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Abstract: Given a two-dimensional Haag–Kastler net which is Poincaré-dilation
covariant with additional properties, we prove that it can be extended to a Möbius
covariant net. Additional properties are either a certain condition on modular covari-
ance, or a variant of strong additivity. The proof relies neither on the existence of stress-
energy tensor nor any assumption on scaling dimensions. We exhibit some examples of
Poincaré-dilation covariant net which cannot be extended to aMöbius covariant net, and
discuss the obstructions.

1. Introduction

For a relativistic quantum field theory, there has been a long-standing question whether
scale invariance (dilation covariance) implies conformal covariance [Nak15]. In (1+1)-
dimensions, we call the latter Möbius covariance1 in order to distinguish it from diffeo-
morphism covariance (an action of the Virasoro algebra). This claim, of course, should
not be taken literally. A simple counterexample can be given based on a generalized free
field which is dilation covariant but not Möbius or conformally covariant (see Sect. 4).
On the other hand, in (3 + 1)-dimensions, there is no known example (even in the phys-
ical sense) of relativistic (unitary) dilation-covariant quantum field theory with certain
additional conditions which is not conformally covariant, although there is currently no
proof of the enhancement either. In (1 + 1)-dimensions, the implication “dilation �⇒
Möbius” is considered a “theorem”, whose proof exploits the existence of stress-energy
tensor and the discreteness of scaling dimension [Zom86,Pol88].

1 The word “conformal” is reserved for diffeomorphism covariance, c.f. [KL04].
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Dilation covariance is believed to appear naturally in physical models. If one looks at
longer and longer length scale of a physical system, the behaviour of the system should
not dependon the details in the smaller scale andmayobtain a low-energy effective theory
which is scale invariant. Alternatively, one might look at smaller and smaller spacetime
regions in the quantum chromodynamics, and should be able to see quarks which are
otherwise confined and not visible. Such a limiting theory is expected to be simpler
and to obtain the dilation symmetry (yet this is not automatic, see [BDM10]). Now, a
dilation-covariant theory has often an additional symmetry, the conformal symmetry.
Indeed, in (1 + 1)-dimensions, most of important dilation-covariant theories are indeed
Möbius covariant. Although not all dilation-covariant theories have Möbius covariance,
it is natural to expect some additional conditions should imply the enhancement of
symmetry.

In theoretical physics, the problem is considered to be solved in (1+1)-dimensions by
the arguments by Zamolodchikov [Zom86] and Polchinski [Pol88], which are based on
the existence of scale current and the discreteness of scale dimensions. On the other hand,
the enhancement of symmetry can be clearly stated even in terms of axiomatic/algebraic
quantum field theory, hence it is natural to expect that certain additional assumptions
should really imply Möbius covariance in the mathematical level. In this respect, Guido,
Longo, and Wiesbrock proved that a dilation-translation covariant net of von Neumann
algebras on the real lineR satisfying theBisognano–Wichmann property can be extended
to the compactified real line S1 and obtain Möbius covariance [GLW98]. Remarkably,
this last result does not assume any other physical requirement such as the existence
of current or scaling dimensions, but the proof is based on the modular theory of von
Neumann algebras.Hence onemight expect a similar result for two-dimensional dilation-
covariant quantum field theories.

In this paper, we present a proof of enhancement to Möbius covariance, in addition
to the standard Haag–Kastler axioms, under the following operator-algebraic conditions

• The vacuum is cyclic and separating for the lightcone algebra.
• The theory is covariant under dilations and it is implemented by the modular group

for the lightcone algebra, and one of the following holds.
(a) The modular automorphism group associated to the half-band algebra maps the

double cone algebra (see Fig. 1) into a double cone algebra dilated in the direction

a1

a0
BL

D0

BR

Fig. 1. Double cone D0 and half-bands BR, BL
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of the strip. In particular the half-band and the double cone algebras consist a
half-sided modular inclusion [Wie93,AZ05].

(b) The theory satisfies a variation of strong additivity.

Only one of the last two conditions is needed in our proof. The first one is an assumption
about the modular group of a certain infinitely extended region, and might look too
strong, but actually we show that it is a consequence of the second, which appears to
have little to do with conformal covariance. With these conditions, which again are
not concerned with either the current/stress-energy tensor or scaling dimensions, we
can extend the symmetry group to the two-dimensional Möbius group by the modular
theory.

We present two families of counterexamples. In one of them, we simply break the
Bisognano–Wichmann property for the future lightcone V+ which is a necessary con-
dition for Möbius covariance [GLW98]. In the other, we take a certain representation
of the two-dimensional Möbius group and apply the BGL construction [BGL93]. This
itself is Möbius covariant, but its dual net is the dual net of a generalized free field
which cannot be Möbius covariant. This last example provides a Möbius covariant
net with the trace class property whose dual net is not Möbius covariant and does
not have the split property. The reason why this dual net cannot be Möbius covari-
ant (the vacuum is not separating for the algebra of V+) is different from the reason
why some generalized free fields cannot be Möbius covariant (wrong scaling dimen-
sion). We also examine arguments in physics literature and see to which extent they
work.

This paper is organized as follows. In Sect. 2 we explain the geometric setting and
the symmetry structure of two-dimensional Möbius covariant net, and state our addi-
tional assumptions on dilation covariant nets. In Sect. 3 we give a proof of Möbius
covariance based on these assumptions. In Sect. 4, examples of dilation-covariant nets
which do not extend to Möbius covariant nets are provided. In Sect. 5 we discuss to
what extent our assumptions are necessary, some arguments in physics literature and
open problems. Besides, we need the two-dimensional spin statistics theorem in the
course of the proof, and we exhibit a proof in Appendix A for self-containedness. In
Appendix B we provide some basic results on direct integrals of Hilbert subspaces
which we were not able to find in literature, and are essential for our counterexam-
ples.

2. Preliminaries

Here we are going to describe the operator-algebraic setting for quantum field theory
and various spacetime symmetries.

2.1. One-dimensional Möbius group. The (1 + 1)-dimensional Minkowski space is the
product of two lightrays. The subgroup of lightlike translations and dilations of the
Poincaré group acts on each lightray R = R ∪ {∞}. This action can be extended to the
Möbius group Möb = PSL(2, R) ∼= PSU(1, 1), which we review here. See [Lon08,
Wei05] for our notations.

Consider the Cayley transform C : R � x �→ − x−i
x+i ∈ S1, where S1 is the complex

unit circle {z ∈ C : |z| = 1} and C(∞) is defined to be equal to −1 by convention.
With this map C , we can pass from the line to the circle picture. The Cayley transform
is the inverse of the stereographic projection C−1 : S1 � z �→ −i z−1

z+1 ∈ R and sends
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622 V. Morinelli, Y. Tanimoto

S1 onto R. With this convention, the upper semicircle is mapped in to the right half-line
(0,+∞).

The group SL(2, R) acts on the compactified line R by linear fractional transfor-
mations. The kernel of its action is {±1} and PSL(2, R) = SL(2, R)/{±1} defines the
Möbius group, the group of orientation preserving conformal transformations of R. We
denote it byMöb. On the unit circle inC, the action of Möb translates to that of SU(1, 1)
again by linear fractional transformations through the Cayley transform.

The group Möb is a three-dimensional Lie group and can be generated by the fol-
lowing one-parameter subgroups:

• Rotations ρθ : for θ ∈ R/2πZ, ρθ = eiθ z ∈ S1, in the circle picture.
• Dilations δs : for s ∈ R, δsa = esa ∈ R, on the line picture.
• Translation τt : for t ∈ R, τt a = a + s ∈ R, on the line picture.

In literature they are respectively denotedwithK,A andN, and any element g ∈ Möb can
be uniquely decomposed following the KAN decomposition (Iwasawa decomposition),
i.e. the product of elements from each of these groups. The subgroups A and N generate
the translation-dilation group P which preserves the point ∞ in the real line picture.

In general, an element g ∈ Möb is determined by its action on three points of the
circle. Any pair of points on S1, hence any interval on S1, can be brought to another
pair, respectively another interval, by a Möbius transformation. If g ∈ Möb takes R+
(in the line picture) to a general interval I (in the circle picture), then we denote by
�I (t) = gδ−t g−1, and call them the dilations2 associated with I . Note that �I does not
depend on the choice of g. By this correspondence, �R−(t) = δt , and �R++1(t) · a =
e−t (a −1)+1. The two subgroups {�R+(t)} and {�R++1(t)} generate a two-dimensional
subgroup of Möb which is isomorphic to P and preserves the point∞. Furthermore, any
element of a small neighborhood of the unit element can be written as a simple product:
indeed, we have

�R+(t)�R++1(s) = �R++1
(− ln(e−t−s + 1 − e−t )

)
�R+

(
− ln

(
e−t−s

e−t−s + 1 − e−t

))

and it is immediate that any finite product of �R+ and �R++1, as long as the parameters
are sufficiently small (namely when e−t−s + 1 − e−t > 0), can be reduced to a product
of two in the desired order. A similar relation holds for �R+ and �(0,1):

�R+(t)�(0,1)(s) = �(0,1)
(
ln(et+s + 1 − et )

)
�R+

(
ln

(
et+s

et+s + 1 − et

))
. (1)

By bringing the three points 0, 1,∞ to another three points, an analogous relation holds
for �I1 ,�I2 , where I1 ⊃ I2 and there is one and only one of the endpoints shared by I1
and I2. We call these relations simply the commutation relations of �I1 ,�I2 .

The groupMöb can be generated by different subgroups. Consider I1, I2, I3, disjoint
intervalswhoseunion is dense in S1, then�Ik , k = 1, 2, 3generateMöb.This canbe seen
from the fact that they together can move any ordered three points to any other ordered
three points. In particular, for I1 = (−∞, 1), I2 = (0, 1), I3 = (0,∞), �Ik , k ∈ Z3
generate Möb and any pair �Ik ,�Ik+1 generates a subgroup isomorphic to P.

2 By convention, the sign is reversed: �R+ (t) = δ−t , in accordance with [GLW98].
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2.2. (1 + 1)-dimensional Minkowski space and Einstein cylinder. Consider the set of

coordinates given by the lightrays
(

a0−a1√
2

, a0+a1√
2

)
, where a0 is the time coordinate and

a1 is the space coordinate. The following spacetime regions play important roles in our
work.

• Forward and backward light-cones: V+ = R+ × R+ and V− = R− × R−
• Right and left standard wedges: WR = R− × R+ and WL = R+ × R−
• Right and left half-bands: B±

R,(c,d) = (a, b) × R± and B±
L,(a,b) = R± × (a, b)

• Double cones: D(a,b),(c,d) = (a, b) × (c, d)

Then, we take also some specific regions (see Fig. 1):

• BR = (0, 1) × R+ and BL = R+ × (0, 1)
• D0 = (0, 1) × (0, 1)

Let M̃öb be the universal covering group of Möb. It is again generated by three
one-parameter subgroups ρ, δ, τ (we use the same symbols for elements in M̃öb, as
long as no confusion arises), and ρ is now lifted from R/2πZ to R. Let G be the
quotient group of M̃öb × M̃öb by the normal subgroup generated by (ρ−2π , ρ2π ). The
group G acts locally on the Minkowski space M identified with the product of two
lightrays R × R, and its action can be promoted to an action on the Einstein cylinder M̃
[BGL93].3 TheMinkowski space is identifiedwith amaximal square (−π, π)×(−π, π),
where the product is intended for the lightlike decomposition parametrized by the lifted
rotations. Let ι be the unit element of M̃öb. For any g ∈ M̃öb, elements of the form
g × ι (respectively ι × g) act trivially on the positive lightray a0 = a1 (respectively the
negative lightray a0 = −a1)

We introduce the following elements in G in terms of the lightlike components:

• let �V+ be the two-dimensional dilation of M : �V+(t) = δ(−t) × δ(−t).
• let�WL be the one-parameter groupofLorentz boosts associatedwith the left standard

wedge WL : �WL (t) = δ(−t) × δ(t).

