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Abstract. The transfer operator associated to a flow (continuous time dynamical system) is
a one-parameter operator semigroup. We consider the operator-valued Laplace transform
of this one-parameter semigroup. Estimates on the Laplace transform have been used in
various settings in order to show the rate at which the flow mixes. Here we consider the
case of exponential mixing and the case of rapid mixing (superpolynomial). We develop
the operator theory framework amenable to this setting and show that the same estimates
may be used to produce results, in terms of the operators, which go beyond the results for
the rate of mixing.

1. Introduction
Flows are important dynamical systems, arguably the origin of much of the research
in the area of dynamical systems. It has proved significantly more difficult to study
strong statistical properties of flows compared to corresponding questions for discrete time
systems. Of particular importance is proving the rate of mixing of a given system or family
of systems. Substantial initial progress was made by studying the Laplace transform of
the correlation function [10, 23]. A certain estimate (the oscillatory cancellation estimate
pioneered by Dolgopyat [10]) can then be translated into an exponential mixing estimate
for the flow. These ideas were developed by Liverani for the closely related question of
studying the resolvent operator of the infinitesimal generator of the semigroup of transfer
operators [19]. An identical argument is used by Baladi and Liverani [3] and by Giuletti
et al [14]. We further develop these ideas, extending the idea of considering the operator-
valued Laplace transform of the transfer operator [4] and show that one may squeeze a
little more information from this line of thinking. The cases for exponentially mixing
flows and rapid mixing flows are presented side-by-side in the same language and so are
easily comparable.

The improved operator-theoretic result is of interest in several ways. Beyond the rate
of mixing there are many other statistical properties that can often be deduced from
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Operator semigroups associated to chaotic flows 1397

the spectral results [16, §9] and cannot be deduced directly from the rate of mixing.
Another important use of the functional analysis is for studying how statistical properties
behave under perturbations of the dynamical system [17]. Such perturbations could be
deterministic or random. Moreover, the same ideas (as interpreted in [18]) can be used for
the physically important question of understanding coupled dynamical systems.

The improvements are as follows. The calculation involved is completely streamlined.
This makes it clear that the constant obtained in the decay rate (in terms of degree of
differentiability of the observable) cannot be improved without additional ideas. We
avoid the need for Liverani’s ‘silly preliminary fact’ [19, Lemma 2.14]. Additionally,
we are able to obtain a spectral decomposition (2.3) of the transfer operator in a sense
similar to, although weaker than, the results of Tsujii [24–26]. This means we obtain
a precise description of the mixing, and moreover it is to be expected that further
information concerning other statistical properties can be obtained from this operator-
theoretic representation. The result is in a form especially amenable to the ideas of [17]
regarding the use of operator perturbation theory in order to understand various questions
in dynamical systems.

Note that in this paper we do not prove the required estimates for any particular
dynamical systems with respect to any particular Banach space. Rather we isolate the
abstract argument and make some improvements to this. It is an important question and
a subject of ongoing research to investigate the rate of mixing (and other fine statistical
properties) for a broad spectrum of flows. The method we are discussing (i.e. functional
analysis applied to dynamical systems) requires as a first step the choice or design of
a Banach space on which the one-parameter family of transfer operators acts ‘nicely’.
Moreover, at this point in time, to answer such questions for flows, no one knows a method
which does not involve functional-analytic ideas to some extent. Designing appropriate
Banach spaces and proving such estimates for systems of interest (including many
physically relevant systems with discontinuities and singularities) remains an important
subject of ongoing research (see, for example, [5, 9]). In many cases the appropriate choice
of Banach space is far from obvious. In this note we are able to reduce the assumptions
that such a Banach space must satisfy in order to be useful and consequently simplify the
search for and construction of the dynamically relevant Banach spaces. In particular, we
avoid the requirement that the one-parameter semigroup is strongly continuous.

