1

2

3

5

6

7

8

9 10

11

12

13

14

15

16

17

18

19

20 21

Longitudinal phase-space manipulation with beam-driven plasma wakefields

V. Shpakov,^{1,*} M.P. Anania,¹ M. Bellaveglia,¹ A. Biagioni,¹ F. Bisesto,¹ F. Cardelli,¹ M. Cesarini,¹

E. Chiadroni,¹ A. Cianchi,² G. Costa,¹ M. Croia,¹ A. Del Dotto,¹ D. Di Giovenale,¹ M. Diomede,³

M. Ferrario,¹ F. Filippi,¹ A. Giribono,¹ V. Lollo,¹ M. Marongiu,³ V. Martinelli,¹ A. Mostacci,³ L.

Piersanti,¹ G. Di Pirro,¹ R. Pompili,¹ S. Romeo,¹ J. Scifo,¹ C. Vaccarezza,¹ F. Villa,¹ and A. Zigler^{1,4}

¹Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati, Italy

² University or Rome Tor Vergata and INFN, Via Ricerca Scientifica 1, 00133 Rome, Italy

⁴Racah Institute of Physics, Hebrew University, 91904 Jerusalem, Israel

(Dated: February 6, 2019)

The development of compact accelerator facilities providing high-brightness beams is one of the most challenging tasks in field of next-generation compact and cost affordable particle accelerators, to be used in many fields for industrial, medical and research applications. The ability to shape the beam longitudinal phase-space, in particular, plays a key role to achieve high-peak brightness. Here we present a new approach that allows to tune the longitudinal phase-space of a high-brightness beam by means of a plasma wakefields. The electron beam passing through the plasma drives large wakefields that are used to manipulate the time-energy correlation of particles along the beam itself. We experimentally demonstrate that such solution is highly tunable by simply adjusting the density of the plasma and can be used to imprint or remove any correlation onto the beam. This is a fundamental requirement when dealing with largely time-energy correlated beams coming from future plasma accelerators.

High-brightness electron beams are nowadays used for 55 22 many applications like, for instance, Inverse Compton 56 23 Scattering [1, 2], the generation of THz [3, 4], Free Elec- 57 24 tron Laser (FEL) radiation [5–8] and for new plasma-25 based acceleration techniques [9–12]. The generation of 26 such beams always require manipulations of their longi-27 tudinal phase-space (LPS) in order to achieve peak cur-28 rents as large as required by the specific task. The abil-29 ity to shape the energy and temporal profiles is thus of 30 paramount importance. In FEL facilities, for instance, 31 peak currents of several kA are produced by longitudi-32 nally compressing a time-energy correlated (i.e. *chirped*) 33 beam in a dispersive magnetic chicane, where the path 34 length is energy dependent [7, 13]. The manipulation of 35 the LPS is also a fundamental step in view of the develop-36 ment of new compact machines that exploit advanced ac-37 celeration techniques based on plasma wakefields. In this 38 case accelerating fields up to tens of GV/m, $\sim 2-3$ orders 39 of magnitude larger than conventional radio-frequency 40 (RF) structures, have been demonstrated allowing to 41 produce GeV level beams in few centimeters [12, 14-42 16]. However, due to the shortness of the accelerat-43 ing field wavelength a large correlated energy spread is 44 imprinted on the accelerated beam, making difficult to 45 transport the beam using conventional magnetic optics 46 (like solenoids and quadrupoles), due to chromatic ef-47 fects. In this case, a technique able to remove such an $^{\scriptscriptstyle 61}$ 48 energy-chirp must be foreseen. 49 63

In this Letter we discuss a new approach that allows ⁶⁴ to tune the beam LPS by using the wakefields excited ⁶⁵ in a plasma channel. Other techniques based on the use ⁶⁶ of metallic [17, 18] or dielectric structures [19–21] have ⁶⁷ been also demonstrated. However, in the first case the ⁶⁸ imprinted energy-chirps cannot exceed few MeV/m while in the second one the tunability is rather limited, depending on the aperture and size of the employed devices.

Figure 1. LPS of the beam and longitudinal plasma wakefield W_z (red line) produced into a plasma with density $n_p = 1.6 \times 10^{14}$ cm⁻³ by a moving electron bunch (blue dots).