In some literature a different convention is used where the parameter is reversed. The
sign of our convention coincides with that of the modular group (see the Bisognano–
Wichmann property in Sect. 2.4).

2.3. The modular theory of von Neumann algebras and half-sided modular inclusions.
LetM ⊂ B(H) be a von Neumann algebra with a cyclic and separating vector 	 ∈ H.
The associated Tomita operator SM,	 is an antilinear involution which is the closure of

H ⊃ M	 � x	 �−→ x∗	 ∈ M	 ⊂ H.

Through its polar decomposition SM,	 = JM,	

1
2
M,	

one obtains the mod-
ular conjugation JM,	 and the modular operator 
M,	. They satisfy the rela-
tion JM,	
M,	 JM,	 = 
−1

M,	
. Furthermore 
M,	 is the generator of a one-

parameter group of automorphisms called the modular automorphism group, namely

i t

M,	
M
−i t

M,	
= M (see e.g. [Tak03]). For the anti-unitary conjugation JM,	 we

have JM,	MJM,	 = M′.
3 M̃ is homeomorphic toR×S1, but this product decomposition is different from the lightlike decomposition

above: R goes in the a0-direction while S1 is the a1-direction. This decomposition will not be used in this
paper.
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624 V. Morinelli, Y. Tanimoto

Lemma 2.1. Let M ⊂ B(H) be a von Neumann algebra with a cyclic and separating
vector 	 ∈ H and a U such that UMU∗ = M and U	 = 	. Then it holds that
U SM,	U∗ = SM,	 and hence

U
M,	U∗ = 
M,	, U JM,	U∗ = JM,	.

The following theorem, due to Borchers [Bor92] (and significantly simplified by Florig
[Flo98]), ensures that when there is a one-parameter semigroup of endomorphisms
implemented by unitaries with positive generator, these unitaries and the modular group
generate a representation of the group P of dilations and translations. In this represen-

tation, they are assigned 

i t
2π
M,	

and U (1)

is
2π
M,	

U (1)∗, respectively and indeed satisfy
Eq. (1).

Theorem 2.2 (Borchers). Let M ⊂ B(H) be a von Neumann algebra with a cyclic and
separating vector 	 ∈ H, and t �→ U (t) = ei Ht be a unitary one-parameter group
such that sp H ⊂ R±, U (t)	 = 	 and AdU (t)(M) ⊂ M, t ≥ 0. Then the following
hold:


is
M,	U (t)
−is

M,	
= U (e∓2πs t),

JM,	U (t)JM,	 = U (−t), t, s ∈ R.

The first equality shows that
is
M,	

andU (t) provide a positive energy representation
of P. We note that the group P can be also generated by the �(0,∞) and �(1,∞), namely
dilations based on 0 and 1, respectively.

LetN ⊂ M ⊂ B(H) be an inclusion of vonNeumann algebra with a common cyclic
and separating vector 	 ∈ H, then the inclusion is said to be a half-sided modular
inclusion (±-HSMI) if

Ad
−i t
M (N ) ⊂ N , ±t ≥ 0.

The following is a fundamental result on HSMIs [Wie93,AZ05].

Lemma 2.3 (Wiesbrock, Araki-Zsido). If (N ⊂ M,	) is a +- (respectively −-)HSMI,
then the modular groups 
i t

M,
is
N satisfy the same commutation relations as those of

�R− and �R−−1 (respectively those of �R+ and �R++1).

The following is a slight variation of [GLW98, Lemma 1.1], see also
[Wie98, Theorem 6].

Lemma 2.4. Let ϒ be the universal group algebraically generated by 3 one-parameter
subgroups tk �→ �k(tk), k ∈ Z3, such that �k and �k+1 satisfy the same commutation
relation as �Ik ,�Ik+1 , where I1 = (−∞, 1), I2 = (0, 1), I3 = (1,∞) for tk in an open
neighborhood of the origin. Then ϒ can be made a topological group and there is a
continuous isomorphism between ϒ and M̃öb which intertwines �Ik and �k .

Proof. This is essentially covered by [GLW98, Lemma 1.1] by noting that the group
generated by �Ik is isomorphic to M̃öb. Indeed, �R− = �−1

I3
, �(1,∞) = �−1

I1
and since

(−∞, 0), (0, 1), (1,∞) is a factorization of S1, hence they satisfy the commutation
relations of the corresponding intervals.
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Scale and Möbius Covariance in Two-Dimensional Haag–Kastler Net 625

Here we stress the topology of theϒ . By construction, M̃öb is isomorphic to a certain
quotient group of ϒ , and let q be the quotient map. There exists a neighbourhood of the
origin U ⊂ R

3 such that the map

� : R
3 ⊃ U � (t1, t2, t3) �→ �I1(t1)�I2(t2)�I3(t3) ∈ M̃öb,

is a diffeomorphism onto a neighbourhood of the identity in M̃öb. We also define

�̃ : R
3 ⊃ U � (t1, t2, t3) �→ �1(t1)�2(t2)�3(t3) ∈ ϒ.

It is still one-to-one because � = q ◦ �̃ and � is one-to-one on U . We introduce a
neighbourhood systemN of the identity in ϒ as all sets including the image of an open
sets in U containing (0, 0, 0). By translation, the sets {gN }g∈ϒ define a neighbourhood
system of g, and the open sets in ϒ are defined as those subsets of ϒ which include
g�(V) for some open V ⊂ U , (0, 0, 0) ∈ V as above: an image �(V) of a open set
V ⊂ U which is small enough is a neighborhood of any point g in it, because g−1�(V)

is contained in �(U). This topology makes ϒ a topological group. It is clear that ϒ

is locally connected. Then ϒ is isomorphic to M̃öb by universality of M̃öb, see e.g.
[Pon46, Theorem 63]. ��

As pointed out in [GLW98, Lemma 1.1], ϒ has a natural structure as a Lie group.
The map �M̃öb is a diffeomorphism respecting the Lie structure, and through q, we can
also introduce a manifold structure on ϒ .

2.4. Haag–Kastler nets. Let K be the set of all the double cones in the Minkowski
spacetime R

1+1. A two-dimensional Haag–Kastler net (A, U,	) is a net of von Neu-
mann algebras {A(D)}D∈K in B(H) on a fixed Hilbert spaceH, together with a strongly
continuous unitary representation U of the Poincaré group P↑

+ and the vacuum vector
	 satisfying the following assumptions (see e.g. [Tan12, Section 2.1])

(HK1) Isotony: if D1 ⊂ D2, then A(D1) ⊂ A(D2).
(HK2) Locality: if D1 and D2 are spacelike separated, then A(D1) ⊂ A(D2)

′.
(HK3) Poincaré covariance: it holds that

U (g)A(D)U (g)∗ = A(gD), for g ∈ P↑
+ , D ∈ K .

(HK4) Positivity of the energy: the joint spectrum of the translation subgroup in U is
contained in the closed forward light cone V+ = {(a0, a1) ∈ R

1+1 : a2
0 − a2

1 ≥
0, a0 ≥ 0}.

(HK5) Vacuum and the Reeh–Schlieder property: there exists a unique (up to a phase)
vector 	 ∈ H such that U (g)	 = 	 for g ∈ P↑

+ and is cyclic for any local
algebra, namely A(D)	 = H.

(HK6) The Bisognano–Wichmann property: Let �WL be the boost one-parameter
group associatedwith thewedgeWL (seeSect. 2.2), andA(WL) = ∨

D⊂WL
A(D)

then

U (�WL(2π t)) = 
i t
A(WL),	.
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626 V. Morinelli, Y. Tanimoto

We included the Reeh–Schlieder property already in the axioms, because it follows
from weak additivity which is traditionally included in the axioms. The Bisognano–
Wichmann property is not automatic in general (see e.g.[Mor18]), but is a consequence
of Möbius covariance (see below) [BGL93], and it is a natural necessary condition for
Möbius covariance.

Let (A, U,	) be a net satisfying (HK1)–(HK6). We can also define algebras for
more general open regions X by A(X) = ∨

D⊂X A(D) such as, for instance, wedges,
forward and backward lightcones and half-bands.

A Poincaré covariant net (A, U,	) is said to be Möbius covariant if the represen-
tation U extends to the two-dimensional Möbius group G (see Sect. 2.2) which acts
covariantly on the extension of the net A to the cylinder M̃ . In such a case we shall say
that (A, U,	) is a Möbius covariant net.

In order to deduceMöbius covariance, we further introduce the following conditions.

(HK7) Dilation covariance: we assume that U extends to a representation of the
group of Poincaré transformations P↑

+ and the dilation group �V+ , which still
acts covariantly on the net, namely U (g)A(D)U (g)∗ = A(gD) for all g in the
Poincaré-dilation group.

(HK8) Reeh–Schlieder property for V+: 	 is cyclic and separating for A(V+).
(HK9) Bisognano–Wichmann property for dilations:

U (�V+(2π t)) = 
i t
A(V+),	

.

(HK10) One of the following conditions holds.
(a) Modular covariance:4

Ad
i t
BL

(A(D0)) = AdU (δ(−2π t) × ι)(A(D0))
(= AdU (�R+(2π t) × ι)(A(D0))

)
,

in particular, A(D0) ⊂ A(BL) is a +-HSMI.
(b) M̃-strong additivity: Let a < b < c and d > 0 in R and BL,(a,c) and BL,(a,b) +

(d, 0) two half-band with a common edge (see Fig. 2), then

A(D(0,d)(b,c)) = A(BL,(a,c)) ∩ A(BL,(a,b) + (d, 0))′.

The condition (HK10a) is concerned with the modular groups of half-bands, and
might look too strong. On the other hand, (HK10b) can be considered as a variation of
strong additivity: indeed, let the net be Möbius covariant and extend to M̃ . We say the
net is strongly additive ifA(D) = A(D1)∨A(D2), where D, D1, D2 are double cones
such that D1 and D2 share one boundary point, are spacelike to each other and the causal
completion of their union is D. It is immediate to see that this condition is equivalent to
Haag duality on M (see for the latter e.g. [KL04, Section 2.1 a)], [CLTW12, Proposition
5.2, a)]). Furthermore, if A is Möbius covariant, then Haag duality on M̃ is automatic
[BGL93, Theorem 2.3(i)]. Therefore, under Möbius covariance, Haag duality on M is
equivalent to (HK10b). For this reason we call (HK10b) a (variant of) strong additivity,
although A does not a priori extend to M̃ .

Differently from (HK10a), (HK10b) does not refer to modular groups which are
without a priori Möbius covariance difficult to determine, hence is more transparent for
a sufficient condition for the implication “dilation + α �⇒ Möbius”.

