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Abstract The problem of (pathwise) large deviations for conditionally continuous Gaussian
processes is investigated. The theory of large deviations for Gaussian processes is extended to
the wider class of random processes – the conditionally Gaussian processes. The estimates of
level crossing probability for such processes are given as an application.
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1 Introduction

In this paper we study some large deviations principles for conditionally continuous
Gaussian processes. Then we find estimates of level crossing probability for such pro-
cesses. Large deviations theory is concerned with the study of probabilities of very
“rare” events. There are events whose probability is very small, however these events
are of great importance; they may represent an atypical situation (i.e. a deviation from
the average behavior) that may cause disastrous consequences: an insurance company
or a bank may bankrupt; a statistical estimator may give a wrong information; a phys-
ical or chemical system may show an atypical configuration. The aim of this paper
is to extend the theory of large deviations for Gaussian processes to a wider class of
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random processes – the conditionally Gaussian processes. Such processes were intro-
duced in applications in finance, optimization and control problems. See, for instance,
[12, 16, 14] and [1]. More precisely, Doucet et al. in [12] considered modelling the
behavior of latent variables in neural networks by Gaussian processes with random
parameters; Lototsky in [16] studied stochastic parabolic equations with random co-
efficients; Gulisashvili in [14] studied large deviations principle for some particular
stochastic volatility models where the log-price is, conditionally, a Gaussian process;
in [1] probabilities of large extremes of conditionally Gaussian processes were con-
sidered, in particular sub-Gaussian processes i.e. Gaussian processes with a random
variance. Let (Y, Z) be a random element on the probability space (Ω,F ,P), where
Z = (Zt )t∈[0,1] is a process taking values in R and Y is an arbitrary random ele-
ment (a process or a random variable). We say that Z is a conditionally Gaussian
process if the conditional distribution of the process Z|Y is (almost surely) Gaussian.
The theory of large deviations for Gaussian processes and for conditioned Gaussian
processes is already well developed. See, for instance, Section 3.4 in [11] (and the
references therein) for Gaussian processes, [7] and [13] for particular conditioned
Gaussian processes. The extension of this theory is possible thanks to the results ob-
tained by Chaganty in [8].

We consider a family of processes (Y n, Zn)n∈N on a probability space (Ω,F ,P).
(Y n)n∈N is a family of processes taking values in a measurable space (E1,E1) that
satisfies a large deviation principle (LDP for short) and (Zn)n∈N is a family of pro-
cesses taking values in (E2,E2) such that for every n ∈ N, Zn|Yn is a Gaussian
process (P-a.s.). We want to find a LDP for the family (Zn)n∈N.

A possible application of LDPs is computing the estimates of level crossing prob-
ability (ruin problem). We will give the asymptotic behavior (in terms of large devia-
tions) of the probability

pn = P

(
sup

0≤t≤1

(
Zn

t − ϕ(t)
)

> 1
)
,

where ϕ is a suitable function. We will consider the following families of condition-
ally Gaussian processes.

1) The class of Gaussian processes with random variance and random mean, i.e.
the processes of the type (Zt )t∈[0,1] = (Y1Xt + Y2)t∈[0,1], where X is a centered con-
tinuous Gaussian process with covariance function k and Y = (Y1, Y2) is a random
element independent of X. Notice that Z|Y is Gaussian with

Cov(Zt , Zs |Y) = E
[
(XtY1)(XsY1)|Y

] = Y 2
1 k(t, s),

and
E[Zt |Y ] = E[Y1Xt + Y2|Y ] = Y2.

2) The class of Ornstein–Uhlenbeck type processes with random diffusion coeffi-
cients. More precisely (Zt )t∈[0,1] is the solution of the following stochastic differen-
tial equation: {

dZt = (a0 + a1Zt) dt + YdWt, 0 < t ≤ 1,

Z0 = x,



Large deviations for conditionally Gaussian processes: estimates of level crossing probability 485

where x, a0, a1 ∈ R and Y is a random element independent of the Brownian motion
(Wt)t∈[0,1].

The paper is organized as follows. In Section 2 we recall some basic facts on
large deviations theory for continuous Gaussian processes. In Section 3 we introduce
the conditionally Gaussian processes and the Chaganty theory. In Section 4 and 5 we
study the theoretical problem and we give the main results. Finally in Section 6 we
investigate the ruin problem for such processes.

2 Large deviations for continuous Gaussian processes

We briefly recall some main facts on large deviations principles and reproducing ker-
nel Hilbert spaces for Gaussian processes we are going to use. For a detailed devel-
opment of this very wide theory we can refer, for example, to the following classical
references: Chapitre II in Azencott [2], Section 3.4 in Deuschel and Strook [11],
Chapter 4 (in particular Sections 4.1 and 4.5) in Dembo and Zeitouni [10], for large
deviations principles; Chapter 4 (in particular Section 4.3) in [15], Chapter 2 (in par-
ticular Sections 2.2 and 2.3) in [5], for reproducing kernel Hilbert space. Without loss
of generality, we can consider centered Gaussian processes.

2.1 Reproducing kernel Hilbert space

An important tool to handle continuous Gaussian processes is the associated repro-
ducing kernel Hilbert space (RKHS).

