J · η ◦ f · eibτ ]− φ
∥

∥

L∞
≤ 2 ‖J‖

L∞ . On the other hand, taking advantage of the
finite number of discontinuities in this setting, we know that ‖φ′‖

L∞ is bounded by

4That [J · η ◦ f · eibτ − φ] is continuous and piecewise C 1 means that it may be approximated
by a C 1 function with error small in the appropriate sense that makes no difference to the final
estimate.
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EXPONENTIAL MIXING FOR SKEW PRODUCTS 5

some constant which depends on the size of the smallest image of an element of the
partition of smoothness. We have shown that

Var(Lbh) ≤ 2 ‖J‖
L∞ Var(h) + (‖J ′‖

L∞ + |b| ‖τ ′ · J‖
L∞ + ‖φ′‖

L∞) ‖h‖
L1 .

This suffices5 since we assumed that inf |f ′| > 2 and so 2 ‖J‖
L∞ < 1. Consequently

the above estimate may be iterated to produce an estimate for all n ∈ N. �

These estimates and the compactness of the embedding BV →֒ L1(T1), by the
usual arguments (see, for example, [21]), imply that the operator Lb : BV → BV

has spectral radius not greater than 1 and essential spectral radius not greater than
λ−1 ∈ (0, 1). The spectral radius of L0 : BV → BV is equal to 1.

It is convenient to introduce the equivalent norm

‖h‖(b) := (1 + |b|)−1 ‖h‖
BV

+ ‖h‖
L1(T1) .

The main purpose of this section is to prove the following result.

Proposition 1. There exists b0 > 0, ρ > 0, and γ2 > 0 such that

‖L
n(b)
b ‖(b) ≤ e−n(b)γ2 , for all |b| ≥ b0, n(b) := ⌈ρ ln |b|⌉.

The remainder of the section will be devoted to the proof of the above. The
proof is self-contained apart from using Proposition 2 (see below), whose proof is
postponed to Section 4.

Lemma 2. For all n ∈ N, h ∈ BV, b ∈ R,

‖L n
b h‖(b) ≤ Cλλ

−n ‖h‖(b) + (Cλ + 1) ‖h‖
L1(T1) .

Proof. This is a direct result of the definition of the norm and the Lasota-Yorke
estimate (Lemma 1). �

First we deal with the easy case when ‖h‖
BV

is large in comparison to ‖h‖
L1(T1).

Let n0 := ⌈ln(4Cλ)/ lnλ⌉.

Lemma 3. Suppose that h ∈ BV, satisfying 2(Cλ+1)(1+ |b|) ‖h‖
L1(T1) ≤ ‖h‖

BV
.

Then ‖L n0

b h‖(b) ≤
3
4 ‖h‖(b).

Proof. The definition of n0 ∈ N is such that Cλλ
−n0 + 1

2 ≤ 3
4 . The conclusion then

follows from Lemma 2. �

This means that we only need to worry about estimating in the case where
2(Cλ + 1)(1 + |b|) ‖h‖

L1(T1) > ‖h‖
BV

. This is the case where the density can

be considered to be “almost constant” as long as we look at the scale of |b|−1.
Furthermore it will suffice to estimate the L1 norm and not the BV norm as
demonstrated by the following calculation. Using Lemma 2, for any n ∈ N,
(2.2)
∥

∥L
2n
b h

∥

∥

(b)
≤ Cλλ

−n ‖L n
b h‖(b) + (Cλ + 1) ‖L n

b h‖
L1(T1)

≤ C2
λλ

−2n ‖h‖(b) + Cλ(Cλ + 1)λ−n ‖h‖
L1(T1) + (Cλ + 1) ‖L n

b h‖
L1(T1)

≤ 2Cλ(Cλ + 1)λ−n ‖h‖(b) + (Cλ + 1) ‖L n
b h‖

L1(T1) .

5By considering higher iterates of the same argument, if one were interested in optimal esti-
mates, λ can be chosen arbitrarily close to lim supn→∞ |Jn|

1
n .
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6 OLIVER BUTTERLEY AND PEYMAN ESLAMI

It therefore remains to obtain exponential contraction of ‖L n
b h‖

L1(T1) in terms of

‖h‖(b) in the case when 2(Cλ + 1)(1 + |b|) ‖h‖
L1(T1) > ‖h‖

BV
.

In order to later deal with discontinuities we now introduce a “growth lemma”
suitable for this setting. Fix δ > 0 such that, for any interval ω ⊂ T1 of size |ω| ≤ δ,
the image fω consists of at most two connected components. We will define unions
of open intervals Ωn for all n ∈ N iteratively. Let Ω0 ⊂ T1 be an interval, |Ω0| ≤ δ.
Suppose that Ωn is already defined. Let ω be one of the connected components
of Ωn. The image fω is the union of intervals; some could be large, some could
be small. It is convenient to maintain all intervals of size less than δ, and so we
artificially chop long intervals so that they are always of size greater than δ/2 and
less than δ. In this fashion let the set {ωk}k be a set of open intervals which exhausts
ω except for a zero measure set and such that each fωk is a single interval of length
not greater than δ. The set Ωn+1 is defined to be a partition of Ωn produced by
following the same procedure for each connected component of Ωn.

We must control the measure of points close to the boundaries of Ωn = {ωj}j .

For any n ∈ N, x ∈ Ωn, let rn(x) := d(fn(x), fn(∂Ωn)), and hence let (m denotes
Lebesgue measure)

ZǫΩn := m({x ∈ Ωn : rn(x) ≤ ǫ}).

Let β := λ̃/2 and6 let Cβ := 4Λβδ−1λ̃−1(β − 1)−1.

Lemma 4. For all n ∈ N, ǫ > 0,

ZǫΩn ≤ β−nλ̃nZǫ/λnΩ0 + ǫCβ |Ω0| .

Proof. Suppose for the moment that Ωn consists of just one element, i.e., Ωn =
{ω}. We will estimate ZǫΩn+1. The image fω consists of at most two connected
components. But some of these connected components could be large, in which
case they will be cut into smaller pieces of size between δ/2 and δ. The set ∂Ωn+1

consists of points which come from one of three different origins: from ∂Ωn; from a
cut due to the discontinuities of the map; or from the artificial cuts. The first two
possibilities are bounded by 2Zǫ/λ̃Ωn. The total length of fω is not greater than

Λm(ω), and so the total number of artificial cuts is not greater than 2δ−1Λm(ω).
Summing these terms we obtain the estimate

ZǫΩn+1 ≤ 2Zǫ/λ̃Ωn + 4ǫ
Λ

δλ̃
m(ω).