4 This requirements is different from Ad
i t
BL

= AdU (δ(−2π t) × ι). Indeed, if U extends to G, we show

that 
i t
BL

= U (δ(−2π t) × �(0,1)(2π t)).
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a1

a0BL,(a,1)

D0

BL,(a,0) + (1, 0)

Fig. 2. Double cone D0 as the relative causal complement of the shifted half-band BL,(a,0)+(1, 0) in BL,(a,1)
with a < 0

In Proposition 3.2 below we show that (HK10b) implies (HK10a). Only (HK1)–
(HK10a) are needed for the proof of conformal covariance in Theorem 3.3.

3. Proof of Möbius Covariance

Lemma 3.1. Let (A, U,	) be a von Neumann algebra net satisfying conditions
(HK1)–(HK9). Then U extends to a representation UR of the group P × M̃öb
(and analogously M̃öb × P) and local covariance holds for left half-band algebras:
AdUR(g)(A(BL,(a,b))) = A(g · BL,(a,b)) as long as g is in a neighborhood of the unit

element of P × M̃öb whose action does not take BL,(a,b) out of the Minkowski space M.
Similar covariance holds for left wedges.

Proof. We shall denote M1 = A(WL + (0, 1)), M2 = A(BL), M3 = A(V+)

and 
k , k = 1, 2, 3 the associated modular operators w.r.t the vacuum vector 	.
By (HK6) and (HK9), we have that M2 = A(BL) ⊂ A(V+) = M3 and M2 =
A(BL) ⊂ A(WL + (0, 1)) = M1 are +- and −-HSMI, respectively (see Fig. 3).
Therefore, by Lemma 2.3, their modular groups 


i t1
2 ,


i t3
3 (
i t1

1 ,

i t2
2 respectively) sat-

isfy the commutation relations of �(0,1) and �R+ (respectively those of �R−+1 and
�(0,1)). Let δ(·) × ι be dilations along the line a0 + a1 = 0. They are included in
the Poincaré-dilation group: indeed, δ(t)× ι = �V+(− t

2 )�WL(− t
2 ), and hence we have

U (δ(t)×ι) = U (�V+(− t
2 ))U (�WL(− t

2 )). By Lemma 2.1, all the abovemodular groups

i t

k commute with U (δ(t) × ι), since the latter preserves each algebra and the vacuum.
Note also that

U (δ(t) × ι)U (δ(s) × ι)

= U
(
δ
(
ln(et+s + 1 − et )

) × ι
)

U

(
δ

(
ln

(
et+s

et+s + 1 − et

))
× ι

)
(2)

as U (δ(·) × ι) is a one-parameter group. In particular, they satisfy the commutation
relations of �(0,1) and �R+ . Similarly, it also satisfies the commutation relations of
�(0,1) and �R−+1. Therefore, by straightforward computations, we have the following:
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a1

a0V+
BL

WL

Fig. 3. Regions V+, BL, WL + (1, 1) and their shadows R+, (0, 1), R− + 1 on the line a0 = a1

• 

i t2
2 U (δ(2π t2) × ι) and 


i t3
3 U (δ(2π t3) × ι) = U (ι × δ(−2π t3)) satisfy the com-

mutation relations of �(0,1) and �R+ .
• 


i t2
2 U (δ(2π t2) × ι) and 


i t1
1 U (δ(2π t1) × ι) = U (ι × �R−+1(2π t1)) satisfy the

commutation relations of �(0,1) and �R−+1.

On the other hand, it is immediate that alsoU (ι×δ(−2π t3)) = U (ι×�R+(2π t3)) and
U (ι×�R−+1(2π t1)) satisfy the commutation relations of�R+ and�R−+1. Therefore, by

Lemma 2.4, we obtain a strongly continuous representation UR of M̃öb which coincides
with U (ι × · ) when restricted to ι × P by construction.

We claim that this representation commutes with U (g × ι), g ∈ P. We only have to
show that 
i t

2 U (δ(2π t) × ι) commutes with U (g × ι). By Lemma 2.1, 
i t
2 and hence


i t
2 U (δ(2π t)× ι) commute withU (δ(s)× ι) since AdU (δ(2π t)× ι)(A(BL)) = A(BL)

and U (δ(s) × ι)	 = 	. Furthermore, as AdU (τ (a) × ι)(A(BL)) ⊂ A(BL) for a ≥ 0
and U (τ (a) × ι) preserves 	, by Theorem 2.2 we have that Ad
i t

2 (U (τ (a) × ι)) =
U (τ (e−2π t a) × ι). Moreover, it also holds that AdU (δ(2π t2) × ι)(U (τ (a) × ι)) =
U (τ (e2π t a)× ι) as it is a representation of P. It follows that
i t

2 U (δ(2π t)× ι) commutes
with U (τ (a) × ι).

Altogether, U (g1 × ι) and UR(ι × g2) commute for g1 ∈ P, g2 ∈ M̃öb. We define a
representation UR of P × M̃öb by UR(g1 × g2) := U (g1)UR(g2).

Now we prove local covariance of {A(BL,(a,b))} with respect to UR. It is enough to

check it for ι× g ∈ ι× M̃öb, because covariance for elements in P × ι is the assumption
(HK3) and (HK7). We view that M̃öb acts on the universal covering S̃1 of S1 (which is
homeomorphic to R, see Fig. 4). Let us denote by I(a,b) the interval in S̃1 corresponding
to (a, b) in R. We also identify R with an interval S̃1 and denote it by IR. In this and the
next paragraphs, we consider A as a net defined on open regions in IR × IR. Let I � IR
be a bounded interval. Any g ∈ M̃öb such that gI � IR can be written as a product
of three elements g = g1g2g3, such that g1, g3 ∈ P, g3 I = I(0,1), g1 · I(0,1) = gI and
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( (
(a, b)

) )

Fig. 4. The universal covering of S1, and R as an interval on it

g2 = �(0,1)(t2) for some t2 ∈ R. For such g ∈ M̃öb, note thatUR(ι×g1) andUR(ι×g3)

acts geometrically by (HK3) and (HK7), andUR(ι×g2) = 

i t2
2 U (δ(2π t2)×ι) preserves

A(BL) = A(IR+ × g3 I ) = A(IR+ × I(0,1)), therefore, we have

AdUR(ι × g)(A(IR+ × I )) = AdUR(ι × g1g2g3)(A(IR+ × I ))

= AdUR(ι × g1g2)(A(IR+ × g3 I ))

= AdUR(ι × g1)(A(IR+ × g3 I ))

= A(IR+ × gI ),

which is the desired local covariance for left half-bands.
At this point, we can prove continuity from below (c.f. [FJ96, (24)]) for left half-

bands, namely, A(IR+ × I ) = ∨
Iα�I A(IR+ × Iα). Indeed, for each Iα we can find

gα ∈ M̃öb such that gα I = Iα and gα → ι as Iα tends to I . Now by continuity of UR in
the strong operator topology,

∨
Iα�I A(IR+ × Iα) = ∨

α AdUR(ι × gα)A(IR+ × I ) ⊃
A(IR+ × I ), and the converse inclusion is trivial.

Now we bring back the original notations and I, Iα are intervals in R. As for wedges,
we have by definition that A(WL) = ∨

I�R− A(R+ × I ). Therefore, for g which takes
any interval of R− into a compact interval in R, we have AdUR(ι × g)(A(WL)) =∨

I�R− A(R+ × gI ) = A(R+ × gR−), where the last equality follows from continuity
from below. In other words, covariance holds also for WL. By taking g = g1g2 where
g2 ∈ P, covariance holds for any WL + (0, aR), aR ∈ R. Finally, as UR(τ (aL) × ι)

commutes with UR(ι × g), the above covariance holds for any left wedge. ��
Proposition 3.2. Let (A, U,	) be a von Neumann algebra net satisfying conditions
(HK1)–(HK9)(HK10b). Then it also satisfies (HK10a).

Proof. By (HK10b), it holds that A(D0) = A(R+ × (aL, 1)) ∩ A((R+ + 1) × (aL, 0))′
for any aL < 0. For t > 0, �(0,1)(t) takes any interval in R− in R− itself, and say,
�(0,1)(t) · aL = bL < 0, and �(0,1)(t) · 1 = 1,�(0,1)(t) · 0 = 0. By covariance of
Lemma 3.1, we have

AdUR(ι × �(0,1)(t))(A(D0)) = A(R+ × (bL, 1)) ∩ A((R+ + 1) × (bL, 0))′ = A(D0),

where the last equality holds for any negative number bL by (HK10b). Nowwe can invert
t and the equality holds also for t ≤ 0. Recalling the definition UR(ι × �(0,1)(t)) =

i t

BL
U (δ(2π t) × ι), and that AdUR(ι × �(0,1)(t)) preserves A(D0), we conclude that

AdU (δ(−2π t) × ι)(A(D0)) = Ad
i t
BL

(A(D0)). ��

Theorem 3.3. Let (A, U,	) be a von Neumann algebra net satisfying conditions
(HK1)–(HK10a). Then U extends to the two-dimensional Möbius group G and with
this extension (A, U,	) is a Möbius covariant net.
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a1

a0

BL

D0

V+

Fig. 5. Triple HSMI, D0 ⊂ BL, BL ⊂ V+, D0 ⊂ V+

Proof. Let us similarly define UL (the only assumption which is not symmetric
between left and right is (HK10a), but we have not used it for Lemma 3.1). Namely,
UL(�(0,1)(2πs) × ι) = 
is

BR
U (ι × δ(2πs)). We are going to prove that UR(ι ×

�(0,1)(2π t)) andUL(�(0,1)(2πs)×ι) commute, and hencewewill have a representation

of M̃öb × M̃öb.
First, we show that U (ι × δ(2π t)) commutes with 
is

D0
UR(ι × �(0,1)(−2πs)). Note

that

• From (HK10a) and Lemma 2.1, UR(ι × �(0,1)(2πs)) = 
i t
2 U (δ(2π t) × ι) com-

mutes with the modular group 
i t
D0

of A(D0).

• By (HK9) and (HK10a) respectively, namely 
i t
V+

= U (δ(−2π t) × δ(−2π t)) and


is
BL

= UR(δ(−2πs) × �(0,1)(2πs)) (see Lemma 3.1), the following three are all
+-HSMI (see Fig. 5):

A(D0) ⊂ A(V+), A(D0) ⊂ A(BL), A(BL) ⊂ A(V+).

• The same relation as (2) holds for any one-parameter group.

Therefore, by putting s1 = ln(et+s + 1 − et ), t1 = ln
(

et+s

et+s+1−et

)
for small t we have

U (ι × δ(−2π t))
is
D0

UR(ι × �(0,1)(−2πs))U (ι × δ(2π t))

= U (δ(2π t) × ι)
i t
V+


is
D0


−is
BL

U (δ(−2πs) × ι)
−i t
V+

U (δ(−2π t) × ι) (def.of UR, (HK9))

= U (δ(2π t) × ι) 
i t
V+


is
D0


−is
BL


−i t
V+

U (δ(−2πs) × ι)U (δ(−2π t) × ι) (reordering)

= U (δ(2π t) × ι) 

is1
D0



i t1
V+



−i t1
V+



−is1
BL

U (δ(−2πs) × ι)U (δ(−2π t) × ι) (by Eq. (1))

= U (δ(2π t) × ι) 

is1
D0



i t1
BL



−i t1
BL



−is1
BL

U (δ(−2πs) × ι)U (δ(−2π t) × ι) (cancelling factors)

= U (δ(2π t) × ι) 
i t
BL


is
D0


−is
BL


−i t
BL

U (δ(−2πs) × ι)U (δ(−2π t) × ι) (by Eqs. (1) (2))

= UR(ι × �(0,1)(2π t)) 
is
D0

UR(ι × �(0,1)(2π(−s − t))) (def.of UR)

= 
is
D0

UR(ι × �(0,1)(−2πs)). ([UR(�2(t)), 

is
D0

] = 0)

But if this is valid for small t , it is valid also for any t by iteration.
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We claim that 
i t
D0

= UR(ι × �(0,1)(2π t))UL(�(0,1)(2π t) × ι). One one hand, we
know from the previous paragraph that

AdU (ι × δ(2πs))(
i t
D0

UR(ι × �(0,1)(−2π t))) = 
i t
D0

UR(ι × �(0,1)(−2π t)).

