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Abstract 

In this work we shed light on the early stage of the chemical vapor deposition of graphene on Ge(001) 

surfaces. By a combined use of µ-Raman and x-ray photoelectron spectroscopies, and scanning tunneling 

microscopy and spectroscopy, we were able to individuate a carbon precursor phase to graphene 

nucleation which coexists with small graphene domains. This precursor phase is made of C aggregates 

with different size, shape and local ordering which are not fully sp2 hybridized. In some atomic size 

regions these aggregates show a linear arrangement of atoms as well as the first signature of the 

hexagonal structure of graphene. The carbon precursor phase evolves in graphene domains through an 

ordering process, associated to a re-arrangement of the Ge surface morphology. This surface structuring 

represents the embryo stage of the hills-and-valleys faceting featured by the Ge(001) surface for longer 

deposition times, when the graphene domains coalesce to form a single layer graphene film. 
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1. Introduction 

Catalyzed chemical vapor deposition (CVD) on metallic substrates has been largely predicted as one of 

the most promising techniques for the scalable synthesis of highly crystalline graphene, which is 

necessary for the development of graphene based electronics [1]. However, the graphene integration in 

standard complementary metal oxide semiconductor (CMOS) technology is hindered by metallic 

impurities and defects which are introduced by the growth process itself [2] or successively in the transfer 

process on Si wafers [3-4]. A significant improvement toward the compatibility of CVD graphene with 

CMOS-technology is represented by the recent achievement of metal contamination-free graphene grown 

directly on Ge or Ge/Si substrates [5-6], in particular on the technology relevant (001) surface orientation 

[7-13]. Despite this remarkable breakthrough, the quality of graphene deposited on Ge(001) should still 

be improved for “real-world” technological applications. To this end, it is necessary to investigate, 

understand, and acquire a full control over the adsorption and nucleation mechanisms of the carbon 

species on the substrate at the early stage of graphene growth, which deeply influence the quality of the 

graphene at all the subsequent stages of the deposition.  

Theoretical studies of hydrocarbon decomposition mechanisms and nucleation on metal surfaces (such as 

Ir, Cu, Ni, Ru), have focused on competing roles of the C-C and carbon-metal interaction at the graphene-

substrate interface on graphene nucleation [14-18]. In different substrates, this competition leads to 

different structures acting as stable precursors [14, 16, 19]. Early stage of graphene synthesis on metal 

substrates (e.g. Cu, Ir) was experimentally investigated in Refs. [20-27]. A binding between the graphene 

precursor phase and the substrates has been evidenced by x-ray photoelectron spectroscopy (XPS) 

[21,27]. Gao et al. reported that precursors of the graphene growth on Ru were made of chains of C 

dimers [20], while in Ref. [24] was reported that graphene nuclei expand their lateral sizes by the addition 

of clusters comprising 5 C atoms. Concerning the graphene-Cu system, whose similarity with the 

graphene-Ge one has been recently evidenced in [10], different carbon clusters were identified by 

scanning tunneling microscopy (STM) as “growth intermediates” prior to the graphene formation and 

their evolution after the saturation of the surface in defected graphene was observed [22].  

As for the CVD growth on Ge(001) substrate, the first stage of graphene nucleation has not yet been 

clarified yet. The quality and characteristics of the deposited graphene depend strongly on the Ge surface 

orientation [5,6,8,10,11], indicating that the C atom interaction with the Ge surface is of paramount 

importance in determining the graphene quality. Although Ge forms no stable carbide phase (GeC), 

theoretical calculations [28] suggest that, in graphene growth from solid C sources, the interaction 

between the Ge(001) surface and C atoms results in the immobilization of a C atom by substitution of a 

Ge atom in a surface dimer, so that either carbon dimers trapped by Ge dimer vacancies or longer C 

chains trapped between dimer rows act as graphene seed. As for CVD graphene, the same study [28] 
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predicts that CHx diffusing species can react with one another leading to the formation of polymeric 

carbon rings stabilized on the Ge(001) by GeC bonds.  