In view of potential numerical applications throughout the argument we will keep track
of all the relevant constants. In §2 we present the results in two theorems, one concerning
the exponentially mixing case and the other concerning the rapid mixing case. In §3 we
give details of systems where the required assumptions have already been shown to be
satisfied. We hope these assumptions will soon be shown to be satisfied in many more
settings. Sections 4 and 5 are devoted to the proofs of the results.

2. Results
Let (B, ‖·‖B) and (A, ‖·‖A) be Banach spaces such that A⊃ B and ‖·‖A ≤ ‖·‖B†. Let
B(B, B) denote the Banach space of bounded linear operators T : B→ B equipped with

† In actual fact one needs only the Banach space (B, ‖·‖B) equipped with an auxiliary, weaker norm ‖·‖A.
However, in this case one can always define A to be the completion of B with respect to ‖·‖A and so without
loss of generality with give the assumptions as above.
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1398 O. Butterley

the standard operator norm which we denote ‖T ‖B. We consider a measurable operator-
valued function T : [0,∞)→B(B, B) denoted by t 7→ Tt such that

T0 = id, Ts ◦ Tt = Ts+t for all t, s ≥ 0,

and that ‖Tt‖B ≤ C1 for some C1 > 0. In other words, Tt : B→ B is a bounded one-
parameter semigroup†. We define a weaker operator norm

‖T ‖B→A := sup{‖Tµ‖A : µ ∈ B, ‖µ‖B ≤ 1}. (2.1)

It would be unrealistic in the intended applications to hope that the semigroup is norm
continuous; often the semigroup is not even strongly continuous‡. We merely require the
following, substantially weaker, continuity condition.

ASSUMPTION 1. (Weak Lipschitz) There exists C2 > 0 such that

1
t
‖Tt − id‖B→A ≤ C2 for all t ≥ 0.

See §3 for discussion of this assumption and how it is natural in the intended applications.
For all z ∈ C, Re(z) > 0, let R(z) ∈B(B, B) be defined by the Bochner integral

R(z) :=
∫
∞

0
e−zt Tt dt. (2.2)

Since the semigroup is bounded we know that ‖R(z)‖B ≤ C1Re(z)−1 for all Re(z) > 0 but
we need a bit more information concerning R(z).

ASSUMPTION 2. There exists λ > 0 such that the essential spectral radius of R(z):
B→ B is not greater than (Re(z)+ λ)−1 for all Re(z) > 0.

In all cases we will assume the both Assumptions 1 and 2 hold. In addition, we will assume
that one of the two following assumptions holds. The first is an oscillatory cancellation
type estimate of the form used by Dolgopyat in the study of Anosov flows [10].

ASSUMPTION 3A. (Exponential) There exist β, α, C3 > 0 and γ ∈ (0, 1/ln(1+ λ/α))
such that, for all Re(z)= α, |Im(z)| ≥ β,

‖R(z)ñ‖B ≤ C3(Re(z)+ λ)−ñ where ñ = dγ ln|Im(z)|e.

An alternative and far weaker assumption is the following estimate of the form used by
Dolgopyat in the study of the prevalence of rapid mixing among Axiom A flows [11].

ASSUMPTION 3B. (Rapid) There exist β, C4, s, r > 0 such that R(z) admits a
holomorphic extension to the set {z ∈ C : |Im(z)| ≥ β, Re(z)≥−|Im(z)|−r

} and on this
set

‖R(z)‖B ≤ C4|Im(z)|s .

† The boundedness requirement is essentially superfluous since if a one-parameter semigroup satisfies a bound
of the form ‖Tt‖B ≤ Ceγ t then we may simply consider the operator T̃t := e−γ t Tt and proceed as before.
‡ The one-parameter semigroup Tt is said to be strongly continuous if T : [0,∞)× B→ B is jointly continuous.
Given the semigroup structure, it is only required to check the continuity at 0: It is known [8, Theorem 6.2.1] that
Tt is strongly continuous if and only if limt→0 Ttµ= µ for all µ ∈ B. There are examples [8, Example 6.1.10]
such that T : (0,∞)× B→ B is jointly continuous but T : [0,∞)× B→ B is not jointly continuous.
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Operator semigroups associated to chaotic flows 1399

That Assumption 3A is stronger than Assumption 3B can be seen from the calculations
in §4.