On the other hand, by Theorem 2.2 and Proposition 3.1, we have

AdU (ι × δ(2πs))(
i t
D0

UR(ι × �(0,1)(−2π t))) = 
i t
ι×δ(2πs)·D0

UR(ι × �(0,e2πs )(−2π t)).

Combining these two equalities and the limit s → ∞, we obtain 
i t
D0

UR(ι ×
�(0,1)(−2π t)) = 
i t

BR
U (ι×�R+(−2π t)) (ifM1 ⊂ M2 ⊂ · · · ⊂ M = ∨

n Mn and	

is cyclic and separating forM1 andM, then
i t
Mn

converges to
i t
M [Lon78,Lemma3]).

Recall that 
i t
BR

= U (ι × δ(−2π t))UL(�(0,1)(t) × ι) by definition, and we have U (ι ×
δ(−2π t)) = U (ι×�R+(2π t)), hence,
i t

D0
= UR(ι×�(0,1)(2π t))UL(�(0,1)(2π t)×ι).

In particular, UR(ι × �(0,1)(t)) and UL(�(0,1)(s) × ι) commute and we obtain a repre-

sentation U of M̃öb × M̃öb by U (gL × gR) = UL(gL × ι)UR(ι × gR).

Now we prove local covariance of double cone algebras under M̃öb × M̃öb action.
By dilation and translation covariance, it is enough to consider D0. Let IL and IR
be intervals on the line R such that D0 = IL × IR. Recall that in the last step we
proved 
i t

D0
= U+(�(0,1)(−2π t))U−(�(0,1)(−2π t)). Now let us take an element of

the form g × ι ∈ M̃öb × M̃öb, such that gL = gL,1gL,2, gR = gR,1gR,2, where
gL,1, gR,1 ∈ P, gL,1 = �(0,1)(t), gR,1 = �(0,1)(s) for some t, s ∈ R. For such
element, AdU (gL × gR)(A(D0)) = AdU (gL,1 × gR,1)U (gL,2 × gR,2)(A(D0)) =
AdU (gL,1 × gR,1)(A(D0)) = A((gL,1 × gR,1) · D0), because U (gL,2 × gR,2) =
U (�(0,1)(t) × �(0,1)(s)) preserves A(D0) and covariance for gL,1 × gR,1 ∈ P × P
holds by assumptions. As any element g ∈ M̃öb× M̃öb which does not take D0 outside
the Minkowski space M can be written as above, this establishes local covariance with
respect to M̃öb × M̃öb.

From here, by the conformal spin-statistic theorem (TheoremA.5),U factors through
G and we conclude that (A, U,	) is a Möbius covariant net. ��
Corollary 3.4. Let (A, U,	) be a conformal net satisfying (HK1)–(HK9) and (HK10b).
Then U extends to the two-dimensional Möbius group G and with this extension
(A, U,	) is a Möbius covariant net.

Proof. Immediate from Proposition 3.2 and Theorem 3.3. ��

4. Counterexamples

In this section we discuss several Haag–Kastler nets which are covariant with respect
to the Poincaré-dilation group but cannot be extended to a Möbius covariant net. Con-
structions and results of these sections can be easily adapted to (3 + 1)-dimensions. One
should substitute the representation of M̃öb×M̃öb in Sect. 4.2.2 by “massive” represen-
tations of the conformal group in the sense of [Mac77], and note that any double cone
O can be obtained as the intersection of countably many wedges.
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4.1. Breaking the Bisognano–Wichmann property for future light cone. TheBisognano–
Wichmann property for wedges holds in anyMöbius covariant net on (1+1)-dimensional
the Minkowski spacetime [BGL93, Theorem 2.3]. Furthermore, since wedges are
mapped to lightcones by Möbius transformations, the Bisognano–Wichmann property
for V+ holds in a Möbius covariant net (corresponding results hold for any conformally
covariant net on higher-dimensional Minkowski space).

Let (A, U,	) be aMöbius covariant net which admits a one-parameter inner symme-
try, namely, there is a one-parameter unitary group {V (s)} such that AdV (s)A(O) =
A(O) and [U (g), V (s)] = 0 for g ∈ G and s ∈ R and V (s)	 = 	. In this situ-
ation, we can construct a new representation of the Poincaré-dilation group by setting
UV (g) = U (g) for g ∈ P↑

+ andUV (δ(t)×δ(t)) = U (δ(t)×δ(t))V (t). It is easy to check
that UV is still a representation of the Poincaré-dilation group,A is covariant under UV
and 	 is invariant under UV . While the original net (A, U,	) satisfies the Bisognano–
Wichmann property, the new net (A, UV ,	) violates it since the algebra A(V+) and
the vacuum 	 stay the same while UV (δ(t) × δ(t)) has been modified. Therefore, this
UV cannot be extended to G in such a way that A is still covariant, because that would
contradict the Bisognano–Wichmann property for V+ [BGL93, Theorem 2.3].

It is easy to find suchMöbius covariant nets. For example, if (A0, U0,	0) is aMöbius
covariant net on S1 with a one-parameter inner symmetry V0(s), one can just take the
tensor productA(IL× IR) := A0(IL)⊗A0(IR), U (gL×gR) := U0(gL)⊗U0(gR),	 :=
	0 ⊗	0, and V (s) := V0(s)⊗ V0(s). As concrete examples, one can take a loop group
netAG,k with a compact groupG at level k, and as V0 one can just take any one-parameter
group in G which acts as inner symmetry [GF93, Section III]. One can also consider the
tensor product of two copies of the U(1)-current net as a chiral component (see [Tan14,
Section 5] for the construction of inner symmetry on the complex massive free field, and
[BT15, Section 5.2] for restricting it to a lightray to obtain a net on S1).

As for the converse, we do not knowwhether it is always possible to satisfy (HK9) by
modifyingU of a givenPoincaré-dilation covariant netwith (HK8), see the discussions in
Sect. 5.1. The fact that it is possible to modify the representation of the Poincaré-dilation
group is known in the physics literature [Nak15, Section 2.2, below (2.6)]. Finally, we
remark that it is also easy in (1 + 1)-dimension to violate the Bisognano–Wichmann
property for wedges [Tan14, Section 5].

4.2. BGL construction and generalized free fields. The simplest two-dimensional quan-
tum field theory is the massive free field. It cannot be dilation covariant because it has an
isolated mass shell. Yet, if one glue together continuously many massive free fields, the
mass spectrum becomes continuous and dilation may act on it. This idea can be indeed
realized as generalized free field. Here we take the construction based on the one-particle
representation of the Poincaré group: to a positive energy (anti-)unitary representation of
the Poincaré group with the CPT transformation, Brunetti, Guido and Longo associated
a net of real subspaces on wedges, and its second quantized net [BGL02].

When the given representation of the Poincaré group extends to Möbius group G =
(M̃öb × M̃öb)/Z2, there are two choices for double cones: either one defines the real
subspaces for double cones by covariance à la BGL, or by duality for wedges. We take
a representation of G such that the former construction yields a Möbius covariant net
without chiral components, while the latter contains a generalized free field and fails to
have both Möbius covariance and the split property.
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Generalized free fields can have dilation covariance but fail to be Möbius covariant,
see e.g. [DR09, Section 3.1]. In this case, a generalized free field has scaling dimen-
sion which is not consistent with the unitarity condition of the Möbius group (or the
conformal group in the case of (3 + 1)-dimensions), and consequently, the field cannot
be Möbius covariant. This is different from our counterexamples. We consider first a
Möbius covariant net (which corresponds to a generalized free field with unitary scaling
dimension), and show that its dual net is dilation covariant but not Möbius covariant.

4.2.1. Nets of standard subspaces and first quantization nets A general reference for
this section is [Lon08]. Firstly, we recall the notion of real subspaces. A linear, real,
closed subspace H of a complex Hilbert space H is called cyclic if H + i H is dense in
H, separating if H ∩ i H = {0} and standard if it is cyclic and separating.

If H is a real linear subspace of H, the symplectic complement of H is defined by

H ′ ≡ {ξ ∈ H ; Im 〈ξ, η〉 = 0, for η ∈ H} = (i H)⊥R ,

where ⊥R denotes the orthogonal inH with respect to the real part of the scalar product
on H. H ′ is a closed, real linear subspace of H. If H is standard, then H = H ′′. H
is cyclic (respectively separating) if and only if H ′ is separating (respectively cyclic),
thus H is standard if and only if H ′ is standard. The Tomita operator SH associated
to a standard subspace H ⊂ H is the densely defined closed anti-linear involution
H + i H � ξ + iη �→ ξ − iη ∈ H + i H . The polar decomposition SH = JH 


1/2
H

defines the positive self-adjoint modular operator 
H and the anti-unitary modular
conjugation JH . In particular, 
H is invertible and

JH 
H JH = 
−1
H . (3)

We further have that SH ′ = S∗
H , JH H = H ′ and 
i t

H H = H for every t ∈ R. The one-
parameter, strongly continuous group t �→ 
i t

H is the modular group of H . There is a
1–1 correspondence between Tomita operators and standard subspaces, namely between
standard subspaces H ⊂ H, operators S which are closed, densely defined anti-linear
involutions on H and pairs (J,
) of an anti-unitary involution J and a positive self-
adjoint operator 
 on H satisfying (3). We recall the following analogue of Takesaki’s
theorem [Lon08, Proposition 2.1.10].

Lemma 4.1. Let K ⊂ H ⊂ H be an inclusion of standard subspaces inH. If 
i t
H K = K

for every t ∈ R, then K = H.

Let us denote the set of (left and right) wedges by W in the two-dimensional
Minkowski space M . The one-parameter group ofLorentz boosts�WL (t) = δ(−t)×δ(t)
is associated to WL. We associate to a general left wedge W = gWL the one-parameter
group �W (t) = g�WL(t)g

−1, and to a right wedge W = gWR the reversed one-
parameter group �W (t) = g�WL(−t)g−1.

Let P+ be the proper Poincaré group, namely, it is generated by the connected com-
ponent P↑

+ of the full Poincaré group and j : (aL, aR) �→ (−aL,−aR). Let α be the
action of j onP↑

+ , thenP+ = P↑
+ �α Z2.We introduce also jW := g jg−1, where g ∈ P↑

+
is such that W = gWL or gWR, depending on whether W is a left or right wedge (this
does not depend on the choice of g, hence is well-defined). Let U be a (anti-)unitary,
positive energy representation of P+, namely unitary on P↑

+ and anti-unitary on jWP↑
+ .

