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Abstract 

We briefly review the properties of the disorder-induced light scattering spectrum observed in 
Raman scattering experiments from disordered solids, in particular, we concentrate on the region 
w-+0. From this analysis it appears that ice I,, shows an anomalous behaviour which may be 
ascribed to the contribution of multiphonon terms; in this paper these are introduced via an 
explicit non-linear coupling between radiation and matter. The results of this model are reported, 
and the underlying physical mechanism examined in some detail. Even if the results are somewhat 
qualitative in character, they give indirect evidence for the presence of activated hexagonal hy- 
drogen loops in ice Ik 

INTRODUCTION 

All disordered solids exhibit a wide Raman band, say in the range o = O-300 
cm-l [l-4]. This band is due to a disordered contribution in the effective 
polarizability modulation (“electrical” disorder) which gives rise to the ob- 
served incoherent light scattering spectrum. If the “electrical order” is defined 
on a length scale A (typically a few angstroms), then all phonons with A> A 
are allowed to appear in the observed Raman intensity giving rise to the dis- 
order-induced light scattering (DILS) spectrum. 

On quite general grounds, the low-frequency behaviour of the spectrum may 
be predicted to be 

I(o) =:p(o)C(o4A) (n(o,T) +l)/fi@ (1) 
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where p(w) is the density of states and n(m,T) the population factor. The 
coupling of radiation with the different frequency modes is described by the 
coefficients C (co, A), where A-dependence is explicitly indicated Since for O-B 0 
one has p(w)=:02 (having supposed a Debye-like behaviour) and 
n( w,T) x KTn/o, the entire frequency dependence in I(o) is carried by 
C( o,A); in the limit o-+0 this is the quantity of interest. Furthermore, it should 
be noted that one of the basic physical ingredients underlying the polarizability 
modulation is the dynamic correlation between different scattering units. 

Disordered systems may be then sorted into two broad classes: (a) solids 
having a high degree of dynamic correlation between atomic or molecular com- 
ponents; (b) solids with at least partially uncorrelated constituents. 

In this context, we now briefly summarize the situation concentrating in the 
region of the spectrum where A >> A; this condition allows one to neglect the 
A-dependence of the C(o, A) coefficients. For details about the case of 1 <A 
the reader is referred to a previous work [ 51. 

In the first class mentioned C(w,A) scales like w2 for w-0; this is easily 
established noting that the modulation of the effective polarizability induced 
on each molecule by the surrounding ones may be expanded in series of relative 
displacements retaining the linear term only (one-phonon approximation); in 
this case, since C (0) contains the correlation function of the relative displace- 
ments, it must be C( w ) = It2 x 02. Comparing this prediction with experimen- 
tal data, the agreement is fair at low temperature [6] (Fig. 1); raising the 
temperature, the situation is as if there is “more” scattering than predicted by 
the simple o2 scaling; this is called light scattering excess (LSE). A number 
of different mechanisms have been proposed to deal with this anomalous fea- 
ture [ 7,8]. Here it suffices to note that within all these interpretation schemes 
both DILS and LSE are explained in terms of dynamics. 

The second class of systems is best described by taking a particular system 
as a reference, e.g. AgI in its a! phase. This system is characterized by an or- 
dered iodine lattice while the Ag+ ions are topologically disordered and free to 
diffuse from site to site; thus their dynamics are almost totally uncorrelated 
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Fig. 1. Low-frequency Raman spectra measured by Nemanich [ 61 in As&, at low temperature 
(2’~ 8 K). The full line is the expected w* behaviour. 
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Fig. 2. Low frequency Raman spectrum of ice Ih. 

from those of the iodine ions. The light scattering spectrum will thus reflect 
both the dynamics of the iodine ions and the diffusive motion of the Ag+ ions. 
As a matter of fact, the only observable contribution comes from the AgI rel- 
ative motion. This means that the C (0) coefficient will be o-independent, at 
least for il > A, i.e. the scattered intensity does not depend on frequency in the 
limit o+O. 

