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Abstract
This paper deals with curriculum-based course timetabling. In particular, we describe
the results of a real application at the University of Rome “Tor Vergata.” In this
regard, we developed a multi-objective mixed-integer model which attempts to opti-
mize (i) the flow produced by the students enrolled in the lectures, (ii) soft conflicts
produced by the possible overlap among compulsory and non-compulsory courses,
and (iii) the number of lecture hours per curriculum within the weekdays. The model
has been implemented and solved by means of a commercial solver and experiments
show that the model is able to provide satisfactory solutions as compared with the
real scenario under consideration.

Keywords Timetabling · MIP model · Multi-objective optimization · Case study

1 Introduction

The course timetabling problem (CTP) refers to the allocation of courses to a given
set of resources being placed in space and in time, so as to satisfy a set of objectives
as much as possible [34]. Course timetabling specifically involves assigning courses
to classrooms, as well as teachers and time slots. In general, classrooms are always
scarce and courses are affected by incompatibility relations based on the curricula
they refer to, which complicate the assignment.

Course timetabling has many variants. We can start citing, among the most impor-
tant ones, the school timetabling problem (STP), also known as class/teacher model.
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Given a set of classes, a set of teachers, a number of periods, and a non-negative
integer matrix (called requirements matrix) whose generic entry is the number of
lectures (lessons) given by a teacher in a class, the problem consists in assigning
lectures to periods in such a way that no teacher or class is involved in more than
one lecture at a time. A pioneer in this field was de Werra [13] who proposed a
basic reduced formulation for this problem which was not real but its minimal set of
constraints made it a hard problem. The problem was solved by reduction to edge col-
oring. Successively, Junginger [21] introduced additional constraints defined by the
unavailabilities of teachers and classes. These formulations were given as feasibility
problems, even though Junginger [21] proposed also to add an objective based on
the desirability of an assignment teacher/course. Colorni et al. [12] proposed objec-
tives based on, e.g., spreading the lessons over the whole week or imposing a day-off
for each teacher. Beyond several heuristic algorithms, there have been also proposals
based on constraints programming (see, e.g., [9]).

Similar to STP but with some specific differences is the University Course
Timetabling (UCT) problem which is the problem considered in this paper. It con-
sists in scheduling a set of lectures for each course within a given number of rooms
and time periods. The main difference from STP is that university courses can have
common students, whereas school classes are disjoint sets of students. If two courses
have common students then they conflict, and they cannot be scheduled at the same
period. In addition, in UCT, availability of rooms (and their size) plays an important
role, whereas in the school problem they are often neglected because, in most cases,
we can assume that each class has its own room [29]. The basic problem firstly stud-
ied by, e.g., [33] was the following: given are a set of courses each one consisting
of a set of lectures. There is a set of curricula which are groups of courses that have
common students and such that all the courses in a curriculum must be scheduled
at different times. There is a number of periods and a maximum number of lectures
that can be scheduled in a given period due to room availability. The basic problem is
to find a feasible solution for this problem. Objective functions associated with this
set of constraints in the literature typically comprise desirability of the assignments,
and the minimization of soft and hard constraints associated with the conflicts among
courses (see, e.g., [28]).

In all institutions, UCT has to be solved at least once each academic year, and
the administrative personnel spend much time and effort in solving this problem.
This is why, in the literature, this problem has been largely studied and has attracted
the attention of many researchers. Consequently, there have been several methods
and algorithmic approaches to this problem. In this paper, we will concentrate our
attention on that part of the literature in which exact methods are proposed based
on formulating and solving mathematical programming models. Even if for large
problems, it could be difficult to find an optimal solution within reduced comput-
ing times since the problem is NP-Hard [11], exact approaches in the literature have
been proved to be effective to some extent and have provided optimal solutions
to some specific cases. One of the applications of exact methods includes [18] in
which it is shown that timetabling problems with data sizes comparable with that
of some scenarios have been solved by means of a basic model. Tripathy [32] pre-
sented an integer linear program to determine room and time slot allocations for
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graduate courses by means of a Lagrangian relaxation procedure gathered with sub-
gradient optimization. A two-stage binary multi-objective course scheduling model
is proposed in [2]. Birbas et al. [6] formulated a binary integer program to deter-
mine the weekly timetable for Greek high schools. Dimopoulou and Miliotis [15]
and Papoutsis et al. [27] employ a column-generation approach to solve a timetabling
problem for Greek schools. Mushi [26] shows the existence of various models for
timetabling problem by using integer programming and experimented their proposal
on a case study related to the University of Dar es Salaam. Al-Yakoob and Sherali [1]
adopted a mixed-integer programming approach experimented on the Kuwait Uni-
versity. Hinkin and Thompson [20] proposed Schedule Expert that is a system that
uses a 0–1 mathematical model to schedule courses at the Cornell University School
of Hotel Administration. Since the UCT structures are not standard as they vary from
institution to institution, most of the presented research address specific case studies
(see, also, [10, 30]).