In particular jW is represented by an anti-unitary operator U ( jW ). Define 
W by the
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equation U (�W (t)) = 
i2π t
W . Brunetti, Guido and Longo associated a standard real

subspace H(W ) = ker(1 − U ( jW )

1
2
W ). They form a (P+-covariant) net of standard

subspaces for wedges in the following sense [BGL02, Theorem 4.7]:

(SS1) Isotony: If W1, W2 and W1 ⊂ W2 then H(W1) ⊂ H(W2);
(SS2) Poincaré Covariance: U (g)H(W ) = H(gW ) for g ∈ P+, W ∈ W;
(SS3) Positivity of energy: the joint spectrum of translations in U is contained in V+;
(SS4) Reeh–Schlieder property: H(W ) is standard inH for any W ∈ W
(SS5) Locality: for any W1 ⊂ W ′

2 then H(W1) ⊂ H(W2)
′, where W ′ denotes the

causal complement of W in the Minkowski space M
(SS6) Bisognano–Wichmann property: U (�W (t)) = 
i2π t

W for every W ∈ W and
t ∈ R.

Given a net of standard subspaces {H(W )} for wedges, the dual net Hd of real
subspaces is defined for a double cone O by

Hd(O)=̇H(O ′)′, (4)

where the causal complement O ′ of O in theMinkowski space M consists of twowedges
W1, W2, and H(O ′) is the real closed subspace spanned by H(W1) and H(W2). We do
not know for which class ofU H(O) is standard, but we can prove it for a concrete class
in Sect. 4.2.2. In that case, the net of standard subspaces {Hd(O)} satisfies isotony, P+-
covariance, positivity of energy, the Reeh–Schlieder property and locality in the natural
sense.

If U extends to the group G �α Z2 (where G is the two-dimensional Möbius group),
there is another choice to assign a standard subspace to double cones. Let us define

H(O) = ker(1 − U ( jO)

1
2
O), where U ( jO) = U (g)U (JW )U (g)∗ with g such that

O = gW and
O = U (g)
W U (g)∗. With this definition, the net of standard subspaces
{H(O)} satisfies isotony, G �α Z2-covariance, positivity of energy, the Reeh–Schlieder
property and locality in the natural sense where O is a double cone on M̃ . We refer to
this the BGL construction of standard subspaces associated with U .

Bosonic second quantization. Let H be a (complex) Hilbert space and F+(H) be the
associated bosonic Fock space. Given a real subspace H ⊂ H, we shall denote with
R+(H) the second quantization von Neumann algebra

R+(H) = {W+( f ) : f ∈ H}′′ ⊂ B(F+(H))

where W+( f ) are the Weyl operator5 on the Fock space, satisfying the CCR

W+( f )W+(g) = eIm ( f,g)W+( f + g), f, g ∈ H)

and ω(W+( f )) = (	, W+( f )	) = e− 1
2 ‖ f ‖2 . The second quantization construction

respects the lattice structure and the modular theory. Let �+(A) be the multiplicative
Bose second quantization of a one-particle operator A on H.

Proposition 4.2 [Ara63,LRT78,LMR16]. Let H and {Hκ} be closed, real linear sub-
spaces of H. We have

(a) R+(H)′ = R+(H ′);
5 The symbol W+ should not be confused with wedges W . Weyl operators appear only in this section.
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(b) R+(
∑

κ Hκ) = ∨
κ R+(Hκ);

(c) R+(
⋂

κ Hκ) = ⋂
κ R+(Hκ).

(d) If H is standard, then SR+(H),	 = �+(SH ), JR+(H),	 = �+(JH ), 
R+(H),	 =
�+(
H ).

In particular if O �→ H(O) is a Poincaré covariant net of standard subspaces sat-
isfying (SS1)–(SS6), then its second quantization O �→ A(O) = R+(H(O)) is a
Poincaré covariant net of von Neumann algebras satisfying (HK1)–(HK6) in Sect. 2.4.
Furthermore, it follows from Proposition 4.2, that Ad(O) = R+(Hd(O)), where
Ad(O) := A(O ′)′ is the dual net of A.

4.2.2. Möbius covariant nets without chiral components Weapply theBGLconstruction
to a particular class of representations of G. To be specific, let us take the irreducible
positive energy representationU0 ofMöb with lowest weight 1. Let j0 be the map z �→ z̄
on S1 and it acts onMöb through the identification ofMöb as SU(1, 1), whichwe call α0.
U0 extends to an (anti-)unitary representation of Möb�α0Z2 which we denote again by
U0, namely U0 is unitary on Möb and anti-unitary on j0 Möb. (see e.g. [Lon08, Section
1.6.2]). We can define a positive-energy (anti-)unitary representation of G �α Z2 by
U (gL × gR) := U0(gL) ⊗ U0(gR) and U ( j) := U ( j0) ⊗ U ( j0) where, on the real line
picture, j0 : R � a �→ −a. Note further that the joint spectrum of U restricted to the
translation group R

1+1 has trivial spectral projections corresponding to the sets R+×{0}
or {0} × R+. In the second quantization �+(U ), these spectral projections contain only
C	.

By theBGLconstruction,we obtain aMöbius covariant net (AU , �+(U ),	). This net

does not have chiral components, i.e.Amax
U,L(IL) := A(IL× IR)∩

(
�+(U )(ι × M̃öb)

)′ =
C1 = A(IL × IR) ∩

(
�+(U )(M̃öb × ι)

)′ =: Amax
U,R(IR) (see [Reh00, Definition 2.1]).

Indeed, if these algebras were nontrivial, the representation�+(U )(τ ×τ) ofR
1+1 would

have nontrivial spectral projections (properly larger than C	) corresponding to the sets
R+ × {0} or {0} × R+, which is a contradiction.

A Möbius covariant net A is said to have the split property if for each O � Õ
(namely, O ⊂ Õ) there is an intermediate type I factorRO,Õ such thatA(O) ⊂ RO,Õ ⊂
A(Õ). To show thatAU has the split property, let us consider the theory on restricted to
the timelike line aR = aL, namely R ⊃ I �→ AU (OI ) where OI is the minimal double
cone including I . The diagonal action�+(U )(g×g) acts on {A(OI )} covariantly, where
g ∈ Möb and the one-particle conformal Hamiltonian is L0 ⊗ 1 + 1 ⊗ L0, where L0 is
the rotation generator in U0. As we took U0 as an irreducible representation of Möb, the
one-particle conformal Hamiltonian satisfies the trace class property:

Tr(e−β(L0⊗1+1⊗L0)) = Tr(e−βL0)2 < ∞, for any β > 0

since Tr(e−βL0) < ∞. Now the trace class property is preserved through second quan-
tization [Lon08, Corollary 7.4.2] and it ensures the split property for any inclusion
AU (OI ) ⊂ AU (OĨ ), with I � Ĩ [BDL07, Corollary 6.4]. For any inclusion of double
cones O � Õ ,we canfind O1 such that O � O1 � Õ and O1 � Õ is conformally equiv-
alent to some OI � OĨ for which the split property holds, therefore,AU (O) ⊂ AU (Õ)

with O � Õ ⊂ R
1+1 satisfies the split property.
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4.2.3. Dual net without Möbius covariance As (A, �+(U ),	) is Möbius covariant, and
especially Poincaré-dilation covariant, the dual net (Ad

U , �+(U ),	), where A(O) =
A(O ′)′ = A(W1) ∩ A(W2), where W1, W2 are wedges such that O = W1 ∩ W2,
remains to be Poincaré-dilation covariant, because the set of wedges is closed under
Poincaré and dilation transformations. Here we show that it cannot be extended to a
Möbius covariant net because Ad

U (V+) = B(H). We identify U with the direct integral

of massive representations Um of P↑
+ , for which the property HUm (V+) = Hm is well

known. This provides an example of a Möbius covariant net (AU , �+(U ),	) whose
dual net (Ad

U , �+(U ),	) neither is Möbius covariant nor satisfies the split property.

The massive free field. Let Um be the scalar representation of the Poincaré group P+
with mass m. It has the form

(Um(a, λ)ξ)(p1) = eia·pm ξ(λ−1(p1)), (a, λ) ∈ P↑
+

(Um( j)ξ)(p1) = ξ(p1),

where pm(p1) = (ωm(p1), p1) ∈ R
1+1 (in (p0, p1)-coordinate, not in (pL, pR)-

coordinate), ωm(p1) =
√

m2 + p21, λ(p1) = − sinh(λ) ωm(p1) + cosh(λ) p1 (where we

identify λ ∈ R and an element of the Lorentz group) and ξ ∈ Hm = L2(R,
dp1

2ωm (p1)
). Let

{Hm(W )} be the net of standard subspaces for wedges associated toUm as in Sect. 4.2.1.
We define subspaces relatively to double cones by duality as in Eq. (4). Actually, the
more traditional construction of the free massive field net satisfies Haag duality, c.f.
[Ost73], hence the one-particle local subspaces can be explicitly described as

Hm(O) = { f̂ +(pm) ∈ Hm : f ∈ S (R1+1, R), supp f ⊂ O},
Hm(W ) = { f̂ +(pm) ∈ Hm : f ∈ S (R1+1, R), supp f ⊂ W },

f̂ +(p1) = 1

2π

∫
d2a f (a)e−ia·pm .

We associate the following real subspaces to the forward and the backward light
cones V±:

Hm(V±) =
∑

O⊂V±
Hm(O).

The following proposition is partly an adaptation of the arguments in [SW71].

Proposition 4.3. Hm(V±) = Hm

Proof. We prove the claim for V−. It can be proved analogously for V+.
Let O ⊂ V− and take the vectors ξ ∈ Hm(O) and η ∈ Hm(V−)′. Consider the

function

f (a) = Im 〈η, U (a)ξ 〉.
It follows that f is real, it vanishes for any a ∈ V− and, since (� + m2) f = 0,
supp f̂ ⊂ (−	m ∪ 	m) as a distribution.

We claim that f ≡ 0. Let dμ(p) = f̂ (p) δ(p2 − m2) d2 p be the measure associated
to the Fourier transform of f , namely

f (a0) =
∫

eia0 p0dμa1(p0), a = (a0, a1), p = (p0, p1)
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where

dμa1(p0) =
∫

e−ia1 p1dμ(p0, p1)

=
(

e
−ia1

√
p20−m2

f

(
p0,

√
p20 − m2

)
+e

−ia1
√

p20−m2
f

(
p0,−

√
p20 − m2

))

dp0.

Now, note that the support of a0 �→ f (a0, a1) is contained in R
+ −|a1|, thus the Fourier

transform dμa1(p0) extends to an analytic function on the upper complex half-plane.
Furthermore, p0 �→ dμa1(p0) is null on the interval (−m, m) and hence for any test
function h, the analytic function h ∗dμa1(p0) is 0 by the reflection principle. Therefore,
f (·, a1) ≡ 0 for every a1 ∈ R, and hence f ≡ 0.

Now let η be in the symplectic complement of any Hm(O): η ∈
(∑

O⊂M Hm(O)
)′
,

hence in particular it belongs to Hm(W ′)′ ∩ Hm(W )′ = Hm(W ) ∩ Hm(W ′). Indeed,

η ∈
⋂

O⊂W ′
Hm(O)′ =

⎛

⎝
∑

O⊂W ′
Hm(O)

⎞

⎠

′
= Hm(W ′)′ = Hm(W ),

and similarly for W ′.
We show that η = 0. Firstly we observe that η ∈ Hm(W ) ∩ Hm(W ′) hence


i t
Hm (W )η = η. Indeed,

η ∈ ker(1 − SHm (W )) ∩ ker(1 − SHm (W ′)) ⇔
η ∈ ker(
1/2

Hm (W ) − 

−1/2
Hm (W )) ⇔


Hm (W )η = η.