Our solution is based on the use of the self wakefields created by the beam in the plasma and can be employed both to remove the energy-chirp (acting like a *dechirper*) or tune it by adjusting the plasma density [22, 23]. The basic idea of the LPS manipulation is shown in Fig. 1, where we show the LPS and computed plasma wakefield (red line) produced by a 200 pC bunch in a plasma whose density is $n_p = 1.6 \times 10^{14}$ cm⁻³. By indicating the energy deviation of each particle along the bunch as $E(z) \approx E_0 + h_1 z$, with h_1 the first order chirp term, the reported bunch has a negative chirp (higher energy parti-

³Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy

Figure 2. Experimental setup. The electron beam is tightly focused by the PMQ triplet into a 3 cm-long plastic capillary (a) filled by H_2 gas through two inlets (b) connected to an electrolytic generator. Below the capillary and in correspondence of its entrance, an OTR screen has been installed to measure the beam transverse profile. At the capillary ends there are two copper electrodes connected to a 20 kV power supply producing 230 A peak current (c). The whole system is mounted on a movable actuator allowing to adjust its position with respect to the beam. The exiting beam is then captured by a second PMQ triplet. The diagnostics of the experiment is completed by a RF-deflector and two Ce:YAG screens downstream the magnetic spectrometer. The second screen is located at 14° with respect to the initial beam path, allowing to measure the beam energy spectrum without (d) and with (e) plasma.

cles on the tail) of $h_1 \approx -8 \times 10^3 \text{ MeV/m}$ with an overall 98 69 head-to-tail energy offset of ≈ 2 MeV ($\Delta E/E \sim 2\%$). 99 70 Once injected into the plasma, the electron bunch starts₁₀₀ 71 to create the wakefield. Strength of that field depends on 101 72 plasma density and the density of the beam itself [24]. In_{102} 73 our configuration the tail of the beam experiences a de-103 74 celerating electric field and looses its energy while the104 75 head moves along an unperturbed plasma, keeping its105 76 energy actually constant. It is equivalent to a rotation₁₀₆ 77 of the beam LPS and, being induced by a wakefield ap-107 78 proximately 50 MV/m, we expect that the energy-chirp $_{108}$ 79 can be completely removed by employing a few cm-long₁₀₉ 80 plasma structure. 81 110

 the^{111} The experiment has been performed \mathbf{at} 82 SPARC_LAB test-facility [25, 26] by employing 3 cm⁻¹¹² 83 long discharge-capillary filled by Hydrogen gas [27–29].¹¹³ 84 The experimental setup is shown in Fig. 2. The bunch¹¹⁴ 85 is produced by the SPARC photo-injector [30, 31], con-115 86 sisting of a 1.6 cell RF-gun [32] followed by two S-band¹¹⁶ 87 accelerating sections embedded in solenoids coils [33, 34])¹¹⁷ 88 and one C-band structure. The plasma device consists of¹¹⁸ 89 a plastic capillary with length $L_c = 3$ cm and $R_c = 1$ mm¹¹⁹ 90 hole radius. The capillary is filled at 1 Hz rate with H_2^{120} 91 gas (produced by an electrolytic generator) through two¹²¹ 92 inlets placed at $L_c/4$ and $3L_c/4$ and has two electrodes¹²² 93 at its extremities connected to the discharge circuit¹²³ 94 with a 20 kV pulser [35] and able to provide 230 A¹²⁴ 95 peak discharge-current with shot-to-shot fluctuation¹²⁵ 96 < 10 ns [27]. The peak plasma density reached in the₁₂₆ 97

capillary is $n_p \approx 3 \times 10^{16}$ cm⁻³, estimated by measuring the H_{β} Balmer line with a Stark broadening-based diagnostics [36]. The capillary is installed in a vacuum chamber directly connected to a photo-injector by a windowless, three-stage differential pumping system, that ensures 10^{-8} mbar pressure in the RF linac while flowing H₂ into the capillary. This solution allows to avoid using any window, thus preventing the beam emittance deterioration by multiple scattering.