The equivalent estimate holds, even when Ωn consists of more than one element.
Recall that 2 = β−1λ̃, and so the above estimate reads as

ZǫΩn+1 ≤ β−1λ̃Zǫ/λ̃Ωn + 4ǫ
Λ

δλ̃
m(Ωn),

and iteration produces the estimate (since
∑∞

j=0 β
−n = β

β−1 )

ZǫΩn ≤ β−nλ̃nZǫ/λ̃nΩ0 + ǫ
4Λβ

δλ̃(β − 1)
m(Ω0). �

6The quantity β is the one which appears in the growth lemma and represents how expansion
dominates over chopping (due to the discontinuities). In the present setting, because there are

merely a finite number of discontinuities it suffices to define β := λ̃/2. Even if there were a
countable number of discontinuities it is still possible to have a growth lemma of a similar form,
but then β would need to be chosen more carefully.
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EXPONENTIAL MIXING FOR SKEW PRODUCTS 7

The argument will depend crucially on the three quantities ρ1, ξ, ρ2 > 0. Let

(2.3) ρ1 :=
2

ln λ̃
, ξ :=

lnβ

2 ln λ̃
, ρ2 :=

ξ

2 lnΛ
,

and hence let n1(b) := ⌈ρ1 ln |b|⌉, n2(b) := ⌈ρ2 ln |b|⌉. Let n(b) := n1(b)+n2(b). For
notational simplicity we will often suppress the dependence on b of n, n1, n2. Note
that λ̃β−1 = 2 and so lnβ < ln λ̃ and hence ξ < 1

2 . We use two time scales: The

first n1 iterates are for a small interval of length |b|−(1+ξ) to expand significantly
to such an extent that the total size of the image is many times unit size and has
been cut into pieces by the dynamics repeatedly. Then we take n2 iterates to see
oscillatory cancellations. The argument will also depend on the choice of b0 > 0. At
several points during the argument this quantity will be chosen sufficiently large.

Denote by {Hℓ}ℓ the partition of T1 into subintervals of equal length such that

(2.4) |b|−(1+ξ) ≤ |Hℓ| ≤ 2 |b|−(1+ξ) .

We use this partition to approximate the density h. Denote by hb the density
which is constant on each Hℓ and equal to the average value of h on Hℓ. Note that
‖h‖

L1(T1) = ‖hb‖L1(T1).

Lemma 5. Let h ∈ BV, b ∈ R, and |b| ≥ b0 such that 2(Cλ+1)(1+|b|) ‖h‖
L1(T1) >

‖h‖
BV

and let hb be the piecewise constant function as defined in the above para-
graph. Then

‖h− hb‖L1(T1) ≤ 8Cλe
−n ξ

2(ρ1+ρ2) ‖h‖
L1(T1) .

Proof. Standard7 approximation results forBV functions imply that ‖h− hb‖L1(T1)

≤ 2 |b|−(1+ξ) ‖h‖
BV

since |Hℓ| ≤ 2 |b|−(1+ξ). Substituting the control on ‖h‖
BV

which is assumed we have

‖h− hb‖L1(T1) ≤ 4 |b|
−(1+ξ)

(Cλ + 1)(1 + |b|) ‖h‖
L1(T1) .

Ensuring that b0 > 1 we obtain (1 + |b|) ≤ 2 |b|. Increasing b0 more if required we

may assume that n(b) ≤ 2(ρ1 + ρ2) ln |b|. This means that |b|−ξ ≤ e
−n(b) ξ

2(ρ1+ρ2) .

Consequently ‖h− hb‖L1(T1) ≤ 8(Cλ + 1)e
−n(b) ξ

2(ρ1+ρ2) ‖h‖
L1(T1). �

Using Lemma 5 we know that in the case 2(Cλ + 1)(1 + |b|) ‖h‖
L1(T1) > ‖h‖

BV
,

‖L n
b h‖

L1(T1) ≤ ‖L n
b hb‖L1(T1) + 8(Cλ + 1)e

−n ξ

2(ρ1+ρ2) ‖h‖
L1(T1) ,

since hb =
∑

ℓ hb1ℓ where hb is constant on each interval Hℓ, and that ‖h‖
L1(T1) =

‖hb‖L1(T1). We now take advantage of the following result. This is the main

estimate which takes advantage of the oscillatory cancellation mechanism which
is present in this setting.

Proposition 2. There exists C3 > 0, γ3 > 0 such that, for all |b| ≥ b0 and ℓ,

‖L
n(b)
b 1Hℓ

‖
L1(T1) ≤ C3e

−n(b)γ3 ‖1Hℓ
‖
L1(T1) .

7By [13, §5.2.2], since h ∈ BV then for any ǫ > 0 there exists h̃ ∈ C 1 be such that
‖h− h̃‖

L1(T1) ≤ ǫ and |‖h̃′‖
L1(T1) − ‖h‖

BV
| ≤ ǫ. For each ℓ let xℓ ∈ Hℓ be such that

h̃(xℓ) =
∫
Hℓ

h̃(y) dy. For every x ∈ Hℓ we have the estimate |h̃(x)− h̃(xℓ)| ≤
∫
Hℓ

|h̃′| (y) dy.

This means that ‖h̃− h̃b‖L1(T1) =
∑

ℓ

∫
Hℓ

|h̃(x)− h̃(xℓ)| dx ≤ supℓ |Hℓ|
∫
T1 |h̃′| (y) dy. Using

the above approximation argument (to replace h with h̃) this implies the required estimate.
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8 OLIVER BUTTERLEY AND PEYMAN ESLAMI

The proof of the above is postponed to Section 4.
Combining Lemma 5 and Proposition 2 we obtain the estimate

‖L
n(b)
b h‖

L1(T1) ≤
(

8(Cλ + 1)e
−n(b) ξ

2(ρ1+ρ2) + C3e
−n(b)γ3

)

‖h‖
L1(T1)

≤ C4e
−n(b)γ4 ‖h‖

L1(T1)

where γ4 := min( ξ
2(ρ1+ρ2)

, γ3) and C4 := 8(Cλ + 1) + C3. We now substitute these

estimates into (2.2):

‖L
2n(b)
b h‖(b) ≤

(

2Cλ(Cλ + 1)λ−n(b) + (Cλ + 1)C4e
−n(b)γ4

)

‖h‖(b)

≤ (Cλ + 1)(2Cλ + C4)e
−n(b)γ5 ‖h‖(b) ,

where γ5 := min(lnλ, γ4). To complete the proof of Proposition 1 we must combine
the above estimate with Lemma 3. We choose b0 > 0 sufficiently large such that

‖L
2n(b)
b h‖(b) ≤ e−n(b)

γ5
2 ‖h‖(b)

for all |b| ≥ b0. Note that the estimate of Lemma 3 cannot be simply iterated since
the assumption of the estimate is not invariant. However we can argue as follows:
Either the estimate can be interated or the above estimate applies. Consequently
we obtain the exponential rate as required and complete the proof of Proposition 1.