Let U = (Ut )t∈[0,1] be a continuous, centered , Gaussian process on a proba-
bility space (Ω,F ,P), with covariance function k. From now on, we will denote by
C ([0, 1]) the set of continuous functions on [0, 1] endowed with the topology induced
by the sup-norm (C ([0, 1]), || · ||∞). Moreover, we will denote by M [0, 1] its dual,
i.e. the set of signed Borel measures on [0, 1]. The action of M [0, 1] on C ([0, 1]) is
given by

〈λ, h〉 =
∫ 1

0
h(t) dλ(t), λ ∈ M [0, 1], h ∈ C

([0, 1]).
Consider the set

L =
{
x ∈ C

([0, 1]) ∣∣∣ x(t) =
∫ 1

0
k(t, s) dλ(s), λ ∈ M [0, 1]

}
.

The RKHS relative to the kernel k can be constructed as the completion of the set L
with respect to a suitable norm. Consider the set of (real) Gaussian random variables

Γ =
{
Y | Y = 〈λ,U 〉 =

∫ 1

0
Ut dλ(t), λ ∈ M [0, 1]

}
⊂ L2(Ω,F ,P).

We have that, for Y1, Y2 ∈ Γ , say Yi = 〈λi, U 〉, i = 1, 2,

〈Y1, Y2〉L2(Ω,F ,P) = Cov

(∫ 1

0
Ut dλ1(t),

∫ 1

0
Ut dλ2(t)

)

=
∫ 1

0

∫ 1

0
k(t, s) dλ1(t)dλ2(s). (1)
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Define now
H = Γ

‖.‖
L2(Ω,F ,P) .

Since L2-limits of Gaussian random variables are still Gaussian, we have that H

is a closed subspace of L2(Ω,F ,P) consisting of real Gaussian random variables.
Moreover, it becomes a Hilbert space when endowed with the inner product

〈Y1, Y2〉H = 〈Y1, Y2〉L2(Ω,F ,P), Y1, Y2 ∈ H.

Remark 1. We remark that, since any signed Borel measure λ can be weakly approx-
imated by a linear combination of Dirac deltas, the Hilbert space H above is nothing
but the Hilbert space generated by the Gaussian process U , namely

H = sp
{
Ut , t ∈ [0, 1]}‖.‖

L2(Ω,F ,P)

=
{ n∑

j=1

aj Utj | n ∈ N, aj ∈ R, tj ∈ [0, 1]
}‖.‖

L2(Ω,F ,P)

.

Consider now the following mapping

S : H −→ C
([0, 1]), Y �→ (S Y). = E(U.Y ). (2)

Definition 1. Let U = (Ut )t∈[0,1] be a continuous Gaussian process. We define the
reproducing kernel Hilbert space relative to the Gaussian process U as

H = S (H) = {
h ∈ C

([0, 1]) | h(t) = (S Y)t , Y ∈ H
}
,

with an inner product defined as

〈h1, h2〉H = 〈
S −1h1,S

−1h2
〉
H

= 〈
S −1h1,S

−1h2
〉
L2(Ω,F ,P)

, h1, h2 ∈ H .

Then, we have

Lemma 1. (Theorem 35 in [5]). Let H be the Hilbert space of the continuous Gaus-
sian process U defined above. Then H is isometrically isomorphic to the Reproducing
Kernel Hilbert Space H of U , and the corresponding isometry is given by (2).

The map S defined in (2) is referred to as Loève isometry. Since the covariance
function fully identifies, up to the mean, a Gaussian process, we can talk equivalently
of RKHS associated with the process or with its covariance function.

2.2 Large deviations

Definition 2. (LDP) Let E be a topological space, B(E) the Borel σ -algebra and
(μn)n∈N a family of probability measures on B(E); let γ : N → R

+ be a function,
such that γ (n) → +∞ as n → +∞. We say that the family of probability measures
(μn)n∈N satisfies a large deviation principle (LDP) on E with the rate function I and
the speed γ (n) if, for any open set Θ ,

− inf
x∈Θ

I (x) ≤ lim inf
n→+∞

1

γ (n)
log μn(Θ)
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and for any closed set Γ

lim sup
n→+∞

1

γ (n)
log μn(Γ ) ≤ − inf

x∈Γ
I (x). (3)

A rate function is a lower semicontinuous mapping I : E → [0,+∞]. A rate
function I is said good if the sets {I ≤ a} are compact for every a ≥ 0.

Definition 3. (WLDP) Let E be a topological space, B(E) the Borel σ -algebra and
(μn)n∈N a family of probability measures on B(E); let γ : N → R

+ be a function,
such that γ (n) → +∞ as n → +∞. We say that the family of probability mea-
sures (μn)n∈N satisfies a weak large deviation principle (WLDP) on E with the rate
function I and the speed γ (n) if the upper bound (3) holds for compact sets.