To experimentally produce a chirped LPS, like the one simulated in Fig. 1, we have used the first linac accelerating section as RF compressor by means of the velocitybunching (VB) technique [33, 37], that allows to shorten the beam and imprint an energy-chirp on it [34, 38]. The induced chirp is negative $(h_1 < 0)$ till the maximum compression point (shortest bunch length) is reached. Figure 3 shows the measured LPS of the resulting beam. The electron bunch has 200 pC charge, 100 MeV energy (0.6 MeV energy spread) and 250 fs duration (corresponding to $\sigma_z \approx 75 \ \mu m$ length), measured with a RF-Deflector device [39]. Its normalized emittance on the horizontal (vertical) plane is $\epsilon_{x(y)} \approx 1.1(1.4) \ \mu m$. A triplet of permanent-magnet quadrupoles (PMQ) [40] allows to squeeze the beam transverse size down to $\sigma_{x(y)} \approx$ $20(32) \ \mu m$. All these quantities are quoted as rms. An almost linear negative chirp $(h_1 \approx -8 \times 10^3 \text{ MeV/m})$ is achieved by moving the RF-phase of the compressor 4° before the maximum compression point.

To measure the effect on the energy spectrum of the

Figure 3. Experimentally measured LPS of the negatively chirped bunch. The (rms) energy spread and duration are $\sigma_E \approx 0.6$ MeV and $\sigma_t \approx 250$ fs (corresponding to $\sigma_z \approx$ 75 μm), respectively. This measurement is obtained without any plasma in the capillary.

Figure 4. Energy spectrum of the negatively chirped $\operatorname{bunch}^{^{155}}$ with the RF-Deflector turned off. (a) Initial energy spread¹⁵⁶ without ($\sigma_E \approx 0.6$ MeV) and with plasma ($\sigma_E \approx 0.1$ MeV).¹⁵⁷ In (b) the plasma density is $n_p \approx 1.8 \times 10^{14} \text{ cm}^{-3}$. 158

beam induced by the plasma, we transported the beam₁₆₁ 127 into the magnetic spectrometer downstream the capil-162 128 lary (with the RF-Deflector turned off) and made several163 129 measurements at different plasma densities. Once the $H_{2^{164}}$ 130 is ionized it takes almost 10 μs to recombine [41]. During₁₆₅ 131 this time the plasma density is slowly decreases, thus by₁₆₆ 132 choosing the time-of arrival, by delaying the beam, we167 133 could choose the plasma density to interact with. Fig-168 134 ure 4(a) shows the unperturbed energy spectrum, when 169 135 there is no plasma in the capillary. In this case the over-170 136 all energy spread is $\sigma_E \approx 0.6$ MeV, similarly to Fig. 3.171 137 When the plasma is turned on and its density tuned to₁₇₂ 138

 $n_p \approx 1.8 \times 10^{14} \ {\rm cm}^{-3}$ (corresponding to a delay of the order of 4.5 μ s) we achieved the maximum reduction of 140 the beam energy spread, down to $\sigma_E \approx 0.1$ MeV (see 141 Fig.4(b)). 142

139

159

160

Figure 5. Experimentally measured energy spread for the initially chirped electron bunch (blue circles) as a function of the delay with respect to the discharge trigger. The simulation results are depicted as dashed blue curve. The plasma density measured for several delays (red stars) and its extrapolated evolution (red line) are also reported.

The evolution of the bunch energy spread for different plasma densities is shown in Fig. 5. Both quantities have been reported as a function of the delay of the discharge trigger. Being the Stark broadening diagnostics limited to the measurement of plasma densities above $\approx 10^{15}$ cm⁻³ (red stars), for lower values the expected density can be extrapolated (red line) only theoretically [42]. For the studied plasma densities the energy spread of the beam with initially negative chirp (see Figs.4) was decreasing, achieving its minimum at plasma density $n_p = 1.8 \times 10^{14}$ (blue circles). The missing points on the energy spread curve correspond to a time when the discharge occurs and active lens effects are taking place [27].