For the moment suppose that Tt : B→ B is a strongly continuous one-parameter
semigroup. The generator of the semigroup is the linear operator defined by

Zµ := lim
t→0

1
t
(Ttµ− µ)

the domain of Z , which we denote Dom(Z), being the set of µ ∈ B for which the limit
exists. There is no reason to expect Z to be a bounded operator. It is known [8, Lemma
6.1.15] that Dom(Z) is complete with respect to the norm

‖µ‖Z := ‖Zµ‖B + ‖µ‖B,

and consequently Z is a closed operator [8, Problem 6.1.1]. According to [8, Lemma
6.1.11] we know that Dom(Z) is ‖·‖B-dense in B.

In the case where Tt : B→ B is not strongly continuous it will be convenient to have a
subset of B on which Tt is known to be well behaved. Let, just as in [4],

D0 :=

{∫ s

0
Ttµ dt : µ ∈ B, s > 0

}
.

Let D ⊆ B denote the completion, with respect to ‖·‖B, of D0. Assumption 1 implies that
D is ‖·‖A-dense in B. (If it were known that Tt : B→ B is strongly continuous then D is
‖·‖B-dense in B.) It is easy to see that TtD ⊆D, and a simple estimate [4, Lemma 2.8]
implies that ‖Ttµ− µ‖B→ 0 as t→ 0 for all µ ∈D. Consequently Tt :D→D is a
strongly continuous one-parameter semigroup†. In this case we define the generator Z
with Dom(Z) as above but for the semigroup Tt :D→D. In this case we know that D0 ⊆

Dom(Z) and consequently Dom(Z) is ‖·‖A-dense in B. From this point forward when we
refer to Dom(Z) this should be understood to imply the Banach space (Dom(Z), ‖·‖Z ),
defined as above, depending on whether the semigroup is strongly continuous or not.

The first main result of this paper is the following theorem.

THEOREM 1. Suppose that Tt : B→ B is a bounded one-parameter semigroup satisfying
Assumptions 1, 2, and 3A. Then there exist a finite set

{z j }
N
j=1 ⊂ {z ∈ C : −λ < Re(z)≤ 0, |Im(z)| ≤ β},

a set of finite rank projectors {5 j }
N
j=1 ⊂B(B, B) and an operator-valued function t 7→

Pt ∈B(B, B) such that

Tt = Pt +

N∑
j=1

et z j5 j for all t ≥ 0. (2.3)

Moreover for all ` < λ there exists C` > 0 such that, for all µ ∈ Dom(Z), t ≥ 0,

‖Ptµ‖A ≤ C`e−`t‖Zµ‖B. (2.4)

The proof of the theorem is the content of §4.

† Of course D should be understood to mean the Banach space (D, ‖·‖B).
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1400 O. Butterley

Remark 2.1. The theorem is only useful if the set Dom(Z) is sufficiently large. As
discussed immediately prior to the theorem, Dom(Z) is ‖·‖A-dense in B. However, if Tt

were a strongly continuous one-parameter semigroup, then Dom(Z) is ‖·‖B-dense in B.

Remark 2.2. Since parts of the above result are limited to Dom(Z) one might suppose that
it would have been convenient to work with the reduced operator semigroup Tt :D→D
instead of Tt : B→ B from the very beginning. Sometimes this is convenient but, as
illustrated in [4], it can easily cause problems when studying flows and their perturbations,
particular systems with discontinuities. The crucial problem being that the Banach space
D depends on the flow, as does Dom(Z). Note that the part of the above result which
concerns the peripheral spectrum does not depend on D or Dom(Z) allowing for the
possibility of studying perturbation from an operator theory point of view.

