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HYDRODYNAMIC LIMIT OF A KINETIC GAS FLOW PAST AN
OBSTACLE

R. ESPOSITO, Y. GUO, AND R. MARRA

ABSTRACT. Given an obstacle in R? and a non-zero velocity with small amplitude at the infinity,
we construct the unique steady Boltzmann solution flowing around such an obstacle with the
prescribed velocity as |x| — oo, which approaches the corresponding Navier-Stokes steady flow,
as the mean-free path goes to zero. Furthermore, we establish the error estimate between the
Boltzmann solution and its Navier-Stokes approximation. Qur method consists of new L% and
L3 estimates in the unbounded exterior domain, as well as an iterative scheme preserving the
positivity of the distribution function.
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1. INTRODUCTION

Let Q be a smooth bounded open subset of R? and (2 its closure. A gas moves in Q¢ = R3\Q
with prescribed velocity 1 at infinity and vanishing velocity on 0f2, evolving according to the
incompressible Navier-Stokes equations. The steady boundary value problem for this system is
classical in Fluid Mechanics and a huge literature has been devoted to it [2 [T} [I8] 19, 2T}, 26]
(see also [12] and references quoted therein). One of the main difficulties of this problem is related
to the presence of the “wake” [28] and the corresponding slow decay to u of the velocity field at
infinity.

In the case of a rarefied gas, an alternative description is possible in terms of the Boltzmann
equation and suitable boundary conditions. In this paper we study the link between these two
descriptions in the small Knudsen numbers and low Mach numbers regime.
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It is well known that in this regime the time dependent Boltzmann equation behaves as the
incompressible Navier-Stokes equation,[3, [, [7} [T4] [15] 16, 22| 24, 27]. Much less is know for the
corresponding steady Boltzmann problem, where the natural L' and entropy estimates are not
available, and only the entropy production can be exploited.

Ukai and Asano [29, [30], see also [31], studied the Boltzmann equation in the exterior domain
with fixed Knudsen number. They considered a rarefied gas outside a piecewise smooth convex
domain of R?, with suitable boundary conditions and a prescribed Maxwellian behavior at infinity.
The Maxwellian at infinity was centered at a small velocity field. For this problem Ukai and Asano
were able to prove existence of the steady solution and its dynamical stability.

Our main result is the construction of the steady solution to the Boltzmann equation in the
exterior domain and the estimate of its closeness to the steady incompressible Navier Stokes
equation when Knudsen and Mach numbers are small. Recently in [9] we have constructed the
solution to the Boltzmann equation for small Knudsen and Mach numbers in a smooth bounded
domain, under the action of a suitably small external force and small variations of the boundary
temperature. The exterior problem is even more difficult, due to the need of good decay properties
for large .

Before describing the difficulties to achieve our program, let us state more precisely the problem
and the result.

We assume that  C R? is a C? bounded domain, not necessarily convex. Let x € Q¢ = R*\Q
and v € R3. Let F(z,v) > 0 be the (unnormalized) distribution function of a rarefied gas in Q°
with position z and velocity v, satisfying the steady Boltzmann equation

v~VF:§Q(F,F), in Q° (1.1)
where V = V, and
QUf.9)v) = Q" (f,9) f.9),
T(f,9)(v) = dw, dwB Ng(vl), 1.2
Q(fow = [ /{ oy B =0 @)00) (1.2
Q (f.o)w) = f@) / o ey B gl (1.3)

Here v' and v} are the incoming velocities in the elastic collision, defined by
V=v—wv—v)w, v =vt+wv—vs)-w, (1.4)
and B(w, V) is the cross section for hard potentials with Grad’s angular cutoff, so that
f{\w\:l} dwB(V,w) < |V]? for 0 < 6 < 1 depending on the interaction potential. In particular,
B(w,V) = |w - V] for hard spheres and 6§ = 1.
We assume diffuse reflection boundary condition: Let v = 9Q x R3 = v, U~_ U~p, with
i = {(z,v) €A xR? : n(z)-v=0}, v ={(z,v) IR : n(z) v=0}, (1.5)

n(x) denoting the normal at x to 9 pointing inside Q. Let

p v — ul?

M, 7= [— } 1.6
p,u,T (27TT)% exXp oT ( )

be the local Maxwellian with density p, mean velocity u, and temperature 7" and

1 [v]?
= Mg, = {— —} 1.7
H 1,0,1 (2#)% exp D) (L.7)
On the boundary F' satisfies the diffuse reflection condition defined as

F(x,v) =Py(F)(x,v) on~, (1.8)

where
PY(F)(z,v) == M"(x,v) / dw F(z,w){n(x) - w}, (1.9)
{n(z)-w>0}
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with the wall Mazwellian defined as
1 2
M“’:\/Qwuz—exp[—ﬁ}, / doM"™ (v)|n -v| = 1. (1.10)
2w 2 v-nZ0}
We also specify the condition at infinity. Since we study the problem in the small Mach number
regime, we assume that the velocity at infinity is of order €. In other words, fixed a constant
vector u, denoting
vy =0 —el, (V) = p(vy) = My en1(v), (1.11)
we assume in a suitable sense
lim F(z,v) = py(v). (1.12)

|z]|— 00
Note that we have prescribed the same uniform temperature on 02 and at infinity for sake of
simplicity, but we believe that a temperature difference of order ¢ could be included. We do not
discuss this. The case of sufficiently small difference of temperature for fixed ¢ has been discussed
in [32].
Let the couple velocity field and pressure, (U, p), be solution to the Stationary Incompressible
Navier-Stokes equation (SINS) in Q°:

U-VU+VP=0AU, V-U=0, U=00n990, U —u, as|z|— o0 (1.13)
where v > 0 is the viscosity coefficient. It is convenient to represent U = u+u, with (u, P) solving
(utu)-Vu+VP=vAu, V-u=0, u=-uond, u—0,as|z]— cc. (1.14)

Solutions to this equation do exist in LP, for any p > 2 and uniqueness is ensured for |u| small
(see e.g. [12], Thm. X.6.4).

Our aim is to show that F' ~ M (y4u),1 as € — 0. More precisely, since M .(yqu),1 =
th + £ f1y/, + O(e?), where

f1 = Viu - vy, (1.15)

we need to show that e =2 (F — py) ~ f1 Vi, as € — 0is in LP for any p > 2, with the same decay

of u. Therefore, we set R = 5’%;1;% [F' — g — e f1/,] and write the equation for R. Let Ly be
the usual linearized Boltzmann operator defined as
_1 1 1
Luf = —p 2 [Qps it ) + Qi f, )] := v f = Kf, (1.16)
where: v(v) = fR3><{|w|:1} dv.dwB(v — vy, w)p(vs) is such that 0 < vplv]? < v(v) <yl Kis a
compact operator on L?(R3). L, is an operator on L?(R3) whose null space is
Null L, = span{1, vy, [vy|*}+/Itn, (1.17)
Let Py be the orthogonal projector on Null L,.. In particular, L, f; = 0. Thus we have
v VR+ e 'LyR = [[u(f1, R) + Tu(R, f1)] + €2 Tu(R, R) + e 2 [Du(f1, f1) —v-Vfil,  (1.18)

where

Lu(fg) = Ti(f.9)-Ti(f9),
TE(fg) = ma*Q(ui fouig), (1.19)
Pufio) = 5Tu(fi0) +Tulg, )]
To remove the divergent term in ([TI]]), we note that, since V - u = 0, then
Py(vy - Vf1) =0, (1.20)
and
f2= L [ = (L= Py)[ou - VA] +Tulf1, f1)] (1.21)

is well defined and is in L? for any p > %, because so is Vu (see e.g. [12], Thm. X.6.4). Since u
solves the SINS equation, then it is easy to check that

Pu[’Uu -Vfo+u- Vfl] = 0. (122)
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Therefore, by setting R = R — 2 f,, which means F = ju, + e(f1 + ef2 + €2 R) /i, we see that
F' is a stationary solution to (L)) if and only if R solves the equation:

v-VR+e 'LyR=LYR+e T, (R, R)+e7 Ay, (1.23)
where
LR =20 (f1 + cfo, R) (1.24)
Ay =—I=Py)[v- Vo] +2Tu(f1, f2) + elulfo, f2) — eu- Vo (1.25)
Since u — 0 at oo, then f; and f3 also go to 0 at co. Thus we have to impose
lim R=0. (1.26)
|z|— 00

For f € L'(y+) we define

PYf= J%’Pw é :\/_WLZAY+ 2y T) = dv v)|v - n(z)|f(z,v),
4 =i P = VI () D) = [ a0 @l (1>27)

2y, (f)(x) being the outgoing/incoming mass flux at € 9. We will omit the index £+ when
there is no ambiguity.
The boundary condition for R is:

R=P'R+cetr, (1.28)
where
T:P;l[f2_¢8]_(f2_¢€)u on y—, (129)
with ¢. defined as
_1
b = 572,“11 2 [Ml,a(u-i-u),l — Hu — &/ i f1], (1.30)
such that
1
@] < Ca(jul® + [u*) exp[=plof*]  for any § < 7. (1.31)
Indeed, for x € 09, where u(z) = —u, we have = M .(y4.),1 and hence
n= Ml,s(quu),l 00 =y F Ey/ Mufl 00 + 52\/ [T 0q’ (1-32)

and, in consequence of p = PYu, on y— we have

1 1 1 1

p - efips + 2 bepi = P [uu + e frpd + e depd]. (1.33)
On the other hand the boundary condition (L) for F gives on 7y_ ,

1 9, 1 5 1 w 1 9, 1 3 1

fu +efipi +e” fapd + 2 Rui = Py pu + efipd + e fapd +e2 Rudl.
Therefore, subtracting the last two equations
205 Sp,3 2,4 3 wr 2 5 3p 5 2403
e fopi +e2 Rt — €7 ¢epiii = Py [e° fopd + €2 Rpui — e depai ],

which implies (L28).
Note that, from the definition of A,, it follows that

PyA, = 0. (1.34)

Moreover, it can be checked that

Zy (r) = / dvry/pyn - v = 0. (1.35)
{v-n<0}

From the definition of r it follows that
Irl2,— + Irloo < ful- (1.36)
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Notation. Depending on the context, we denote ||f|, = || fllzr(exrs) or [[fll, = [Ifllzr(ac) or
i .
£l = £l zr@ay for 1< p < oo [If]ly = [[fv7]l2. We st |flp.e = ([, dylf(@,v)[P)7, with
fdy = / dS(:C)/ dv v - n(z)|f(z,v). (1.37)
Y4 o0 v-n(xz)20}

Finally, we define

(s = e @ =POflly + 2|1 = P flos + [Puflls + 2 [Puflls +e2|wfllo  (1.38)
with the weight function w(v) = (v)?" exp[B[v|?], where (v) = (1 + [v]?)z.

The main result is

Theorem 1.1. Let Q be a C? bounded open set of R® and Q¢ = R3\Q. Fir u € R? such that
0 < |ul < 1. For any 0 < e < 1 consider the steady boundary value problem

1
v-VF =-Q(F,F), inQ°
€

F(z,v) = M“’/ Fv-ndv ony_, (1.39)
{v-n>0}

lim F(x,v) = py(v).

|z|—o00
Then
e the problem ([L39) has a positive solution which can be represented as
F =+ Vi, lefi + €2 fo+ 2 R), (1.40)

with f1 and fa given by (LID) and (CZ2I)), u solving (LI4), and R solving (L23), (L2J).

e R satisfies the bound
[R]ls.60 < [ul; (1.41)
for 3 >0 and0<6<<%.
e R is unique in the ball {f : [[fllo.sr < [ul}.

Remark 1.2. Note that while the L? norm of (I — P,)R is bounded and actually small as ¢ — 0,
PR is bounded uniformly in € only in LS, while the L? and L> bounds of PyR are divergent with
e~%. It turns out that that the LP norm of Py R is bounded for p > 2, but the bound is not uniform
in e for 2 < p < 6. This is the counterpart of the slow decay of the velocity field w at infinity,
which is well known in Fluid Dynamics, where it is proved that the L? norm of u is unbounded.
We do not know if a similar statement is true for R, but it is certainly true for f1 which is linear
in u and hence for e Y (F — ).

Remark 1.3. We also note that combining the estimates implied by ([(LAT), it follows that ||R||e
is bounded uniformly in €. In fact, we have |PyR|j¢ < [R] < |u| and

IT—PR|ls < I(T- PRI |RIE < ([R]) (e 2 [R])? < [R] S |ul.

Since f1 and fa are also bounded in LS, uniformly in e, we conclude that e~1(F — ) is bounded
in LS uniformly in €. The condition at infinity for F is verified in this sense.

Remark 1.4. The uniqueness is proved in the ball {f : [fllo,s < |u|}. No exponential decay in
v is required for uniqueness.

In Sections PHA we shall consider the following linear problem:
’U'Vf—Fé‘ilLuf:g, (I,U) € Qe

f=Pif+err, (z,v) €7, (1.42)
lim f=0.

|z|—o00
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By (I34) and (L35), Pug = 0 and 2z, (r) = 0 in the linearization of the problem (L.23]), (I.28)).
However, to prove the positivity of the solution to (LI]) we are going to construct, we have to

suitably modify the equation (IIl) and in the resulting linear problem to be studied (34) and
(I35) is no more exact but Pyg and z,(r) is small for ¢ small. Therefore in the next sections we

shall drop the condition (I34) and (35]).
We shall prove the following

Theorem 1.5. Fized u with 0 < |u| < 1, if ¢ < 1, the solution to the linear problem (L42)
satisfies the inequality

where
M (g,7) = v (T=Py)gl} + EHl/‘%gllé + 3 (v) T rwgllZ, + elwr(Z, — + |73
(1.44)

HIPuglf + 2l 2IPuglt + 2l 742 Pugl - + (] 722 + ul e ) 2, ()3,

1
for 8" >0 and 0 < 3 < 3 and p > 0.

Remark 1.6. We note that the second line of (L44) vanishes when the hydrodynamic part of g
and the net mass flux of r vanishes. This is the case for the problem ([L23), (I2]). In the modified
problem introduced for the proof of positivity it does mot vanish, but its contribution turns out to
be small.