Remark 2. We say that a family of continuous processes ((Xn
t )t∈[0,1])n∈N satisfies a

LDP if the associated family of laws satisfy a LDP on C ([0, 1]).
The following remarkable theorem (Proposition 1.5 in [2]) gives an explicit ex-

pression of the Cramér transform Λ∗ of a continuous centered Gaussian process
(Ut )t∈[0,1] with covariance function k. Let us recall that

Λ(λ) = logE
[
exp

(〈U, λ〉)] = 1

2

∫ 1

0

∫ 1

0
k(t, s) dλ(t)dλ(s),

for λ ∈ M [0, 1].
Theorem 1. Let (Ut )t∈[0,1] be a continuous, centered Gaussian process with covari-
ance function k. Let Λ∗ denote the Cramér transform of Λ, that is,

Λ∗(x) = sup
λ∈M [0,1]

(〈λ, x〉 − Λ(λ)
)

= sup
λ∈M [0,1]

(
〈λ, x〉 − 1

2

∫ 1

0

∫ 1

0
k(t, s) dλ(t)dλ(s)

)
.

Then,

Λ∗(x) =
{

1
2‖x‖2

H , x ∈ H ,

+∞ otherwise,
(4)

where H and ‖.‖H denote, respectively, the reproducing kernel Hilbert space and
the related norm associated to the covariance function k.

In order to state a large deviation principle for a family of Gaussian processes, we
need the following definition.

Definition 4. A family of continuous processes ((Xn
t )t∈[0,1])n∈N is exponentially

tight at the speed γ (n) if, for every R > 0 there exists a compact set KR such that

lim sup
n→+∞

1

γ (n)
logP

(
Xn /∈ KR

) ≤ −R. (5)

If the means and the covariance functions of an exponentially tight family of
Gaussian processes have a good limit behavior, then the family satisfies a large de-
viation principle, as stated in the following theorem which is a consequence of the
classic abstract Gärtner–Ellis Theorem (Baldi Theorem 4.5.20 and Corollary 4.6.14
in [10]) and Theorem 1.
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Theorem 2. Let ((Xn
t )t∈[0,1])n∈N be an exponentially tight family of continuous Gaus-

sian processes with respect to the speed function γ (n). Suppose that, for any λ ∈
M [0, 1],

lim
n→+∞E

[〈
λ,Xn

〉] = 0 (6)

and the limit

Λ(λ) = lim
n→+∞ γ (n)Var

(〈
λ,Xn

〉) =
∫ 1

0

∫ 1

0
k̄(t, s) dλ(t)dλ(s) (7)

exists for some continuous, symmetric, positive definite function k̄, which is the co-
variance function of a continuous Gaussian process. Then ((Xn

t )t∈[0,1])n∈N satisfies
a large deviation principle on C ([0, 1])), with the speed γ (n) and the good rate func-
tion

I (h) =
{

1
2‖h‖H̄ , h ∈ H̄ ,

+∞ otherwise,
(8)

where H̄ and ‖.‖H̄ respectively denote the reproducing kernel Hilbert space and
the related norm associated to the covariance function k̄.

A useful result which can help in investigating the exponential tightness of a fam-
ily of continuous centered Gaussian processes is the following proposition (Proposi-
tion 2.1 in [17]); the required property follows from Hölder continuity of the mean
and the covariance function.

Proposition 1. Let ((Xn
t )t∈[0,1])n∈N be a family of continuous Gaussian processes

with Xn
0 = 0 for all n ∈ N. Denote mn(t) = E[Xn

t ] and kn(t, s) = Cov(Xn
t , Xn

s ).
Suppose there exist constants α,M1,M2 > 0 such that for n ∈ N

sup
s,t∈[0,1], s =t

|mn(t) − mn(s)|
|t − s|α ≤ M1

and

sup
s,t∈[0,1], s =t

γ (n)
|kn(t, t) + kn(s, s) − 2kn(s, t)|

|t − s|2α
≤ M2. (9)

Then the family ((Xn
t )t∈[0,1])n∈N is exponentially tight with respect to the speed func-

tion γ (n).

3 Conditionally Gaussian processes

In this section we introduce conditionally Gaussian processes and the Chaganty theo-
rem which allows us to find a LDP for families of such processes. We also recall, for
sake of completeness, some results about conditional distributions in Polish spaces.
We referred to Section 3.1 in [6] and Section 4.3 in [3].

Let Y and Z two random variables, defined on the same probability space
(Ω,F ,P), with values in the measurable spaces (E1,E1) and (E2,E2) respectively,
and let us denote by μ1, μ2 the (marginal) laws of Y and Z respectively and by μ the
joint distribution of (Y, Z) on (E,E ) = (E1 ×E2,E1 ×E2). A family of probabilities
(μ2(dz|y)))y∈E1 on (E2,E2) is a regular version of the conditional law of Z given Y if
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1. For every B ∈ E2, the map y �→ μ2(B|y) is E1-measurable.

2. For every B ∈ E2 and A ∈ E1, P(Y ∈ A,Z ∈ B) = ∫
A

μ2(B|y)μ1(dy).

In this case we have
μ(dy, dz) = μ2(dz|y)μ1(dy).

In this section we will use the notation (E,B) to indicate a Polish space (i.e. a com-
plete separable metric space) with the Borel σ -field, and we say that a sequence
(xn)n∈N ⊂ E converges to x ∈ E, xn → x, if dE(xn, x) → 0, as n → ∞, where dE

denotes the metric on E. Regular conditional probabilities do not always exist, but
they exist in many cases. The following result, that immediately follows from Corol-
lary 3.2.1 in [6], shows that in Polish spaces the regular version of the conditional
probability is well defined.