3. Transversality

The purpose of this section is to prove Proposition 3 (see below). This is a crucial
estimate which will be required in Section 4. We may assume that sup |τ ′| > 0 since
if this does not hold, then τ is actually equal to a piecewise constant function and,
in particular, is cohomologous to a piecewise constant function. The first step is to
define a forward invariant unstable conefield. Let

C1 :=
2 sup |τ ′|

λ̃− 1
> 0.

Define the constant conefield with the cones K = {
( α
β

)

: | βα | ≤ C1}. This conefield
is strictly invariant under

DF (x) =
( f ′(x) 0

τ ′(x) 1

)

.

To see the invariance note that DF (x) :
( α
β

)

�→
(

α′

β′

)

where β′

α′
= (τ ′(x)+ β

α )/f
′(x).

Let x1, x2 ∈ T1 be two preimages8 of some y ∈ T1, i.e., fn(x1) = fn(x2) = y.
We write x1 ⋔ x2 (meaning transversal) if DFn

x1
K ∩ DFn

x2
K = {0}. Note that

this transversality depends on n even though the dependence is suppressed in the
notation. Define the quantity9

ϕ(n) := sup
y∈T1

sup
x1∈f−n(y)

∑

x2∈f−n(y)
x1 �⋔x2

Jn(x2).

This crucial quantity gives control on the fraction of preimages which are not
transversal. In this section we prove the following, which is an extension of Tsu-
jii [31, Theorem 1.4] to the present situation where discontinuities are permitted.

8Recall that f is defined on the open subset
⋃

k Ik ⊂ T1. As such if x ∈ f−n(y), then DFn
x is

well defined.
9It is useful to compare the definition of ϕ(n) with L n

0 1(y) =
∑

x∈f−n(y) Jn(x) (the transfer

operator Lb is defined in (2.1)).
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Much of the argument follows the reasoning of the above mentioned reference with
some changes due to the more general setting.

Proposition 3. Let F : (x, u) �→ (f(x), u+ τ (x)) be a piecewise-C 2 skew product
over an expanding base map as above. Either:

(3.1) lim sup
n→∞

ϕ(n)
1
n < 1

Or: There exists Lipschitz θ : T1 → R and piecewise constant χ : T1 → R such
that τ = θ ◦ f − θ+χ. Moreover the discontinuities of χ occur only at points where
either f or τ is discontinuous.

Before proving the above, let us record a consequence of the transversality. Let
τn :=

∑n−1
j=0 τ ◦ f j .

Lemma 6. If fn(x1) = fn(x2) and x1 ⋔ x2, then

|(τ ′n · Jn)(x1)− (τ ′n · Jn)(x2)| > C1(Jn(x1) + Jn(x2)).

Proof. Assume that
τ ′

n

(fn)′ (x1) ≥
τ ′

n

(fn)′ (x2), the other case being analogous. Note

that

DFn(x1)
(

1
−C1

)

=
(

(fn)′(x1)

τ ′

n(x1)−C1

)

, DFn(x2)
(

1
C1

)

=
(

(fn)′(x2)

τ ′

n(x2)+C1

)

.

Transversality implies that (τ ′n(x1)− C1)/(f
n)′(x1) > (τ ′n(x2) + C1)/(f

n)′(x2). �

The remainder of this section is devoted to the proof of Proposition 3. As men-
tioned in the introduction it is known that there exists an f -invariant probability
measure ν which is equivalent to Lebesgue; i.e., the invariant density is bounded
and bounded away from zero. Let hν denote the density of ν. It is convenient to
introduce the quantity

(3.2) ϕ̃(n, L, y) :=
∑

x∈f−n(y)
DFn(x)K⊃L

Jn(x) ·
hν(x)

hν(y)

where L ∈ RP1 (an element of real projective space, i.e., a line in R2 which passes
through the origin). Let ϕ̃(n) := supy supL ϕ̃(n, L, y). The benefit of this definition
is that ϕ̃(n) is submultiplicative, i.e., ϕ̃(n+m) ≤ ϕ̃(n)ϕ̃(m) for all n,m ∈ N, and
ϕ̃(n) ≤ 1 for all n ∈ N.

Lemma 7. The following statements are equivalent.

(i) lim sup
n→∞

ϕ(n)
1
n = 1.

(ii) lim
n→∞

ϕ̃(n)
1
n = 1.

(iii) For all n ∈ N, y ∈ T1 there exists Ln(y) ∈ RP1 such that, for every
x ∈ f−n(y), DFn(x)K ⊃ Ln(y).

(iv) There exists a measurable F -invariant unstable direction; i.e., there exists
ℓ : T1 → R such that τ ′ = f ′ · ℓ ◦ f − ℓ and so

DF (x)
(

1
ℓ(x)

)

= f ′(x)
(

1
ℓ◦f(x)

)

.

(v) Statement (iv) holds with ℓ of bounded variation.
(vi) There exists θ : T1 → T1 such that τ − θ ◦ f + θ is piecewise constant

(discontinuities only where either f or τ is discontinuous). Moreover θ is
differentiable with derivative of bounded variation.
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10 OLIVER BUTTERLEY AND PEYMAN ESLAMI

Note that ϕ(n) is uniformly bounded; i.e., there exists some C > 0 such that
ϕ(n) ≤ C for all n ∈ N. This can be seen by observing that ϕ(n) ≤ ‖L n

0 1‖
L∞ ≤

‖L n
0 1‖

BV
and using Lemma 1. This means that lim supn→∞ ϕ(n)

1
n ≤ 1, and

hence the above lemma immediately implies Proposition 3. In the remainder of this
section we prove the above lemma. First a simple fact that we will use repeatedly.

Lemma 8. |Jn · τ ′n| ≤
1
2C1.

Proof. First observe that τ ′n =
∑n−1

i=0 τ ′ ◦ f i · (f i)′. Consequently |Jn · τ ′n| ≤

|τ ′|
∑n

i=1 λ̃
−i. For all n ∈ N the sum

∑n
i=1 λ̃

−i is bounded from above by (λ̃−1)−1.

And so, using also the definition of C1, we know that |Jn · τ ′n| ≤ sup |τ ′|/(λ̃− 1) =
1
2C1. �

Proof of (i) =⇒ (ii). Suppose that m ∈ N, n = n(m) = ⌈2 lnΛ
ln λ̃

m⌉, y ∈ T1 and

x1, x2 ∈ f−n(y). Note that n > m since Λ ≥ λ̃. Let p = n −m. Further suppose
that

DFn(x1)K ∩DFn(x2)K �= {0}.