In particular, by the Bisognano–Wichmann property, we have that U (�W (t))η = η for
any wedge W and t ∈ R. Since Um is an irreducible representation of P↑

+ , boosts does
not have proper invariant vectors, and we conclude that η = 0. ��

This proof can be adapted in any Minkowski space R
1+s with s ≥ 1.

The product representation as the direct integral of massive representations. We
have seen in [BT15, Section 5.2] that the representation U0, restricted to the translation-
dilation group, can be realized on L2(R+, pdp) as follows:

(U0(τ (t))ξ)(p) = eitpξ(p)

(U0(δ(s))ξ)(p) = e−sξ(e−s p)

(U0( j0)ξ)(p) = ξ(p)

and accordingly the product representation U restricted to the Poincaré-dilation group
on L2(R+, pLdpL) ⊗ L2(R+, pRdpR) is given by

(U (τ (tL) × τ(tR))ξ)(pL, pR) = ei(tL pL+tR pR)ξ(pL, pR)

(U (δ(sL) × δ(sR))ξ)(pL, pR) = e−sL−sRξ(e−sL pL, e−sR pR)

(U ( j0 × j0)ξ)(pL, pR) = ξ(pL, pR).
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With this realization and the correspondence 2pL pR = p20 − p21 = m2, p1 = pR−pL√
2

,
we have the natural identification

L2(R+, pLdpL) ⊗ L2(R+, pRdpR) ∼= L2(R2
+, pL pRdpLdpR)

∼= L2(V+,
m3 dmdp1
2ωm (p1)

)

=
∫ ⊕

R+

dμ(m) L2(R,
m3 dp1
2ωm (p1)

).

This identification is given by the map ξ(pL, pR) �→ ξ ′(m, p1) = 2ξ(
ωm(p1)+p1√

2
,

ωm (p1)−p1√
2

), where the factor 2 is needed to make it unitary. It is straightforward to
check that this intertwines the representation U above and

(U ′(a, λ)ξ ′)(m, p1) = eia·(ωm (p1),p1)ξ ′(m, λ−1(p1)) (a, λ) ∈ P↑
+ ,

acting on H= L2
(
R+×R, dμ(m)dp m3

2ωm (p1)

)
= ∫ ⊕

R+
m3dμ(m) L2(R,

dp1
2ωm (p1)

), where

the boost λ corresponds to δ(λ) × δ(−λ). Then, U decomposes into the direct integral

U =
∫ ⊕

R+
m3 dμ(m) Um .

Ageneralized free field can act on the second quantization of this Hilbert space, and it
is covariant with respect to�+(U ). It is well known that the net of vonNeumann algebras
for generalized free fields does not always satisfy Haag duality [Lan74], depending on
themeasure on the space ofm: it is proven that if themeasure decays exponentially, Haag
duality holds [Lan74]. We will show that the measure m3 dμ(m) is associated with a
Möbius covariant net while the dual net cannot be madeMöbius covariant. Accordingly,
we conjecture that the generalized free field corresponding to the measure m3dμ fails
to have Haag duality.

The dual net Ad is not Möbius covariant. Here we show that the dual net Ad does
not satisfy (HK8), therefore, it cannot be made Möbius covariant. It turns out that, since
U is a direct integral of massive representations, Ad does not satisfy the split property
either.

Let {HU (W )} (respectively {Hd
U (O)}) be the covariant (respectively dual) BGL net

of standard subspaces for wedges (respectively double cones) associated with the rep-
resentation U = ∫ ⊕

R+ m3 dμ(m) Um .

We show that Hd
U (O) = ∫ ⊕

R+ m3 dμ(m)Hm(O), where the direct integral is taken
with HU as a real Hilbert space. Note also that Hm(O) is a μ-measurable family of
(real) subspaces in the sense of [Dix81, Section II.1.7] (see Appendix B), because one
can take a sequence of real test functions supported in O which separate the points in O
(see Proposition B.2). Now, we have that

Hd
U (O) =

⋂

W⊃O

HU (W )
(•)=

⋂

W⊃O

∫ ⊕

R+

m3 dμ(m)Hm(W )

(�)=
∫ ⊕

R+

m3 dμ(m)
⋂

W⊃O

Hm(W ) =
∫ ⊕

R+

m3 dμ(m)Hm(O).
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Since U disintegrates as
∫ ⊕

R+
m3dμ(m)Um it is easy to see that HU (W ) = ker(1 −

U ( jW )

1
2
W ) ⊃ ∫ ⊕

R+
m3 dμ(m)Hm(W ). The converse inclusion follows since the Lorentz

boosts U (�W (t)) = ∫ ⊕
R+

m3 dμ(m)Um(�W (t)) fix the subspace
∫ ⊕

R+
m3 dμ(m)Hm(W )

for any t ∈ R. Since the latter subspace is standard and (SS6) holds on HU , we conclude
(•) by Lemma 4.1. To justify (�), we refer to the Appendix B, Lemma B.3(b), and note
that we only need two wedges whose intersection is O . Therefore, by Lemma B.3(c),

Hd
U (V+) =

∑

O⊃V+

Hd
U (O) =

∫ ⊕

R+

m3 dμ(m)Hm(V+).

We have seen in Proposition 4.3 that Hm(V+) = Hm , hence it follows that Hd
U (V+) = H.

In particular, (HK8) fails and the netAd cannot be made Möbius covariant by replacing
�+(U ) by any other representation.

It is known that the dual net of the generalized free field does not satisfy the split
property if the measure is not atomic [DL84, Theorem 10.2]. Our measure is m3 dμ(m),
therefore, the dual net Ad fails to have the split property.6

5. Comments on Assumptions and Examples

5.1. Operator-algebraic assumptions. As we discuss the question whether dilation
covariance can be promoted to Möbius covariance, (HK7) is a natural assumption. The
physical meaning of (HK8) and (HK9) are not very clear, but they are necessary condi-
tions for a Haag–Kastler net to be Möbius covariant. Indeed, if a Möbius covariant net
extends to the cylinder M̃ , any double cone is conformally equivalent to a lightcone,
hence (HK8), and the Bisognano-Wichmann property holds automatically for wedges,
double cones and lightcones, hence (HK9). We showed in Sect. 4.2 that (HK8) excludes
the dual net of certain generalized free fields which are counterexamples to the impli-
cation “dilation �⇒ Möbius” without any additional assumption. Furthermore, even
if (HK8) is satisfied, (HK9) may fail and in this case Möbius covariance cannot be
expected, as shown in Sect. 4.1. Conversely, if (A, U,	) satisfies (HK1)–(HK6) and
(HK8), the modular group of A(V+) commutes with Lorentz boosts U (δ(t) × δ(−t))
(because it preserves A(V+) and 	, hence Theorem 2.2 applies), however, it is unclear
whether it acts covariantly on A.

(HK10a) is certainly a necessary condition for Möbius covariance. It requires that

i t

BL
acts as a certain Möbius transformation up to an inner symmetry. On the other

hand, we proved the implication (HK10b) �⇒ (HK10a) (under (HK1)–(HK9)) and
(HK10b) does not refer to any Möbius transformation, therefore, Corollary 3.4 is rather
satisfactory. Furthermore, let us stress that our proofs do not rely on either stress-energy

6 This can be seen at the one-particle level. The second quantized netAU has the split property if and only
if the operator

∫ +∞
0



F O,Õ

m
|[0,1]dμ(m)

is trace class, where F O,Õ
m is the intermediate type I factor subspace between Hm (O) ⊂ Hm (Õ), cf.

[FG94,DL84]. In particular it is a necessary condition for the split property that dμ has to be purely atomic,
concentrated on isolated points, cf. [Mor18].
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tensor or current, c.f. Sect. 5.2. Indeed, there are Möbius covariant nets without stress-
energy tensor. Therefore, at least from the mathematical point of view, the modular
theory is more essential for Möbius covariance.

Yet, there are examples ofMöbius covariant net not satisfying (HK10b). The simplest
examples are two-dimensional nets Virc ⊗ Virc, where Virc is the Virasoro net with
central charge c > 1. As the chiral components Virc does not satisfy strong additivity
[BSM90, Section 4, P.122], the two-dimensional net fails to satisfy (HK10b). Another
family of examples is the derivatives of the U(1)-current [GLW98, Corollary 2.11], and
one can again construct two-dimensional nets by tensor product which do not satisfy
(HK10b). These examples satisfy (HK10a), hence are covered by Theorem 3.3 (although
Möbius covariance for these examples is trivial because each chiral component is Möb-
covariant). Interestingly, in both examples the current is missing, and there is even no
stress-energy tensor in the latter case [Koe03, Proposition 3], hence it is not covered by
the physics arguments (see below).

In the d = 1 case, Guido, Longo and Wiesbrock have shown that any local
net which is covariant with respect to the translation-dilation group and satisfies the
Bisognano–Wichmann property extends to a Möbius covariant net on S1 [GLW98, The-
orem 1.4]. This does not straightforwardly generalize to d = 1+1 because the inclusion
A(WR + (0, aR)) ⊂ A(WR) is in general not a standard inclusion, and hence, even if
one assumes the Bisognano–Wichmann property for wedges, it is not enough to con-
struct a representation of the group M̃öb× M̃öb. This is why we needed the assumption
(HK10a).

5.2. Physics literature. The arguments by Zamolodchikov and Polchinski [Zom86,
Pol88] are considered a proof in physics literature (e.g. [Nak15]). They are expressed
in terms of Wightman-type assumptions on pointlike observables Ok(x), i.e. [Nak15,
Section 3.1]:

• unitarity
• Poincaré covariance
• (unbroken) dilation covariance
• discrete spectrum in scaling dimension: each of the pointlike observables Ok(x) has

a definite “scaling dimension” AdU (δ(t))(Ok(x)) = t
k Ok(t x).
• existence of scale current: there are a stress-energy tensor Tμν(x) and a current Jμ(x)

such that
∫

dd−1x [xρTρ0(x) − J0(x)] is the generator of dilations.
Note that, apart from implicit assumptions such as {Ok(x)} are Wightman fields and the
existence of the integral for the generator of dilations, the well-definedness of scaling
dimension is also a quite strong assumption: it implicitly says that there is a family of
fields {Ok(x)}which linearly generate the whole Hilbert space from the vacuum. This is
different from the usual Wightman situation where the whole Hilbert space is generated
algebraically, namely, one is allowed to use polynomial of such (smeared) fields. Once a
complete set of fields {Ok(x)} is obtained, one defines the “scaling dimensionmatrix” γk�

which is defined by [D, Ok(x)] = −i(
∑

� γk�O�(x) + xμ∂μOk(x)). Actually it appears
that it is not always diagonalizable only from dilation covariance [Nak15, Section 2.2,
below (2.6)]. Therefore, the discreteness of scaling dimension, and invertibility of γk�,
strongly anticipates the Möbius covariance.