Before going into a short sketch of the arguments we use, it is worth to comment the choice
of the power of ¢ in front of R, a = % Clearly, to deal with the non linear term is easier when
this power is large. However we are limited by the fact that fo does not satisfy the boundary
conditions and a power o > 2 would require the introduction of a boundary layer correction with
serious regularity issues due to the general geometry (see [33] for the analysis of such problems).
On the other hand o < % is required to avoid a divergent contribution from the boundary terms

3

in the energy inequality. It turns out that the value o = 3 is exactly what we need to bound the

non linear term thanks to the uniform estimate we are able to obtain for €2 [Py R||s.

Our analysis relies crucially on energy inequality to control entropy production. It gives impor-
tant information: the microscopic part of the solution (I — P,)R is of order € in L? and moreover
(1= P)Rla.1 ~ V.

Our main technical achievement is establishing the linear estimate (LZ3), [f]3, g S AM(g,r).
The starting point is a new L® estimate for P, f in Section Bl which extends the one in the recent
paper [9], while the L> estimate follows directly from [9]. The key observation is that the L°
estimate for the macroscopic part of R, P, R, is valid in the unbounded exterior region, thanks
to scaling invariance in the homogeneous Sobolev space H'. The proof, which requires a weak
formulation and a careful choice of the test functions, is also based on delicate estimates of the
boundary terms.

However, to deal with the nonlinear part I'y(R, R), the L® estimate is not sufficient, some
control of the L3 estimate is required. Unlike in the bounded domains, the L% bound alone cannot
imply L? bound, for |z| — oo. In fact, the L? bound requires faster decay as |z| — oo, which
is a much stronger estimate than L% estimate. This gain of lower integrability near infinity can
be viewed as opposite to the velocity averaging ideas which lead to higher integrability gain for
bounded |z|. In fact, starting from the bound for L® norm, we need to show bounds on lower
p’s norms. By working on the balance laws we can prove a uniform in e bound for £2||P,f||3 for
|z| > 1, which is sufficient to close our estimate (Sections []).

To this purpose, inspired by Maslova, [23], in Section [ after multiplying the equation by a
smooth spatial cutoff function ¢ vanishing at 02, we rewrite the macroscopic projection of the
linear Boltzmann equation for f¢ = (f as a (non closed) system for P, f¢ in the whole space (see
Eq.(@30), @31), (£32)) (In [23] a similar system was introduced to solve the steady Boltzmann
equation with € = 1, with in-flow boundary condition and asymptotic Maxwellian with prescribed
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mean velocity at infinity):

Ve b 4eu-Vea® = s,
Vx(ac + cc) — oA +eu- Vbt = s,
3
V- bS — erAct + §5u- Vit = 54,

where Py f¢ = [a¢ + b - vy + 3¢ (Jou]? — 3)]/B, and the sources sg, s, s4 depend on f and on
¢. For |u| < 1 we study the above system via Fourier analysis, by means of a decomposition of
P, f¢ into high-frequency and low-frequency parts. Of course, in the large |z| regime the low-
frequency part is the difficult one and its treatment requires a further decomposition in different
contributions, the most delicate being the one for the total mass, momentum and energy fluxes
at the boundary, needed in Lemma [E.5] which are obtained thanks to the condition u # 0, an
ingredient also entering crucially in the Fluid Dynamic treatment of the problem (see e.g. [12]).
We establish in Section [Bl very precise LP estimates p > 2 for the different parts of P, f, because
u # 0 ensures more integrability than in the corresponding Stokes system. It is worth to stress that
such arguments, however accurate they are, only produce an estimate of |Pyf|, ~ e~!, which
would not be good enough for our purposes, we need at most [Py f||3 ~ 2 to deal with the non
linearity because of the limitation explained before. It is only thanks to the essential uniform in &
estimate of [|P, f|l ~ 1, that, via a careful estimate of the mass momentum and energy fluxes at
the boundary in Subsection 5.3 and interpolation, we can obtain a bound /2||Py f]|3 ~ 1, uniform
in e.

It is well-known that it is challenging to prove positivity for steady Boltzmann solutions. We
succeed in this by suitably adapting and extending the positivity-preserving scheme of Arkeryd
and Nouri [I]. When dealing with the diffuse reflection boundary condition for this new scheme we
encounter an extra difficulty with a new term determining a potential violation of the vanishing
net mass flux condition at the boundary, that is controlled via accurate estimates in the large
velocity set and the Ukai trace theorem [29].

Finally we prove our main theorem in Section [0 via iteration, based on the linear estimate
([43). A crucial information we need to close the iteration is the smallness of the velocity field
when |u] is small. This estimate is proven in the Appendix [Al

2. ENERGY ESTIMATE

We shall use in many points the following two lemmas whose proof is standard and can be
found for example in [8]:

Lemma 2.1. Assume that f(z,v), h(z,v) € LP(Q°xXR3), p > 2 and vV, f,v-Vyh € L71(Q° x
R?) and f|7’h‘v € L2(0Q x R3). Then
// dadv[(v- Vzh)f + (v- Vi f)h] = / dyfh — / dvyfh. (2.1)
Qe xR3 Y4 -
Lemma 2.2. Assume €y is an open bounded subset of R® with 0(Q1\Q) in C?, such that {x €
0°)d(z,Q) <1} C Q. We define
1
1= () € et Inf@) o] > 6 6 Jo] < 3. (22)

Then
1flslh Sen Iflle@ne) + v Vaflloiene)-

Remark 2.3. Since, as proved in [8], page 194, eq. (53.8), |Pyfl2.+ < |P,;‘f1,yi|2dE and §°/% <
Ve <6792, from previous lemma applied to vf? we get

_1
[P fl2.+ So I fll2ne) + 1V 20 - V] L2,\0)- (2.3)

Next two lemmas are useful to bound the boundary terms in the energy inequality:
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Lemma 2.4.

\/ dS/ dm.n|p;f|2_/ dS/ dv|v~n||P,;*f|2’ §5|u|/ If2dy.  (24)
o {v-n>0} o {v-n<0} Y4+

| / as dvo-nPE (- PO el [ 110y, (2.5)
o0 {v-n>0} v+
Proof. From the definition of P,
| dolonllPE = VR (P dov/Impps o - nl.
{v-n20} {v-n20}

Since by (L32)

_1
Wt == g — )yt = = plew - vup + E2de /iyt = — Epu - vy — £ pdepiy
_1
/ dvoV2rpP v - n| = / dov2r|v - n|[p — ept - vy — €2 e iy *]
vn20} v-n20}

=1 —5/ doV2r|v - n|pu - (v —eu) —52/ dv\/27r,u|v-n|¢5|uu;% =1+ O(e|u).
{v-n20} {

v-nz20}

The last term is bounded because, by ([32), |¢-| < |u|2uéi. Therefore
| P = VaRle, ()P + Ofelu)
{v-nz20}
Thus

’/ dS/ dm-n|P;f|2_/ dS/ dv|v-n||P;f|2’ §O(5|u|)/ S|z (f)2
oQ {v-n>0} le) {v-n<0} le)
and this proves (2.4]), because

[ Al < 175 (2.6
To prove (2.) we note that

/ dvv-nPyf(1—P})f = dvv-nfP}f— dvv-n|PVuf|2.
{v-n>0} {vn>0} {v-n>0}

/ dvv-anV“f:\/%zv(f)/ dvv-nfuug%
{v-n>0}

{v-n>0}
1

=\/%Zv(f)/ dvv-nflud + (1 — w)pia ®)

{v-n>0}
= VI (P VI () [ dvonf i
v-n>0

Wl

_ 1
Using again (p — pty) e > = et~ vy + 2.,

1 3
/ dvvn f (i * < el / dvonf?)( / dw vl [Ppatelu]~2|6.[))
{v-n>0} {v-n>0} {v-n>0}

1

S )

1
2

Therefore
1
[ as [ avonprra- e el [ asil( [ dveens?)” <ellrB
le) {vn>0} le) {v-n>0}

and this concludes the proof. (I
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Lemma 2.5. For any n > 0,
1
‘/ ds dvlv - nle2rP} f
N {v-n<0}

Proof. We note that

1 3
N EIIZW(T)H% +enlfla + 33 . (2.7)

5%/ rPy fdv|v - n| :E%\/27T27(f)/ dvr|v-n|uu;%
{v-n<0} {v-n<0}
_1
= VIR (P () + V() [ doronl(n—

{v-n<0}

The integral on 02 of the first term is bounded by

cHvam /6 8] (1) ()] < i—’; /8 Al () e /6 asle (0P

S0 Hlay ()l +enl 15 4]
The second by is bounded by

1

[ asp () Qoo -l (i — )
90 {v-n<0}

1

3 2 3
st [ as( [ dvpoenleR)fe ()] < i+ 1£5.)
o0 {v-n<0}
and we obtain ([27]). O

For fixed ¢ the construction of the solution to the linear problem (L42) is standard, see e.g.
[23]. To prove Theorem [[LAl we begin with the energy inequality.
Proposition 2.6. For |u| sufficiently small the solution to (LA2) satisfies the inequality
_ _ _1 L
eI =Pu)fI7 +e7 1A = PYSIE 4 S lv72 (@ =Pugls + [ulPufllf + (1 +e)]r[3
+ (elul) THlzy (13 + e [ul 7 Pugll + [Pugll3- (2.8)

Proof. Use (1) with A = f. Then, multiplying by e~ we have

1 1
—571/ dyf? - —571/ d'yf2—|—a*2/ d:z:dvauf—afl/ daxdvfg = 0.
2 vy 2 v Qe xR3 Qe xR3

We use the spectral inequality (see e.g. [6], Th. 7.2.5),

[ dadofLaf z A= PSR,
Q° xR3

Moreover, using the Holder inequality to bound |(Py f,Pyg)| < [|[Pufll6l|Pug

6
5 3

— — _1 —
. \/  dedvfg| < =Pl v (T Pugla + < [Puf sl Pugly <
X

1

_ 1 1
me 2= POSIE + v A= Pu)gl + mallPuf i + 1 [Pug

i (29

From the boundary conditions, on v_ we have f = P} f + e2r. Hence, using Lemma [T

[ et [ apiraeh et [ (PP e - 2ebepy)

_ 3 1
= [ [ wlPrR e+ B+ Sl I+ el 210)
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Moreover

[ apeet [ wla-peet [ ot [ ala- eose)

Y+
The last term is bounded by (23) and the second is replaced by f% [PYf]* by using (). Then

(Jul +n)If15 4 is split into ([u] + n)[(1 — P2)f|5 4 + (Ju] + n)|Pf|5 , Collecting the terms and
choosing n = |u|, m sufficiently small and 7, = |u|? we have the energy inequality

e 2@ =P)FIS + (1 = PY)fl2+
_1 1 1 _

S v (I-Pu)gl3+ WHPU,QHE +(+e?)rl3 -+ ) T ey 13+ [ull Py IS 4+ [ulPuf G,
where we have used fw (1 =P f1? = u|(1 =P fI54 2 [(1—P%)fl5 ; for [u| sufficiently small.
Next we use (23) to bound

_ 1
|u||PV“f|§)+ < |u|||f||2L2(Ql\Q) + Juffle™ (T - Pu)fH%?(Ql\Q) + |uf|lv 29||2L2(91\Q)

Moreover, we split ||f||%2(ﬂl\9) =|(I- Pu)fH%g(Ql\Q) + |\Puf||%2(ﬂl\ﬂ) and bound

HPufH%%Ql\Q) S ||Puf|‘§-
Finally, we bound
1 1
=2 gll72@00) S V72 (L= Pu)gll3 + [IPugl3.

We have so proved (2.8]). O

Proposition 2.7. Let w = ¢?1Y* ()8 Then, for 0 < 8/ < 1/4 and B > 0 we have
Hwflli=oe S e NA=Pu)flo +Puflls + e*wrlos + ¥ () wgllo  (211)

Proof. As in [9], Prop. 2.6. O

3. L5 ESTIMATE OF P, f

Given g and r, we consider the weak version of the linear problem (42): for any test function

v,
/ dvyfi — dedv fu- Vi +e71 / dxdvp Ly f
vt Qe xR3

Qe xR3

:/ dxdvg¢+/ dy(PAf + ety (3.1)
Q° xR3

v—
Remind that Pyf = \/fula + b - vy + 2(Jvu]? —3)]. To get a L% bound on P, f we bound
separately the functions a, b and ¢ by means of suitable choices of the test functions . To this
end we will need to solve —A¢ = h € L%%(Q°) with Dirichlet or Neumann boundary conditions.

Lemma 3.1. For exterior domain Q° with C? boundary O, there exists a unique solution to
~A¢ = h € L/%(Q°) with either Dirichlet or Neumann boundary conditions such that

IVellLz + 16]lze + IVl ors < [Ihlloss- (32)
Proof. We solve —A¢ = f € L%/°(Q°) by the Lax-Milgram theorem: define a bilinear form

(V6. 90l) = [ dado¥o- Vo
S c
with the functional h defined by
(h, ) E/ dxdv f1.

We choose homogeneous Sobolev space H'(¢), with norm 181l 71 ey = [IV@L2(0e) for Neumnann

boundary conditions and Hg(€°) for Dirichlet boundary conditions.
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We have the Sobolev embedding
1€l Lo (ae) S 1VEllL2(0e)
(see [I0], p. 263). Therefore (h,v) defines a bounded linear functional in H'(Q°) thanks to the
inequality

() = [ dado f < 1 Flgorlblls < 96

The existence and uniqueness as well as the first two inequalities then follows from Lax-Milgram
theorem. To bound [|[V2¢|| e/5, we take a smooth cutoff function x such that

A(xp) = xh+2Vx - Vo + Axg € L/,

If y is zero near 012, then, by the W?2P estimate for the whole space, and the fact Vy has compact
support,

IV2X| Lors Ixh +2Vx - Vo + Axo|
Ih)
On the other hand, if x is zero for |z| large, then by the W2 estimate for mixed Dirichlet-Neumann
b.c. in a fixed domain, we have

IV2(x®) |l Lors

< 1L6/5
<

16/5-.

< lxh+2Vx - Vo + Axd| ross + || x|
< |lhllpess.