Remark 2.3. For the purpose of this remark, denote by ZD the generator associated to
Tt :D→D (this is the operator denoted by Z throughout the rest of the paper). Similarly,
denote by ZB the generator associated to Tt : B→ B. Then

D0 ⊆ Dom(ZD)⊆ Dom(ZB)⊆D.

The first inclusion was discussed in the above paragraph and the second is obvious.
Here we will prove the final inclusion. Let µ ∈ Dom(ZB). For all s > 0 let νs :=

s−1 ∫ s
0 Ttµ dt ∈D0. Note that νs − µ= s−1 ∫ s

0 (Ttµ− µ) dt . Since limt→0 (1/t)
(Ttµ− µ)= ZBµ ∈ B it follows that ‖νs − µ‖B→ 0 as s→ 0 and so µ ∈D.

Remark 2.4. With the current ideas we cannot hope for a strengthening of the theorem
whereby ‖Pt‖B ≤ Ce−`t . This is a subtlety of one-parameter semigroups as demonstrated
by Zabczyk’s example† [8, Theorem 8.2.9]. This is a problem that was overcome in the
work of Tsujii [24–26], but results are limited to systems which are rather regular and it is
not clear if such a strategy is possible in general.

Remark 2.5. If the one-parameter semigroup was actually a one-parameter semigroup
of operators associated to an ergodic flow, as in the intended applications, then one
can typically show that mixing is equivalent to {z j }

N
j=1 ∩ {Re(z)= 0} = {0} (see, for

example [6, 7]).

Remark 2.6. Most often Assumption 2 is proven by the combination of a compact
embedding B ↪→A and an estimate of the form ‖R(z)nµ‖B ≤ C(Re(z)+ λ)−n

‖µ‖B +
C(1+ Im(z))‖µ‖A. Such information is sufficient to deduce the estimate of the
essential spectral radius by following Hennion’s argument [15] based on the formula by
Nussbaum [22] (see, for example, [19]). In this case Assumption 3A can be weakened: it
is then sufficient to prove the estimate of Assumption 3A in the weaker norm ‖·‖A rather
than in the original norm ‖·‖B and only for µ ∈ B for which ‖µ‖B is sufficiently small in
comparison to ‖µ‖A.

† There exists a one-parameter group Tt acting on a Hilbert space such that the spectrum of Z is contained in iR
but e|t | is in the spectrum of Tt for all t ∈ R. This means that the inclusion proved in [8, Theorem 8.2.7] cannot
be improved to an equality.
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Operator semigroups associated to chaotic flows 1401

In order to state the result which corresponds to rapid mixing we must have higher-order
control on the regularity in the flow direction. For any q ∈ N define the norm

‖µ‖Zq :=

∑
0≤n≤q

‖Znµ‖B,

for all µ ∈ Dom(Zq). As before, Z is understood to be the generator of the strongly
continuous one-parameter semigroup Tt :D→D. The second main result of this paper is
the following theorem.

THEOREM 2. Suppose that Tt : B→ B is a bounded one-parameter semigroup satisfying
Assumptions 1, 2, and 3B. Then there exist a finite set

{z j }
N
j=1 ⊂ {z ∈ C : −λ < Re(z)≤ 0, |Im(z)| ≤ β},

a set of finite rank projectors {5 j }
N
j=1 ⊂B(B, B) and an operator-valued function t 7→

Pt ∈B(B, B) such that

Tt = Pt +

N∑
j=1

et z j5 j for all t ≥ 0. (2.5)

Moreover, for all p ∈ N there exist q ∈ N, C p > 0 such that, for all µ ∈ Dom(Zq), t ≥ 0,

‖Ptµ‖A ≤ C pt−p
‖µ‖Zq . (2.6)

The proof of the theorem is the content of §5.

Remark 2.7. Note that the required regularity q = q(p) depends on the desired decay rate
p and must be taken larger when p increases. The exact connection of the two can be seen
in the calculation at the end of §5. When considering rates of mixing of a flow the above
requirement of µ ∈ Dom(Zq) becomes the unfortunate requirement of the observables
being ‘rather smooth’ in the flow direction.