As sometimes happens with classification schemes, ours is far from being 
exhaustive; there are solids where DILS cannot be explained by either theory. 
In this context, the most interesting systems to us are hydrogen bonded (HB) 
solids. Several measurements on such systems (ice Ih, KDP ) established that 
I( a) is indeed o-independent in the low-frequency region (Fig. 2). This is in 
strong contrast with the high degree of dynamic correlation present in HB 
systems. This apparent failure can be found in the following fact, tacitly as- 
sumed in the above discussion; the mechanism of induced polarizability is well 
described by regular and smooth functions of the distance between different 
scattering units (“regular” mechanisms). In this case the renormalized atomic 
(or molecular) polarizability expansion in terms of displacements can be trun- 
cated at the one-phonon term, higher-order terms being negligible. However 
in HB solids, due to the rearrangement of electronic states, the effective po- 
larizability of a given unit is drastically changed even for a small displacement 
of the atoms from their equilibrium positions, where the polarizability of the 
unit is thought to attain its maximum (or minimum) value. This clearly leaves 
room for multiphonon terms, whose existence may significantly alter the shape 
of I(w) in the low-frequency region. 

Along these lines we now present an explicit model to treat I(o) in the long- 
wavelength limit in HB solids. In the following we shall confine ourselves to 
the statement of the problem and to the final result of the calculation. All 
formal matters will be left aside, being part of a separate paper [ 51. 

FORMULATION OF THE MODEL 

The model is formulated with reference to a system composed by incoherent 
scatterers; the polarizability is very strongly dependent on the relative distance 
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between units, in agreement with the qualitative picture sketched at the end 
of the Introduction. We consider the following form for the mutual induced 
polarizability between units i andj 

lI,p(t)=AII,pexp[ - (~?(t)~~~)“/2a”] (2) 

where ~0 (t) = z?(t) - tij( t) is the relative displacement and 8’~ X’- x:’ is the 
relative distance between the equilibrium positions of the units. In eqn. (2) 
the hat indicates a unit vector. 

Besides the fact that it gives a reasonable description at a phenomenological 
level, this particular functional form was forced on us by computational neces- 
sity; it should be noted that it allows the existence of multiphonon even terms 
only. 

The link with experiment is via the Fourier transform (FT) of the classical 
polarizability auto-correlation function 

I,p(O)=Sdtexp(iwt)(n,,(t)n,,(O)>=[An,,]’Sexp(iwt)c(t)dt (3) 

where ( ) denotes thermal average. 
The calculation may be summarized in the two following steps: (i) within 

the harmonic approximation one uses the normal mode expansion to rewrite 
the arguments in the exponential factors in a more tractable form; and (ii) by 
means of successive linear transformations the thermal average is reduced to 
the calculation of gaussian integrals. 

The final result for c (t ) is 

1 

C(t)=J[l+f(o)]2- [f(t)]” 

with 

f(t) =4K,TCIcos[Oy(k)t] 
K;u o+(k) 

where 1 rkx 1 2 contains the dynamics [ 51. Note that no approximations have 
so far been made in the calculation, apart from the harmonic hypothesis. We 
now assume a dispersion relation of the Debye form and consider only longi- 
tudinal acoustic phonons in the long wavelength-limit k+O. The above rela- 
tion simplifies to 

f(t) =E&!!Y L o2 3(w~t)-3{2~~tco~(~gt)+ [(wot)2-21sin(wDt)} (6) 

The basic role is played by the parameter A = (KBZ’/M& ) ( ) I?’ 1 2/02) through 
the product of two adimensional quantities: (KnT/Mc~ ), the square of the 
ratio of the thermal velocity to the sound velocity of the system, and 18’ 1 2/c2, 
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Fig. 3. Low frequency part of the spectrum of the scattered light calculated according to our model. 
The different curves refer to different values of the parameter A (see text). All the spectra have 
been purified from the 6(o) contribution and have been normalized to Z(0). 