We therefore conclude ([B.2]). O

16/5

Proposition 3.2. If |u| is sufficiently small we have:

IPuflle S e IT—Pu)flly + X —Puw)flle + llgv=ll2 + e~ 2|(1 — P*)flas
+e2rloo + o(D)[e?]|flloc]. (3.3)
Remark 3.3. Note that
IT=PW)flls < [A=P) I °I(T— P FIZ = /3™ A= Py) fl|5 e 25 |3 (T— Py £ 27
Salle A= P flls + 17 (T = Pl
Therefore by choosing n small we obtain

IPuflle S e @ —P)Fllu + g2z + e 2[(1 — PY)flos + €2 |r|oc + (D)2 flloc)-  (3.4)

Proof.
Step 1:
In order to get a bound for ¢, we choose the function . in [B1]) as
Pe = vV Mu(|vu|2 - Bc)vu Ve,
with 5. a suitable constant to be chosen later and . solution to the problem
—Ap.=c"in Q°, »=0ond0. (3.5)

Hence, by previous discussion, there is a unique ¢, and
5
|

196l @) < 1%, 8 ey = lelscaey (3.6)

We start computing the term fmeg dzdv fv - V.. We have:
/ dzdv fv-Vip. = / dzdv fo, - Vibe + E/ dzdv fu- V..
Qe xR3 Qe xR3 Q° xR3
By B4), f =Pyf + (I—Py)f and the Young inequality,

‘E/sz - dado fu- Vipe| < elul|lcl3]|flle < eful|Pufl§ + elul|(T — Py) £I|¢.
.
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By using f =P, f + (I —Py)f and the expression of P, f, we need to compute

/ dadv ay/lyvy - Vibe, (3.7)
Qe xR3
/ dxdv b - vy /vy - Ve, (3.8)
Qe xR3
vu]* =3
dzdv c——— /1y vy - Vb, (3.9)
QcxR3 2
/ dedvv -V (I-Py)f = dadv /g (Jvg|* = Be)vy @ vy : V@ Vo (I—-Py) f. (3.10)
Qe xR3 Qe xR3
Using ([3.4), by the Young inequality, the last one is bounded by
5 1 1
(T =Pu)fllellelzoey < EWHCHGLG(QC) +gn - P.)fl6;
for any n > 0.
With the choice 8. = 5 it results
/3 dv(|vu|2 - Bc)vu @ vyfy = 0, (3.11)
R

and the term in ([B.7) vanishes. The term (B.8]) vanishes because is odd in v,. Next we compute

the term ([39). We have

lvu|> =3 2 _
dv v, ® vuT(|vu| — Be)pty = 5L (3.12)
RS
Therefore
log]? — 3 B . vu]? =3 2 _
dedv c———— /vy - Vipe = dzcVe Ve, : dv vy @ vy—————(Jou|” — Be) p =
Qe xR? 2 Qe RS2

5/ dz cAp, = —5/ dz|c|® = —5HC||%6(QC)7
Qe Qe

because of [3). By (B2) and Young inequality, we have

5*1‘ / dedv oL f
QcxR3

for any n > 0.
Similarly, we get
< _1 5 6 1 _1, 1.6
[ dndoveg| S IVellianlgv Il < 2§+ 5 (m g5,
cxR3
for any n > 0.

B 5 1 1,
< e HIVeellz@ [T=Pu) fllv < gnllels+ g (4m =5 e [A-Pu)f[L.1°,

Next we compute the boundary terms. We decompose f on vy as f = P)f+ 1, (1 - PY)f +

1778%7‘.
First consider the term

[avpiroo= [ as@Vee: [ dvn-ooalionl - BVRPLS:
o4 o0 R3
From the expression of P} f we see that

ViR PEf = V27 pz, (f).

Therefore, we need to compute [ dv [5s dv(n - v)vy(|vu]? — Be)p(v). We have

(v —eu? — Be) = v(jv]? = Be) + e(—ulv]? — 2u-vo + Beu) + 2(Ju]?v + 2u - vu) — 3|u*u.
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Since the terms of order € and €2 are even in v, after multiplication by v - n, their contributions
vanish (note that the integration in v is on the full R, not on {v-n < 0}. The contribution of
the term of order 1 vanishes by the choice of 8. [BI1), so we conclude that

/ dy Py fye = 52/ dS(x)Vee - / dv(n - v)(Jul*v + 2u - )/ Py f.
5 aQ R3
We need the Sobolev trace theorem to bound V¢, on 0f.

Lemma 3.4.

196l 5, < Il

(o€

Proof. If Q is a C! domain in R we have the following trace estimate [20], p. 466:

v\ PN g
(/ A8 () [u] 22 J) < C(N,p) (/ dx|u|p+/ d:c|Vu|p> . (3.13)
o0 Q1\Q Q1\Q

This is a consequence of the trace theorem WP (Q;\Q) — Wl_%’p( (2 \Q)), and the Sobolev
embedding in N — 1 dimensional sub-manifold (Wl_%’p(a(ﬂl\Q)) L= (©21\92) for

< 1y =

_1
1—17 — le ) In particular, with p = 2 and N = 3 we have (]fzvfl) = %. With v = V., we have
Hvz@c”L%(aQ) ~ ”C”LG(QI\Q) < ) (3.14)
O
Therefore, by Holder inequality,
2
| / P ] < EWPITapel g o P2 e
Since ||Pf|| s S € 2[e? | floo] < e %[e2 ]| f]loc], We obtain
1.1 _1, 29 1 1.1
| [ avpsuefsepe Il el S e RS el + P ge R (3.15)
¥

Next, we need to bound [ 1,, (1 — PY)f.. We have

| [ @t PO < 1900l g gy I 1 = Pl
v

But
1 1
1 (1= P Fllzacy < 72100, (1= P Fll) 2 (2211 (1= P2 Fll oo ()] 2
Thus, we conclude that, for any > 0 and ' > 0

1 1
| [ 1= PO o] S el + W I + Cole Lo (1= RS2y} (3.10)
v
In conclusion the boundary terms are bounded, for any n > 0, ' > 0, by

| / Vel PLf + 10, (1= POSI| < nllell§ + 21 fllc] + o 7211 = P2l
\

’/ exdyrie
Y-

By collecting all the terms and choosing 1 and 7’ sufficiently small we conclude that

lelle S e M@ =P fllw + 1T = Pu)flls + (Eu) 5[ Puflle + 119y % 12 xre)
+e7E|(1 = PY)flas +e2rlo +o()[e2 | flloc].  (3.17)

Finally,

1
< Vel Loy el Laon) < &2 eIl

Step 2:
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In order to estimate b we shall use two test functions. The first is chosen as follows: for fixed
(]

=17 = (W, - B)Vimdien, Gi=1,....d, (3.18)
where (3 is a constant to be determined, and
— Al () =b3(x),  @loa =0. (3.19)

As before, there is a unique cpg and
196330y < 508 ey = D320 (3.20)

We start computing the term fmeg dzdv fu - Vz/Jz’j. We have:

/ dzdv fv- Vi’ = / dedv fo, - Vi’ + ¢ / dedv fu- V.
Qe xR3 Qe xR3 Qe xRR3

By (320) and the Young inequality,

’5/9 5 dzdv fu- Vb | < elullb;l3]1 flle < elul|PuflIS + elul| (X — Py f]S.
X

By using f =P, f + (I— Py)f and the expression of P, f, we need to compute

/ dzdv ay/frgvy - Vi, (3.21)
QcxR3
/ dxdv b - vy /vy - V1/Jz’j, (3.22)
Q¢ xR3
vu]” =3 i.j
daedv c————/tuvy - V&7, (3.23)
Qe xRS 2
/ dzdvv- V! (I-Py) f = dzdv /i (Jou]? — Bp)*vu @ vy : VOVl (I-Py) f. (3.24)
Q¢ xR3 QxR3
Using (320), the last one is bounded by
5 1 1
1T =Pt 7000) < nllbillZs@e) + 50 * 1T =PI,

for any n > 0. By oddness the terms in (3:21)) and (3:23) vanish. We choose 3, > 0 such that for

all 7,
vy al?

1
2 2
o= dv=——== [ d — 7 dv; =0, 3.25
[ b= Bilinto)do = —= [ avlid; = ke 5 don (3.29
and we find 8, = 1. Note that for such choice of 8, and for i # k, by an explicit computation

/3(”121,1‘ —ﬂb)vﬁ,k#udv = 0,
R

/}R3 (”121,1‘ — ﬂb)vii,udv = 2.

As a consequence

Z/ | dadv bV Fuvue (V3 ; — Bo) /I 0e i}
Qe xR

k4
= 25k7g521i/ dx bkagaj(p‘g = / dx biaiaﬂﬂi.
k.0 Qe Qe

We have also

) g e 5 -
| [ dedodi L] < e IV an - POl < Zallbs 3+ g
CXR‘

1

g [5_1 (I Pu)f”l/]Ga

for any n > 0.
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Similarly, we get

. 1 5 1 1 —1
| dwdow| S IV, loaanylovHl < Zallbsl+ g Hlow
Qe xR3 6 6

for any n > 0.
Next we compute the boundary terms. We decompose f on v as f = Pyf +1,,(1 - P))f +

177857“. First consider the term

/ dy P2 i = / 45(x) Vo] - / dv(n - 0)([vusl? — Br)ERP S,
5 oN R3

Since \/pu Py f = v2mpz,(f), we need to compute fw dv fRS dv(n - U)(”ﬁ,i — By)u(v). We have
vg i — By =7 — By — 2euv; + %

The terms of order 1 and 2 vanish by oddness. Therefore
/P,;‘dwf@bz’j =—¢ /ém dS’(x)chg . /]R'a dv(n - v)2uvi/1 Py f.
5 :
Thus, by using Lemma [3.4]
[
¥

Next, we need to bound f,y dvyl, (1 - Pvu)fwz’j. We have

1.1 1 1.1
< elule™2 [e2 [ fllso]llbs11G < = ulllb; 1§ + elule ™= e wflloo])®. (3.26)

| [ @t 0= PO < 19 om0 = P fllic
2l
Thus, we conclude that, for any n > 0 and ' > 0

ij 1 _1
| [ @ = PO S s+ ol + Cor ™ H L (= PO fllay ] (320
v

In conclusion, for any n > 0, ' > 0, by
i 1 _1
‘ /dwa[Pwuf +1,, (1~ P%‘)f]’ S nlbgllg + 'l 2 1 loo]® + Copaple™2 (1 = PY) )2, 1%
2l

Finally,

j 1 1
S IVeyllLasoalle®rlizaen) < e bl§lrle-

’/ dwsérﬁbz’j
v—

By collecting all the terms and choosing n and 7" sufficiently small we conclude that

j — _1
| [ dobidioyei] £ (1A= PSS + TP+ o418+ elul P

+llb 18 + (€7 F(1 = PY) fla)® + (22 |rloe)® + o(1)[eZ | flloc]®.  (3.28)

To estimate 9;(9; A~ b~ 1)b; for i # j, we choose as test function

by? = JulPouivw V0 ph(x), i # . (3.29)
We have:
/ dxdv fo - Vq/;zﬁj — / dzdv fu, - VJ);J + 6/ dzdv fu - Vq/;zﬁj'
Qe xR3 Qe xR3 Qe xR3

By (320) and the Young inequality,
E / dad fu- V!

Qc xR3
By using f =P, f + (I —P,)f and the expression of P, f, we need to compute

/ dzdv ay/frgvy - V7, (3.30)
Qe xRS

< efulllb;11§11 flle < elul[PufIlg + elulll (T - Pu) £II5-
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/ dzdv b - vy - V7, (3.31)
Qe xR3
loul? = 3 7,5
dadv c———/tvy - Vb7, (3.32)
Qe xR3 2
/ dzdvv-Vi! (1-P,) f = dzdv /i (Jou]? = Be)vu @0y : VRV (I-Py) f. (3.33)
Qe xR3 Qe xR3

Using ([320), the last one is bounded by
5 1 1
1T =Pu)lls b1 7000) < nllbilIZs0e) + g0 * 1T =Pu)ll6,
for any n > 0.

For j # ¢, the O(u) terms in B30), B31) and (B32) vanish by oddness in v, ;. for the same
reason the terms of order 1 in (B30) and (832) vanish. The only surviving term is

Z bkazaj%/

dadv uuvuﬁkvu,gvu,ivuﬁj|vu|2 = 21/ dx(bjaiajgaé + bﬁ?gﬁé),
k0 Qe xR3 Qe

because
/ dvuuvu,kvu,gvu)ivu,j|vu|2 = 21(5]@15@]‘ + 5]@11'5&]' + 5]@13'52,1')-
]RS

By taking the sum on j this reduces to [;,. dz(b9 + > b;0;0;A7'b;). The second term has been
bounded in ([B.28), thus, to complete the estimate of |[b[l¢ we just need to bound the remaining
terms in the weak equation ([BI)) for 1) = ;. As before, we have

el ‘ / dxdv @Zz’jLuf
Qe xR3

and

1

- i ) 1.
< e HIVeggllze(an I(T=Py) flly < —nllbj||8+g77 e @—Pu) £,

S 1 5 1 _1 _1
| [ dadodiie] S I¥en lznolov e < Zalbsl+ go~lav
Qe xR3
for any n > 0. Finally, expanding, we have
vulPvuivu,; = 1012005 + ello] (wivy +wjv;) — 2u - vo;0]
+ 52[|u|2vivj||v|2uiuj —2u- v(uivj + ujvi)] + 53[|u|2(ujvj + uv; — 2u - vuz-uj] + 54|u|2uiuj.

Therefore in the contribution from P} f the term of order 0 in € gives a vanishing contribution.
Therefore, as before

| [
v

Moreover

1.1 1 1.1
< elule™2 [e2 [ flloo]llbs11G < = ulllb; 1§ + elule ™= e wflloo])®. (3.34)

| [ @t 0= PO < 19 om0 = P fllic
2l
By collecting the previous bounds we conclude that

18118 < M@~ P FI)° + (X =P LIS + lgr ™2 1§ + (72 |(1 — PY) flo,4)°
+elul[Puflls + (£%]7]s)® + 0(1)[e? flloc]®.  (3.35)

Step 3:
Then we bound |ja|lg. The argument is similar to the one used for ¢, the only main difference
being in the treatment of the boundary terms.

d
V=1, = (|Uu|2 - ﬂa)vu : vr‘%’a\/ﬁ = Z(|Uu|2 - Ba)vu,iai@a\/ﬁa (3-36)
i=1

where

0
— Appa(r) = d®, %Sﬁabﬂ =0, (3.37)
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whose solution satisfies

Il ey < Nal®ll g g, = lalEecar (3.38)
We have
/ dzdv fv- Vi, = / dzdv f(v —eu) - Vb, + 5/ dzdv fu- Vi,.
Qe xR3 Qe xR3 Qe xR3

By (33]) and the Young inequality,
‘5 / dzdo fu - Vb,
Qe xR3

Proceeding as before, by using f = P, f + (I — P,)f and the expression of P, f, we need to
compute

< elull|b; 1§l flle < elul[Puflg + elull[(X - Pu) fG.