The slopes of the edges of DFn(x1)K are
τ ′

n

(fn)′ (x1)± C1Jn(x1). Let

L(x1) := DFn(x1)(R× {0}).

The slope of L is
τ ′

n

(fn)′ (x1). Since we assume the cones DFn(x1)K and DFn(x2)K

are not transversal this implies that the difference in slope between one of the edges
of DFn(x2)K and L is not greater than

(3.3) C1Jn(x1) ≤ C1λ̃
−n.

Now consider the cone DFn(x2)K and the cone DFm(fpx2)K ⊃ DFn(x2)K. The
slopes of the edges of the first are

τ ′n
(fn)′

(x2)± C1Jn(x2) =
τ ′m

(fm)′
◦ fp(x2) +

τ ′p
(fm)′ ◦ fp · (fp)′

(x2)± C1Jn(x2),

whilst the slopes of the edges of the second are

τ ′m
(fm)′

◦ fp(x2)± C1Jm ◦ fp(x2).

Consequently the slopes of the edges of the two cones are separated by at least

Jm ◦ fp(x2)
(

C1 − sup
∣

∣τ ′p · Jp
∣

∣

)

− C1Jn(x2).

By Lemma 8 we know that
∣

∣τ ′p · Jp
∣

∣ ≤ 1
2C1. This means that the above term is

bounded from below by

1
2C1Λ

−m − C1λ̃
−n ≥ 1

2C1λ̃
−n

2 − C1λ̃
−n,

where we used that the assumed relation between n and m implies that m ≤ n
2

ln λ̃
ln Λ

and so Λ−m ≥ λ̃−n
2 . Recall now (3.3). For all n sufficiently large 1

2C1λ̃
−n

2 −

C1λ̃
−n ≥ C1λ̃

−n. To conclude, we have shown that DFn(x1)K∩DFn(x2)K �= {0}
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EXPONENTIAL MIXING FOR SKEW PRODUCTS 11

implies that DFm(fpx2)K ⊃ L(x1) where L(x1) is defined as before. This means
that (let z = fpx2):

∑

x2∈f−n(y)
x1 �⋔x2

Jn(x2) ≤
∑

x2∈f−n(y)
DFm(fpx2)K⊃L(x1)

Jm(fpx2) · Jp(x2)

≤
∑

z∈f−m(y)
DFm(z)K⊃L(x1)

Jm(z)
∑

x2∈f−p(z)

Jp(x2).

Finally this implies that ϕ(n) ≤ C2ϕ̃(m(n)), where C2 := sup hν/inf hν > 0. �

Proof of (ii) =⇒ (iii). By submultiplicativity and the fact that ϕ̃(n) ≤ 1 for all

n ∈ N the assumption limn→∞ ϕ̃(n)
1
n = 1 implies that ϕ̃(n) = 1 for all n ∈ N.

Consequently the following statement holds:

For all n there exists yn ∈ T1 and Ln ⊂ RP1 such that, for all
x ∈ f−n(yn), DFn(x)K ⊃ Ln.

It remains to prove that the above statement implies statement (iii). We will prove
the contrapositive. Suppose the negation of statement (iii); i.e., there exists n0 ∈ N,
y ∈ T1, x1, x2 ∈ f−n0(y) such that DFn0(x1)K ∩ DFn0(x2)K = {0}. Let g1, g2
denote the two inverse maps corresponding to x1, x2. These inverses are defined on
some interval containing y, and due to the openness of the transversality of cones
we can assume that DFn0(g1(y))K ∩ DFn0(g2(y))K = {0} for all y ∈ ω∗ where
ω∗ ⊂ T1 is an open interval. Since f is covering there exists m0 ∈ N such that
fm0(ω∗) = T1. Let m = m0+n0. For all y ∈ T1 there exists z ∈ f−m0(y), and there
exists x1, x2 ∈ f−n0(z) with the above transversality property. This means that for
all y ∈ T1 there exist x1, x2 ∈ f−m(y) such that DFm(x1)K ∩DFm(x2)K = {0},
since

DFm(x1)K ∩DFm(x2)K = DFm0(y)(DFn0(x1)K ∩DFn0(x2)K).

This contradicts the above statement concerning the existence of some Ln such that
DFn(x)K ⊃ Ln for all x ∈ f−n(y). �

Proof of (iii) =⇒ (iv). For all x ∈ T1 let ℓn(x) denote the slope of Ln(x), i.e.,
(

1
ℓn(x)

)

∈ Ln(x). The uniform expansion means that the image of unstable cones

contracts, and consequently for each x then ℓn(x) → ℓ(x) as n → ∞. The function
ℓ(x) enjoys the property that τ ′n(x) + ℓ(x) = (fn)′(x) · ℓ(fnx). �

Proof of (iv) ⇐⇒ (v). The implication (v) =⇒ (iv) is immediate. Assume that
statement (iv) holds. Since ℓ is invariant we know that for any n ∈ N, x ∈ f−n(y)
that

ℓ(y) =
τ ′n

(fn)′
(x) +

ℓ

(fn)′
(x).

For large n the second term on the right hand side becomes very small. Note that
because we assume (iv) holds, if we want to calculate ℓ at y it does not matter
which preimage x we consider. Fix some ω0 ⊂ T1 a disjoint union of intervals and
a bijection g : T1 → ω0 such that f ◦ g is the identity. We can do this in such a
way that g is C 2 on each component of ω0.

10 Of course fn ◦ gn = id for all n ∈ N.

10Note that if the map f was full branch (or if there was at least one smooth onto component
of f) we could choose ω0 and g : T1 → ω0 such that g is C 2, but this cannot be expected in
general.
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12 OLIVER BUTTERLEY AND PEYMAN ESLAMI

Consequently

(3.4)

ℓ =
τ ′n

(fn)′
◦ gn +

ℓ

(fn)′
◦ gn

=
n−1
∑

j=0

τ ′

(fn−j)′
◦ gn−j +

ℓ

(fn)′
◦ gn.

Note that ‖ ℓ
(fn)′ ◦ g

n‖
L∞(T1) → 0 as n → ∞. We will show that

∑∞
j=1

τ ′

(fj)′ ◦ g
j is

of bounded variation. Each term in this infinite sum is piecewise C 1 and has only
a finite number of discontinuities. The function g may possess a finite number of
discontinuities, but since it is one-to-one there exists some C > 0 such that the
number of discontinuities of gj is not greater than Cj for all j ∈ N. We estimate

‖ τ ′

(fj)′ ◦ g
j‖

BV
≤ ‖τ ′‖

BV
‖ 1
(fj)′ ◦ g

j‖
BV

+ Cj ‖τ ′‖
L∞ ‖ 1

(fj)′ ‖L∞

and observe that ‖ 1
(fj)′ ◦ g

j‖
BV

≤ ‖ 1
(fj)′ ‖L∞ + Var ( 1

(fj)′ ◦ g
j). Since ‖ 1

(fj)′ ‖L∞

decreases exponentially it remains to estimate Var ( 1
(fj)′ ◦ g

j). Following closely
the argument used in the proof of Lemma 1 we observe that

Var ( 1
(fj)′ ◦ g

j) ≤ sup
|η|≤1

∫

T1

1
(fj)′ ◦ g

j · η′ ≤ sup
|η|≤1

∫

gj(T1)

η′ ◦ f j .