Remark 2.8. Dolgopyat’s original formulation [11] of rapid mixing considered C∞

functions as observables. See [20, Definition 2.2] for a formulation closer to the above
statement. Note that being sufficiently regular in the flow direction is crucial for this result.
However, it is of some help that the notion of regularity is entirely dependent on the choice
of ‖·‖B and ‖·‖A.

Remark 2.9. Usually Assumption 3B is proven by showing the non-existence of
approximate eigenvalues [11–13, 20, 21].

3. Applications
Assumptions 2 and 3A have been shown for contact Anosov flows [19] (in the reference
the two spaces B and A are denoted B(M, C) and Bw(M, C) respectively). In order to
show that Assumption 1 holds it is convenient to modify the stronger of the two norms
by adding a term which controls (in supremum) the derivative in the flow direction.
As a result Assumption 1 is simple to prove in this setting once one notices that
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1402 O. Butterley∫ t
0 Vη ◦8s ds = η ◦8t

− η for all t ≥ 0 where V is the vector field associated to the
flow 8t

:M →M . Let Lt be the associated transfer operator. This means that∫
M
(Lt h − h) · η dm =

∫
M

h · (η ◦8t
− η) dm =

∫ t

0

∫
M

Lsh · Vη dm ds.

This immediately implies the weak Lipschitz control required by Assumption 1. Similarly
these assumptions have been shown to be satisfied in several other settings [3, 14].

The observant reader will have noticed that the modification of the norm as described
above has the unfortunate side effect that the Banach space is then dependent on the
dynamics and therefore unsuitable to studying perturbations as outlined in Remark 2.2.
The improved norms [6, 7] for Anosov flows are immediately suitable in terms of satisfying
Assumptions 1 and 2. Unfortunately, at present, it is not known if Assumption 3A is
satisfied with respect to these norms, and for Anosov flows without contact structure all
indications suggest that some new idea is required.

Assumptions 1, 2, and 3B have been shown for a prevalent set of Axiom A flows in [11].
However, in the reference everything is described in the twisted transfer operator language
for suspension flows. To pass from that viewpoint to the present language, note that the
calculation (see, for example, [23] or [2, Lemma 7.17]) used to relate the Laplace transform
of the correlation to a sum of twisted transfer operators may equally well be used for the
Laplace transform of the transfer operator of the flow for the suspension flow.

4. The exponentially mixing case
Throughout we suppose that Assumptions 1, 2, and 3A are satisfied. First we recall a fact
which appeared in [4]. Note that the proof is done using the integral definition of R(z)
(and not by associating it to a resolvent of some operator) using the fact that Fubini also
holds for Bochner integrals [1, Theorem 1.1.9].

LEMMA 4.1. [4, Lemma 2.2] For all Re(z) > 0, Re(ζ ) > 0, we have on B(B, B) that

(z − ζ )R(ζ )R(z)= R(ζ )− R(z).

We already know that the operator-valued function z 7→ R(z) ∈B(B, B) is
holomorphic on the set {z ∈ C : Re(z) > 0} [1, Theorem 1.5.1]. We now take advantage of
Assumption 3A for the following result.

LEMMA 4.2. The operator- valued function z 7→ R(z) ∈B(B, B) admits an extension
which is meromorphic on the set {z ∈ C : Re(z) >−λ} and holomorphic on the set {z ∈
C : Re(z) >−λ, |Im(z)| ≥ β}.