/ dzdv a\/fivy - Vb, (3.39)
Q° xR3

/ dadv b - vy/uvy - Vibg, (3.40)

Qe xRS

v]* =3
dzdv c———— /1y vy - Vihg, (3.41)
Q¢ xR3 2

/ dedvv -V, (I-Py) f = dodv /i (|vu]* = Ba)* v @ vy : VO Vo, (I-Py)f. (3.42)

Q¢ xR3 QxR3

Using ([3.38), by the Young inequality, the last one is bounded by

5 1 1
1T =Pu) fllsllellFoey < 677”@”%6(520) +gn tld- P,)llg,

for any n > 0.
With the choice 5, = 10

/ do([val? = Ba)([val? = 3)ou @ 00 = 0, (3.43)
RS

and the term in ([B41]) vanishes. The term of (340) vanishes for the same reason.
Now we compute the term in (339): we have

/ dadv ay/lyvy - Vg = / dxaV ®@ Vi, : / dvvy @ vuvy (Jve]® = Ba)fiu
QcxR3 c R3
= —5/ da:aA(pa = 5||a||%6(ﬂc)7
g c
because of (B31). We have used
/ dedv vy, ® vy (Jvg]? = Ba)ptu = =51 (3.44)
R3
As for the boundary term, we have
/de;‘fwa = / dS 2, Ve, - / dop(v —ew)(jv — eul* = Bo)n - v
v X9) R3
But
[ dvmnol? = an v = [ dopnol® = G-+ < [ dopnGol? = fan -
R3 R3 R3
The second term vanishes by oddness. The first by oddness is
/ dvpvy i ([vu|* = Ba)n - vy = ni/ doplvy - n?(Jou]® = Ba) = —5ny.
R3 R3

Therefore

/dﬂyp#fwa:/ dSz.Yn-Vg)a:(),
Y o
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by the Neumann boundary condition on ¢,. The term fv dy1,, (1 — PY¥)f1, is estimated as the
similar term for c¢. By collecting the estimate, we conclude that

lalls < € I = Pu)flly + [T =Pu)fllo + llgv 212 + ()5 [Pufllo + 72 1(1 = Py)fla.+
1 1
+e2|rloe +o(1)[e2 || flloc]-  (3.45)
In conclusion, for |u| small,
_ 1 1 1 1
Puflle e I@=Pu)fllu+IT=Pu)llo+llgr2ll2+e72[(1 = Py) fl2.+ +e2 r|oo +o(1)[e2 ]| floo]-
O

4. BALANCE LAWS

The mass, momentum and energy balance equations are obtained by projecting (L42]) on the
null space of L,. Since P,L, = 0, we have:
Pu(v-Vf)=Pyg. (4.1)
More explicitly, we write Pyg = (a +b- vy + 3 (Jvu|* — 3)e )i, and Py f = [a+b- v, + (ol -
3)cly/1,. We have

V-b+eu-Va=a, (4.2)
VP+eu-Vb+V -7 =0, (4.3)

3
V-b+§au-Vc+V-q:c, (4.4)

where
T= / dv vy @ v/ (I — Py) £, (4.5)
R3
v]* =3
q= s dv g WV (I =Pu)f, (4.6)
R

P=a+ec. (4.7)

We have to complete equations (£2), [@3]), (£4) with boundary conditions following from ([L42]),
which are not immediately translated into conditions on a, b, c. Therefore, as in [23], we introduce
a smooth cutoff function

(@) = {1 if 2 € R3\Q and d(z,Q) > 1

0 ifzreQ
and define f¢ = ¢ f extended as 0 in Q. If f solves the problem ([42)), then f¢ solves the equation
v-VfS+e LS =Cg+C in R3 (4.8)
where
C=fv-VC(. (4.9)

By projecting the equation for f¢ on the null space of L, we obtain the balance laws
Py(v-Vf¢) = PyC + (Pug,
More explicitly, with Py f¢ = [a¢ + b - vy + ¢ (Jou|* — 3)/2]/B, and P¢ = a® + ¢¢, we have,

V-bC—i—su-VaC:Ca—i—/ dvC, (4.10)
]R3
VP<+gu-Vb<+v-T<=<b+/ dv Coy/R, (4.11)
R3
3 1
v-b<+§gu-vc<+v.q<:gc+/ dv §C(|v|2—3)\/ﬁu, (4.12)
R3

where

T<:/ dv vy @ v/ (I — Py fC, (4.13)
R3
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¢ |Uu|2 -3 ¢
q° = de va/ﬂu(I_Pu)f , (4.14)
R
and P¢ = a¢ + €.
It is convenient to write above equations in the Fourier space: The Fourier transform is nor-
malized as .
fo = o)) = — [ dof@et (4.15)
(2m)2 Jrs
We have . o
ik-vfS+e Ly fS =Cg+C, (4.16)
By writing
P (6l 4 iC Locito 12
for=(a 46 vut (ol =3V, + T =Pu)f*, (4.17)
the projection on NullL, is
ik - B¢ + ick - uac :/ dv /i, C(k, ) + Ca, (4.18)
R3
ikPS + ik - 75 +ieu - kb :/ dv v/, C (K, v) + Cb, (4.19)
R3
o 1 N ~
ik - b¢ + Zick - uéS +ik - q¢ = / dv 5(|vu|2 — 3)/iC (k,v) + (. (4.20)
R3
Let 1 1
By = LJI[(”u @ vy — §|Uu|21>\//7u]v Ay = L51[§(Uu(|vu|2 =5V, (4.21)
The momentum equation (£I9) then becomes
dv Lo f$By = | dvvey/m,Clk,v) + Cb, (4.22)
R3
(4.23)

ikﬁ<+isu-ké<+z’k-/
]R3
~ 1 R ~
dequ,%:/ do 5 (loul? = )ALl 0) + G
]R3

and the energy equation ([{.20) becomes

ik-é<+§z’gk-ué<+ik-/
2 -
Substituting from the equation @I0) , Ly f¢ = —cik - vf¢ + 5(@ +0),
dv [—ick - vfS + 5(@ +0)| By = EE—i—/ dv vu\/ﬁué(k, v) (4.24)
R3

dv [—iek-vf¢+e(Cg+C) ey = Cot /RS dv %(|vu|2—3)\/ﬁué(k, v). (4.25)

ik(a<+é<)+isu-k8<+z’k-/
R3

ik.6<+ia§k-ué<+ik-/

2 R?

/ dv fv - B, = dvvu-(a<+é<-vu+a<(|vu|2—3)/2)ﬁu@u+/ dvv- B, (1-P,)f¢
R3 R3 R3

Using again ([@I7), the term [ dvfCv - %, becomes
6C 4 i Lo 2
+e [ dou-ABya*+b -vu—|—§c (Joul® = 3))v/my,-  (4.26)
R3

The second line vanishes because P, %, = 0. From the properties of %, only the b term survives
of the first part of first line. Since, again (I — P,)(v, ® vu)\/ﬁu = L,%,, we obtain
WO fC. (4.27)

/ dvf<v-£u=6</ dv%uLu%u+/ dvv - By (1—Py)f°
R3 R3 R3

As usual, we set [pq dv By L~ %, = vl (independent of u) with v the viscosity coefficient and we

obtain:
z‘k(aC+é<)+z'su.k13<+sn|k|213<+sk®k./ dw@u(l—P)f<+aik-/@+é)%
RS

:ZE—F/ dvvu\/ﬁué(k,v). (4.28)

]RS
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Similarly, since (T — Py)[vy(|vul* = 3)/2v/5,| = Luh,
~ 3 ~ — N
ik - bS + ek ué® + e k|2 +ek @k - / dvo(I —Py)fSot + cik - / dv (Cg + C)y
R3 R3

= (et /R dv %(|vu|2 —3)y/i,Clk,v), (4.29)

with k = fR3 dv &/ Lof. Therefore the balance laws in the Fourier space are

ik - bS 4 iek - ua® = 3o, (4.30)

ikPS + elolk|? + iu- kDS = 5 (4.31)
A 3

ik - b6 4 ¢ [k|k|*> + 5k ujés = &y, (4.32)

where the transport coefficients v and « are defined by [ dvB,L;* %, = vl and k = [ dvet, L o,
and the source terms are

S50 = /dv\/ﬁé(k,v)—l—za,
R3

3 = —akm-/dem(I_Pu)f%u_iak-/dev@w)%+/demu\/ﬁué(k,v)
+ Cb, (4.33)
8 = —ak®k~/devv(I—Pu)fg,cfu—isk-/dev(@+é)ﬂu+/w dv%(|vu|2—3)\/ﬁué(k,v)
+ (e

To eliminate the pressure PS from (#3T) we apply the Leray projector II defined, in Fourier
space, by

. ko k
M=1-
|2

We use the short notation
N5 (k) = elolk]? + Biu - k).

Thus we get
1166 = N, {1I3. (4.34)
Then we multiply the momentum equation by k& and divide by i|k|? to obtain
~ N 12 k
Py Nolic g 3
TR e
From the mass equation we have
b -k = —ifo—eu - kal. (4.35)
Hence N L
A 0,1, .. N .
P+ T (—i8o—eu-ka) = RTAE - 8,
and reminding that a = P — &, we have, for |u| sufficiently small,
A N 1 -1 NU 1r.4 ~ k ~
P (1me=Bue k) |0 fis0 — eu- k] + —o - ). 4.36
Ei|k|2u i [i80 — eu - k) + RIRE K (4.36)

Subtracting the mass equation from the energy equation and using a¢ = P¢ — &, the equation for
¢ becomes

(N, 3)é¢ —ieu-kPC =3, — 4. (4.37)
Replacing the expression of the pressure we obtain
— N, —1r N, k
N —1 A ~ . v,1 v,1 .. ~
¢ =(N) {54—so—i—zsu-k(l—ai|k|2u-k> L_|k|2wo+w ﬁ}} (4.38)
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with

— N, N, —1
_ 2 e Nor o Noa o
N = Ny +ie( Py (1 TR k) . (4.39)

Then a¢ = PS¢ — ¢ is obtained by subtracting the expressions of P¢ and é¢ just obtained. Finally,
using ([E35) we compute (1 — 116¢).

5. ESTIMATE OF ||Pyf]3

5.1. Splitting of P, f. We define the small k’s cutoff as a smooth function

1 for k| <1
- or |kl <1 (5.1.1)
0 for k| >2
and
©=1-i. (5.1.2)

We will split the source terms s = (s, s, s4) into five different contributions s(*) = (séi) s sff)),
fore=1,...,5:

5
s=Y s, (5.1.3)
i=1
The source s corresponds large k’s:
sW (k) = j°s. (5.1.4)
Then we split C(k,v) = F[fv - V{](k,v) as
C=Ci+k-C, (5.1.5)
with
Cs(v) = C(0,v), (5.1.6)
and )
Cr(k,v) = / dAVLC(AE, v), (5.1.7)
0
so that
. N Loog ! . .
C(k,v) —C(0,v) = / d/\aC(/\k,v) = / d\k - Vi C(A\k,v) =k - C(k,v). (5.1.8)
0 0
We set
90 = i [ dvvEdo.
R3
3Pk = j/ dv vy /11,5 (0, v), (5.1.9)
R3

. . 1 A
P = J/de§(|vu|2—3)\/ﬁqu(O,v).
§é3)(k) = ,[/ dv\/ﬁuk-ér(k,v)},
R3

) = j[-ekok- / dvo(T =Py S (k, v) By — ich / A, (5.1.10)

R3 R3

+k-/ dvvu\/ﬁu(fr(k,v)},
R3

W) = |-ekok / dvo(I— Py) [ (k,v)cty — ick / dvCad,

R3 R3

+k - /11@3 dv %(|vu|2 - 3)\//7“@(96,1))} .