Again, as in the proof of Lemma 1, we note that η′ ◦ fk = (η ◦ fk/fk)′ + η ◦ fk ·
(fk)′/(fk)2. The difference now is that the part of the estimate corresponding to
‖η ◦ fk · (fk)′/(fk)2‖

L1(gj(T1)) can be bounded by the measure of the set gj(T1) and

this decreases exponentially. This all means that the BV norm of the term τ ′

(fj)′ ◦g
j

is exponentially decreasing with j and so the sum converges in BV. Consequently
ℓ must be of bounded variation. �

Proof of (v) ⇐⇒ (vi). First we prove (v) =⇒ (vi). For all y ∈ T1 let

θ(y) :=

∫ y

0

ℓ(x) dx.

This defines a Lipschitz function on T1, differentiable in the sense that the derivative
is of bounded variation. There exists a partition {ωm}m such that τ and f are C 2

when restricted to each element of the partition. Write ωm = (am, bm). If y ∈ ωm,
then τ (y) = τ (am) +

∫ y

am
τ ′(x) dx. Substituting the equation τ ′ = f ′ · ℓ ◦ f − ℓ we

obtain

τ (y) = τ (am) +

∫ y

am

f ′ · ℓ ◦ f(x) dx−

∫ y

am

ℓ(x) dx

= τ (am) +

∫ f(y)

f(am)

ℓ(x) dx−

∫ y

am

ℓ(x) dx

= θ ◦ f(y)− θ(y) + (θ(am)− θ ◦ f(am) + τ (am))

= θ ◦ f(y)− θ(y) + χm.

Let χ denote the piecewise constant function equal to χm on each ωm. The impli-
cation (vi) =⇒ (v) follows by differentiating τ − θ ◦ f + θ = χ. �

Proof of (iv) =⇒ (i). Suppose that (iv) holds. This means that there exists ℓ :
T1 → R such that τ ′ = f ′ · ℓ ◦ f − ℓ. Using the formula (3.4) for ℓ we know that

sup |ℓ| ≤ 3
2

∑∞
k=1

sup|τ |

λ̃k
= 3

2
sup|τ |

λ̃−1
≤ C1. This means that the vector

(

1
ℓ(x)

)

∈ K
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EXPONENTIAL MIXING FOR SKEW PRODUCTS 13

for each x. Consequently the vector
(

1
ℓ(y)

)

is contained within DFn(x)K for

all x ∈ f−n(y) since DFn(x)
(

1
ℓ(x)

)

= (fn)′(x)
(

1
ℓ(y)

)

. The important point is

that this is the same vector
(

1
ℓ(y)

)

, irrespective of which preimage x ∈ f−n(y)

is being considered. This has the implication that x1 �⋔ x2, i.e., DFn(x1)K ∩
DFn(x2)K �= {0}, for every x1, x2 ∈ f−n(y). In other words, none of the preim-
ages are transversal. This in turn implies that, in this special case, ϕ(n) =
supy∈T1 supx1∈f−n(y)

∑

x2∈f−n(y) Jn(x2). Here we use again the connection to L n
0 1

and that this quantity is uniformly bounded away from zero for all large n ∈ N

since L n
0 1 converges in the BV norm to the invariant density which is bounded

away from zero and the BV norm dominates L∞. �

4. The main estimate

This section is devoted to the proof of Proposition 2, which was stated in Sec-
tion 2. Throughout this section we assume that the first alternative of Proposition 3
holds. Let γ1 := lim supn→∞ − 1

n logϕ(n) > 0, and fix γ ∈ (0, γ1). There exists
Cγ > 0 such that

(4.1) ϕ(n) ≤ Cγe
−nγ for all n ∈ N.

In order to prove Proposition 2 we must estimate ‖L
n(b)
b 1Ω‖L1(T1) where Ω is an

interval such that |b|−(1+ξ) ≤ |Ω| ≤ 2 |b|−(1+ξ). Let Ω0 = Ω and, using the notation

of Lemma 4, denote by {ωj}j the connected components of Ωn. Let hj := fn(b)
∣

∣

−1

ωj
.

Note that ‖1Ω‖L1(T1) = |Ω|. We must estimate

(4.2) ‖L n
b 1Ω‖L1(T1) =

∫

T1

∣

∣

∣

∑

j

(

Jn · eibτn
)

◦ hj(z) · 1fnωj
(z)

∣

∣

∣ dz.

Introduce a partition of T1 into equal sized subintervals {Ip}p such that

(4.3) |b|
−(1−ξ)

≤ |Ip| ≤ 2 |b|
−(1−ξ)

.

For each p, fix some yp ∈ Ip as a reference. To proceed we would like to ensure
that the subintervals fnωj make full crossings of the intervals Ip. For each p let Gp

denote the set of indexes j such that fnωj ⊃ Ip. Let G
∁
p denote the complement of

Gp. The integrals associated to indexes in the set G∁
p are estimated as follows:

∑

p

∫

Ip

∣

∣

∣

∑

j∈G∁
p

(

Jn · eibτn
)

◦ hj(z) · 1fnωj
(z)

∣

∣

∣
dz ≤

∑

p

∑

j∈G∁
p

∣

∣ωj ∩ f−nIp
∣

∣ .

That j ∈ G∁
p implies that one of the end points of fnωj is contained within Ip.

Consequently ωj ∩ f−nIp is contained within the set {x ∈ Ωn : rn(x) < ǫ} where

ǫ = |Ip| ≤ 2 |b|
−(1−ξ)

. This means that
∑

p

∑

j∈G∁
p

∣

∣ωj ∩ f−nIp
∣

∣ ≤ ZǫΩn.

Applying the estimate of Lemma 4 gives a bound of

ZǫΩn ≤ β−nλn 2ǫ

λn
+ ǫCβ |Ω|

≤ 8 |b|
−(1+ξ)

(

e−n lnβen
2ξ

ρ1+ρ2 + 2Cβe
−n 1−ξ

ρ1+ρ2

)

.
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14 OLIVER BUTTERLEY AND PEYMAN ESLAMI

Recalling the definitions of ξ and ρ1, note that 2ξ
ρ1+ρ2

< 2ξ
ρ1

= ξ lnλ and so lnβ −
2ξ

ρ1+ρ2
> lnβ−ξ lnλ > 0. Let γ6 := min(lnβ− 2ξ

ρ1+ρ2
, 1−ξ
ρ1+ρ2

) > 0, C5 := 8(1+2Cβ).