Proposition 2. Let (E1,B1) and (E2,B2) be two Polish spaces endowed with their
Borel σ -fields, μ be a probability measure on (E,B) = (E1 × E2,B1 × B2). Let
μi be the marginal probability measure on (Ei,Bi ), i = 1, 2. Then there exists μ1-
almost sure a unique regular version of the conditional law of μ2 given μ1, i.e.

μ(dy, dz) = μ2(dz|y)μ1(dy).

In what follows we always suppose random variables taking values in a Polish
space.

Definition 5. Let (Y, Z) be a random element on the probability space (Ω,F ,P),
where Z = (Zt )t∈[0,1] is a real process and Y is an arbitrary random element (a
process or a random variable). We say that Z is a conditionally Gaussian process if
the conditional distribution of the process Z|Y is (almost surely) Gaussian. We denote
by (Z

y
t )t∈[0,1] the Gaussian process Z|Y = y.

The main tool that we will use to study LDP for a family of conditionally Gaus-
sian processes is provided by Chaganty Theorem (Theorem 2.3 in [8]). Let (E1,B1)

and (E2,B2) be two Polish spaces. We denote by (μn)n∈N a sequence of probabil-
ities measures on (E,B) = (E1 × E2,B1 × B2) (the sequence of joint distribu-
tions), by (μ1n)n∈N the sequence of the marginal distributions on (E1,B1) and by
(μ2n(·|x1))n∈N the sequence of conditional distributions on (E2,B2) (x1 ∈ E1,),
given by Proposition 2, i.e.

μn(B1 × B2) =
∫

B1

μ2n(B2|x1) μ1n(dx1).

Definition 6. Let (E1,B1), (E2,B2) be two Polish spaces and x1 ∈ E1. We say
that the sequence of conditional laws (μ2n(·|x1))n∈N on (E2,B2) satisfies the LDP
continuously in x1 with the rate function J (·|x1) and the speed γ (n), or simply, the
LDP continuity condition holds, if

a) For each x1 ∈ E1, J (·|x1) is a good rate function on E2.

b) For any sequence (x1n)n∈N ⊂ E1 such that x1n → x1, the sequence of mea-
sures (μ2n(·|x1n))n∈N satisfies a LDP on E2 with the (same) rate function
J (·|x1) and the speed γ (n).

c) J (·|·) is lower semicontinuous as a function of (x1, x2) ∈ E1 × E2.
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Theorem 3 (Theorem 2.3 in [8]). Let (E1,B1), (E2,B2) be two Polish spaces.
For i = 1, 2 let (μin)n∈N be a sequence of measures on (Ei,Bi ). For x1 ∈ E1,
let (μ2n(·|x1))n∈N be the sequence of the conditional laws (of μ2n given μ1n) on
(E2,B2). Suppose that the following two conditions are satisfied:

i) (μ1n)n∈N satisfies a LDP on E1 with the good rate function I1(·) and the speed
γ (n).

ii) For every x1 ∈ E1, the sequence (μ2n(·|x1))n∈N satisfies the LDP continuity
condition on E2 with the rate function J (·|x1) and the speed γ (n).

Then the sequence of joint distributions (μn)n∈N satisfies a WLDP on E = E1 × E2
with the speed γ (n) and the rate function

I (x1, x2) = I1(x1) + J (x2|x1), x1 ∈ E1, x2 ∈ E2.

The sequence of marginal distributions (μ2n)n∈N defined on (E2,B2), satisfies a
LDP with the speed γ (n) and the rate function

I2(x2) = inf
x1∈E1

I (x1, x2).

Moreover, if I (·, ·) is a good rate function then (μn)n∈N satisfies a LDP and I2(·) is
a good rate function.

4 Gaussian process with random mean and random variance

Let α > 0 and define Cα([0, 1]) = {y ∈ C ([0, 1]) : y(t) ≥ α, t ∈ [0, 1]} (with
the uniform norm on compact sets). Cα([0, 1]) is a Polish space. Consider the fam-
ily of processes (Y n, Zn)n∈N, where (Y n)n∈N = (Y n

1 , Y n
2 )n∈N is a family of pro-

cesses with paths in Cα([0, 1]) × C ([0, 1]) and for n ∈ N, Zn = XnYn
1 + Yn

2 with
(Y n)n∈N independent of (Xn)n∈N. Suppose ((Xn

t )t∈[0,1])n∈N is family of continuous
centered Gaussian processes which satisfy the hypotheses of Theorem 2 and suppose
that (Y n)n∈N satisfies a LDP with the good rate function IY and the speed γ (n). We
want to prove a LDP principle for (Zn)n∈N.

Proposition 3. Let ((Xn
t )t∈[0,1])n∈N be a family of continuous Gaussian processes

which satisfies the hypotheses of Theorem 2 and let y = (y1, y2) ∈ Cα([0, 1]) ×
C ([0, 1]). Then the family ((Xn

t y1(t)+y2(t))t∈[0,1])n∈N is still a family of continuous
Gaussian processes which satisfies the hypotheses of Theorem 2 with the same speed
function and limit covariance function (depending only on y1) ky1 given by

ky1(s, t) = y1(s)y1(t)k̄(s, t). (10)

Therefore, also ((Xn
t y1(t) + y2(t))t∈[0,1])n∈N satisfies a LDP with the good rate

function

Λ∗
y(z) =

{ 1
2‖z‖2

H̄y1
, z ∈ H̄y1 ,

+∞ otherwise,
=

{
1
2‖ z−y2

y1
‖2
H̄

,
z−y2
y1

∈ H̄ ,

+∞ otherwise,
(11)

where H̄y1 is the RKHS associated to the covariance function defined in (10).