22 R. ESPOSITO, Y. GUO, AND R. MARRA

k) = 0,

(k) = —jz'sk-/Rde@%u, (5.1.11)
sVk) = —jeik- [ dvlge

p = ek | dvCgan.

sk = ica,

(k) = iCb, (5.1.12)
k) = e

For i = 1...,5 we denote by a®, b ¢ the solution to the system @E30), E31), @E32) with
sources s(V and by P®) = a(9) 4 ¢ the i-th contribution to the pressure.
Correspondingly we have the decomposition of Py, f into six terms:

5
P.f=(1—-QPuf+> Sif, (5.1.13)
i=1
with )
Sif = Vim[a" + vy - b + 5c<i>(|uu|2 -3)]. (5.1.14)
5.2. Estimate of S; f. The components of Slf solve the system
ik bV + ek - ua™ = 3V, (5.2.1)
ikPD +elolk)? + iu- k]pOD =31 (5.2.2)
. 3
ik 6O & [w|k]? + Sik - uleD = 8, (5.2.3)

where

FOR / o (k. v) +5°Ca,
R

s = jC[—gmk-/ dvu-%u(I—Pu)ﬁ—igk-/ dv (Cg +C) %,
R3 R3
+ / dvvu\/ﬁué(k,v)—i—a}, (5.2.4)
]R3
s = jc[—sk@)k-/R3dvv(I—Pu)f<,@7u—z’ak-/}Rgdv(@—i—CA)Mu

1 A ~
+ / dv 5 (Joul? = 3)v/A,Clkv) + gc].
R3
Lemma 5.1. If [u| < 1, and g € L?, then

181 fll2 S &~ [P flls + 1T = Pu) 2] + llgv 2. (5.2.5)

Proof. We first estimate P(1). For this we use the momentum balance in the form EIT), which
for the S1 R becomes:

ikPW 4+ ik - 7 + jeu - kb :jC@Jer/ dv vy /7, C (K, v). (5.2.6)
R3
We take inner product of this equation with ﬁ We obtain
PO :jC[—¢|k|*2k@—¢|k|*2k-/ dvoCy/p, — elk| 2u- kb - k—|k| 2k -7 k|, (5.2.7)
R3

From the definition of 7, {@3)), |[7" |2 < ||(I — Py)f|l2. Moreover from the definition of C, (&),
ICll2 = lICll2 S IPufll2supp vo) + 1T = Pu) fllz2uppve) S IPuflle + (T =Pu)fll2.  (5.2.8)
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Therefore
1PV2 S I1Puflls + (T =Pu) fll2 + elul B2 (5.2.9)
To bound b1, we divide @3 by e|k|? and obtain

b = jc{5*1|k|’2 [ —ikPW —jeu - kb — /R dv vy /i, C (K, v)
+ick / dvv(I — Py)fS B, + ick / dv @+c“)<@u} } (5.2.10)
R3 R3
Since |k| > 1, using |u| < 1, we have

1602 < e PO o + e [Puflls + 1T Pu)fll2 + v (5:2.11)

having bounded || [ Cg%ull2 < v~ 2g|2llv? Bullo S v g2

Using (B2T7)) in (B29) and |u| < 1 we have

IPD)l2 S IPuflls + (T = Pu)fll2 + [lgr 2|2 (5.2.12)
Using (B.2.12)) in (EZTT]) we obtain
16Dz < e IIPuflle + (T —Pu)fll2] + llgr = - (5.2.13)

To estimate ¢V we subtract @30) from E32) and replace &) with P — &)
. R 3 .
—ieu- k[PMD — M) 4 / dv /uC(k,v) + ¢ [r|k> + Sik u)e® ek - / dvv(I —Py) fC .+
R3 ]R3

il /R dv (Cg+C) oty = /]R dv %(|vu|2 3 AClk,v). (5.2.14)

Then we proceed as done for b and obtain:

1602 S e IPuflls + (T = Pu)fll2] + llgv~2 o (5.2.15)
From the estimates of P") and ¢! we then obtain also

160 S & [Pl + 1T = Pu)fll] + gl (5:2.16)
Thus, we obtain (5.2.5). O

To deal with the system [30), [@3T)), (£32) for |k] < 1 we need several estimates:

Lemma 5.2. Suppose u# 0 and |k| < 1. Let N, 5(k) = e[o|k|> + Bik - u], for o > 0 and 3 > 0.
There is 0 > 0 such that

(1) Forgqe€ [%,2)

1IN, 5llg S e tul 7', (5.2.17)

and,for1<q<%
IiN sllg et (5.2.18)

(2) For qe€[3,4)
JEN L, < e Hul~tte, 5.2.19
o,flq ~

and, for1 <q<3

kNS 5llq St (5.2.20)

(3)
Ik © kN, blloc S e (5.2.21)
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Proof. For £ > 0 we compute the norm (see [23])

(77

i N 3l = [ bl + gk -uf
R

4
2

2 ks
< 2o~ 1 / dr p2+at=2) / dfsind {1 + 772320 %|u|? cos? 9}
0 0

Qo4 2 r~1Blule™?t
= o Tl 7Ti| dr p3+at=2) / dz[1 + 2% 7%,
o tul Jo 0

with 2 = r~*B0~!u|cos@. The integral in dz is finite for ¢ > 1. The integral in dr is finite for
3+ q(¢—2) > —1. Hence, for £ < 2, ¢ < 5&;. Therefore, if we split the integration on r into

{r < Ju]°} and {|Ju|® < r <2}, with 0 < § < 1 to be chosen, we have the bounds
Juf® ! Blulo™!
/ dr r3+‘1(£*2>/ dz[1 + 22]*% < |u|[4+q(1272)]6,
0 0

2 r~18ulo~?t . 2 [u| =918~ .
/ dr p3Fal=2) / dz[1+42%7% < / dr p3+a=2) / dz[1422])7% < |u|t 0.
| 0 \ 0

ulé ul®
By choosing § = (5 + ¢(2 — ¢))~! < 1, we conclude that
. — _3 -
leil k| Nz gllq < Jul =% = Ju[ 7+

because § < 1 and ¢ > 1. Thus, for £ = 0 we obtain (L.2.I7), for £ = 1 we obtain (G.2.19).
If we bound the integrand in df simply with 1, as in the Stokes problem, we get instead

2
lleilkI*N, 3114 < 27r2/ dr 2+ (=20, (5.2.22)
0

The integral in dr is finite for ¢ < %. For ¢ = 0, the integral is bounded when ¢ < %, and

hence we get (L.2.18); for £ = 1, the integral is bounded when ¢ < 3 and hence we obtain (5.2.20]).

Clearly 5|k|2N;é <1 for any k, thus we have (G.22T]). O
5.3. Estimate of Sy f. The components of ng solve the system
ik b +ick - ua® = P, (5.3.1)
ikP® + e[o|k|? + iu - k)b = 32 (5.3.2)
- 3
ik b® & [w|k]? + Sik - ule® = 82, (5.3.3)

where

3 = j/sdv\/ﬁu(f((),v),
R

3@ = j/3dvvu\/ﬁué(0,v), (5.3.4)
R

. . 1 ;

59 = 3 [ gl - 3)vELo.0)
R3

We use the notation ¢ = /i, Yo = /I, Vua, @ = 1,...,3, s = \/ig\/ﬁu(|vu|2 —3)), so that
Sg) = j(Puésawa)Lﬁ-

Lemma 5.3.

4
P.C.=(2m)7% > Qutba, (5.3.5)
a=0
with Q = (Qo, ... Q4),
Qo =— /ém dS(x) /R3 dv fv - n(z)a(v) + /Ql\Q dz(1 =) /11@3 dv o Pyg. (5.3.6)
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Proof. Since €(0,v) = (2r)~2 [dafv- V¢, we have

4
P.C, = (2m) Z_%w/sdx/R dv fipe - VC.

Since V¢ = 0 outside of Oy = {z € R?|d(z,Q) < 1},

/Scda:/devl/Ja(v-VC)f: Ql\ﬂdzzr/]RS dm/)av.v((f)—/Ql\ﬂda:/dem/)a@.vf_

/asz dS(x) /]RS dvv - n(z) fa(v) + /8521 dS(z) /]RS dvv - N(z)(fa(v) — /Ql\Q dx¢ . dvpov -V f

= —/ dz ¢ deaPug—i—/ dS(x)/ dvv - N(x)f1ha(v),
Q\Q R? EIon R?

where N (x) is the exterior normal to 91, because ¢ = 0 on 9Q and ¢ = 1 on 92 and we have
used by ([@I)). On the other hand, integrating (A1) on Q\Q we get

/{M ds(z) /R dvv-N(m)fi/)a(v)—l—/QQ ds(z) /R dvvn(z)fa _/QI\Q da:/RS dvbaPug, (5.3.7)

and hence we obtain

Qo = —/ dS(I)/ dv fv - n(z)e(v) —I—/ dz(1 — C)/ dv 9 Pyg. (5.3.8)
a0 R3 2\Q R3
(]
Lemma 5.4 (Estimate of Q’s). If [[Pug|l o/5 = [[PugllLe/5(0,\q) is bounded, then
loc

_ 1 1
Q1< (=7 1@~ Pl + [Puflls + [ Fgllzzianen) + 2zl + [Pugllyos.  (5:3.9)
Proof. For any h we have
/ dvn - v\/lgh = / dvn - v\/pu(h — PJh). (5.3.10)
R3 {n-v<0}

Indeed

/ dvn - vy/pu(h — PYh) = / dvn - v\/tgh
{n-v<0} {n-v<0}
— / dvn - vv2mru(v) / dv' v - ny/ph
{n-v<0}

{n-v’>0}
:/ dv -v./uuh—l—/ dv’v’-n./,uuh:/ dvn - vy/ugh, (5.3.11)
{n-v<0} {n-v'>0} R3

because [i, o dvn-vv2mu(v) = —1.
By (BILI0) and (LI,

/m dS(z) /R dvy/p, fo - n(x) :/BQ ds(z) /{van@)@} dv /i, (f — P2 f)v - n(z)
=e? /mdS(:z:)/, dv /i, v n(z).
{v/-n<0}

1Qol < £2[lzy ()2 + [Pugll o/5. (5.3.12)

The other components of Q are more involved.

Let n(x) = d(z,09) be the signed distance of x € R? from 9, positive in Q°, well defined at
least when |n(x)| < ¢ for some sufficiently small § > 0. Clearly |Vn| = 1. We consider the family
of smooth closed surfaces {S¢}o<e<s, defined as S¢ = {z € Q° | n(z) = £}. We also define, for
x € S¢, n(z) = Vn(z). We have Sg = 0Q and, for any £ > 0, the sets Q¢ whose boundaries are

Therefore, by (5.3.4),
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Se are such that Q¢ C Qg if £ < ¢'. If we integrate the conservation law on ¢, \Qe,, since the

exterior normal to 9Q¢,, n1(z) = —Vn(x), setting
Qo = —/ dS(x) /'a dv f/pgv - n(x)he (v), (5.3.13)
85 RS

by Gauss theorem and (1)) we obtain

Qv — Qeyal = ] / drdaPug| S IPugllionoan ) a=0,....4 (5.3.14)

951\952
In particular, with
Wa = Qa - QO,a

we have
|@al S ||Pu9||L?§f

and hence, since |Vn| = 1, by the coarea formula,

)
o=t [ d6Qea =t [ do [ dufyme n(@)ao).
0 R3

Qs5\Q

To estimate @ = (Q1,Q2,Q3), we note that from the decomposition of f = /i (a +b- vy +
2(Jvul* = 3) + (I = Py) f and the definitions of 7 and P,

Q=w+5" dz[Pn + 7 -n+eu-nb.
- Q5\0

To get a bound for P, let us denote by P the average of P on 5\Q: P = ¢! fszg\sz Pdzx. Let @
be a vector function such that:

V-®=P—PinQs\Q, &=0ondQuUod.
Such a vector function exists and satisfies the bound (see [I8])
1@z 2\0) < 1P = Pllz2(o,\0)-
Taking the inner product of the momentum balance law (3]
V(P—P)+eu-Vb+V-7=b, (5.3.15)
by @, integrating on Q5\Q and integrating by parts, we obtain

/ b-@dx:—/ Az[V - B(P = P) +cu- Vb - b+ VD : 7]
Qs\Q Qs\Q

+/ dS[® - n(P—P)+®®@n:7+eu(n-®)(b-n)], (5.3.16)
0NUIN s

where A B = )7, A;;jB; ;. The boundary terms vanish because ® = 0 on the boundary. We
have

[ - ada] < 1@lallbl g5 < ol g5 1T (5:317)
Q(;\Q loc loc
by using Sobolev embedding. Therefore, using V- ® = P — P, we obtain

IP = PllZ2000) < IVel 200 (1Tl 22@0\) + elul1bll 2 @5\0) + ||b||L?({f)
SIP = P20 ([T = Pu) fll L2 + elul[Puflls + [[bll o/5)-

Hence B
I1P — P20 S e I@—=Py) fllz + [ul[Puflls) + ||b||LZGO/C5

Therefore, since fQ&\Q dzPn(z) = 0, we obtain

| dzPn| < (e M I[(T=Pu)fll2 + [ul[[Puflle) + 0] ¢ -

Q5\Q loc
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On the other hand,
‘/ dzu - nb‘ S [u||Pufll s
Qs5\Q

[ doner] S1A-POloe
Q5\Q

Q1 <5 (€™ T~ Pu) Sl + Nl [Pufls) + 1] o/s + |z

For the estimate of 4, we use

and

In conclusion

)
Qi = a4+ 57! / deQes —

2 2
-3
wy+07" dx/ dvy/piy |u| n-v{[a+b-vu+c| u| Wit + (T =Py f}
Q5\Q R3
-1 3 |Uu|2 -3
=wy+6 dzb-n+ —eu-nc+ | doy/iy v(I-=Py)f]. (5.3.18)
QS\Q 2 R3 2

To get a bound for fQ(;\Q dzb - n we note that, from |Qo — Qeo| < €2 |zy(7)||2, integrating on &
and using again the coarea formula, by (5371

‘6‘1/ dz[b-n+eau-n] — / dS[b-n + cu- na]‘ <e?|zy(r)]2 + [Pugll /5 (5.3.19)
Q\Q aQ Loe
and
= ‘/ dS[b-n+ eu - nal —6/ dSu-na‘ < |lzy(7)]]2, (5.3.20)
o9 o9
because | [, dSb-n| = | [5q [gs doy/m, fo-n| < [z4(r)|l2. Hence [, dSb-n = e [, dSu-na +
O(||zy(7)|l2). Now we can replace in (.3.I8) this expression to obtain:

@l <07 [ asfunte-a)+ [ oy = v e ]| | [ dsuona
Q5\Q o0

1
+e2|zy(r)ll2 + ||Pug||LLG/5-

The first term in the first line is bounded with &[|u|||alls + |u|||c|l¢ + 71| (I— Py) f]|2]. The second
. _ _1 .

is bounded by lul|[Pufll2(onxen) S lul(IPuflls + =T Pu)flly + v~ 2gla), by using the
Ukai trace theorem, Lemma 2.2 O

Lemma 5.5. If u # 0, then there is p > 0 such that, for any p > 2
IR _ - _1
1821l S e = Y7 1Qal S T A = Pu)fllz + [ Puflls + lgvl2)

a=0,...,4
e [T e® 2 ()2 + [ Pugll oss]) (5.3.21)
Proof.
Step 1. Estimate of ITb(?): From ([34) for the system (@30), (31), [@32), with s = s(?), we have
? =N, 1 11Q. (5.3.22)
By (&217), jN, 1 is bounded by e~ !u|71T¢ in LI(R?) for 3 < ¢ < 2, and hence
[T, < a*1|u|*1+@Q. (5.3.23)
Step 2. Estimate of P(): by using [38) for the system (@30), {31), (@32), we have
P® = (1 — EJTI:|;U k)il {]leé [2582) + eu- ke®) + % 32 (5.3.24)