Proof. Consider z ∈ C, Re(z) > 0 and η ∈ C, |η|> Re(z)−1. By Lemma 4.1, η−1

R(z + η−1) R(z)= R(z + η−1)− R(z) since in particular η 6= 0 and Re(z − (1/η)) > 0.
Consequently

R
(

z +
1
η

)
= ηR(z)(η id−R(z))−1. (4.1)

We know that (η id−R(z)) is invertible since the spectral radius of R(z) is not greater
than Re(z)−1. Consequently (4.1) defines the extension of R(z) into the left half of the
imaginary plane. By Assumption 2 the operator-valued function η 7→ (η id−R(z))−1
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Operator semigroups associated to chaotic flows 1403

is meromorphic on the set {|η|> (Re(z)+ λ)−1
}. By Assumption 3A we know that

the spectral radius of R(z) is not greater than (Re(z)+ λ)−1 when Re(z) >− λ and
|Im(z)|≥ β. This means that in this case the operator-valued function η 7→ (η id−R(z))−1

is holomorphic on this set. �

Proof of the first part of Theorem 1. An immediate consequence of Lemma 4.2 is that the
function z 7→ R(z) ∈B(B, B) has no more than a finite number of poles on the set {z ∈
C : Re(z) >−λ}. We let {z j }

N
j=0 ⊂ C denote this finite set of poles. For each z j let

5 j :=
1

2π i

∫
0 j

R(z) dz

where 0 j is a positively orientated small circle enclosing z j but excluding all other
singularities of R(z). As is well known for spectral projectors, the resolvent equation,
which was proven in Lemma 4.1, implies that the definition is independent of the choice
of 0 j subject to the above conditions. We now, for all t ≥ 0, define Pt : B→ B by

Pt := Tt −

N∑
j=1

et z j5 j .

To complete the proof of the theorem it remains to give the appropriate estimates on Pt .
This is the substantial part of the present argument and will be postponed until the end of
the section. �

The following key step is an application of the inverse of the Laplace–Stieltjes transform
of an operator-valued function [1, Theorem 2.3.4] to the present situation.

LEMMA 4.3. Suppose that t ≥ 0, a > 0. Then, in B(B,A), we have that

Tt = lim
k→∞

1
2π i

∫ k

−k
e(a+ib)t R(a + ib) db.

Details for passing from the formulation in [1] and the present setting can be found in
[4, Theorem 1] (using, crucially, Assumption 1).

The whole idea of the present argument is to obtain better information on R(z) and then
use the formula given by the above lemma whilst shifting the contour.

LEMMA 4.4. Suppose that ` ∈ (0, λ). For all b ∈ R, |b| ≥ β, on B(B, B),

R(−`+ ib)= R(α + ib)
( ∞∑

n=0

(α + `)n R(α + ib)n
)
.

Moreover, there exists C5 > 0 such that for all |b| ≥ β,∥∥∥∥ ∞∑
n=0

(α + `)n R(α + ib)n
∥∥∥∥
B
≤ C5|b|γ0

where γ0 := γ ln(1+ `α−1) ∈ (0, 1).
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1404 O. Butterley

Proof. Since the extension of R(z) was defined in Lemma 4.2 by the resolvent equation,
we have

R(−`+ ib)= R(α + ib)[id−(α + `)R(α + ib)]−1

= R(α + ib)
( ∞∑

n=0

(α + `)n R(α + ib)n
)
.

It is convenient to split the sum as

∞∑
n=0

(α + `)n R(α + ib)n =
∞∑

k=0

(α + `)kñ(b)R(α + ib)kñ
ñ(b)−1∑

m=0

(α + `)m R(α + ib)m,

where ñ(b)= dγ ln|b|e. We use the estimate ‖R(α + ib)‖B ≤ C1α
−1 and the estimate

‖R(α + ib)ñ(b)‖B ≤ C3(α + λ)
−ñ(b) of Assumption 3A. The norm of the first sum

decreases as |b| increases and so we have

∞∑
k=0

(α + `)kñ(b)
‖R(α + ib)kñ(b)

‖B ≤ C6,

where C6 := C3[1− (α + `/α + λ)γ ln β
]
−1. The norm of the second sum is increasing as

|b| increases. We have

ñ(b)−1∑
m=0

(α + `)m‖R(α + ib)m‖B ≤ C1

ñ(b)−1∑
m=0

(
α + `

α

)m

≤ C1α`
−1
|b|γ0 ,

recalling that γ0 = γ ln(1+ `α−1). We let C5 := C1C6α`
−1. The above two estimates

complete the proof of the lemma. �

LEMMA 4.5. There exists C7 > 0 such that for all |b| ≥ β,

‖R(α + ib)‖B→A ≤ C7|b|−1.