The study on the manipulation of the LPS by the beam-driven plasma wakefields excited in a dischargecapillary structure is completed by analyzing the evolution of the negatively chirped beam configuration through the entire plasma channel. The interaction is described by using a 2D plasma wakefield code [43] that also takes into account the finite plasma radial extension, being confined within the capillary radius R_c [24]. Following our previous studies in which we completely characterized the longitudinal plasma density profile along the capillary, here the channel is numerically computed by assuming a flat profile in the central part with decreasing exponential tails extending 1 cm outside the capillary [36, 44, 45]. The evolution of the bunch energy spread is shown in Fig. 5 as dashed blue line. As input beam we have used results of start-to-end simu-

lations of the SPARC_LAB photo-injector by using the₂₁₀ 173 General Particle Tracer (GPT) code [46], resulting in the₂₁₁ 174 LPS shown in Fig. 1. The excited plasma wakefields act_{212} 175 along the entire channel to decelerate the particles in the₂₁₃ 176 tail of the beam, resulting in a final energy spread of₂₁₄ 177 the order of 0.1 MeV for the negatively chirped beam²¹⁵ 178 (blue circles), in agreement with the experimental mea-216 179 surements reported in Fig. 5. 217 180

Figure 6. Computed energy spread (red) of the chirped bunch along the plasma channel (blue). The plasma profile is calculated assuming the 3 cm-long capillary with 1 cm input and exit ramps. 233

181

182

Figure 6 shows the evolution of the reduction of the²³⁵ 183 bunch energy spread along the plasma channel. Here we²³⁶ 184 are referring to the plasma density that provides the best²³⁷ 185 energy spread reduction. As one can see, most of the re- $^{\scriptscriptstyle 238}$ 186 duction happens inside the capillary, where the $plasma_{240}^{220}$ 187 density is larger. On the contrary, on the input and $exit_{241}$ 188 ramps the reduction is almost negligible due to the ex_{-242} 189 tremely low associated plasma densities. 190 243

In conclusion, we have demonstrated the use of plasma²⁴⁴ 191 wake field to manipulate the longitudinal phase-space of $^{^{245}}$ 192 an electron beam. For this purpose we have conducted a_{247}^{247} 193 proof-of-principle experiments where we completely char- $_{248}$ 194 acterized a plasma-based device consisting of a 3 cm-long₂₄₉ 195 capillary filled by H₂ gas. Our findings clearly proved₂₅₀ 196 that the large fields excited in a confined plasma can be²⁵¹ 197 used to tune the time-energy correlation of the particles²⁵² 198 according to the desired task. We have shown that ${\rm such}^{^{253}}$ 199 a device is not only compact but also can be highly flex- $\frac{2^{29}}{255}$ 200 ible. For the beam with negative chirp we demonstrated $\frac{1}{256}$ 201 a possibility to completely remove energy chirp and re-257 202 duced the total energy spread from 0.6 to 0.1 MeV (the₂₅₈ 203 level of uncorrelated energy spread of the SPARC photo-²⁵⁹ 204 injector). 205

206 Several applications can benefit of such results. It rep-²⁶¹ 207 resents, for example, an interesting tool for FEL facili-²⁶³ 208 ties to imprint an energy-chirp in the beam and achieve₂₆₄ 209 shorter bunch lengths in a magnetic compressor. The₂₆₅

major advantage, however, is when employing this device downstream a plasma-based accelerator. It is well known that plasma-accelerated bunches have a large (negative) energy-chirp due to the larger fields experienced by the tail. In this case a second plasma module, as the one we have reported, might be implemented in order to remove such a correlation and reduce the overall energy spread. Due to high flexibility of the plasma dechirper, by manipulating the parameters of the system (like plasma density) and parameters of the beam (changing its density with focusing), we can easily tune the system to exactly remove the given correlated energy spread. It represents an essential feature in order to make the plasmaaccelerated beams usable with conventional magnetic optics and in applications like Inverse Compton Scattering or FEL.

This work has been partially supported by the EU Commission in the Seventh Framework Program, Grant Agreement 312453-EuCARD-2 and the European Union Horizon 2020 research and innovation program, Grant Agreement No. 653782 (EuPRAXIA). The work of one of us (A.Z.) was partially supported by BSF foundation.