In this work we experimentally investigate the early stage of CVD graphene synthesis on Ge(001) 

substrate using methane as precursor gas. To this end, we combine spectroscopic measurements (Raman 

spectroscopy and x-ray photoelectron spectroscopy) and an atomic scale characterization by means of 

scanning tunneling microscopy. Our analyses reveal that at the early stage of graphene growth a carbon 

precursor phase still not organized in the hexagonal atomic structure of graphene is present and covers a 

large part of the Ge surface. This C precursor phase evolves in graphene nuclei that in turn coalesce to 

form a single layer graphene (SLG). 

 

2. Materials and methods 

Graphene was deposited on Ge(001) substrates in a commercial 4-inches CVD system (BM, Aixtron) 

using CH4 and H2 as precursor gases and Ar as a carrier gas. CH4, H2, and Ar fluxes were set at 2, 200, 

and 800 sccm, respectively. The growth pressure was 100 mbar and the substrate temperature was fixed at 

930 °C. In these conditions, the graphene grows following a layer by layer regime in which the second 

graphene layer starts to develop only after the completion of the first one [10]. The substrate heating was 

carried out by a multi-step temperature ramp that ensures good reproducibility and a homogeneous 

temperature on the whole Ge surface maintaining a proper surface morphology up to 930 °C, i.e. few 

degrees below the Ge surface melting.  

The sample structure and morphology were characterized by Raman spectroscopy, XPS, STM and 

scanning tunneling spectroscopy (STS). Raman spectroscopy (Renishaw inVia confocal Raman 

microscope) was performed using an excitation wavelength of 532 nm, a 100× objective, resulting in a 

laser spot size of 1 µm. In order to compare the emission intensities of 2D, G, and D bands between 

different samples the Raman data were acquired in the same experimental conditions and we also checked 

that the emission from N2 at 2331 cm-1 coming from aerial contamination had the same intensity in all the 

spectra. The intensity of the 2D, G and D bands were evaluated by using the integrated peak area. The 

XPS measurements were carried out using a monochromatic Al Kα source (hν=1486.6 eV) and a 

concentric hemispherical analyzer operating in retarding mode (Physical Electronics Instruments PHI), 

with overall resolution of 0.35 eV.  

The carbon surface coverage  was evaluated by using the C1s core level area intensity of each sample 

normalized to that acquired in the same experimental condition on a commercial graphene monolayer 

(CGM) (i.e. graphene grown via CVD on copper foil and transferred on SiO2 [10]) mounted on the 

sample holder beside the analyzing sample, i.e. =IC1s(sample)/IC1s(CGM)=NC(sample)/NC(CGM), 
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where NC is the number of carbon atoms for unit area. In particular, the sample grown for 60 min has a 

surface coverage =0.970.05 corresponding, within the experimental error, to a single layer graphene. 

The STM/STS measurements were carried out under ambient conditions at room temperature employing 

a WA technology TOPS System. Electrochemically etched W tips were used for STM/STS 

measurements. Topographic images were acquired in constant current mode. 

 

3. Results  

3.1 Raman and x-ray photoelectron spectroscopy measurements 

 

Figure 1.  Raman spectra of sample A (black line, deposition time 30 min) and SLG (red line, deposition time 60 

min). The insets show in more detail the G bands at 1600 cm-1 evidencing the presence of the D’ peak in the 

spectrum of sample A. Blue lines are the Lorentzian fit of the G and D’ peaks. The peaks at ~1554 and 2331 cm-1 

are due to O2 and N2 respectively. 

 

 E2D (cm-1) EG (cm-1) 2D (cm-1) ID/ID' 

Sample A 2712.7±1.7 1601.3±1.3 50.3 4.7±0.8 

SLG 2711.3±3.5 1601.5±3 36 - 

 

Table 1. 2D and G peak energies, 2D FWHM (2D) and ID/ID’ intensity ratio extracted from the Raman 

spectra of sample A and SLG. The values are averaged  on several  spectra acquired on different  surface 

regions. The reported errors represent half of the maximum dispersion of the experimental values.  

 

 To gain insight into the early stage of CVD graphene synthesis, we deposited graphene films varying the 

deposition time tD. In Figure 1 the Raman spectrum of a sample grown for tD=30 min (sample A, black 

line) is compared to that of a single layer graphene covering uniformly the Ge surface and deposited using 
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the same growth conditions for 60 min (SLG sample, red line). The main parameters obtained from the 

Raman analysis  are reported in Table 1. Significant differences can be observed between the two spectra. 