Proof. This is a simple application of the contraction principle.
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Remark 3. If y1(t) = y1 > 0 for all t ∈ [0, 1], then we have

Λ∗
y(z) =

{
1

2y2
1
‖z − y2‖2

H , z − y2 ∈ H̄ ,

+∞ otherwise.

Definition 7. Let (E, dE) be a metric space, and let (μn)n∈N, (μ̃n)n∈N be two families
of probability measures on E. Then (μn)n∈N and (μ̃n)n∈N are exponentially equiva-
lent (at the speed γ (n)) if there exist a family of probability spaces ((Ω,F n,Pn))n∈N
and two families of E-valued random variables (Zn)n∈N and (Z̃n)n∈N such that, for
any δ > 0, the set {ω : dE(Z̃n(ω), Zn(ω)) > δ} is F n-measurable and

lim sup
n→+∞

γ (n) logPn
(
dE

(
Z̃n(ω), Zn(ω)

)
> δ

) = −∞.

As far as the LDP is concerned exponentially equivalent measures are indistin-
guishable. See Theorem 4.2.13 in [10].

Proposition 4. Let ((Xn
t )t∈[0,1])n∈N be an exponential tight (at the speed γ (n)) fam-

ily of continuous Gaussian processes. Let (yn)n∈N ⊂ Cα([0, 1]) × C ([0, 1]) such
that yn → y in Cα([0, 1]) × C ([0, 1]). Then, the family of processes ((yn

2 (t) +
yn

1 (t)Xn(t)))t∈[0,1])n∈N is exponentially equivalent to ((y2(t) + y1(t)X
n(t)))n∈N.

Proof. Let Zn(t) = y2(t) + y1(t)X
n(t) and Z̃n(t) = yn

2 (t) + yn
1 (t)Xn(t) for t ∈

[0, 1], n ∈ N. Then, for any δ > 0,

P
(∥∥Zn − Z̃n

∥∥∞ > δ
) ≤ P

(∥∥Xn
∥∥∞

∥∥yn
1 − y1

∥∥∞ >
δ

2

)
+ P

(∥∥yn
2 − y2

∥∥∞ >
δ

2

)
.

For n large enough ||yn
2 − y2||∞ ≤ δ

2 and thanks to (5)

lim sup
n→+∞

1

γ (n)
logP

(∥∥Xn
∥∥∞ >

δ

2‖yn
1 − y1‖∞

)
= −∞,

therefore

lim sup
n→+∞

1

γ (n)
logP

(∥∥Zn − Z̃n
∥∥∞ > δ

) = −∞.

Let us denote J (z|y) = Λ∗
y(z), for z ∈ C ([0, 1]) and y ∈ Cα([0, 1]) × C ([0, 1]).

We want to prove the lower semicontinuity of J (·|·).
Proposition 5. If (zn, yn) → (z, y) in C ([0, 1]) × Cα([0, 1]) × C ([0, 1]), then

lim inf
n→+∞ J

(
zn|yn

) ≥ J (z|y).

Proof. Thanks to the lower semicontinuity of ‖·‖2
H̄

lim inf
(yn,zn)→(y,z)

J
(
zn|yn

) = lim inf
(yn,zn)→(y,z)

1

2

∥∥∥∥zn − yn
2

yn
1

∥∥∥∥
2

H̄

= lim inf
hn→h

1

2

∥∥hn
∥∥2

H̄ ≥ 1

2
‖h‖2

H̄
= 1

2

∥∥∥∥z − y2

y1

∥∥∥∥
2

H̄
= J (x|y)

where, hn = zn−yn
2

yn
1

C ([0,1])−→ h = z−y2
y1

.
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Theorem 4. Consider the family of processes (Y n, Zn)n∈N, where (Y n)n∈N =
(Y n

1 , Y n
2 )n∈N is a family of processes with paths in Cα([0, 1])×C ([0, 1]) and for n ∈

N, Zn = XnYn
1 +Yn

2 with (Y n)n∈N independent of (Xn)n∈N. Suppose ((Xn
t )t∈[0,1])n∈N

is family of continuous centered Gaussian processes which satisfy the hypotheses of
Theorem 2 and suppose that (Y n)n∈N satisfies a LDP with the good rate function IY

and the speed γ (n). Then (Y n, Zn)n∈N satisfies the WLDP with the speed γ (n) and
the rate function

I (y, z) = IY (y) + J (z|y),

and (Zn)n∈N satisfies the LDP with the speed γ (n) and the rate function

IZ(z) = inf
y∈Cα([0,1])

{
IY (y) + J (z|y)

}
.

Proof. Thanks to Propositions 3, 4 and 5 the family of processes (Y n, Zn)n∈N satis-
fies the hypotheses of Theorem 3, therefore the theorem holds.