This means that

(4.4)
∑

p

∫

Ip

∣

∣

∣

∑

j∈G∁
p

(

Jn · eibτn
)

◦ hj(z) · 1fnωj
(z)

∣

∣

∣ dz ≤ |Ω|C5e
−γ6n.

Now we may proceed to estimate (4.2) summing only over the indexes j ∈ Gp.

Since |
∑

k ak|
2 =

∑

jk ajak, using also Jensen’s inequality, we have

(4.5)

∑

p

∫

Ip

∣

∣

∣

∑

j∈Gp

(

Jn · eibτn
)

◦ hj(z)
∣

∣

∣
dz =

∑

p

∫

Ip





∑

j,k∈Gp

(Kj,k · e
ibθj,k)(z)





1
2

dz

≤





∑

p

∑

j,k∈Gp

∣

∣

∣

∣

∣

∫

Ip

(Kj,k · e
ibθj,k)(z) dz

∣

∣

∣

∣

∣





1
2

where Kj,k := Jn ◦ hj · Jn ◦ hk and we define the following crucial quantity related
to the phase difference between different preimages of the same point:

θj,k(x) := (τn ◦ hj − τn ◦ hk) (x).

Lemma 9. There exists C6 > 0 such that J ′
n(x) ≤ C6 for all x ∈ T1, n ∈ N.

Proof. Note that Jn =
∏n−1

j=0
1
f ′

◦ f j . Consequently J ′
n =

∑n−1
j=0

f ′′

f ′
◦ f j · Jn−j ◦ f

j .

And so |J ′
n| ≤ sup |f ′′| /(λ− 1) for any n ∈ N. �

Lemma 10. There exists C7 > 0, independent of n ∈ N, such that |θ′′j,k| ≤ C7.

Proof. Suppose that g : T1 → ω such that g ◦ fn = id. Let g(j) := fn−j ◦ g. Note
that

(τn ◦ g)′ =

n−1
∑

j=0

(τ ′ · Jj) ◦ g
(j).

Consequently

(τn ◦ g)′′ =
n−1
∑

j=0

(

J2
j · τ ′′ + τ ′ · J ′

j · Jj
)

◦ g(j).

By Lemma 9 we know that J ′
n ≤ C6. Since τ is C 2 and Jn ≤ λn the above term is

uniformly bounded for any n ∈ N. �

Let gj := fn1 ◦hj . For each p let Ap denote the set of pairs (j, k) ∈ Gp×Gp such
that11 gj(yp) ⋔ gk(yp) (this is the case where we see oscillatory cancellations since

the two preimages are transversal at iterate n2). Let A∁
p denote the complement

set, i.e., the set of pairs (j, k) such that gj(yp) �⋔ gk(yp):

(4.6)

∑

j,k∈Gp

∣

∣

∣

∣

∣

∫

Ip

(Kj,k · e
ibθj,k)(z) dz

∣

∣

∣

∣

∣

≤
∑

j

∑

k:(j,k)∈Ap

∣

∣

∣

∣

∣

∫

Ip

(Kj,k · e
ibθj,k)(z) dz

∣

∣

∣

∣

∣

+
∑

j

∑

k:(j,k)∈A∁
p

∫

Ip

Kj,k(z) dz.

11Recall that at the beginning of Section 4, for each p we fixed some point yp ∈ Ip for reference.

Licensed to Univ of Lethbridge. Prepared on Thu Jul 14 05:09:46 EDT 2016 for download from IP 142.66.3.42.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



EXPONENTIAL MIXING FOR SKEW PRODUCTS 15

Before estimating the above it is convenient to give the following distortion
estimates.

Lemma 11. K ′
j,k ≤ 2C6Kj,k.

Proof. Differentiating we obtain K ′
j,k = Kj,k (J

′
m ◦ hj + J ′

m ◦ hk). By Lemma 9 we

know that J ′
n ≤ C6. �

Recall that |b|
−(1+ξ)

≤ |Ω| ≤ 2 |b|
−(1+ξ)

and n1 = ⌈ρ1 ln |b|⌉.

Lemma 12. For all y ∈ T1,
∑

x∈f−n1 (y)∩Ω

Jn1
(x) ≤ 6Cλ |Ω| .

Proof. First note that
∑

x∈f−n1 (y)∩Ω

Jn1
(x) =

∑

x∈f−n1 (y)

Jn1
(x) · 1Ω = (L n1

0 1Ω)(y),

and so it suffices to estimate ‖L n1
0 1Ω‖L∞(T1). In one dimension ‖·‖

L∞(T1) ≤

2 ‖·‖
BV

. Moreover ‖1Ω‖L1(T1) = |Ω| and ‖1Ω‖BV
= 2. So, with the help of

the estimate from Lemma 1,

‖L n1
0 1Ω‖L∞(T1) ≤ 2(2Cλλ

−n1 + Cλ |Ω|).

Note that λ−n1 = |b|
−2

since n1 ≥ ρ1 ln |b| and ρ1 = 2/ lnλ. Consequently (ξ ≤ 1
2 )

the above quantity is bounded by 6Cλ |b|
−(1+ξ). �

In a similar way to the above
∑

x∈f−n(y) Jn(x) = (L n
0 1)(y) for all y ∈ T1, n ∈ N.

We may again apply the estimate from Lemma 1 and so

(4.7)
∑

x∈f−n(y)

Jn(x) ≤ 3Cλ.

By Lemma 11 we know that K ′
j,k ≤ 2C6Kj,k. Hence, by Gronwall’s inequality,

(4.8) Kj,k(z) ≤ e2C6|Ip|Kj,k(xp)

for all z ∈ Ip. Choosing b0 large insures that |Ip| is small and so
∫

Ip

Kj,k(z) dz ≤ 2 |Ip|Kj,k(xp).

Now we consider the sum in (4.6) corresponding to the noncancelling pairs (this is
the second of the two terms on the right hand side). Using the above estimates

∑

p

∑

j

∑

k:(j,k)∈A∁
p

∫

Ip

Kj,k(z) dz ≤ 2
∑

j

∑

k:(j,k)∈A∁
p

Kj,k(xp).

Note that
∑

j

Jn ◦ hj(xp) ≤
∑

y∈f−n(xp)∩Ω

Jn(y) ≤
∑

z∈f−n2 (xp)

Jn2
(z)

∑

y∈f−n1 (z)∩Ω

Jn1
(y)

where n1 = ρ1 ln |b|, n2 = ρ2 ln |b|. Using also the estimate of Lemma 12

(4.9)
∑

j

Jn ◦ hj(xp) ≤ 6Cλ |Ω|
∑

z∈f−n2 (xp)

Jn2
(z).