28 R. ESPOSITO, Y. GUO, AND R. MARRA

Since j|k| 7 is integrable for any ¢ < 3, we obtain

PP, S 1P, +1Q) (5.3.25)
Step 3. Estimate of ¢(?): by using [@38) for the system @30), @E31), @32), we have
~(2) Al . Nn,l -1 k ~
e® — N {Q4—Qo+zau-k(1—sl_|k|2u-k) WQ} (5.3.26)

We remind that from the definition of N it follows that |N71| < |N;§ |. Therefore, proceeding as
)
before, we obtain by (.ZI7) for 3 < ¢ < 2,

1EPlg S e ul 7 (1Qal + |Qol) + elulQl, (5.3.27)
and, in consequence,
1P S [ul~2(1Qal + 1Qol) + 1€ (5.3.28)
Step 4. Estimate of a®: Using a® = P® — ¢® we have
1&®lq < e (lul 72 (1Qal + Qo) +1Q)). (5.3.29)

Step 5. Estimate of (1 — I1)b2):
T\j, (2)

Since (1 — I = k- b k|k|~2, using the mass equation, where 3y = jQo, which implies
E-0® = —ck-ua® +ijQo, we have
(1 =10 = —¢|k|2kk - ua® +i|k|"2kiQo,

and taking the L? norm we have, using Step 4,

(1 =054 < ella®lg+]Qol.
Then, together with Step 1 we obtain

16y S e (1Qal + Qo)) + 1Q)- (5.3.30)
In conclusion,

) o 3
1827y S & ul 0@, for 5 <q <2

We remind the Hausdorff-Young inequality: if 1 < ¢ <2 and % + % =1, then

1£1lp < 11 Fllq- (5.3.31)

By the Hausdorfl-Young inequality then we have (B321]) with p = qiLl > 2. O
5.4. Estimate of S3f. The components of S5 R solve the system

ik b3 ek -ua® = 3, (5.4.1)

ikP® 1 elolk|? + iu - k]p®) = 36 (5.4.2)

ik - b® + & [k|k|? + %zk u)e® =3, (5.4.3)

where
¥ = ,[/R v Vi o ()|,
k) = j[_gmk./]Rgdwa_pu)fé‘(k,v)gu—isk-/devé%u
+h- /R 3 dwu\/ﬁuc}(k,v)}, (5.4.4)
D) = j[—sk@k-/ﬂ@ dvv(I—Pu)f‘(k,v)%—isk-/RS dv C.f,

+k - /11@3 dv %(|vu|2 - 3)\//7“@(96,1))} .



HYDRODYNAMIC LIMIT OF A KINETIC GAS FLOW PAST AN OBSTACLE... 29

Lemma 5.6.

I /Rg dvy/Aouik-Celloo < IPuflls + X = Pu) fll (5.4.5)

Proof. Recall from (G171,

_ . el iNk-x

‘/}1&3 dvy/p, = ‘/}1&3 dv\/ﬁuvu]/ d)\ /dwe C(z, ’U)‘
1

= ’/ dv\/ﬁuvuj/ d)\{ik-x}/dx ei’\k'mC(:E,v)’

< [ ol [ arfel [ avPuste ]+ 1T Pos o)

S 1l + 1@ =P flls
because supp(V() C . O

Lemma 5.7. If |u| < 1 and ¢ < 1,
1S3 £ll2 S e IPuflls + ™ (T Pu) f]2. (5.4.6)
Proof. Step 1. Estimate of TIb(®):
From (@34) for the system (4T), (A2, (A3), with s©) given by (5.44), we have

16 = N, 115®), (5.4.7)
where
3® = [sk k- / dvo(I — Py) f<B, — ick - /R dvCABy + k- /R dv vu\/ﬁuc}(k,v)},

By (220), jkN, 1 is bounded by ! in L?(R?), and hence

Jiver ik / avva/i G (o), S| / v v/ kColl,0)|| <
3 o0
H;g }Hk/ dvC(k,v)%B

< H/ dv C(k,v)
R3
by using (B.4.3]).
On the other hand, by Lemma 52l k ® kN _ ,8 e L™,

e Pufllste™ IA-Pu)fll.,

_ S IPuflls + 1T =P,

SN HTb o ke [ dvo(@= PR, 1A= Pl

RS
therefore we have .
T3 |y S e |Puflle + & HI(T = Py) fll2-

Step 2. Estimate of P(®): by using ([@38)) for the system (T41), (543, (F-43), we have

. N, N, k
3) v,1 v,1 (3) ~(3)
PB = (1 Ez|k|2 k:) |:Z|/€|2[ZSO +eu- ke + e K] } (5.4.8)
Taking the L? norm, for ¢ < 1 we get
IPP2 < €2(1E@|2 + [Puflls + 1T = Pu)fl (5.4.9)
Step 3. Estimate of ¢®®): by using {38) for the system @30), @31), @32), we have
2 = (W) 1o — @ No Noi.@, Kk
6@ = () s = s + w12 |k|2u k) {W t o8 I} a0

with
(k) = [ek ®k- /R dvo(I = Pu) fo(k, 0) i — ick - /R dvCe,

+ /R dv %(|vu|2 —3) ik c}(k,v)]



30 R. ESPOSITO, Y. GUO, AND R. MARRA

We remind that from the definition of N, it follows that |N71| < |NN_1E |. Therefore, proceeding
2

as before, we obtain

162 S €M IPuflle + (X = Pu)f]l2. (5.4.11)
and, in consequence,
IP@ 2 < [Puflls + (T —Pu)fll2 (5.4.12)
Step 4. Estimate of a(®: Using a®® = PB® —¢3) we have
16 ]l2 £ e [Puflls + (X = Pu) fl2- (5.4.13)

Step 5. Estimate of (1 — I1)b®):

Since (1—ID)H® = k-b®k|k| =2, using the mass equation which implies k-b®) = —ck-ua® +is®,
we have

(1 -0 = —e|k|2kk - ua® +i|k|2k3(> — i|k| 2k - [/ dvvu\/ﬁ(fr(k,v)—i—a/ dvé(k,u)%u],
R3 R

3

and taking the L? norm we have, using Step 4,
It = 512 < ella® |z + [Puflls S IPuflls + (X —Pu) ]l
Then, together with Step 1 we obtain

162 S e M Pufllo + 1T = Pu)fllu- (5.4.14)
O

5.5. Estimate of S,f. The components of S4f solve the system
ik b +ick - ua™® = 3V, (5.5.1)
ikPW 1 elolk|? + iu - koY) = 34 (5.5.2)
ik - b + & [k|k|? + %zk uje® =3V, (5.5.3)

where

Wk = o, (5.5.4)
k) = —jick- /]R dv (g B, (5.5.5)
sk = —jeik- /]R dv (gt (5.5.6)

Lemma 5.8. Let p > 2 and assume g € L#%5. Then
1
1Safllp S 1v"29ll 22, (5.5.7)

Proof. We proceed as in the proof of Lemma .7
Step 1. Estimate of ITb(*4):
From (E34) for the system @30), @31), @E32), with s = s,
I = N, {115, (5.5.8)

Since for the multipliers kN, - 11ﬁk direct computations yields
O {ek N, TIk} S [KI7,
with constants independent of e, by Mihlin-Hormander’s [25] [I7] multiplier theorem, we deduce

1
L Sligle,  (559)

34

VI | = [V N ik [ doCgan)
3+p ]R3

by the Sobolev estimate
@) < @ 5, <=2 .
L™l S (VI S ™29 o -



HYDRODYNAMIC LIMIT OF A KINETIC GAS FLOW PAST AN OBSTACLE... 31

Step 2. Estimate of P(): by using 30)) for the system @30), @31, @E32), we have

A N, -1rN k
P _ (1 0,1 k) { oLy ke .A(5)} 51
+aZ_|k|2u Z_|k|2[5u ¢ ]+i|k|2 877, (5.5.10)
from which we get
||P(4)||p552||C(4)||p+5||f%9||;%- (5.5.11)
P
Step 3. Estimate of ¢¥): by using [@38) for the system @30), @E31), @32), we have
A4 _ (-1 @ No 1 k@
¢ = (N) {84 +zau-k(1+€Wu-k) W-g }, (5.5.12)

with
sW = cik / dvz\,;zf
4 = gy
R3
This implies
1l < v~ 2gll 22 . (5.5.13)
3+p
In consequence
1P, < 6||V_%Q|I;Tp- (5.5.14)
Step 4. Estimate of a(¥: Using a* = P@W — ¢ we have
a1y S =gl 5o . (5.5.15)
3+p

Step 5. Estimate of (1 —I1)b™®): Since (1 — )b = k- bl(4)k|k|_2, using the equation for the mass

we have (1 —I1b¥W = —¢|k|~2kk - ua™®, and hence, by Step 4

(1 = Tp |, < efla®ll, S ell gl s (5.5.16)
Then, together with Step 1 we obtain

16, < ™2 gll 22 . (5.5.17)
O

5.6. Estimate of S5f. The components of S5f solve the system
ik b +ick - ua® = 3, (5.6.1)
kPO +elolk)? + iu- k]p® =3O (5.6.2)
ik - 5O + & [k|k|? + %zk u)e® =3, (5.6.3)

where

§é5)(k) = j/R3 dv \/11,,(Pug,

V5

Ok) = j /R de\/ﬁuvcf’/u\g, (5.6.4)

~ . 1 —_—
0w = [ dovig (i -3)Pu

Lemma 5.9. Let p > 2. Suppose that (Pyg e L1, 1 < g < 22 Then there is p > 0 such that

P2
1S5 £llp S e Hul = *el¢Pugllq- (5.6.5)
Proof. By Hausdorfl-Young inequality (&3.31]),
1S5 f1lp < 855112 - (5.6.6)

We have
T1H®) = N;llf[j /3 dv /11, vC(Pyg. (5.6.7)
R
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Therefore, if 1 < r and rﬁ < 2, so that we can use with (5.2.17), then, with %4— % =1, we have

I 2 <IN 3l 2 ICPugll 2, o S e Hul 7Y CPuglly S e ul = F2)ICPuglly,  (5.6.8)

p—1 r—1
where ¢ = ﬁfj, having used (52.I7) in the second inequality and again the Hausdorf-Young
inequality in the last step. Since pr;l > £, then ¢ = pﬁil = ";++1 < %. Since r > 1, then
q> 1 : (I
5.7. Proof of Theorem

Proposition 5.10. Ifu # 0 and € < 1, then there is p > 0 such that,

1 — — _1 1 _1
e [Puflls S IPuflls + lul = e [T = Pu)flla + oV)llv 2 gl 20 + 27 v 2gllg
[l e e 3 2y (M) 2+ e Pugll -] (5.7.1)

Proof. To get the L3 bound of P, f we proceed as follows: we look at the problem in R? by passing
to the cut-offed problem. Thus we obtain Py f = (1 — ()P, f + Ele Sif. Since 1 — ((x) =0 if
x ¢ Q= {z|dx,Q) <1}, |1 = QOPyuflls S ||Puflls. For the other terms we use the previous
lemmas.

The bounds in previous subsettions are too singular in e for our purposes. Therefore, we take
advantage of the uniform-in-¢ estimate of ||(P, f||¢ to improve the estimate of ||(Py f||s by means
of interpolation between the L® norm and some lower norm. Since

5
1> " Siflle < IPuflls, (5.7.2)
=1
we have
[S1f +8Ssflle < IPuflle +1S2fll6 + Saflle + 1S5 flls- (5.7.3)

Therefore, using (321), (E57) and (B6.3) with p = 6, we obtain:
IS1f +Ssflle S [Puflls+ [~ T2 (T =Pu) flla + [Puflls + llgv~2]|2)
b e e ()l + [Pugllars] + [ Sl + & 2Pl
S Puflle + lul e HI(T = P fll2 + Jul = |gv 2 |5 (5.7.4)
b )l + Pl ]

Note that only the last line is singular in €, but we will apply the inequality in a situation where
zy(r) and P g are small in ¢.

For S1f + Ssf, by 62X) and (B4G) (by interpolation (||f], < ||f||ZHfH;’9 with r=1 =
Op~' + (1 —0)g~')) we obtain, with r =3, p=2,¢=6and § = ,

1 1 1 1 1 1, _1 &
e2||S1f +Ssflls < (ellS1f+Ssfll2)2S1f +S3fllg S IPufllg +IIXT=Pu)flI3 +e2|lv™2g|3]x
1
IPuflls + = 1T = Pu)fla + il =gyl ol =22y () 2 + & | Pugll o]

— — — _1 — 1 —
S P flot | =2 T=Pu) flla+ (e ul =) o™ 2 gllaul =22 |2y (M) [l [Pugll jors).

(5.7.5)
As for S, f, we have from Lemma 5.8 with p = 3,
e2|Suflls S e2lv 2 gl (5.7.6)

For S5 f we use Lemma [5.9 with p = 3 and hence 1 < ¢ < g.
By (B:3:21)), by interpolation we obtain,

e 182flls S < [l A= Pl + [Pufll + v Fgll)

1 1 o 1-0
+ eyl 1+9[52||Zv(7")||2+||Pu9||L§>({f] IS2/157, (5.7.7)
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with 6 such that % =0p !+ %(1 —0), and hence 6 = %Jr when p = 2%. Therefore, by Young
inequality,

1 1o _ 1
e2|Saflls S exful " (e A= Pu)fll2 + [Puflls + v 2 gll2)
_ _1
F Tz 0l + 7 Puglo] (6.7.8)
Combining the estimates we obtain (G7T). O
Now we have all the information needed to prove Theorem

Proof of Theorem[L To bound the first two terms of [ f]| 3,5/, we use Proposition 2.6l Then we
use Proposition [2.7] in 3.4t

(1=o(W)IIPuflls S (1+0(1)+u[~>) [eH|(T=Pu) fllu+e 2 |(1=P}) fla+] +|v 2 gllaFe2|rloo
+o(1)[e? [wrloe + 22 [ (v) twgllo]. (5.7.9)
Using this in @ZJ), if |u| is so small that [u[(1 4+ o(1) + [u[7**)(1 — o(1)) ™ < 3, we obtain
_ — _1 _1 1
e IT=Pu)fI7 +e7 1A = PSS S v 2 @ =Pugls + [ulllv™2gll2 + 2 [rloc (5.7.10)
1 3 — — — —
+0(1)[62|wrloo +e2[[(v) " rwglloo] | + 7[5, - 4 ()T Iz ()3 + e 72wl 72 [Puglld + [Pugll3.
Using this in (34 we obtain a similar bound for ||Py f||s:
IPuflls S v (X = Pu)gll3 + ulllvglla + 22 7l + o(1) [} furloe + 221 (0) T wg]]c]]
+ I3 -+ () Tz ()3 + el T Puglls + [Pugll. (5.7.11)

Using (5.710) and (5710) in II) we get a similar bound for £2 ||wf]|o. Finally, using (5Z.10)
and (5710 in (571) we obtain the bound on e ||P,f|ls. Rearranging the terms we obtain

). O

6. CONSTRUCTION OF THE POSITIVE SOLUTION TO THE NON LINEAR PROBLEM

6.1. Positivity scheme. In order to construct a non negative solution to the problem (LI]) we
use a modification of the argument introduced in [IJ.
We define F* = max{F,0} and F~ = max{—F,0}, so that F = F* — F~. Consider the system

v-VF = HQ(FT, F") - 2Q(uy, F7)] in QF, (6.1.1)
F| =PY(F*) on 09, ‘ 1‘im F = ju,. (6.1.2)
— T |—00

Proposition 6.1. Let F € L™ solve problem (I11), @I2). Then '~ =0 and F* solves the
Boltzmann equation.