5 Ornstein–Uhlenbeck processes with random diffusion coefficient

Let α > 0 and let again Cα([0, 1]) = {y ∈ C ([0, 1]) : y(t) ≥ α, t ∈ [0, 1]}. Con-
sider the family of processes (Y n, Zn)n∈N, where (Y n)n∈N is a family of processes
with paths in Cα([0, 1]) and for n ∈ N, Zn is the solution of the following stochastic
differential equation.{

dZn
t = (

a0 + a1Z
n
t

)
dt + 1√

n
Y n

t dWt 0 < t ≤ 1,

Zn
0 = x,

(12)

where, x, a0, a1 ∈ R and (Y n)n∈N is a family of random processes independent of
the Brownian motion (Wt )t∈[0,1].

Suppose that (Y n)n∈N satisfies a LDP with the good rate function IY , and the
speed γ (n) = n. We want to prove a LDP principle for (Zn)n∈N.

Let Zn,y , y ∈ Cα([0, 1]), be the solution of the following stochastic differential
equation, {

dZ
n,y
t = (a0 + a1Z

n,y
t ) dt + 1√

n
y(t) dWt , 0 < t ≤ 1,

Z
n,y

0 = x,
(13)

that is

Z
n,y
t = ea1t

(
x + a0

a1

[
1 − e−a1t

] + 1√
n

∫ t

0
e−a1sy(s)dWs

)

= m(t) + ea1t
1√
n

∫ t

0
e−a1sy(s)dWs, (14)

m(t) = ea1t (x + a0
a1

[1 − e−a1t ]). ((Z
n,y
t )t∈[0,1])n∈N is a family of Gaussian processes

and a family of diffusions. It is well known from the Wentzell–Friedlin theory that
((Z

n,y
t )t∈[0,1])n∈N satisfies the LDP in C ([0, 1]) with the speed γ (n) = n and the

good rate function
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J (f |y) =
{

1
2

∫ 1
0 (

ḟ (t)−(a0+a1f (t))
y(t)

)2dt, f ∈ Hx
1 ,

+∞, f /∈ Hx
1 ,

(15)

where

Hx
1 :=

{
f : f (t) = x +

∫ t

0
φ(s) ds, φ ∈ L2([0, 1])}.

And it is well known from the theory of Gaussian processes that the family
((Z

n,y
t )t∈[0,1])n∈N satisfies the LDP in C ([0, 1]) with the speed γ (n) = n and the

good rate function

J (f |y) =
{

1
2‖f − m‖2

Hy
, f − m ∈ Hy,

+∞, f − m /∈ Hy,
(16)

where Hy is the reproducing kernel Hilbert space associate to the covariance function

ky(s, t) = ea1(s+t)

∫ s∧t

0
e−2a1uy2(u) du.

The two rate functions (for the unicity of the rate function) are the same rate
function. So we can deduce a LDP for the family (Zn)n∈N in two different ways.
First let (Z

n,y
t )t∈[0,1] be a family of diffusions.

Remark 4. For yn ∈ Cα([0, 1]) let Zn,yn
denote the solution of equation (13) with y

replaced by yn. Then if yn → y in Cα([0, 1]), from the generalized Wentzell–Friedlin
theory (Theorem 1 in [9]), we have that ((Z

n,yn

t )t∈[0,1])n∈N satisfies the same LDP in
C ([0, 1]) as ((Z

n,y
t )t∈[0,1])n∈N.

We now want to prove the lower semicontinuity of J (·|·) on C ([0, 1])×Cα([0, 1]).
Proposition 6. If (f n, yn) → (f, y) in C ([0, 1]) × Cα([0, 1]), then

lim inf
n→+∞ J

(
f n|yn

) ≥ J (f |y).

Proof. If yn Cα([0,1])−→ y, then for any ε > 0, eventually inft∈[0,1]| y(t)
yn(t)

|2 ≥ (1 − ε),
and by the lower semicontinuity of J (·|y),

lim inf
(yn,f n)→(y,f )

J
(
f n|yn

)

= lim inf
(yn,f n)→(y,f )

1

2

∫ 1

0

∣∣∣∣ ḟ n(t) − (a0 + a1f
n(t))

yn(t)

∣∣∣∣
2

dt

= lim inf
(yn,f n)→(y,f )

1

2

∫ 1

0

∣∣∣∣ ḟn(t) − (a0 + a1f
n(t))

y(t)

∣∣∣∣
2

·
∣∣∣∣ y(t)

yn(t)

∣∣∣∣
2

dt

≥ lim inf
(yn,f n)→(y,f )

1

2

∫ 1

0

∣∣∣∣ ḟn(t) − (a0 + a1f
n(t))

y(t)

∣∣∣∣
2

dt · inf
t∈[0,1]

∣∣∣∣ y(t)

yn(t)

∣∣∣∣
2

= (1 − ε) lim inf
f n→f

J
(
f n|y)

,

and the proposition holds.
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Theorem 5. Consider the family of processes (Y n, Zn)n∈N, where (Y n)n∈N is a fam-
ily of processes with paths in Cα([0, 1]) and for n ∈ N, Zn is the solution of (12).
Suppose that (Y n)n∈N is independent from the Brownian motion and satisfies a LDP
with the good rate function IY and the speed γ (n) = n. Then (Y n, Zn)n∈N satisfies
the WLDP with the speed γ (n) = n and rate function

I (y, z) = IY (y) + J (z|y),

and (Zn)n∈N satisfies the LDP with the speed γ (n) and the rate function

IZ(z) = inf
y∈Cα([0,1])

{
IY (y) + J (z|y)

}
.