Under these assumptions, the main concern of [Pol88] is whether one can take
a stress-energy tensor Tμν which has the “canonical scaling dimension”, namely
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AdU (δ(t))Tμν(x) = t2Tμν(t x). Such a new stress-energy tensor is obtained by the
inverse of γk�. Once Tμν acquires the canonical scaling dimension, the Lüscher–Mack
theorem [FST89, Theorem 3.1] gives a clear explanation of why it satisfies the Lie
algebra of vector fields.

By smearing the stress-energy tensor with a slightly singular function (whose exis-
tence is implicitly assumed, see below), one obtains the generators of the Lie algebra of
M̃öb. However, we are unable to find arguments or explanation on the following points:

• Once a stress-energy tensor with canonical dimension is found, how can one show
that the rest of the fields {Ok(x)} are Möbius covariant? Indeed, if one of {Ok(x)} are
“descendant”, one is forced to introduce the primary field [Koe03,ESNR11]. Namely,
there is no guarantee that the original set of fields {Ok(x)} is sufficient.
It is not always possible to find such an extended family solely from the representation
of M̃öb. Indeed, we have the example from Sect. 4.2, where the representation U
extends to M̃öb × M̃öb, but the observables do not extend to M̃ .

• Does the stress-energy really give the generator of rotation? Here we have two exam-
ples in which stress-energy tensor is not directly connected with rotation.
– The U(1)-current net. One can take a new stress-energy tensor T c

μν with central
charge c > 1 which are relatively local to the U(1)-current J and generate the
same translation-dilation group, but does not give the correct rotation [BSM90].

– The dual net of the Virasoro net Virc with c > 1. The stress-energy tensor T c
μν

generate the correct translation-dilation group, but not the rotations for the dual
net.

In addition, in order to obtain the generator of rotation, one has to smear the stress-
energy tensor with the function x2 + 1 (c.f. [Nak15, below (2.14)]), which is more
singular than other generators (1 for translations and x for dilations). Indeed, this is
exactly why T c fails to extend to S1 on the whole Hilbert space of the U(1)-current.
It appears to be known that in this case the conformal covariance cannot be obtained
[Nak18].

• Stress-energy tensor is not uniquely determined, even if it is assumed to have the
canonical dimension, as in theU(1)-current net.Which one is the “physically” correct
stress-energy tensor?

Generalized free fields (c.f. Sect. 4.2) are referred to as “fake counterexamples” in
[DR09, Section 3.1], because they do not possess stress-energy tensor. In fact, one can
construct a stress-energy tensor which generate the Poincaré symmetry, but it turns out
very singular [DR03, Section 3]. Yet, the smeared stress-energy tensor gives a quadratic
form on the Wightman domain, which means that the Wightman-type assumptions are
crucial. Besides, the existence of stress-energy tensor in this sense does not depend on
the scaling dimension
, while the extension ofU to theMöbius group (or the conformal
group in the case of (3 + 1)-dimensions) depends on 
. Therefore, one might conclude
that the absence of conformal covariance in generalized free fields for certain 
 is due
to the representation theory of the Möbius/conformal group, and not to the absence of
stress-energy tensor.

5.3. Open problems. We do not know whether (HK10a) or (HK10b) can be dropped or
weakened: (HK10a) is surely a necessary condition for Möbius covariance, but we do
not have an example where (HK1)–(HK9) hold but (HK10a) fails. A natural candidate
for a counterexample is the generalized free field with the measure msdμ where s < 1.
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It is clear that the field cannot be M̃öb × M̃öb covariant because such a field should
possess negative scaling dimension, which violates unitarity. However, to show that the
net generated by it cannot be extended to a Möbius covariant net, one has to show that
there is no extension of U which makes the net covariant. The latter is more difficult
than the (non-)covariance of the field, because the possible extension is determined by
the modular group, which is difficult to compute if it is not a priori Möbius covariant.

One would naturally expect that a similar result should hold in d = 3 + 1. However,
this problem is widely open. Differently from d = 1 + 1 where the group of symmetry
is a product M̃öb× M̃öb, the conformal group in four dimensions is locally isomorphic
to SU(1, 1), which is a simple Lie group [Mac77]. In order to extend the representation
U of the Poincaré-dilation group, one might use the modular groups of double cones,
but they must act in a compatible way. To us it is unclear how this can be obtained from
Poincaré-dilation covariance, even with some additivity property or any other natural
condition.

Another important problem raised by the examples in Sect. 4.2 is which nice prop-
erties are expected to be inherited by the dual net, under which conditions. As we have
shown that the dual net of a Möbius covariant net in Sect. 4.2 fails to have the split
property, it is a natural question whether the dual nets of Virc have the split property (if
not, they could not be conformally covariant [MTW18]).
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A. The Two-Dimensional Conformal Spin-Statistics Theorem

We saw in the proof of Theorem 3.3 that for a Haag–Kastler net (A, U,	) satisfying
(HK1)–(HK10a) U extends to M̃öb× M̃öb and the netA remains locally covariant with
respect to U . To conclude it, we have to show that U factors through G, where G is
the quotient of M̃öb × M̃öb by the normal subgroup generated by {ρ−2π × ρ2π } (see
Sect. 2.2). A similar statement for nets on R is known as the conformal spin-statistic
theorem [BGL93,GL96], and the two-dimensional version is known to experts (see e.g.
[KL04, Proposition 2.1]), but proof is missing in literature. For the reader’s convenience,
we present a self-contained proof.

Let j denote the spacetime reflection, namely j (aL, aR) = (−aL,−aR). We denote
by jW := g jg−1 the spacetime reflectionwith respect to thewedgeW , whereW = gWR ,
g ∈ P↑

+ .

Lemma A.1. Let (A, U,	) a Poincaré covariant net of von Neumann algebras on
wedges satisfying (HK1)–(HK6) of Sect. 2.4. Then U extends to the group P↑

+ � Z2
by the modular conjugation:

U ( j) := JA(WR),	 = JA(WL ),	

and wedge algebras are covariant with respect to this extension, namely,AdU ( j)A(W ) =
A( jW ).
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Proof. From the Bisognano–Wichmann property (HK6), wedge duality A(WR) =
A(WL)′ follows (see e.g. [Tan12, Proposition A.2]). Locality (HK2) and wedge duality
properties together imply that JA(WR),	A(WR)JA(WR),	 = A(WR)′ = A(WL). Again
by (HK6), JA(WR) commutes with the boosts and by Theorem 2.2 it satisfies the right
commutation relations with translations. For a general wedge W = τ(a)WR, a ∈ R

1+1,
we have

Ad JA(WR)(A(W )) = Ad
[
JA(WR)U (τ (a))

]
(A(WR)) = Ad

[
U (τ (−a))JA(WR)

]
(A(WR))

= AdU (τ (−a))A(WL) = A(τ (−a)WL),

which is the covariance of wedge algebras. ��
Remark A.2. We do not know whether covariance holds for the whole net A including
double cones. It does if we assume Haag duality for double cones, but that assumption
might be too strong for Möbius covariant nets, as we saw in Sect. 4.2.3 that going to the
dual net may break Möbius covariance.

Consider the local action of M̃öb × M̃öb on the Minkowski space given by (gL ×
gR) · (aL, aR) = (gLaL, gRaR). We identify R with the universal covering of S1, and
with this identification, M̃öb× M̃öb acts on R

2. The Minkowski space can be identified
with (−π, π)× (−π, π) ⊂ R×R and we denote it by M0. See [BGL93]. Any diamond
with center in (a, b) ∈ R

2 of the form (a − π, a + π) × (b − π, b + π) is a copy of the
Minkowski spacetime and is denoted by M(a,b). Let θ �→ ρθ ∈ M̃öb and t �→ τt ∈ M̃öb
be the lifts of the rotation and translation groups, respectively. Copies {M(a,b)} of the
Minkowski spacetime are transformed to each other by some element in R × R �
(θ1, θ2) �→ ρθ1 ×ρθ2 ∈ M̃öb× M̃öb. Let t �→ �W (t) be the lift of the boosts associated
with the wedge W . Wedges and double cones are diamonds with sides shorter than 2π ,
and in R

2 they are indistinguishable. We call then double cones (in R
2) (Fig. 6).

Let (A, U,	) satisfy (HK1)–(HK6) and assume the local M̃öb × M̃öb-covariance:

(LM) U extends to M̃öb × M̃öb and U (g)A(O)U (g)∗ = A(gO), for g in a small
neighborhood UO of ι × ι ∈ M̃öb × M̃öb such that UO O stays in M0.

aR−aL√
2

aR+aL√
2

M0

aRaL

Fig. 6. The Minkowski space M0 in R
2. The cylinder is obtained by identifying the dotted lines. The dark

grey region is the right wedge WR ⊂ M0 and the light grey region is a doublecone O ⊂ M0
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M0 Mπ

Fig. 7. Light grey areas are wedge regions in the two copies of the Minkowski spacetimes M0 and Mπ .
Equation (5) shows that algebras associated with these regions are the equal

The netA of vonNeumann algebras can be extended to any double cone inR
2 (diamonds

with sides shorter than 2π ) by covariance. Isotony (HK1) and locality (HK2) continue
to hold for double cones included in one copy M of Minkowski space. For a double cone
which is a wedge W in M0, there are a priori two definitions: A(W ) = ∨

D⊂W A(D)

and by covariance. But actually they coincide by the continuity of U , hence we only
have to deal with {A(D)} where D is a “double cone” in R.

If AdU (ρ−2π ×ρ2π )A(O) = A(O) holds for any double cone inR
2, we can identify

points connected byρ−2π ×ρ2π and obtain a net on M̃ . In this case, we say that (A, U,	)

reduces to the cylinder M̃ .

Lemma A.3. Let (A, U,	) be a M̃öb covariant net satisfying (HK1)–(HK6) and (LM).
Then, it reduces to M̃.

Proof. We show that for any double cone O ⊂ M0 it holds that AdU (ρ−2π ×
ρ2π )A(O) = A(O). As any double cone on R

2 are contained in a copy M of the
Minkowski space, and the net {A(O)} is defined by covariance with respect to ρ × ρ,
this suffices to conclude that AdU (ρ−2π × ρ2π )A(O) = A(O) holds for any double
cone.

LetWR/L andW π
R/L be the right and leftwedges in M0 and M(−π,π) = (ρ−π ×ρπ)M0,

respectively. Note that WR coincides with the left wedge W π
L in M(−π,π), see Fig. 7.

Therefore, by wedge duality, A(WR)′ = A(WL) and A(WR)′ = A(W π
L )′ = A(W π

R ).
Altogether,

A(WL) = AdU (ρ−2π × ρ2π )(A(WL)) = A(W π
R ). (5)

By composing with an appropriate τt × τs , (5) holds for any wedge W in M0. It also
holds for double cones. Indeed, WR is a double cone in M(−ε,ε) with ε > 0 (see Fig. 8)
and by covariance one can infer that for any double cone O ⊂ M0

A(O) = AdU (ρ−2π × ρ2π )(A(O)) = A((ρ−2π × ρ2π )O).

��
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M0 M(− )

Fig. 8. The shaded region represents the right wedge in M0 and a double cone in M(−ε,ε)

Lemma A.4. Let (A, U,	) be a M̃öb covariant net satisfying (HK1)–(HK6) and (LM).
Then, for any wedge W in a copy of Minkowski space M, the wedge modular conjugation
JW implements jW on M.