 * vladimir.shpakov@lnf.infn.it

234

- R. W. Schoenlein, W. Leemans, A. Chin, and P. Volfbeyn, Science **274**, 236 (1996).
- [2] A. Bacci, D. Alesini, P. Antici, M. Bellaveglia, R. Boni, E. Chiadroni, A. Cianchi, C. Curatolo, G. Di Pirro, A. Esposito, *et al.*, Journal of Applied Physics **113**, 194508 (2013).
- [3] E. Chiadroni, M. Bellaveglia, P. Calvani, M. Castellano, L. Catani, A. Cianchi, G. D. Pirro, M. Ferrario, G. Gatti, O. Limaj, S. Lupi, B. Marchetti, A. Mostacci, E. Pace, L. Palumbo, C. Ronsivalle, R. Pompili, and C. Vaccarezza, Review of Scientific Instruments 84, 022703 (2013).
- [4] F. Giorgianni, E. Chiadroni, A. Rovere, M. Cestelli-Guidi, A. Perucchi, M. Bellaveglia, M. Castellano, D. Di Giovenale, G. Di Pirro, M. Ferrario, *et al.*, Nature communications 7 (2016).
- [5] W. Ackermann, G. Asova, V. Ayvazyan, A. Azima, J. Baboi, V. Balandin, B. Beutner, A. Brandt, A. Bolzmann, *et al.*, Nature photonics 1, 336 (2007).
- [6] P. Emma, R. Akre, J. Arthur, R. Bionta, C. Bostedt, J. Bozek, A. Brachmann, P. Bucksbaum, R. Coffee, F.-J. Decker, *et al.*, nature photonics 4, 641 (2010).
- [7] E. Allaria, R. Appio, L. Badano, W. Barletta, S. Bassanese, S. Biedron, A. Borga, E. Busetto, D. Castronovo, P. Cinquegrana, *et al.*, Nature Photonics **6**, 699 (2012).
- [8] V. Petrillo, M. Anania, M. Artioli, A. Bacci, M. Bellaveglia, E. Chiadroni, A. Cianchi, F. Ciocci, G. Dattoli, D. Di Giovenale, *et al.*, Physical Review Letters **111**, 114802 (2013).
- [9] T. Tajima and J. M. Dawson, Physical Review Letters 43, 267 (1979).
- [10] J. B. Rosenzweig, Physical Review Letters 58, 555 (1987).