The main graphene features, i.e. 2D and G peaks, are present in both the samples. The SLG has a narrow 

2D Lorentzian peak with a FWHM 2D of 36 cm-1 and an integrated  I2D/IG intensity ratio equal to 3.6. At 

about 1300 cm-1 a residual D peak (integrated ID/IG intensity ratio ~0.3) related to intervalley resonant 

scattering induced by defects is also visible. The Raman spectrum of sample A presents the typical 

signature of disorder [29,30] and therefore may be characteristic of graphene films at the very early stage 

of the growth. The spectrum is indeed characterized by a larger D peak and less intense  and wider 2D  

peak. Since the graphene samples are grown in a layer by layer regime, no contribution to the 2D width 

from multilayer graphene domains are expected.  The increase of the 2D could be due to strain variation 

on length scale below the laser spot size as suggested in [31]. Despite the significantly different 2D 

values, the averaged E2D and EG energy positions  of sample A and SLG are very similar as shown in 

Table 1. This suggests that the average strain and doping level of sample A are similar to those of SLG in 

which a  charge density of the order of 1 × 1013 cm−2  and a compressive biaxial strain of the order of ε ≈ 

−0.3% [10]  were found following the method reported in Ref. [32]. As shown by the inset, in sample A 

at 1635 cm-1 also the D’ peak, related to intravalley resonant scattering process induced by defects, is 

visible. Thus the G peak region was fitted with two Lorentzian curves corresponding to G and D’ bands 

while a single Lorentzian component was used for the SLG. The value of the ID/ID’ intensity ratio gives 

information on the nature of defects present in graphene. Experimental ID/ID’ values measured on 

intentionally defected graphene are ~13 for on-site defects (sp3 defective C atom clusters of 20-30 nm in 

size), ~7  for  hopping defects (which represent vacancies and defects that produce deformation of C-C 

bonds in graphene) and  ~3.5  for grain boundary defects measured in graphite [33]. In our sample A the 

ID/ID’ ratio is equal to 4.7 suggesting that vacancy and grain boundary are the dominant defects. Notice 

that ab initio calculations performed assuming isolated defects predict a ID/ID’ ratio about 10 for hopping 

defects and of 1.3 for on site defects [34]. Therefore the presence of isolated sp3 defects cannot be 

excluded.  

In Figure 2 the high resolution C1s and Ge3d XPS spectra of the two samples are reported. As displayed 

in panel (a), the SLG shows a C1s spectrum with the typical graphene asymmetric lineshape peaked at 

284.4 eV well fitted using the Doniach-Sunjic profile (asymmetry parameter of 0.12). The absence of a 

C1s component at lower energy indicates that Ge−C bonds are negligible. The C1s spectrum of sample A 

has a lower intensity corresponding to a surface coverage =0.75. Furthermore, the C1s peak is shifted at 

a lower binding energy and exhibits a different lineshape well fitted by two components centered at 284.4 

eV and 284.1 eV respectively (lower curves of Figure 2 (a)).  
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Figure 2. High resolution C1s and Ge3d XPS spectra of sample A (black symbols) and SLG (red symbols). (a): C1s 

spectra. Upper curve: the SLG spectrum was fitted with Doniach-Sunjic profile (blue line). Lower curve: in the 

sample A the fitting curve (blue line) is the sum of a Doniach-Sunjic component centered at 284.4 eV for the sp2 

GD phase (cyan line) and a gaussian component at 284.1 eV per the CP phase (green line). (b): Ge3d spectra. 

Upper curve: the SLG spectrum was fitted with a 3d5/2 and 3d3/2 spin-orbit splitting doublet (blue line) 

corresponding to the Ge-Ge bond. Lower curves: the 3d spectrum of the sample A was fitted with the sum of two 

spin orbit splitting doublets corresponding to the Ge-Ge bond (green line) and Ge- C bond (red line). The blue line 

is the obtained fit.  

In sample A, the C1s components at 284.4 eV has the same shape of the SLG C1s spectrum suggesting 

the presence of graphene domains (GD phase). Its intensity is the 35% of the whole spectrum, 

corresponding to a coverage of 0.25. The additional C1s component at 284.1 eV has a Gaussian lineshape 

and accounts for the 65% of the intensity of the whole spectrum corresponding to a coverage equal to 0.5. 