Remark 6.2. Since F~ =0, F is non negative.

Proof. In fact, the equation for F'~ is
—0-VF™ = 1 4[Q7(F7 FF) = Q(u, F7) = Q(F 7, )], F~| =0.

because F'~ # 0 implies ' = 0, and hence the term 1p-40Q ™ (F", F*) = 1p— o F v (F*) =0.
Moreover, since F' > 0 on v_, if follows that £~ =0 on y_. Since F' — p,, > 0 as |z| — oo, then
F~ =0 as || = oc.
By multiplying this equation by —u !F~ and integrating, we obtain:
-1 (Fi)z_ -1 +irt+ pHyp—,,—1
dedvp, v - V—"ym = —¢ dzdvlp- 4 0Q  (FT,FT)F ™ py
Qe xR3 2 Qe xR3

et [ dsdote oy QU P + QU )
exR
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By the spectral inequality,

- /Q o Qe ot F QU F7) 4+ QUET )]

== /Q _, dedupr P 1Q (e F7) 4+ QU )] 2 (| (1 = o) (a2 F) 12

Therefore by also integrating by parts the Lh.s., we obtain

1 _ _ B 1
5/ dS<x>/ dvpy o n(E7)? 4= Po) (g F )3
OO XR3 R3

< —5’1/ dzdvlp- QT (FY, FT)F pt <0
Qe xR3

This implies that F~ =0 on ", thus F~ = 0 on 7. Moreover (I — Pu)(,u;%F*) = 0 and hence
Q(pus ) + Q(F 7, p) = 0. Thus
—v-VF~ =& '1p QT (FT,FT) >0.
Therefore F'~ satisfies
v-VF~ <0 inQ° F~ =0 onn~.
This implies that '~ < 0, but £~ > 0 by definition and hence F~ = 0 identically. Then, F = F

and (EI1.T) coincides with the Boltzmann equation ([LI)) and ([GI.2]) is the usual diffuse reflection
boundary condition (L] O

Therefore, to construct a positive solution to (II]) we need to construct a solution to (GI.TI),
(EI12). We need some notation:
Let x = 1jyj<c-m, X = 1jy|>e-m = 1 — x where m > 0 is such such that

p + e/l X (f1 +ef2) > 0. (6.1.3)

Such an m certainly exist because, by definition f; and by [5] f2, are bounded by Vi, Ps, for some
s > 1, where P is a polynomial of degree s in v.

Since, for 8 > 0, exp[—e7#] < &’ for any £ > 0, in the rest of this section we shall use the short
notation

£* =exp[—e 7],  for some § > 0. (6.1.4)
Remind that
0< Ml,a(u—i—u),l = pu + /I f1 +52\/Nu¢s- (6.1.5)

We denote
2 = fi1+e(xfa+ X902
By @I3), if x =1, then . 4+ ¢\/n2 > 0, and the same is true if x = 1 by (@I5]). Therefore

fy + /112 > 0.
We decompose

quu—l—a\/ﬁua@—i-s%R\/ﬁu. (6.1.6)
Then we define

A {R if fou +eE2 + €% iR >0 g (6.1.7)
=72 (uy +e2y/m,)  if pu+e2y/pm, +e2/n R<0
and
R=R-R. (6.1.8)
It follows that
F* =ty + ey/in2 + ¢2 RV, (6.1.9)

F~=¢2Ryu.. 6.1.10
u
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Indeed, if F'(x,v) > 0, then
FY=F = py+eyfi,2 + e R\/li, = pu + e\/2 + 2 R/,
Moreover, if F(z,v) <0, then 2 R < —(p1y + €2, /i) and hence

0= fiy + 2/l + E%R\/;_Lu =Ft,

and
F~=F"—F=p,+e/u2+ E%R\/_u = (b + a\/ﬁQ+E%R\/ﬁu) =3 (R— R), = E%R\/;_Lu.
Lemma 6.3. We have the following inequalities:
Rl <R, (6.1.11)
IR < 1{#u+5\/ﬁu,@+s%R<0}2|R|7 (6.1.12)
|R; — Ra| < |Ry — Ral, (6.1.13)
[y — Ra| < 2|y — R2|(1{#u+s\/ﬁue@+s%R1\/ﬁu<0} + 1{u..+sﬁu9+s%R2¢ﬁu<o})' (6.1.14)

Proof. Indeed, uu—l—sa@\/ﬁu—i—s%\/ﬁuR < 0 implies R < 0 and hence €2 |R| = —etR = \/ﬁb_ll(uu—i—
e\/[in2) < —e3 R = £3|R|, which proves @L1LI). Moreover, |R| < (|[R|+|R|)1
2|R1

_ <
{putey/(2+23 R)<0} =
{fute(2+e% R)<0} which proves (6I.12). Furthermore given Fy and F», we have

[Pt — Ff| < |Fy — Fal.
\Fy — Fy | < 2|F) — By,

In fact, fixed (x,v), without loss of generality suppose F(z,v) > Fa(x,v). If Fy(z,v) > 0 there
nothing to show. Thus assume Fy(z,v) < 0. If Fy(z,v) < 0 then F}" (z,v) = F5 (z,v) = 0 and
the inequality is obviously verified. Therefore we only need to consider the case Fy(z,v) > 0 and
F5 < 0. We have

|FiF(2,0) — Fyf (2,0)] = Fi(z,v) < Fi(z,v) — Fa(z,0) = |Fi(2,v) — Fy(z,v)|.
Moreover, since F~ = F* — F, |F|” — Fy | < |F{" = F'|+ |Fy — Fy| < 2|Fy — F|. Therefore, with
R; defined by (61.0) and R; by (619), it follows that
e2|Ri—Ro| = Vi, ' |(F{ —pu—ev/Ba2) = (Fy —pu—e /I 2)| = Vi, ' [F = F5f | < Vi, ' [Fi—F|
= Vi (Fy = iy = &/l 2) = (Fa — i — £3/in2)| = €%| Ry — Ral.
Hence ([G.II3) is proved. Furthermore

|R1 — Ra| < 2|Ry — Ry( (6.1.15)

1{Mu+a\/u_u(:@+€%R1)<0} + 1{uu+a\/u_u(a@+€%Rg)<O})'
In fact, since F] — F; vanishes outside of the set

(i + e\/Im(2 + £ Ry) < 0} U {pty + £ \/iim(2 + €3 Ry) < 0}
and a*%|F1 — F5| = |R; — Ry, we have

Ry — Ro| = 2 i, |(FT — pu — ev/ia2) — (Fy — (pu — e/ 2)| = e~ 2 /i, |y — Fy | <

_3 —1
222V 1B = B, L o b ry<oy T
2|R1 — Ra|(

1{uu+a\/u—u(a@+a%R2)<0})

1{#1.+5\/,LT“(Q+5% Riy<oy T l{ers\/,tTu(QJrs% R2)<0})'
[l
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As for the boundary conditions, we have

1 - L 51 w 1 - L 5o 1
p + e fipd + €2 (xfo + X )i + €2 Rui = PY [+ exfipd + (X fa + X )i + €2 Ry ).
Therefore, subtracting this equations from (L.33),

Hence ) B
R=P'R+c*7+ PR, (6.1.16)
with
r= P;[X(f2 = ¢)] — x(f2 — ¢e).
We have
H/ dv[uu—l—w/uusa@]v-nH =& on 0. (6.1.17)
R3 o0
In fact
/ dv(py + (ef1 + €2¢) )V -1 = / dvM c(uquy1v-n=cen-(u+u) =0, (6.1.18)
R3 R3

on 9 because v = —u on 99, see (L.I4). We have also ng dv(pu + €/, f1)v - n =0 on 9§ and
hence ng dv\/1t, ¢ev - n = 0 on 9Q. Therefore, by ([C31), since u|pn = —u,

<e ™ " <e™® on 0N (6.1.19)

‘/gdvn'vvﬂux(ba :‘_/gdvn'v\/ﬂux(ba

R R

Since Py fo = 0, in the same way we obtain

/ don - v./uuxfg‘ = ’ —/ dvn - v\/uu)’(fz‘ <e® "u?<e>® ondQ, (6.1.20)
R3 R3

because |fa| < /i, Pl (|Vul + [u?) and Vu is bounded in L? for any p > 3 and ([GIID) follows.
The boundary conditions for F' imply

/ dev~n:—/ dvF™n-v,
R3 {v-n>0}
on 0f). Therefore we have

/ dv\/ﬁuRv-n:—/ dv\/ﬁu}?n-v—k()(sw)
R3

v-n>0

Lemma 6.4.

H/ dvr uun-UH <e™. (6.1.21)
v-n<0 oo

Proof. We have 7 = PJ(xfa — X¢:) — (xf2 — X¢¢) and, using ([B.3.10), fv»n<0 dvry/pyn - v =
Jgs dv /I (X fa = x@<)n - v. (EII9) and EI20) imply EI2T). O

We rewrite the problem (611]), (CI12) using the decompositions ([G.1.6) and ([GI1.9). Remind-
ing the definitions of f1, fo and the incompressible Navier-Stokes equations, we are reduced to
construct the solution to the problem:

v-VR+e '"LyR=LYR+eT (R, R)+e? A, (6.1.22)
R| =P'R+etr, (6.1.23)
Wh'yere

LYR =T (2,R), (6.1.24)
P A, = Pyyv- V(¥(d: — f2))—cu- Vol (6.1.25)
I-P A, = (I -Py)(v-V(xf2 + X¢e))

~Tu(2f1 + e(xfo + X¢:) Xfo + X0e) + € Lulx(¢: — fo)], (6.1.26)

r=r—c ZP'R. (6.1.27)
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In fact, reminding (L2I) and (L20), we have
Lu(xf2) = Tu(fr, f1) + T=Pu)(v- V1) = —Lu(X[2),

and
Py(v:Vxf2) = —Pu(v- VX f2),
so that
V(xf2) = X =Pu)(v-V(xf2)) = Pu(v- V(X[f2)).
Therefore,
A o= EDAA-PY©- VA + LuCfo) — Tulfi f1)} +<Lu(X02)

+ €20 Vs + X6:) — 2Du((ufa + X62), 21 + 0o + X6)) p—eu- V
=~ 'Lu(Xf2) + 27 Lu(X6e) + (T=Pu)(v- V(xf2))

Pu(v-V(xf2)) + v V(Xe) = Tul(xfa + Xoe), 2f1 + (X fa + X)) —eu - V fa

= LR(6 — £+ Palo V(G — )]+ (- Pa)(o- V0l + xa)
Lu((xfa + Xbe), 2f1 + e(xfo + Xde))—eu- V fa.

Proposition 6.5. Let X € LP(Q¢ x R3) and X and X be defined as X and R, as in (611) and

E1R). Assumep > 1, |u| < 1, Then:

(1) Let w(v) be such that w1 < \/;_Lﬁ(vfﬁ, for some 0 < B < 1 and 8/ > 0. If e2 |wX || s is
bounded, then

|PEX |2, S [e(u] + 2 X [loo)] 01X |2, (6.1.28)
|PEX oo, S (] + €2 [[0X|oo)] " X oo, 4 (6.1.29)
(2) Given X1 and Xo such that €2 ||wX;||ls are bounded, then,
IPY& = Kol S [e(u] + mag(e® Xl )] X0 = Kol (6.1.30)
PR = Rl S el + pupgle? fXillow) )71 = Koo (6:1.31)

(3) TiE(X, X) <TE(1X[, 1X])] and [T (X1, X1) — T (Xa, Xo)| S TH(1 X0 ] + [Xaf, [ X1 — Xal).
Proof. To prove (6.1.28), note that

1 1 <1 1
{putey/mi{2+e2 X}<0} {viu<e(|2|+e2 |wX|loc)w=1}

Therefore, by GI12), since w™! < \/ﬁf<v>_6/ for some 0 < 8 < 1 and 8 > 0, and |2| <
|u|\/ﬁu<v>z for some ¢ > 0, we have

> H / / /
PYX| <2 dv' /1 (V) |0 - n|1 X|d
X =< V Hu(V) Jorn>0 UV ()l {\/uu<v'><a<\a@\+a%wanmwfl)}' v

1
2

< 2| Xv-n|?||z2

H ( dv'w=2(v)1 N )
Vi (v) /R VOO <2t xR

< el + ¥ X o) X0 -0l —Am=, (61.32)
Hu U)
because [; dv'(v) =2 (v/)[v’ - n| < 1 by choosing 3’ > 2. Therefore
/ dv| Py X S [e(lu] + &2 [lwX [|oo)]* 72| X3 .., (6.1.33)

so ([6128) is proven.
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We also have

1

uy M /2 NIl (2
1P| < X ool [ O o s )
S fe(u] + &2 X o) TP X oo, (6.1.34)
Mu(“)

from which ([EI29) follows.
To prove (2), we observe that, if ||wX;|e < «, by ([EI114)

|P,;‘( - X)| < 4a '\ g (V) n| X — X2|1\/—<4mw 1}d (6.1.35)

RV ,uu v’ n>0

The rest of the proof is as before.
Statement (3) follows immediately from (G.II1)) and (GI13). O

Proposition 6.6. Let u be the solution to the incompressible Navier-Stokes equations. Then, if
ek 1,

e foranyp>1

[Py Ayllp <% (6.1.36)
e for any p > %
(I — Pu)[lu”p < Juf; (6.1.37)
[ )
2 DO Xy S [ X s forp <3, (6.1.38)
—-p
I L Xl S lllwX oo for p > 3. (6.1.39)

Proof. First note that, by ([CI23), since fi = \/fz, vy-uand fo = Z?,j:l Bi ;0;uj+ LT (f1, f1),
we obtain
) 3
P, A, = Pu{xvu : v¢€ +X Z Uy aj1 UjsVjy lell—‘u(vu,jz Hoyps Vujs \//_J‘u)

J1,J2,J3=1

3
X[V Y 0 B0 O] o (6.1.40)
Ji,J2,j3=1
We remind that from [I2], Th. X.6.4, we know that, if u # 0, then v € L? for any p > 2,
Du € LP for any p > 4/3 and D?*u € L? for any p > 1. Therefore, for any p > 1, |[uDu|, < 1.
Moreover, for any g > 0,

bl < exp[—gs m) < g, (6.1.41)

and we obtain that the second term is less than > in LP-norm, for any p > 1. From the definition

of ¢. we have D¢, ~ ué |u]|Du| and hence also the first term is less than > in LP-norm, for any
p > 1. Finally, since ||D?u||, < 1 for any p > 1, the third term is less than £ in LP-norm, for
any p > 1, so the first item of Proposition [6.6] is proved.