- [11] J. Rosenzweig, B. Breizman, T. Katsouleas, and J. Su,³³⁰
 Physical Review A 44, R6189 (1991).
- [12] M. Litos, E. Adli, W. An, C. Clarke, C. Clayton, 332
 S. Corde, J. Delahaye, R. England, A. Fisher, J. Fred-333
 erico, et al., Nature 515, 92 (2014).
- [13] L. Giannessi, A. Bacci, M. Bellaveglia, F. Briquez,335
 M. Castellano, E. Chiadroni, A. Cianchi, F. Ciocci,336
 M. Couprie, L. Cultrera, *et al.*, Physical review letters337 **106**, 144801 (2011).
- I. Blumenfeld, C. E. Clayton, F.-J. Decker, M. J. Hogan, 339
 C. Huang, R. Ischebeck, R. Iverson, C. Joshi, T. Kat-340
- souleas, N. Kirby, W. Lu, K. A. Marsh, W. B. Mori,³⁴¹
 P. Muggli, E. Oz, R. H. Siemann, D. Walz, and M. Zhou,³⁴²
- 279 Nature 445, 741 (2007).
 280 [15] W. Leemans, B. Nagler, A. Gonsalves, C. Tóth, K. Naka-344
 281 mura, C. Geddes, E. Esarey, C. Schroeder, and 345
- 282 S. Hooker, Nature physics **2**, 696 (2006).
- [16] J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec,³⁴⁷
 and V. Malka, Nature 444, 737 (2006).
- [17] P. Piot, D. Douglas, and G. Krafft, Physical Review349
 Special Topics-Accelerators and Beams 6, 030702 (2003).350
- [18] R. England, J. Rosenzweig, G. Andonian, P. Musumeci,³⁵¹
 G. Travish, and R. Yoder, Physical Review Special³⁵²
 Topics-Accelerators and Beams 8, 012801 (2005).
- [19] S. Antipov, S. Baturin, C. Jing, M. Fedurin, 354
 A. Kanareykin, C. Swinson, P. Schoessow, W. Gai, and 355
 A. Zholents, Physical review letters 112, 114801 (2014).356
- [20] S. Bettoni, P. Craievich, A. Lutman, and M. Pedrozzi,357
 Physical Review Accelerators and Beams 19, 021304358
 (2016). 359
- [21] G. Penco, E. Allaria, I. Cudin, S. Di Mitri, D. Gau-360
 thier, S. Spampinati, M. Trovó, L. Giannessi, E. Rous-361
 sel, S. Bettoni, *et al.*, Physical review letters **119**, 184802362
 (2017). 363
- 300 [22] Y. Wu, Y. Du, J. Zhang, Z. Zhou, Z. Cheng, S. Zhou, 364
 301 J. Hua, C. Pai, and W. Lu, Proc. IPAC2017 (2017). 365
- 302 [23] R. D'Arcy, S. Wesch, A. Aschikhin, S. Bohlen, 366
 303 C. Behrens, M. Garland, L. Goldberg, P. Gonzalez, 367
 304 A. Knetsch, V. Libov, *et al.*, Physical Review Letters 368
 305 122, 034801 (2019). 369
- [24] Y. Fang, J. Vieira, L. Amorim, W. Mori, and P. Muggli, 370
 Physics of Plasmas 21, 056703 (2014). 371
- 308 [25] M. Ferrario, D. Alesini, M. Anania, A. Bacci, 372
 309 M. Bellaveglia, O. Bogdanov, R. Boni, M. Castellano, 373
 310 E. Chiadroni, A. Cianchi, *et al.*, Nuclear Instruments and 374
 311 Methods B **309**, 183 (2013). 375
- [26]R. Pompili, M. Anania, M. Bellaveglia, A. Bia-376 312 gioni, S. Bini, F. Bisesto, E. Chiadroni, A. Cianchi, 377 313 G. Costa, D. D. Giovenale, M. Ferrario, F. Fil-378 314 ippi, A. Gallo, A. Giribono, V. Lollo, A. Marocchino, 379 315 V. Martinelli, A. Mostacci, G. D. Pirro, S. Romeo, 380 316 J. Scifo, V. Shpakov, C. Vaccarezza, F. Villa,381 317 and A. Zigler, Nuclear Instruments and Methods in₃₈₂ 318 Physics Research Section A: Accelerators, Spectrom-383 319 eters, Detectors and Associated Equipment $(2018)_{.384}$ 320 https://doi.org/10.1016/j.nima.2018.01.071. 321 385
- R. Pompili, M. P. Anania, M. Bellaveglia, A. Biagioni,³⁸⁶
 S. Bini, F. Bisesto, E. Brentegani, F. Cardelli, G. Cas-³⁸⁷
 torina, E. Chiadroni, A. Cianchi, O. Coiro, G. Costa,³⁸⁸
 M. Croia, D. Di Giovenale, M. Ferrario, F. Filippi,³⁸⁹
 A. Giribono, V. Lollo, A. Marocchino, M. Marongiu,³⁹⁰
 V. Martinelli, A. Mostacci, D. Pellegrini, L. Piersanti,³⁹¹
 G. Di Pirro, S. Romeo, A. R. Rossi, J. Scifo, V. Shpakov,³⁹²
- A. Stella, C. Vaccarezza, F. Villa, and A. Zigler, Phys. 393

Rev. Lett. 121, 174801 (2018).