Proof. The family of processes (Y n, Zn)n∈N, thanks to Remark 4 and Proposition 6,
satisfies the hypotheses of Theorem 3, therefore the theorem holds.

Now let (Z
n,y
t )t∈[0,1] be a family of continuous Gaussian processes. We have to

prove that (Z
n,yn

t )t∈[0,1] satisfies the same LDP as (Z
n,y
t )t∈[0,1] when yn Cα([0,1])−→ y.

Let Z̃
n,yn

t = Z
n,yn

t − m(t) for every n ∈ N and t ∈ [0, 1].
Straightforward calculations show that there exists L > 0, such that

sup
s,t∈[0,1],s =t

n · |kyn
(t, t) + kyn

(s, s) − 2kyn
(t, s)|

|t − s|2α

≤ L sup
s,t∈[0,1],s =t

(ea1(t−s) − 1)

|t − s|2α
< +∞, for 2α = 1.

Therefore the family (Z̃n,yn
)n∈N is exponentially tight at the speed n. Furthermore,

conditions (6) and (7) of Theorem 2 are fullfilled, in fact

lim
n→+∞E

[〈
λ, Z̃n,yn 〉] = 0

and

lim
n→+∞ Var

(〈
λ, Z̃n,yn 〉) · n =

∫ 1

0

∫ 1

0
ky(s, t) dλ(t) dλ(s),

where ky(s, t) = ea1(s+t)
∫ s∧t

0 e−2a1uy2(u) du. Therefore (Z̃n,yn
)n∈N satisfies a LDP

on C ([0, 1]). Finally, thanks to the contraction principle, the family (Zn,yn
)n∈N sat-

isfies a LDP on C ([0, 1]) with the rate function J (·|y) defined in (16).

Remark 5. The lower semicontinuity of J (·|·) on C ([0, 1]) × Cα([0, 1]) follows
from Proposition 6.

We have proved that the hypotheses of Theorem 3 are verified, so the LDP for
(Zn)n∈N follows.
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6 Estimates of level crossing probability

In this section we will study the probability of level crossing for a family of condi-
tionally Gaussian processes. In particular, we will study the probability

pn = P

(
sup

0≤t≤1

(
Zn

t − ϕ(t)
)

> 1
)
, (17)

as n → ∞, where (Zn)n∈N is a family of conditionally Gaussian process. In this
situation the probability pn has a large deviation limit

lim
n→∞

1

γ (n)
log(pn) = −Iϕ.

The main reference in this section is [4]. We now compute limn→∞ 1
γ (n)

log(pn),
for a fixed continuous path ϕ ∈ C ([0, 1]). The computation is simple, in fact, since
(Zn)n∈N satisfies a LDP with the rate function

IZ(z) = inf
y∈C

{
IY (y) + J (z|y)

}
, (18)

where IY (·) is the rate function associated to the family of conditioning processes
(Y n)n∈N, C is the Polish set where (Y n)n∈N takes values, and J (·|y) is the good rate
function of the family of Gaussian processes (Zn,y)n∈N. If we denote

A =
{
w ∈ C

([0, 1]) : sup
0≤t≤1

(
w(t) − ϕ(t)

)
> 1

}
,

we have that

− inf
w∈ ˚A

IZ(w) ≤ lim inf
n→+∞

1

γ (n)
log(pn) ≤ lim sup

n→+∞
1

γ (n)
log(pn) ≤ − inf

w∈ ¯A
IZ(w)

where
¯A =

{
w ∈ C

([0, 1]) : sup
0≤t≤1

(
w(t) − ϕ(t)

) ≥ 1
}

and
˚A = A =

{
w ∈ C

([0, 1]) : sup
0≤t≤1

(
w(t) − ϕ(t)

)
> 1

}
.

It is a simple calculation to show that inf
w∈ ˚A IZ(w) = inf

w∈ ¯A IZ(w). Therefore,

lim
n→∞

1

γ (n)
log(pn) = − inf

w∈A
IZ(w). (19)

For every t ∈ [0, 1] let At = {w ∈ C ([0, 1]) : w(t) = 1 + ϕ(t)}, then A =⋃
0≤t≤1 At and so

inf
w∈A

IZ(w) = inf
y∈C

inf
0≤t≤1

inf
w∈At

{
IY (y) + J (w|y)

}
.



496 B. Pacchiarotti, A. Pigliacelli

6.1 Gaussian process with random mean and variance

For every n ∈ N, let Zn = XnYn
1 + Yn

2 as in Section 4. In this case we know that

J (z|y) =
{

1
2‖ z−y2

y1
‖2
H̄

,
z−y2
y1

∈ H̄ ,

+∞ otherwise.

Therefore, we have

inf
w∈A

IZ(w) = inf
y∈Cα([0,1])×C ([0,1])

inf
0≤t≤1

inf
w∈At

{
IY (y) + J (w|y)

}

= inf
y∈Cα([0,1])×C ([0,1])

inf
0≤t≤1

inf
w∈At

{
IY (y) + 1

2

∥∥∥∥w − y2

y1

∥∥∥∥
2

H̄

}
.