To prove the second item we first observe that, for any p > 1, |[Tu(xf2 + X¢e, f;)|p < 1. This
follows as the estimate of ||Iy(f1, f1)||p- Next we need to take care of the term e ™' Ly(I — Py)(v
V f1) entering in fy. Since this is proportional to Du this is bounded in LP for p > %. The
diverging factor ¢! is dealt with using (G1.41).

To prove third item we remind that |lul|s < [u| for |u| < 1 (proof in Appendix) and hence
also || f1]ls < |u|. We use the definition of LY the inequalities (EI11) and for any p > 1 and
¢ ¢ =1, v Tu(f, 9y < V2 Fllpgllgllpgr With g such that pg = 3 and hence pg’ 3p to
conclude. D
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6.2. Iteration. The construction of the solution is obtained as follows: we define the sequence
{R}32, as: Ry = 0; Ry41 is the solution to the linear problem

v-VRey1 + EilLuRg_,_l = Lgl)Rg + E%Fu(Rg, Rz) + E%/_lu, (6.2.1)
with boundary conditions
Royq1 = P,;le.H + E%T‘g, (6.2.2)
where
re=7—¢c *P'Ry. (6.2.3)
1

By denoting g = L,Sl)Rg + a%Fu(RZ, Ry) + 2 A, we are reduced to the linear problem studied in
the previous sections.

Remind the definition (L38) of [[-] g, Since in the rest of this section 8 and 3" are fixed, we
drop the indices. Let 2" be the Banach space of the functions X (z,v) such that [X] is finite.

Theorem 6.7. There are ¥ < 1 and ¢o < 1 such that, if e < 1 and |u| < co¥, and

sup [R;]] <9, (6.2.4)
0<j<¢t
then
[Res1] < 0. (6.2.5)

Moreover, there is A\ < 1 such that

[Rer1 — Re]] < A[Re — Re—]). (6.2.6)
Therefore Ry converges [ - ]|-strongly to R € £~ which solves (G.1.22)), (G1.23)).
Proof. By Theorem [[L3] we need to show that, when g = E%Fu(RZ,RZ) + L,Sl)Rg + ¢34, and
r=7+e TPURy if e < 1, Ju| < 1, then (g, 7) < 9.

We need to bound all the term in the right hand side of (44)). To estimate the norms of
Twu(f, h) we state the following

Proposition 6.8. We have the following estimates: let X € 2°. Then

e2 v 2 Tu(X, X))l S [X]?, (6.2.7)
e v 2wl (X, X)||oo S 72 [X]?, (6.2.8)
e V2 Ty(X, X)||5 < e 2[X]2 (6.2.9)
Proof. We make use of the following inequality (see [9]):
3T, ) e S (0% Fllall Ly, (6.2.10)
In particular, for ¢ = 3, p = 3 we get
lv=2TE(f )5 < v Flsllhlls, (6.2.11)
and for ¢ =3, p =6,
lo™ 2T (£, B2 < [lv2 £llslAlle. (6.2.12)
We will also use
=2 D= (£, )12 S I 1 1Bl (6.2.13)
and
1) "' T (f, D)oo < (1 flloo 1Pl oo- (6.2.14)
By (€111,

I (X, X)] < T (IX ] 1 X)) < T (X 1 XD,
We split | X| < [(I—Py)X|+ |P,X|. We have
T (1X] X 1) < TE(@ = Pu) X (T = Pu) X)) + Ty ([PuX], [PuX]) + 2050 (|(T - Pu) X, [PuX]),

where T (f, g) = §[TE(f,9) + T (g, £))-
Using ([6.2.12) we get

3|l TE(Pu X, [PuX )2 S (67 |PuX s PuX |6 < [X]?. (6.2.15)
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Using ([6.2.13) we get

2 [ly I TE(|(X = Pu) X[, |(T— Pu)X])l2 < e(e2]|(T = Pu) X[ (e 7 (I = P)X|,) < e[[X]2.

Similarly,
1, 1= 1 _
e2 v T (I = Pu) X[, [PuRu )2 < (€2 |[PuX [)oo (e |(T = Pu)X|l,) < e[ X]?.
Therefore (6.2.7) follows. Moreover, by (6.2.14)), (G.2.8]) follows.

Since . .
e [D(|X = Pu) X[, [T Puy)X|)|[s < e2||(T-Py)X]3,

2
and, by interpolation, | (I — P,)X |5 < |1 — Py)X||Z || — Py)X]|Z, then
1 3 _
eZ||TH(|X = P)X| [T = Pu) Xz <2 (e (T - Pu)X[LDIT - Pu)X|l6.

Since ) )
1= P)Xlle S ¥ [le™ (I - Py)X|[Fe5]le? (I - Py)X||% < [X]),
we have
e} ||TE((1 - P X[, (T - PY)X])5 < 3[X]?
Moreover,

3 [|T*(|(T = Py X, [PuX])

|5 < (€2 [PuX[a)| (T - P)X|s <

1 1
(2 |PuX||3)|X - PO)X[2|X - P)X ¢ < e2[X]%
Finally

1

e2||T*H(PuX|, [PuX]lls < (2 |PuX[3)IPuX]ls < e 2(e2|PuXl3)* < e 2 [X]*
and ([E2.9) follows.

Now we are ready to bound the several terms entering in ..

[N

Proposition 6.9. If [u| < 1 and ¢ < 1 then, with

E¢ = sup [R;],
0<j<t

we have
,///(E%Fu(ég, Rg) + L&l)Rg + E%Au, 7‘@) < EZL + |u|252 + 5|u|2 + &%,
Proof. With g = E%Fu(Rg, Ry) + Lﬁl)Rg +e2 A, we have

=3 (T = Pu)gll3 < ellv 2 Tu(Re, R) |2 + v 2L Relf3 + ellv™ 3 (T — Po) Ay
S (R + [ulP[Re] + eluf?,
by using (G:27), G-I38), (E1306) and [GI37).
The next term in (L44) is

11

lly ™2 (3 Tu(Re, Be) + L Re + ¥ A0} < ellv™ 3 Du(Re, R + v * LD Rell

&
+ellvzer A3 < [Re]l* + elul[Re]® + e*ful,

by using (6.2.9), (61.3]), (G.136) and (6137).

Then we have

o ~ 2
53H<v>_1w[5%1"u(Re,Re)+L51)Rg+£%Au]H <

. 2
e2 (v) T wA,]

oo

S R + [ul[Re]® + &2 ul?,

_ 2 _ 12
53H<v>_1w5%1"u(Rg, Rg)H + €3H<v>_1wL1(il)RgH + 53‘

by using (6.2.8), (6.1.39), .1.3G) and E.1.37).

(6.2.18)

(6.2.19)

(6.2.20)

(6.2.21)

(6.2.22)

(6.2.23)

(6.2.24)

(6.2.25)
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Since Pyg = /2P, A, the term |Pyg||3 + ¢ 2u?||Pug|/2 in (LZF) is bounded by > using
5
(E136). Next we bound

1z (re)lI3 < Nl (P13 + €7 Iz (PY Re) 3. (6.2.26)

The first term is bounded by £*° using (G.I.21]). Moreover, by (G.1.28),

L o ~
(2727|772 4 fu| Tl e |2y (PY Ro) 13
< &) e (u + 2 wRe|oo)P RIS

— 1
< & |u] 7 (Juf + 7 [[wRelloe ) Rl

To bound |Ry|2 + we use Lemma [Z2] and (G2I]) with ¢ replaced by ¢ — 1 to obtain

IRe2 . S IPuR|Z + (eI = Pu)Relln)? + ellv 2 Tu(Remr, Re—1)l2 + v 2 L Rea |13
+ellv 2 A2 S [Re]? + 28 + [u*=2 + e|u?, (6.2.27)

by using (6.2.7), (G.I3]), (61.36) and (GI137). Hence, since = < 9 < 1, for £ < 1 we have

(€72 Ju| 7272 4 JuTLe e ) |3
< e 4 2l (fu] + [RAZOLIRA? +Z + =2 + uf?)
SEf+ [uPED +eful? + e, (6.2.28)

The terms |r|3 _is treated in a similar way. As for e|wr|s we proceed as before using ([E.1.29),

©2F), (E139) and (EI1306) and EI37).

Collecting the estimates, since € < 1, we conclude that

,///(s%l"u(l?e, Ry) + LR, + 7 Ay, re) S Zf 4 u?Z2 4 efuf 4+ &> (6.2.29)

Since =y < ¢, from (C43) we obtain
[Res1]? <0292 + 292 + 2 + 972 < 92, (6.2.30)

provided that
9% 4+ g% + ¢ + ™9 < 1.

This is verified if ¥ < 1, e < 1, ¢g < 1.

The same arguments prove (G.2.0), by using (GII3) and (CII4). The sequence {R,} thus
converges strongly to R such that [[R]] < . It is standard to check that R solves ([G1.22). Since
convergence in [[-] implies pointwise convergence, by (GI.I4) it follows that R satisfies (61.23)).

O

Therefore F = puy + €2 + €2 R solves the problem 11), (612 and hence it is positive by
construction. Moreover, it is in L, even if not uniformly bounded in €. We can use Proposition
to conclude that it is also solution to the original problem (II), with boundary condition
([CR) and condition at infinity (II2). The same estimates also prove uniqueness in the larger
space because we can drop the assumption S > 0 which was used before only to deal with terms

appearing in the modified problem (E1.1)), (61.2).
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APPENDIX A. BOUNDS ON THE VELOCITY FIELD

Proposition A.1. If |u| is sufficiently small, then the solution to the problem

U-VU+Vp=AU, V-U=0, inQ° (A1)
lim U=u, U =0, (A.2)
|| =00 o0
is such that
U —ullp S lul, for anyp=>3. (A.3)

Proof. We first construct w(x) such that V- w(x) = 0, lim|, o w(z) = u, and w(x)|po = 0, with
|w(xz) —u| = 0 for = sufficiently large. In fact (see [I8]) we can choose
w = u — curl[x(d(z, Q) (U223, uzx1, U1 22)],

where x(z) is smooth with y(z) =1 for z < 3 and x(z) = 0 for z > 1. By construction V - w = 0.
Moreover, we have

curl[x(d(z, 9Q)) (uoxs, usx1, U1 22)] =

u oz €09,

X' (d(z, 00))V o d(x, 0Q) (ugws, uszy, wwe) + x(d(z, 0Q) Ju= {0 d(z,00) > 1

Clearly w — u is compactly supported and ||w|ws» < |u| for any p > 1 and any s > 0. We then
seek for U = w + v, with v such that

w-Vo—Av+Vp=—(w+v) - Vw+Aw —v- Vo (A4)
0. (A.5)

Iim v=0 w
|| =00

‘OQ =

We construct the approximating sequence solving
w- Vvl — Avt + Vp' = —(w + ") - Vw + Aw — o1 - Vot (A.6)
lim v* =0 o° 0, (A.7)

2] 00 oo =

for £ > 1 and v° = 0.
Step 1. By energy estimate and weak solution theory, we can show there is a solution v to (AA),
([(A5), unique for |u| < 1, which is the weak limit of {v*} and for any ¢

IVollpe + o 2o < Jul.
Step 2. We now show that v € L? and ||[v|[zs < [u|. Using ju =0, V-v* =0 and V-w = 0, we
write the i-th component of (IEI) as
3
Z[ujajv — Ovf] + 0p’ Za — Qjw; + (w; — uj)vf +vh(w; — w;) +wiw; + 05 ] (A8)

j=1

In Fourier space, we have (usmg the Leray Projector II, and k - (k) = 0):
3
f - z:: |k|2 + P kH]:{ — Ojw; + (w; — wj)vf +v5(w; — u;) + wiw; + v ol )

We have
kmk; N 1

ol —m™ —

‘ Rl Fiu-k LT kD

independent of u. Hence we can use the Mihlin-Hormander theorem. Therefore, by Sobolev
embedding in 3D (Wl’% C L3) and the compact support of w — u, we obtain

[vs < sup |90
m
< || = Fjwi + (wy = uy)vf + vf(wi = w) + wjwi + o5 of|
S ul( A+ [[ofle) + o™ Il 5 N|u|+||ve||Ls||ve s
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Therefore, if we assume the recurrence hypothesis  sup  ||[v"]|zs < Clu|, by choosing |u| < 1
0<m<e—1
we obtain

[v*]lLs < Clul,
and the limit satisfies ||v||ps < Clul.

Step 3. By differentiating the equation, from the energy inequality for the derivative we obtain
[|Dvll¢ < |u| and hence ||v]|s < |u]. By interpolation we conclude (A3). O
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