346

- [28] A. Marocchino, M. P. Anania, M. Bellaveglia, A. Biagioni, S. Bini, F. Bisesto, E. Brentegani, E. Chiadroni, A. Cianchi, M. Croia, D. D. Giovenale, M. Ferrario, F. Filippi, A. Giribono, V. Lollo, M. Marongiu, A. Mostacci, G. D. Pirro, R. Pompili, S. Romeo, A. R. Rossi, J. Scifo, V. Shpakov, C. Vaccarezza, F. Villa, and A. Zigler, Applied Physics Letters **111**, 184101 (2017).
- [29] R. Pompili, M. Anania, M. Bellaveglia, A. Biagioni, S. Bini, F. Bisesto, E. Brentegani, G. Castorina, E. Chiadroni, A. Cianchi, *et al.*, Applied Physics Letters **110**, 104101 (2017).
- [30] D. Alesini, S. Bertolucci, M. Biagini, C. Biscari, R. Boni, M. Boscolo, M. Castellano, A. Clozza, G. Di Pirro, A. Drago, *et al.*, Nuclear Instruments and Methods A 507, 345 (2003).
- [31] E. Chiadroni, A. Bacci, M. Bellaveglia, M. Boscolo, M. Castellano, L. Cultrera, G. Di Pirro, M. Ferrario, L. Ficcadenti, D. Filippetto, *et al.*, Applied Physics Letters **102**, 094101 (2013).
- [32] A. Cianchi, D. Alesini, A. Bacci, M. Bellaveglia, R. Boni, M. Boscolo, M. Castellano, L. Catani, E. Chiadroni, S. Cialdi, *et al.*, Physical Review Special Topics-Accelerators and Beams **11**, 032801 (2008).
- [33] M. Ferrario, D. Alesini, A. Bacci, M. Bellaveglia, R. Boni, M. Boscolo, M. Castellano, E. Chiadroni, A. Cianchi, L. Cultrera, *et al.*, Physical review letters **104**, 054801 (2010).
- [34] R. Pompili, M. Anania, M. Bellaveglia, A. Biagioni, F. Bisesto, E. Chiadroni, A. Cianchi, M. Croia, A. Curcio, D. Di Giovenale, *et al.*, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 829, 17 (2016).
- [35] M. Anania, A. Biagioni, E. Chiadroni, A. Cianchi, M. Croia, A. Curcio, D. Di Giovenale, G. Di Pirro, F. Filippi, A. Ghigo, *et al.*, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2016).
- [36] F. Filippi, M. Anania, A. Biagioni, E. Chiadroni, A. Cianchi, M. Ferrario, A. Mostacci, L. Palumbo, and A. Zigler, Journal of Instrumentation 11, C09015 (2016).
- [37] L. Serafini and M. Ferrario, in American Institute of Physics Conference Series, Vol. 581 (2001) pp. 87–106.
- [38] R. Pompili, M. P. Anania, M. Bellaveglia, A. Biagioni, G. Castorina, E. Chiadroni, A. Cianchi, M. Croia, D. D. Giovenale, M. Ferrario, F. Filippi, A. Gallo, G. Gatti, F. Giorgianni, A. Giribono, W. Li, S. Lupi, A. Mostacci, M. Petrarca, L. Piersanti, G. D. Pirro, S. Romeo, J. Scifo, V. Shpakov, C. Vaccarezza, and F. Villa, New Journal of Physics 18, 083033 (2016).
- [39] D. Alesini, G. Di Pirro, L. Ficcadenti, A. Mostacci, L. Palumbo, J. Rosenzweig, and C. Vaccarezza, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 568, 488 (2006).
- [40] R. Pompili, M. Anania, E. Chiadroni, A. Cianchi, M. Ferrario, V. Lollo, A. Notargiacomo, L. Picardi, C. Ronsivalle, J. Rosenzweig, *et al.*, Review of Scientific Instruments 89, 033302 (2018).
- [41] F. Filippi, M. Anania, M. Bellaveglia, A. Biagioni, E. Chiadroni, A. Cianchi, D. Di Giovenale, G. Di Pirro, M. Ferrario, A. Mostacci, *et al.*, Nuclear Instruments and Methods in Physics Research Section A: Acceler-

- 394ators, Spectrometers, Detectors and Associated Equip-402395ment (2016).
- Image: [42] L. Johnson and E. Hinnov, Journal of Quantitative Spec-404
 troscopy and Radiative Transfer 13, 333 (1973).
- ³⁹⁸ [43] W. Lu, C. Huang, M. Zhou, W. Mori, and T. Katsouleas,⁴⁰⁶
 ³⁹⁹ Physics of Plasmas **12**, 063101 (2005).
- [44] A. Biagioni, M. Anania, M. Bellaveglia, E. Chiadroni,408
 A. Cianchi, D. Di Giovenale, G. Di Pirro, M. Ferrario,409

F. Filippi, A. Mostacci, *et al.*, Journal of Instrumentation **11**, C08003 (2016).

- [45] F. Filippi, M. Anania, A. Biagioni, E. Brentegani, E. Chiadroni, A. Cianchi, A. Deng, M. Ferrario, R. Pompili, J. Rosenzweig, *et al.*, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2018).
- [46] "Pulsar Physics," http://www.pulsar.nl/gpt.