This component is not related to contamination or adventitious carbon: as a matter of fact in literature it is 

reported that C-H bonds were located at 284.5 eV, alcohol C-OH (or C-O-C) bonds at 286 eV and 

carbonyl (C=O) bonds at 288.4 eV [35]. Also in Ge substrate submitted to the growth procedure reported 

in this paper but without methane in the gas mixture (where C can only be present due to contamination), 

and in uncleaned pristine Ge substrate the C1s emission is located at higher binding energy [10,36]. The 

C1s component at 284.1 eV is therefore due to an extra C phase developing on the Ge surface in the first 

stage of the CVD growth. In the following we will refer to this phase as carbon precursor phase (CP 

phase). The Ge3d core level spectra are reported in Figure 2(b). The SLG spectrum is well fitted with a 

single spin-orbit doublet with 3d5/2 binding energy equal to 29.4 eV, 3d5/2 -3d3/2 energy splitting of 0.6 eV 

and intensity ratio of 0.66, respectively. Since the Ge-C bond is negligible in this sample this spectrum is 

related to Ge atoms bonded to Ge. The best fit of the Ge3d spectrum of sample A suggests the presence of 

two spin- orbit doublet components with 3d5/2 peak centered at 29.4 and 29.8eV, respectively. The 



 
 

7 

doublet at 29.4 eV has the same lineshape and energy position of the SLG one and corresponds to the 

signal coming from Ge atoms bonded only to Ge. As for the doublet at higher binding energy, it is likely 

due to bonds between Ge surface atoms and C atoms of the grown film. Its binding energy is compatible 

with Ge atoms with one or at most two Ge-C bonds [37] being the energy chemical shift lower than the 

value reported for GeC bond in carbide form [38]. Since the electron escape depth of Ge3d photoelectrons 

in Ge is λGe2 nm [39], the signal from the Ge-C bonds is expected to be much smaller than the Ge-Ge 

one, the latter signal coming from several Ge layers beyond the surface. The best fit gives an intensity of 

the Ge-C doublet  10 % with respect to that of the Ge-Ge one. Taking into account the lower atomic 

surface density of Ge(001)  with respect to that of sample A, this value is compatible with about 1 over 5  

C atoms of sample A bonded to Ge.  

Further information on the nature of the CP phase can be obtained by the comparison between XPS and 

Raman data. As matter of fact the ratio R(sp2) between the G peak area of sample A and SLG can be used 

to estimate the degree of sp2 hybridization in sample A. Indeed, the area of the G peak is proportional to 

the number of the C-C sp2 bonds [40] and in the SLG all the C bonds are sp2. We found R(sp2) = 0.55, a 

notably smaller value with respect to the carbon coverage in sample A estimated by XPS suggesting that 

carbon bonding in the CP phase is not completely hybridized sp2. 

 

3.2 Scanning tunneling microscopy  

The coexistence of regions exhibiting different carbon bond structures in sample A has been confirmed by 

STM measurements. The sampling of the surface reveals the presence of two typical morphologies that 

we identified as characteristic of the CP (Figure 3 (a-e)) and GD (Figure 3 (f-g)) phases. The CP phase 

morphology is characterized by a flat unfaceted surface (panel (a)) with a rms of about 0.1 nm and by 

the presence of round shaped inhomogeneities with typical lateral size of few nanometers (panel (b)). By 

increasing the magnification (Figure 3(c)) few atom aggregates (C or CHx species) with different size, 

shape and local ordering in the same scan area become visible. In panels (d) and (e) we report magnified 

areas evidencing the details of these aggregates showing different features. In panel (d) isolated 

“hexagonal” carbon clusters (lower image) having the same lattice parameter of graphene and  linear 

chains (top image) are shown. Panel (e) reports larger “spot” elements whose internal structure cannot be 

resolved suggesting a less ordered atomic arrangement. As shown in the profile in panel (e), the typical 

distance between these “spots” is around 0.3 nm, i.e. basically twice the interatomic distance in graphene. 
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Figure 3.  STM/STS investigation of sample A and SLG. (a-c): STM images of the CP phase of sample A taken at 

different magnification.(d-e): details of the C aggregates of CP phase in sample A. In (d) linear C chains (top 

image) and “hexagonal” carbon clusters (lower image). In (e) disordered “spots” and their profile. (f-g): STM 

images of the GD phase of sample A, taken at different magnification. In the inset of panel (g) is reported the FFT 

of the image evidencing the hexagonal symmetry of the lattice. (h) STS measurements: dI/dV curves acquired on 