Proof. This lemma is a consequence of Assumption 1. Fix b ∈ R. For all n ∈ N let tn :=
2πn|b|−1 and hence

R(α + ib)=
∞∑

n=0

∫ tn+1

tn
e−(α+ib)t Tt dt

=

∞∑
n=0

e−αtn
∫ tn+1

tn
e−ibt (e−α(t−tn)Tt − Ttn ) dt,

since
∫ tn+1

tn
e−ibt dt = 0. We have that |e−α(t−tn) − 1| ≤ α(t − tn)≤ 2πα|b|−1. Using

Assumption 1, we have that ‖Tt − Ttn‖B→A ≤ (t − tn)C2C1 ≤ 2πC2C1|b|−1 for all t ∈
(tn, tn+1). This means that

‖e−α(t−tn)Tt − Ttn‖B→A ≤ 2πC1(α + C2)|b|−1.
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On the other hand,

∞∑
n=0

e−αtn
∫ tn+1

tn
dt =

∞∑
n=0

2π
|b|

e−α2πn|b|−1

=
2π |b|−1

1− e−α2π |b|−1 ≤
2πβ−1

1− e−α2πβ−1 =: C8.

We have shown that ‖R(α + ib)‖B→A ≤ C7|b|−1 where C7 := 2πC1C8(α + C2). �

LEMMA 4.6. For all z ∈ C in the holomorphic domain of R(z) and z 6= 0, on
B(Dom(Z), B),

R(z)−
1
z

id=
1
z

R(z)Z .

Proof. The claimed result concerns only Dom(Z) and so it suffices to consider Tt :

D→D, which, as discussed in the paragraph proceeding Theorem 1, is a strongly
continuous one-parameter semigroup (see also Remark 2.3). Consequently, by standard
[8, Theorem 8.2.1] semigroup theory R(z)= (z id−Z)−1. This means that R(z)
(z id−Z)= id= z R(z)− R(z)Z . �

Proof of the second part of Theorem 1. Let Re(a) > 0 and let ` < λ such that Re(z j ) >

−` for all j . By Lemma 4.3 and shifting the contour of integration, remembering that
R(z) has a pole at each {z j }

N
j=1, we have, on B(B,A), for all t ≥ 0,

Tt = lim
k→∞

1
2π i

∫ k

−k
e(a+ib)t R(a + ib) db

= lim
k→∞

1
2π i

∫ k

−k
e(−`+ib)t R(−`+ ib) db +

N∑
j=1

et z j

2π i

∫
0

R(z) dz.

This means that, for all t ≥ 0,

Pt = lim
k→∞

e−`t

2π i

∫ k

−k
eibt R(−`+ ib) db. (4.2)

Since
∫
∞

−∞
(e(`+ib)t/`+ ib) db = 0, we have

Pt = lim
k→∞

e−`t

2π i

∫ k

−k
eibt

(
R(−`+ ib)−

id
−`+ ib

)
db.

By Lemma 4.6 we have that, on A, for every µ ∈ Dom(Z),

Ptµ= lim
k→∞

e−`t

2π i

∫ k

−k
eibt R(−`+ ib)Zµ

−`+ ib
db.