The set of paths of the form

h(u) =
∫ 1

0
k̄(u, v) dλ(v), u ∈ [0, 1], λ ∈ M [0, 1],

is dense in H̄ and, therefore, the infimum infw∈At
{IY (y) + 1

2‖w
y
‖2
H̄

} is the same as
that over the functions w such that

w(u) − y2(u) = y1(u) ·
∫ 1

0
k̄(u, v) dλ(v), u ∈ [0, 1],

for some λ ∈ M [0, 1]. For such kind of paths, recalling the expression of their norms
in the RKHS, the functional we aim to minimize is given by

IY (y) + 1

2

∥∥∥∥w − y2

y1

∥∥∥∥
2

H̄
= IY (y) + 1

2

∫ 1

0

∫ 1

0
k̄(u, v) dλ(u) dλ(v)

therefore, it is enough to minimize the right-hand side of the above equation with
respect to the measure λ, with the additional constraint that

w(t) = 1 + ϕ(t),

which we can write in the equivalent form∫ 1

0
k̄(t, v) dλ(v) − 1 + ϕ(t) − y2(t)

y1(t)
= 0.

This is a constrained extremum problem, and thus we are led to use the method of
Lagrange multipliers. The measure λ must be such that∫ 1

0

∫ 1

0
k̄(u, v) dλ(u) dμ(v) = β

∫ 1

0
k̄(t, v) dμ(v), μ ∈ M [0, 1],

for some β ∈ R. We find

β =
∫ 1

0 k̄(t, u) dλ(u)

k̄(t, t)
= 1 + ϕ(t) − y2(t)

y1(t)k̄(t, t)
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and

λ̄ = 1 + ϕ(t) − y2(t)

y1(t)k̄(t, t)
δ{t}.

Such measure satisfies the Lagrange multipliers problem, and it is therefore a critical
point for the functional we want to minimize. Since this is a strictly convex functional
restricted on a linear subspace of M [0, 1], it is still strictly convex, and thus the
critical point λ̄ is actually its unique point of minimum. Hence, we have

inf
w∈A

IZ(w) = inf
y∈Cα([0,1])×C ([0,1])

inf
0≤t≤1

{
IY (y) + (1 + ϕ(t) − y2(t))

2

2y2
1(t)k̄(t, t)

}
.

6.2 Ornstein–Uhlenbeck processes with random diffusion coefficient

In this case

J (f |y) =
{

1
2‖f − m‖2

Hy
, f − m ∈ Hy,

+∞, f − m /∈ Hy,

=
{

1
2

∫ 1
0 | ḟ (t)−(a0+a1f (t))

y(t)
|2dt, f ∈ Hx

1 ,

+∞, f /∈ Hx
1 ,

where m(t) = ea1t (x + a0
a1

[1 − e−a1t ]), t ∈ [0, 1], Hy is the RKHS associated to

ky(s, t) = ea1(s+t)

∫ s∧t

0
e−2a1uy2(u) du,

and Hx
1 = m + Hy .

We have

inf
w∈A

IZ(w) = inf
y∈Cα[0,1]

inf
0≤t≤1

inf
w∈At

{
IY (y) + J (w|y)

}
= inf

y∈Cα[0,1]
inf

0≤t≤1
inf

w∈At

{
IY (y) + 1

2
‖w − m‖2

Hy

}
.

The set of paths of the form

h(u) =
∫ 1

0
ky(u, v) dλ(v), u ∈ [0, 1], λ ∈ M [0, 1],

is dense in Hy , therefore, the infimum

inf
w∈At

{
IY (y) + 1

2
‖w − m‖2

Hy

}
,

is the same as that over the functions of the form

w(u) = m(u) +
∫ 1

0
ky(u, v) dλ(v), u ∈ [0, 1],
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for some λ ∈ M [0, 1]. For paths of such kind, recalling the expression of their norms
in the RKHS, the functional we aim to minimize is given by

IY (y) + 1

2
‖w − m‖2

Hy
= IY (y) + 1

2

∫ 1

0

∫ 1

0
ky(u, v) dλ(u) dλ(v)

therefore, it is enough to minimize the right-hand side of the above equation with
respect to the measure λ, with the additional constraint

w(t) = 1 + ϕ(t),

which can be written in the equivalent form

∫ 1

0
ky(t, v) dλ(v) + m(t) − (

1 + ϕ(t)
) = 0.

This is a constrained extremum problem, and thus we are led to use the method of
Lagrange multipliers. We find

β =
∫ 1

0 ky(t, u) dλ(u)

ky(t, t)
= 1 + ϕ(t) − m(t)

ky(t, t)

and

λ̄ = 1 + ϕ(t) − m(t)

ky(t, t)
δ{t},

δ{t} standing for the Dirac mass in t . Such measure satisfies the Lagrange multipliers
problem, and it is therefore a critical point for the functional we want to minimize.
Since this functional is a strictly convex restricted on a linear subspace of M [0, 1],
it is still strictly convex, and thus the critical point λ̄ is actually its unique point of
minimum. Hence, we have

inf
w∈At

IY (y) + 1

2
‖w − m‖2

Hy
= IY (y) + (1 + ϕ(t) − m(t))2

2ky(t, t)
,

and therefore

inf
w∈A

IZ(w) = inf
y∈Cα([0,1])

inf
0≤t≤1

{
IY (y) + (1 + ϕ(t) − m(t))2

2ky(t, t)

}
.
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