CP phase (black curve) and GD phase (blue curve), respectively. In red the quadratic and linear fits of the CP and 

GD dI/dV curves, respectively. (i) STM image of the SLG sample: the large scale data show the hill and valley 

nanofaceting. Insets: facet plot (upper) and 2×2 nm2 atomic scale STM image (lower) evidencing the hexagonal 

structure of graphene. The sides of all the images are along the <110> directions. 

 

As for the GD phase, panel (f) shows a 100 nm100 nm morphology characterized by the presence of 

structures whose shape remotely reminds a hut roof. In the following we will refer to the facets of these 

structures as proto-facets. The average height of the proto-facets is 0.6 nm while the angles with respect 

to the surface is 6-7°. Interestingly their orientation is along the <100> directions which are the same 

directions of the Ge nanofaceting developing during the SLG growth (see Figure 3(i) where the STM 

measurements performed on the SLG sample are reported for comparison). Notice that the susceptibility 

of the Ge(001) surface to form {1,0, L} facets has been observed under a number of conditions [41-44]. 

The STM image acquired at atomic resolution in the GD region of sample A is reported in Figure 3(g). 

The typical honeycomb hexagonal lattice of graphene is clearly visible. From local profile and FFT 

analysis the minimum distance between atoms is evaluated, on average, as 0.14 nm, in excellent 

agreement with the C-C distance in graphene. All the C structures evidenced by STM cover almost 

uniformly the surface of sample A with a predominance of CP over GD phase, in agreement with the high 
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value of carbon coverage estimated by XPS and with the relative intensity of their components in the C1s 

spectrum.  

Further analysis on sample A is performed using STM/STS techniques that provide information about the 

nanoscale electronic properties of the samples [45-46]. STS measurements were carried out at room 

temperature in a range of 0.5 V around the Fermi level. This spectroscopic characterization has been 

repeated for both CP and GD phases recognized on the sample A and, for each phase, the I(V) curves 

were averaged over areas of about 5x5 nm2. From the averaged I(V) spectra we determined the dI/dV 

curves which are connected to the local density of states. The typical dI/dV curves acquired on the two 

phases (Figure 3(h)) evidence two well distinct profiles. A linear characteristic typical of free standing 

graphene [47] was obtained on the proto-faceted area characterizing the GD phase suggesting a weak 

interaction between graphene and the Ge substrate [9]. A non linear behavior is found in the CP regions in 

which graphene is still not well developed. The dI/dV  curve acquired in these regions is well fitted with a 

quadratic curve. It is interesting to note that a quadratic like behavior in graphene on Ge system is 

attributed to the presence of interaction between graphene and Ge substrate [9,12,13].  

For the sake of completeness, the STM characterization performed on the sample A was repeated on the 

SLG. The results are reported in Figure 3 (i). In the bottom inset the atomic resolution image is reported 

showing a well ordered and regular graphene hexagonal lattice. STS measurements on SLG (not shown) 

evidence linear dI/dV characteristics similar to those found on the GD phase of sample A. On a large 

length scale the sample morphology is dominated by the Ge nanofaceting, a maze made of faceted 

structures. The facet plot reported in the inset shows that the orientation of the nanofaceting is along the 

<001> directions. The intense central spot corresponds to low angle values and takes into account the flat 

top morphology of faceted structures. The angle that the facets form with the substrate is compatible with 

{1,0,10}facet orientation in agreement with the previous report based on AFM measurements [10]. 

Values of the facet angle of nanostructured Ge surfaces between 5° and 8 ° are reported in literature with 

slight variations of the angles found as a function of the deposition parameters [9, 48].  