the ratio of the nearest-neighbour distance to the length scale of the induced 
polarizability function. I(o) curves calculated via eqn. (6) are plotted in Fig. 
3 for different values of A. It is immediately apparent that for o+O, I(o) 
increases; adding this contribution to the one-phonon term (coming from “reg- 
ular” mechanisms) we see that the two could well conspire to give a constant 
behaviour in I(o) for o-+0. Thus we have found a mechanism, at least on a 
qualitative basis, to account for the existing low-frequency data. However, the 
use of this model must be justified on a more sound physical basis: this will be 
the subject of the next section. 

APPLICATION TO ICE I,, 

We shall now focus our attention on a particular system, that is ice Ik In the 
structure of ice in the hexagonal phase the oxygen atoms form an ordered sub- 
lattice with each oxygen atom surrounded, at a distance of about 3 A, by four 
equivalent oxygens in a tetrahedral coordination (see Fig. 4). On the contrary, 
as established from X-ray diffraction measurements, the hydrogen sublattice 
is disordered. The hydrogen atoms are localized off-centre on each O-O bond, 
at a distance of about 1 A from one of the two oxygens. All the protons are 
arranged so as to preserve the molecular character of the crystal, i.e. on the 
four bonds pertaining to a given oxygen there are two hydrogen atoms “close” 
and two “far” from that oxygen. Therefore within each O-O bond there are 
two possible equilibrium positions for hydrogen, but in order to preserve the 
molecular integrity, there is no possibility of displacing any proton from one 
equilibrium position to the other without getting other protons involved. How- 
ever, it should be noted that there are situations where the rearrangement of 
six protons (all belonging to the same hexagon formed by the oxygen atoms in 
the ice Ii, structure) will be independent from all other protons. A rough eval- 
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Fig. 4. Arrangement of the oxygen atoms in ice I,,. 
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Fig. 5. The two possible arrangements of hydrogen atoms in a “hexagon” which give rise to delo- 
calization of the proton wavefunction. The oxygen atoms are at the comers of the (non-planar) 
hexagons while the hydrogen atoms ( 0 ) occupy one of the two equivalent positions ( + ) . Going 
from situation A to B all the protons shift counterclockwise. 

uation shows that this happens with probability p x 0.01. This fraction of the 
total number of hexagons we shall refer to as “activated” units. 

It is interesting to calculate the potential energy that the whole crystal ac- 
quires when the six protons of an activated unit move together, each along its 
bond (Fig. 5). We have calculated the energy of a single hexagonal loop of 
water molecules; the six oxygen atoms are placed at the sites of the ice I,., lattice 
and the protons are placed in an activated configuration, as a function of the 
parameterp, i.e. the (common) distance along the bond of all the protons from 
one of the nearest oxygens. The calculation has been performed in the Har- 
tree-Fock scheme. This has been accomplished using the GAUSSIAN 88 pro- 
gram [9] with the STO-3G basis set for the radial functions. The result is 
shown in Fig. 6, where the double-well structure is clearly visible with two 
minima atp=l A andp=1.75 A. 

The above picture is entirely classical: the correct picture is one in which 
tunnelling amongst the two different equilibrium configurations occurs. Pro- 
tons are delocalized with wavefunctions either symmetric or antisymmetric; as 
a consequence the electronic clouds are also more delocalized and therefore 
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Fig. 6. Binding energy of a single hexagonal loop as a function of the p distance (see text). The 
full line drawn through the points serves merely as a guide for the eye. 

more “polarizable”. If we now add phonons to this picture the symmetry of the 
proton hamiltonian is broken; even small displacements from the equilibrium 
position cause the six protons to be projected into localized states on one side 
of the bonds reducing the polarizability of the units. Thus the polarizability of 
the whole unit is drastically modulated by the thermal motion and this is the 
physical mechanism underlying our model. 
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