Proof. The net can be extended to the cylinder by Lemma A.3. Let WL = (0, π) ×
(−π, 0) and WL,1 = (1, π)× (−π,−1) = (τ (1)× τ(−1))WL ⊂ WL be wedges in M0.
The restriction of the net A on M0 satisfies the assumptions of Lemma A.1, hence we
have

AdU ( j)(A(WL,1)) = A(WR,1), (6)

where WR,1 = (−π,−1) × (1, π). Now, note that U ( j) = JWL = JWR and that on
M(−π,π) the region WR,1 is a double cone (see Fig. 9). Thus, by (6),

AdU ( j)(A(WR,1)) = A(WL,1) = A((ρ−2π × ρ2π )WL,1),

where the last equality follows because the net is defined on M̃ . Note that (ρ−2π ×
ρ2π )WL,1 is the double cone which is obtained by reflecting WR,1 by jWπ

R
in M(−π,π),

namely, this is covariance of double cone algebras in M(−π,π). We obtain covariance for

any other double cone by P↑
+ -covariance, and this result can be brought back to M0 by

AdU (ρ−2π × ρ2π ). ��
Now we can prove the conformal spin-statistics theorem.

Theorem A.5. Let (A, U,	) satisfy (HK1)–(HK6) and (LM). Then the representation
U of M̃öb × M̃öb factors through a representation of G.

Proof. We have to show that U (ρ−2π × ρ2π ) = 1. Let O1 = (−π
2 , π

2 ) × (−π
2 , π

2 ) be
a double cone in M0 = (−π, π) × (−π, π). We saw in Lemma A.4 that Ad JA(WR),	

implements the reflection j , hence it is an antilinear automorphism ofA(O1). In particu-
lar, JA(WR),	 commutes with JA(O1),	 and the unitary JA(WR),	 JA(O1),	 is self-adjoint.

We are going to show that

JA(WR),	 JA(O1),	 = U (ρ−π × ρπ). (7)
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M0 Mπ

Fig. 9. U ( j) transforms the algebras in light grey to dark grey regions (and vice versa). They are wedge and
doublecone algebras in the M0 and Mπ pictures, respectively

Let L0,L be the generator of θ �→ U (ρθ × ι), PL be the generator of t �→ U (τt × ι)

and P̄L be the generator of anti-translations U ((ρπ ◦ τt ◦ ρ−π ) × ι). Analogously we
introduce L0,R, PR and P̄R. As operators on an appropriate domain,

L0,R = PR + P̄R

2
, L0,L = PL + P̄L

2
,

see e.g. [Kos02, Proposition 1]. By applying Theorem 2.2 toA(WR) and translations or
anti-translations, JA(WR),	 commutes with each of PR, P̄R, PL, P̄L, thus by antilinearity
of JA(WR),

JA(WR),	U (ρθ1 × ρθ2)JA(WR),	 = JA(WR),	 · eiθ1L0,L+iθ2L0,R · JA(WR),	

= e−iθ1L0,L−iθ2L0,R = U (ρ−θ1 × ρ−θ2).

The claimed Eq. (7) follows since A(WR) = AdU (ρ− π
2

× ρπ
2
)A(O1), therefore,

JA(WR),	 = U (ρ− π
2

× ρπ
2
)JA(O1),	U (ρ− π

2
× ρπ

2
)∗.

From Eq. (7) we conclude that U (ρ−2π × ρ2π ) = (JA(WR),	 JA(O1),	)2 = 1, hence the
Lemma. ��

B. Some Basic Properties of Direct Integrals

Here we follow [Dix81, Section II.1] and supply some additional results concerning
direct integral of real and complex Hilbert spaces.

Given a field of Hilbert spaces m �→ Hm on a standard measure space (X, μ) we can
construct the direct integral Hilbert space

∫ ⊕
X Hmdμ(m) if the field is μ-measurable:

This definition requires and depends on the choice of a linear subspace S of �m∈XHm
which are by definition μ-measurable vector fields (S must (i) consist of fields whose
norm is measurable, (ii) be complete in the sense that it contains any vector field whose
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pointwise inner product with any other field in S is measurable (iii) and contain a
sequence which is total at any point m ∈ X , see [Dix81, Section II.1.3, Definition 1]).
Note that given a sequence of measurable vector field ξn μ-a.e.pointwise converging to

ξ , namely ‖ξn(m) − ξ(m)‖ n→∞−→ 0 for μ-a.e.m ∈ X , then ξ is a μ-measurable vector
field. We also recall that a vector field of bounded operators m �→ Tm ∈ B(Hm) is μ-
measurable if for any μ-measurable field m �→ ξ(m) ∈ Hm then m �→ Tmξ(m) ∈ Hm

is μ-measurable. In our concrete case, we take X = R,Hm = L2(R,
dp

2ωm (p)
) and S

consists of Lebesgue-measurable functions in R × R.
Most of the results [Dix81, Section II.1] which we need are written for complex

Hilbert spaces, but actually one can consider direct integral of real Hilbert spaces and
similar results hold.7 If H = ∫ ⊕

X Hmdμ(m) with the scalar product 〈·, ·〉 is the direct
integral of complex Hilbert spacesHm with the scalar product 〈·, ·〉m ,H as a real Hilbert
space with Re 〈·, ·〉 can be seen as the direct integral of real Hilbert spaces Hm with
Re 〈·, ·〉m : theμ-measurable set S can be regarded as the set of realμ-measurable vector
fields ((i) The norm does not change. (ii) If ξ ∈ S, then also iξ ∈ S and 〈η, ξ 〉m
is measurable if and only if both of Re 〈η, ξ 〉m and Re 〈η, iξ 〉m = −Im 〈η, ξ 〉m are
measurable. (iii) The metric does not change, hence from a total sequence {ξn} with
respect to the complex scalar product we can make a sequence {ξn, iξn} which is total
with respect to the real scalar product).

In order to properly describe theBGL-net associated to a direct integral representation
in Sect. 4.2.3, we need the following two propositions, see [Hal62] and [Dix81, Section
II.1.7, Proposition 9], respectively. The proofs work for C as well as for R.

Proposition B.1. Let K1, . . . ,Kk be closed subspaces of a Hilbert space H and K =⋂
k Kk . Let PK j and PK be the associated orthogonal projections, then

(
PK1 , . . . PKk

)n

strongly converge to PK, as n → +∞.

Proposition B.2. Let m �→ Hm be a μ-measurable field of Hilbert spaces over a mea-
sure space (X, μ). Let Hm be a closed linear subspace of Hm and EH (m) be the
projection onto Hm. Let SH be the set of all measurable vector fields m �→ ξ(m) such
that ξ(m) ∈ Hm. Then the following are equivalent:

(i) the field of subspaces m �→ Hm, endowed with SH , is μ-measurable;
(ii) There exists a sequence {ξn}n∈N of μ-measurable vector fields (m �→ ξn(m) ∈
Hm) such that {ξn(m)}n∈N is a total sequence in each Hm;

(iii) for any measurable vector field ξ with respect to S, the field m �→ EH (m)ξ(m)

is measurable.

This proposition allows us to consider the direct integral
∫ ⊕

X Hmdμ(m) of standard
subspaces. A vector ξ in this subspace is a L2-measurable field of vectors {ξ(m)} such
that ξ(m) ∈ Hm for almost all m. In our application, Hm is the closure of the Fourier
transforms of real compactly supported continuous functions on the Minkowski space
R
1+1, restricted to the mass shell with mass m.

Lemma B.3. With the definitions in Lemma B.2, let Hm be a μ-measurable field of
subspaces, and consider H = ∫ ⊕

X Hmdμ(m),

7 We mostly use caligraphic letters (such as Hm ) for complex Hilbert spaces and roman letters (such as
Hm ) for real Hilbert spaces. However, a complex Hilbert space can be seen as a real Hilbert space by taking
the real part of the scalar product, and we do this in this paragraph.
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(a) m �→ H⊥
m m �→ H⊥

m is a μ-measurable field and H⊥ = ∫ ⊕
X H⊥

m dμ(m). If H
is a real Hilbert space obtained from a complex Hilbert space and Re 〈·, ·〉, then
m �→ H ′

m m �→ H ′
m is a μ-measurable field and H ′ = ∫ ⊕

X H ′
mdμ(m).

(b) let {Hk}k∈N be a countable family of μ-measurable fields, then
⋂

k∈N
(Hk)m is a

μ-measurable field and
⋂

k∈N
Hk = ∫ ⊕

X

⋂
k∈N

(Hk)mdμ(m).

(c) let {Hk}k∈N be a countable family of μ-measurable fields, then
∑

k∈N
(Hk)m is a

μ-measurable field and
∑

k∈N
Hk = ∫ ⊕

X

∑
k∈N

(Hk)mdμ(m).

Proof. (a) By definition H⊥ = {ξ ∈ H : 〈ξ, η〉 = 0, η ∈ H}. Since Hm is a mea-
surable field, by Proposition B.2 (iii) for any ξ ∈ H, m �→ EH (m)ξ(m) ∈ SH is a
measurable map. Then for every ξ ∈ H, the vector field m �→ (1 − EH (m))ξ(m) is
clearly μ-measurable, hence by implication (iii) ⇒ (i) in Proposition B.2, we have that
m �→ H⊥

m is a μ-measurable vector field of subspaces. We denote their direct inte-
gral by

∫ ⊕
X dμ(m)H⊥

m . The inclusion H⊥ ⊃ ∫ ⊕
X dμ(m)H⊥

m is obvious. Any ξ can be

decomposed as EH ξ + (1 − EH )ξ , hence
∫ ⊕

X dμ(m)H⊥
m must coincide with H⊥.

Now considerm �→ Hm μ-measurable field of real subspaces, thenm �→ i Hm is also
a measurable of real subspaces. Indeed, let Em be the projection on Hm for any x ∈ H,
m �→ i E(m)x(m) is a measurable vector field, as S is closed under the multiplication
by i . Therefore, (i) in Proposition B.2 holds and we obtain i H = ∫ ⊕

X i Hmdμ(m).
We conclude by recalling that H ′ = (i H)⊥, and combining the last comments, that
H ′ = ∫ ⊕

X dμ(m)H ′
m .

(b) Let {Hk}k∈N be a family of measurable fields of subspaces. We need to show that
m �→ ⋂

k(Hm)k is ameasurablefield of real spaces and
∫ ⊕

X dμ(m)
(⋂

k(Hm)k
) ⊂ ⋂

Hn .
Firstly, if the family is finite, namely if we have H1, . . . , HK , then for any ξ ∈ H, then

((PH1)m . . . (PHK )m)nξ(m)
n→+∞−→ (P∩k Hk )mξ(m) for each m by Proposition B.1, and

this is measurable. Hence by implication (iii) ⇒ (i) in Proposition B.2 we conclude that
m �→ ⋂K

k=1(Hm)k is a measurable field of real spaces. If the family is countably infinite,
we take P̃K : m �→ (P̃K )m as the projection on

⋂K
k=0(Hk)m . This is a μ-measurable

family of decreasing projections, thus for any ξ ∈ H the limit (P̃K )mξ(m)
K→+∞−→

(P∩∞
k=1Hk )mξ(m) is still measurable. Thus if Hk is a countable family of real subspaces,

m �→ ⋂
k(Hk)(m) gives a measurable family of real subspaces. The same sequence of

projections shows that, if ξ ∈ ⋂
k Hk , then ξ = P∩k Hk ξ and hence ξ(m) ∈ Hm , which

concludes the claim.
(c) This follows by combining (a) and (b). ��
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