 

4. Discussion 

It was suggested that graphene nucleation occurs when the C adatom concentration on the substrate 

surface reaches a critical value corresponding to a supersaturation condition [10, 49]. The data acquired 

on a partial graphene growth performed via CVD (sample A) indicate that this is a relatively slow process 

in our growth conditions. Indeed, after 30 min of deposition time, graphene domains (GD phase) are 

present only in very small regions covering about 25% of the surface. Most of the C atoms present on the 

Ge surface at this stage of the growth are aggregated in the CP phase representing therefore the 

intermediate path toward graphene nucleation. Precursor structures for the graphene formation including 

C dimers, rectangle, zigzag and armchair carbon chains were also observed in graphene deposited on 
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Cu(111) [22]. Theoretical calculations have shown that for substrates that are weakly interacting with C 

atoms, the interaction between two C adatoms is attractive leading to easy ad-dimers formation during 

graphene growth [15] and that the sp hybridized C-C bond is favored against to sp2 and sp3 C-C bonds 

[16]. The resulting microscopic path to graphene nucleation on Cu has thus been theoretically identified 

in linear C chains that transform in Y type and extended polyyne chains with subsequent ring 

condensation and formation of sp2 hybridized islands [16, 50], species that resemble the C aggregates we 

identified in our sample A. Our Raman spectroscopy data suggest that in the CP phase carbon bonding is 

not completely hybridized sp2 and the XPS Ge3d data suggest the presence of Ge-C bonds, instead not 

present in the SLG. Therefore, the C1s component at 284.1 eV related to the CP phase is likely due to C-

C sp bonds in the linear chains, sp2 defected bonds and C atoms bonded to one Ge whose binding 

energies are all around 284 eV [37,38,51,52], too close each other to be resolved unambiguously. Notice 

that the presence of C-Ge bonds at the early stage of CVD graphene nucleation on Ge (001) has been 

predicted theoretically in Ref. [28]. As a matter of fact the DFT calculations of J. Dabrowski at al. suggest 

that the products of precursor dissociation are strongly bonded to the Ge(001) dimers.  

During the graphene nuclei enlargement the GeC bond is substituted by H atoms that saturate the nuclei 

edge allowing the diffusion of structures made of several carbon rings on the surface during the growth 

process. The diffusion of carbon clusters on the Ge surface can favor the crystallization process we found 

as a function of deposition time from sample A to SLG via a Smoluchowski ripening mechanism similar 

to that observed in the initial stage of graphene growth on metal in Refs. [27,53]. Furthermore during this 

crystallization process methane can play the dual role of carbon source that maintains the active species 

concentration above the equilibrium and defect healer as reported in Refs. [22, 50]. Interestingly, in Ref. 

[50] the authors found that an important role in this defect healing process is played by kinetics effects 

which are enhanced by the high surface mobility of the catalyst at deposition temperatures close to the 

substrate melting point, as in our experiment. The mobility and/or evaporation of Ge atoms in our 

experimental conditions is proved by the evolution of the surface morphology during the graphene 

growth, from the unstructured flat morphology of CP phase to the proto-faceted one in the GD phase, and 

finally to the labyrinth faceted structure observed in the SLG. Interestingly, we found that during the 

growth the nanofaceting develops and expands underneath the graphene film in a compliant manner, with 

the exposure of the same {1,0,7}-{1,0,10} facets at all the stage of the growth. This finding suggests that 

although the interaction between graphene and the substrate is weak, it is sufficient to induce and stabilize 

the faceting in presence of an extremely fluid surface, as already observe in graphene growth on Cu(001) 

[54].  

 

5. Conclusions 
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In summary, we identified at the early stage of CVD growth of graphene on Ge(001) the carbon precursor 

phase to graphene nucleation made of C atoms and/or CHx aggregates partially bonded to the Ge surface. 

These aggregates do not exhibit a well-established long-range ordering although a local arrangement in 

linear and hexagonal structures can be recognized in some atomic size regions. The C precursor phase 

evolves in graphene domains through a crystallization process that in turn results in the formation of a 

uniform single layer graphene. The nucleation of the small graphene domains is accomplished by the Ge 

surface proto-faceting that evolves in the characteristic Ge nano-faceting of SLG on Ge(001) with the 

exposure of the same {107}-{1010} facets at all the stage of the crystallization process. This finding 

suggests that the interaction between graphene and the substrate, although weak, is sufficient to induce 

and stabilize the faceting in presence of an extremely fluid surface. 
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