Licensed to Univ of Lethbridge. Prepared on Thu Jul 14 05:09:46 EDT 2016 for download from IP 142.66.3.42.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



16 OLIVER BUTTERLEY AND PEYMAN ESLAMI

Using the above estimates, together with (4.7) and (4.1), we obtain

(4.10)

∑

p

∑

j

∑

k:(j,k)∈A∁
p

∫

Ip

Kj,k(z) dz ≤ (6Cλ)
2 |Ω|2 Cλ

∑

z2∈f−n2 (xp)
z1 �⋔z2

Jn2
(z2)

≤ (6Cλ)
2 |Ω|2 CλCγe

−n2γ .

Let us now consider the case where (j, k) ∈ Ap and so estimate the remaining
term of (4.6).

Lemma 13. Suppose that (j, k) ∈ Ap. Then

|θ′j,k(xp)| >
1
2C1(Jn2

◦ gj + Jn2
◦ gk)(xp).

Proof. Differentiating, since τn ◦ hj = τn1
◦ hj + τn2

◦ fn1 ◦ hj , we obtain

θ′j,k = (τ ′n1
· Jn) ◦ hj − (τ ′n1

· Jn) ◦ hk + (τ ′n2
· Jn2

) ◦ gj − (τ ′n2
· Jn2

) ◦ gk.

Applying the estimate of Lemma 8 means that the first two terms can be estimated
as

∣

∣(τ ′n1
· Jn) ◦ hj − (τ ′n1

· Jn) ◦ hk)
∣

∣ ≤ 1
2C1(Jn2

◦ gj + Jn2
◦ gk).

Using the estimate of Lemma 6 we have that
∣

∣(τ ′n2
· Jn2

) ◦ gj − (τ ′n2
· Jn2

) ◦ gk
∣

∣ > C1(Jn2
◦ gj + Jn2

◦ gk). �

The above lemma says that we have the required transversality at the point xp.
The following lemma says that the interval Ip has been chosen sufficiently small
such that this same transversality holds for the entire interval Ip.

Lemma 14. Suppose that (j, k) ∈ Ap. Then |θ′j,k(y)| >
1
2C1Λ

−n2 for all y ∈ Ip.

Proof. By Lemma 10 and Lemma 13 we know that |θ′j,k(y)| > C1Λ
−n2 − |Ip|C7.

To complete the proof it remains to show that

(4.11) |Ip| ≤
C1

2C7
Λ−n2 .

Recall that, by choice of the partition, |Ip| ≤ 2 |b|
−(1−ξ)

and note that Λn2 ≤

Λ |b|
ρ2 ln Λ

. This means that |Ip| ≤ Λ−n22Λ |b|
−(1−ξ−ρ2 lnΛ)

. Furthermore, by choice

of ξ and ρ2, we have ρ2 = ξ
2 lnΛ and ξ ≤ 1

2 , which means that (1− ξ− ρ2 ln Λ) ≥
1
4 .

Consequently |Ip| ≤ Λ−n22Λ |b|
− 1

4 and so, again increasing b0 if required, |Ip| ≤
C1

2C7
Λ−n2 for all |b| ≥ b0. �

The key part of the argument is the following lemma concerning oscillatory
integrals.

Lemma 15. Suppose J is an interval, θ ∈ C 2(J,R), K ∈ C 1(J,C), b ∈ R \ {0}
and there exists κ > 0 such that inf |θ′| ≥ κ. Then

∣

∣

∣

∣

∫

J

K · eibθ(x) dx

∣

∣

∣

∣

≤
1

|b|

(

2
κ sup |K|+ 1

κ2 sup |K| sup |θ′′| |J |+ 1
κ sup |K ′| |J |

)

.
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Proof of Lemma 15. First change the variables, y = θ(x), then integrate by parts:
∫

J

K · eibθ(x) dx =

∫

θ(J)

K

θ′
◦ θ−1(y)eiby dy

= −
i

b

[

K

θ′
◦ θ−1(y)eiby

]

θ(J)

+
i

b

∫

θ(J)

(

Kθ′′

(θ′)2 · θ′
+

K ′

(θ′)2

)

◦ θ−1(y)eiby dy.

Changing variables again, we obtain
∫

J

K · eibθ(x) dx = −
i

b

[

K

θ′
eibθ

]

J

+
i

b

∫

J

(

Kθ′′

(θ′)2
+

K ′

θ′

)

(x)eibθ(x) dx.

The required estimate follows immediately. �

In preparation to applying the above lemma, note that (4.8) implies supIp Kj,k ≤

2Kj,k(xp) and similarly supIp K
′
j,k ≤ 4C6Kj,k(xp). By Lemma 14 we know that

|θ′j,k| >
1
2C1Λ

−n2 . By Lemma 10 we know that |θ′′jk| ≤ C7. We also know that

|Ip| ≤
C1

2C7
Λ−n2 by (4.11). Using these estimates with Lemma 15 we obtain

∣

∣

∣

∣

∣

∫

Ip

(Kj,k · e
ibθj,k)(z) dz

∣

∣

∣

∣

∣

≤
1

|b|
Kj,k(xp)C8Λ

n2

where C8 := 8C6(1 +C7 + 2C6)C
−2
1 . This means that for the first sum in (4.6) we

obtain, using (4.7), Lemma 12 and decomposing n = n1+n2 as we did before (4.10),
the estimate

∑

p

∑

j,k
(j,k)∈Ap

∣

∣

∣

∣

∣

∫

Ip

(Kj,k · e
ibθj,k)(z) dz

∣

∣

∣

∣

∣

≤
1

|b|
|b|1−ξ C8Λ

n2C2
λ(6Cλ)

2 |Ω|2

(the term |b|
1−ξ

comes from the sum over p). Since |b| ≥ en2
2ξ
3ρ1 (increasing b0 again

if required),
1

|b|
|b|

1−ξ
Λn2 =

1

|b|
ξ
Λn2 ≤ e−n2(

2ξ
3ρ2

−lnΛ).

Let γ7 := ξ
6ρ2

> 0. This means that (since ρ2 = ξ
2 lnΛ by (2.3))

(4.12)
∑

p

∑

j,k
(j,k)∈Ap

∣

∣

∣

∣

∣

∫

Ip

(Kj,k · e
ibθj,k)(z) dz

∣

∣

∣

∣

∣

≤ C8C
2
λ(6Cλ)

2 |Ω|
2
e−n2γ7 .