We must estimate ‖Ptµ‖A. Note that ‖R(−`+ ib)Zµ‖A ≤ ‖R(−`+ ib)‖B→A‖Zµ‖B.
Let

C9 :=
1

2π

∫ β

−β

‖R(−`+ ib)‖B→A
|−`+ ib|

db.
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Since the contour {z ∈ C, Re(z)=−`, |Imz| ≤ β}was chosen to avoid all the singularities
of R(z), we have that C9 <∞. By Lemmas 4.5 and 4.4, ‖R(−`+ ib)‖B→A ≤
C7C5|b|−(1−γ0) for all |b| ≥ β. Since (1− γ0) ∈ (0, 1),

C10 :=
1

2π

∫
∞

β

|b|−(2−γ0) db <∞.

We have shown that ‖Ptµ‖A ≤ C`e−`t‖Zµ‖B where C` := (C9 + 2C10C7C5). �

5. The rapid mixing case
Throughout we suppose that Assumptions 1, 2, and 3B are satisfied. The argument closely
follows [11] but instead of using a Taylor expansion we take advantage of the generator Z .

Proof of the first part of Theorem 2. As before, we use Lemma 4.3 to write

Tt = lim
k→∞

1
2π i

∫ k

−k
e(a+ib)t R(a + ib) db. (5.1)

Identically to the proof of the first part of Theorem 1, we deal with the part of the integral
from−β to β by selecting a finite set of projectors {5 j } j corresponding to the poles {z j } j

of R(z) in the region {z ∈ C : Re(z) >−`, |Im(z)| ≤ β}. We define (as before)

Pt := Tt −

N∑
j=1

et z j5 j .

It now remains to estimate ‖Ptµ‖A in terms of ‖µ‖Zq (for some q ∈ N) crucially
using Assumption 3B. It is convenient to shift the contour of integration to {ib −
min(ε, |b|−r ), b ∈ R} where ε ∈ (0, `) is chosen such that the new contour avoids all
the singularities of R(z). The central part of this integral ((5.1) after the shift of the
contour) gives an exponentially bounded term as per (4.2) with a constant which depends
on sup|b|≤β‖R(−ε, b)‖B <∞. This means that we merely need to estimate the norm of

lim
k→∞

∫ k

β

exp(−t |b|−r )eibt R(ib − |b|−r ) db, (5.2)

and the similar integral from −k to −β. This will be postponed until the end of this
section. �

Now we will need the following higher-order version of Lemma 4.6.

LEMMA 5.1. Let n ∈ N. For all z ∈ C in the holomorphic domain of R(z) and z 6= 0, on
B(Dom(Zn), B),

R(z)=
1
zn R(z)Zn

+

n−1∑
j=0

1
z j+1 Z j .

Proof. The case n = 1 is Lemma 4.6. That is, R(z)= (1/z)R(z)Z + (1/z) id. Simply
iterating this formula proves the result for all n ∈ N. �

For the following it is essential that Assumption 3B is satisfied.
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LEMMA 5.2. Let n ∈ N. There exists C11 > 0 such that

‖R(ib − |b|−r )µ‖B ≤ C11|b|s−n
‖µ‖Zn

for all µ ∈ Dom(Zn), b ∈ R, |b| ≥ β.

Proof. Using Lemma 5.1, we have

‖R(z)µ‖ ≤
1
|z|n
‖R(z)‖B‖µ‖Zn +

n−1∑
j=0

1
|z| j+1 ‖µ‖Z j .

We now substitute z = ib − |b|−r . Since ‖R(z)‖B ≤ C4|Im(z)|s by Assumption 3B there
exists some C11 > 0 such that the lemma holds. �

Proof of the second part of Theorem 2. We now use the above lemma to estimate the norm
of the integral of (5.2) and so complete the proof of Theorem 2:

lim
k→∞

∥∥∥∥∫ k

β

exp(−t |b|−r )eibt R(ib − |b|−r )µ db
∥∥∥∥
B

≤ C11

(∫
∞

β

exp(−t |b|−r )|b|s−q db
)
‖µ‖Zq .

This holds for any q ∈ N, but for our purposes we must choose q large, in particular
larger than s. Estimating the integral† and choosing q even larger depending also on the
required rate of polynomial decay (denoted p in the statement of the theorem) concludes
the estimate. �
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