In order to estimate the final term in (4.5) we use (4.6) and sum the estimates
(4.10) and (4.12) to obtain

∑

p

∑

j,k∈Gp

∣

∣

∣

∣

∣

∫

Ip

(Kj,k · e
ibθj,k)(z) dz

∣

∣

∣

∣

∣

≤ |Ω|
2
e−nγ8

(

(6Cλ)
2CλCγ + C8C

2
λ(6Cλ)

2
)

,

where γ8 := ρ1

ρ1+ρ2
min(γ, γ7) > 0. Let C3 := 6Cλ

(

CλCγ + C8C
2
λ

)
1
2 . Taking the

square root of the above, we obtain
∑

p

∫

Ip

∣

∣

∣

∑

j∈Gp

(

Jn · eibτm
)

◦ hj(z)
∣

∣

∣
dz ≤ |Ω| e−n

γ8
2 C3.
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18 OLIVER BUTTERLEY AND PEYMAN ESLAMI

Including also the estimate (4.4) we have shown that (let γ3 := min(γ6,
γ8

2 ) > 0)
∫

T1

∣

∣

∣

∑

j

(

Jn · eibτn
)

◦ hj(z) · 1fnωj
(z)

∣

∣

∣ dz ≤ (C3 + C5) |Ω| e
−n(b)γ3 .

This completes the proof of Proposition 2.

5. Rate of mixing

Here we use the estimates of Proposition 1 concerning the twisted transfer op-
erators in order to estimate the rate of mixing. Let g, h ∈ C 1(T2,C) be two ob-
servables. We assume, without loss of generality, that g is mean zero with respect
to the invariant measure, i.e.,

∫

g(x, u) · hν(x) dxdu = 0 (recall that hν denotes the

density of the invariant measure). Denote by ĝb and ĥb their Fourier components
(in the fibre coordinate), i.e.,

g(x, u) =
∑

b∈Z

ĝb(x)e
ibu,

and similarily for h(x, u). Using the regularity of the observables (in particular the
smoothness in the fibre direction) we have12 that ‖ĝb‖BV

≤ ‖g‖
C 1 and ‖ĝb‖L∞ ≤

|b|
−1

‖g‖
C 1 . The analogous results hold for h. That g is mean zero implies that

∫

T1 ĝ0(x)·hν(x) dx = 0. By substituting the Fourier series and simple manipulations
we obtain the formula

∫

T2

(g · h ◦ Fn) (x, u) · hν(x) dx du =
∑

b∈Z

∫

T1

L
n
b (ĝb · hν)(x) · ĥ−b(x) dx.

We separate the sum into three pieces: the term where b = 0, a finite number of
terms where b �= 0 and |b| ≤ b0, and the infinite sum of the remaining terms. When
b = 0 we take advantage of the exponential mixing of the base map f (a standard
consequence of the covering property combined with Lemma 1) and so

∣

∣

∣

∣

∫

T1

L
n
0 (ĝb · hν)(x) · ĥ−b(x) dx

∣

∣

∣

∣

≤ Cλλ
−n ‖ĝ0‖BV

‖ĥ0‖L∞ ,

using also that ĝ0 has zero mean. For the terms where b �= 0, |b| ≤ b0 we use the
following lemma. The proof follows exactly the proof of [2, Lemma 7.21].

Lemma 16. Suppose that τ is not Lipschitz-cohomologous to a piecewise constant13

and that b �= 0. Then the spectral radius of Lb : BV → BV is strictly less than 1.

Proof. We already know (Lemma 1) that Lb : BV → BV is quasi compact. Sup-
pose that there exists σ ∈ C, |σ| = 1, and nonzero h ∈ BV such that

Lbh = σh.

Note that |h| = |Lbh| ≤ L0 |h|. Combined with the fact that
∫

|h| (x) dx =
∫

L0 |h| (x) dx this means that |h| = L0 |h|. Consequently L0 |h| = |Lbh| and

L
n
0 |h| = |L n

b h|

for any n ∈ N. This means that, for each y, the quantity arg(eibτn(x) · h(x)) takes
the same value for all x ∈ f−n(y). Choose k ∈ N such that kb > b0 and consider

12We use the definition ‖g‖
C1 := sup |g|+ sup |g′|.

13I.e., assume that the first alternative of Proposition 3 holds.
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EXPONENTIAL MIXING FOR SKEW PRODUCTS 19

hk ∈ BV. This means that arg(eibkτn(x) · hk(x)) takes the same value for all
x ∈ f−n(y). Consequently L n

0

∣

∣hk
∣

∣ =
∣

∣L n
kbh

k
∣

∣ and hence
∥

∥L
n
0

∣

∣hk
∣

∣

∥

∥

L1
=

∥

∥L
n
kbh

k
∥

∥

L1
.

This is a contradiction since
∥

∥L n
0

∣

∣hk
∣

∣

∥

∥

L1
=

∥

∥hk
∥

∥

L1
> 0, but, by Proposition 1,

∥

∥L n
kbh

k
∥

∥

L1
→ 0 as n → ∞. �

Now we deal with the terms where |b| ≥ b0. Recall that in Proposition 1 we
obtained the estimate ‖L

n(b)
b ‖(b) ≤ e−n(b)γ2 where ρ ln |b| ≤ n(b) ≤ ρ ln |b|+ 2. We

may assume that γ2 > 0 is sufficiently small such that ργ2 < 1. Consequently the
above estimate implies that there exists α ∈ (0, 1) such that ‖L n

b ‖(b) ≤ |b|
α
e−nγ2

for all n ∈ N, |b| ≥ b0 (the above estimate holds only for multiples of n(b); for
intermediate values of n we use again Lemma 2 and increase b0 if required). Note
that

∣

∣

∣

∣

∫

T1

L
n
b (ĝb · hν)(x) · ĥ−b(x) dx

∣

∣

∣

∣

≤ ‖L n
b (ĝb · hν)‖L1 ‖ĥ−b‖L∞

≤ ‖L n
b ‖(b) ‖ĝb · hν‖(b) ‖ĥ−b‖L∞

≤ ‖L n
b ‖(b)

(

(1 + |b|)−1 ‖ĝb‖BV
+ ‖ĝb‖L1

)

‖hν‖BV
‖ĥ−b‖L∞

≤ ‖L n
b ‖(b) |b|

−2 ‖hν‖BV
‖g‖

C 1 ‖h‖C 1 .

It remains to observe that
∑

|b|≥b0

‖L n
b ‖(b) |b|

−2
≤

∑

|b|≥b0

|b|
−(2−α)

e−nγ2 .

Crucially (2− α) > 1 and so this is summable. This proves exponential mixing for
C 1 observables, which, by an approximation argument [10, Proof of Corollary 1],
implies exponential mixing for Hölder observables.
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