In 2007, the Second International Timetabling Competition (ITC-2007) firstly
posed the attention on the curriculum-based course timetabling (CB-CTT) problem.
CB-CTT consists of finding the best weekly assignment of university course lec-
tures to rooms and time periods. A feasible schedule must satisfy a set of hard
constraints and must also take into account a set of soft constraints. From ITC-2007,
many researchers have developed advanced models and methods to solve CB-CTT
(see, e.g., [3, 4, 8, 16, 17, 19, 22–24, 31]). The survey by [5] is devoted to review
the main works on the topic, with focus on mathematical models, lower bounds,
and exact and heuristic algorithms. As pointed out by the comments of Lübbecke
(2015) referring to the competition induced by the ITC challenges, “the latter cer-
tainly stimulated a broad and deep development in timetabling but the theoretical
problem definition may be quite far from timetabling reality in the age of com-
plex interdependencies of many interdisciplinary curricula at large universities.” With
this paper, we do not aim at competing with ITC-2007 and successive papers on
the topic but want to give our experience with CB-CTT in our university. There-
fore, the presented research is focused on a particular case study, and deliberately
lacks generality. This, in our opinion, tends to go in the direction of the sugges-
tions contained in [25] where the author says that there should be more emphasis
on the “dirty” aspects of CB-CTT than only exploring general models which are
not completely able to capture real problems. Hence, in this paper, we describe a
real-world CB-CTT application referred to the Faculty of Engineering at the Univer-
sity of Rome “Tor Vergata,” for which we proposed a mathematical program with
many specific constraints and besides them we concentrated our attention on three
objectives: (i) minimizing (weighted) flows produced by the students enrolled in
the lectures, weighting flows according to traffic congestion conditions, (ii) min-
imizing soft conflicts generated by the possible overlap among compulsory and
non-compulsory courses of the same curriculum, and (iii) smoothing the number of
lesson hours per curriculum within the weekdays. This proposal was shared with
people working on this problem in the administrative side of our university and a spe-
cific graphical interface was built to let all the components dialog correctly and the
results be used easily. The proposed mixed-integer program has been implemented
and solved by means of a commercial solver. Experimental findings showed that our
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modeling proposal is effective in producing satisfactory timetables for the considered
applications.

The reminder of the paper is organized as follows: in Section 2, we describe
the timetabling problem we are dealing with; in Section 3, the mathematical pro-
gram is presented and discussed. Section 4 presents the description of the case study
and Section 5 reports experimental results. Finally, in Section 6, we draw some
conclusions and future research directions.

2 The Timetable ProblemDefinition

We consider a set of curricula (or degree programs), each one lasting a given number
of years, divided in two semesters, and whose courses are taught in a number of
lectures (lessons) delivered during given semesters of given years. A course is taught
by one or more teachers and belongs to a given year of one or more curricula. The
courses of a curriculum are grouped into compulsory and non-compulsory courses:
the lectures of two compulsory courses for the same curriculum and of the same year
cannot be delivered simultaneously, i.e., during the same time slot (hour) of the same
weekday of the same semester (hard time-constraints), while overlapping between the
lessons of a compulsory course and of a non-compulsory course is allowed albeit it
is preferable to avoid this situation (soft time-constraints). Moreover, also the lessons
of pairs of courses sharing a teacher cannot be delivered simultaneously.

A set of rooms of distinct capacities is used for delivering courses. Rooms are
assumed to be available during each time slot of a day and cannot be assigned to
more than one course at a time. Course lessons are delivered on a week basis, that
is, during a semester, they are delivered in the same hours and weekdays as well as
in the same room. Therefore, it is assumed that the timetable is organized in week
days (fromMonday to Saturday), where each day is divided into a set of lesson hours
(time slots), including a break of one hour (lunch time) between the morning and the
afternoon lessons. Saturday can be used for delivering lessons only for a subset of
courses.

Each course requires a given number of weekly lesson hours that have to be deliv-
ered according to some requirements: the duration (number of consecutive hours) of
a course lesson belongs to a given range, and during each day the total number of
lesson hours of the same course cannot be greater than a maximum number. Course
lessons cannot be delivered during the break hour, unless this is explicitly requested
and motivated by a teacher: in this case, if a course lesson is delivered during the
break hour then the lesson must last at least two hours and cannot be delivered dur-
ing both the hours before and after the break. Courses with a very large number of
students (as compared with room capacities) are split into what we call “channels”;
for instance, if a course has 400 students and room capacities are not larger that
100 seats, then this course may be split into 4 identical courses (the channels of the
course) of 100 students each. The lessons of all the channels of a course require to
be delivered simultaneously in distinct rooms and each lesson hour of each course
channel requires exactly one room whose capacity is not less than the number of the
students enrolled in the course channel; moreover, if the lesson lasts more than one
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hour then the same room should be assigned to the (channel) course lesson for its
entire duration.

Three criteria are considered to define the timetable: Student flows, Soft conflicts,
and Smoothing. The first criterion is achieved by minimizing the total (weighted)
incoming and leaving student flow produced by the students attending lectures. In
particular, student flows are weighted according to the estimated time-dependent traf-
fic congestion level of the road network nearby the campus. The second criterion is
obtained by minimizing the number of soft incompatibilities produced by the possible
overlap among the lessons of compulsory and non-compulsory courses. Finally, the
third criterion is achieved by balancing the number of lecture hours per curriculum
within the weekdays. Next, we provide the mathematical formulation of the problem.

3 TheMathematical Model

In this section, we provide a mixed-integer programming formulation of our CB-CTT
problem. Tables 1, 2, 3, and 4 list the notations and definitions of sets, parameters,
binary variables, and continuous variables, respectively. In particular, parameters bcc′
represent the type of conflict between any couple (c, c′) of distinct courses. We
assume bcc′ = 1 (hard time-conflict) if there exists a channel h ∈ {1, . . . , chc} of
course c ∈ C and a channel h′ ∈ {1, . . . , chc′ } of course c′ ∈ C sharing a teacher, i.e.,
Qch ∩ Qc′h′ �= ∅. In addition, we also assume bcc′ = 1 if both c and c′ are courses of
the same year for a curriculum p and are both compulsory for the latter: that is, there
exist a curriculum p ∈ P such that yearcp = yearc′p �= 0 and oblcp = oblc′p = 1.
We assume bcc′ = 2 (soft time-conflict) when there is no hard time-conflict between
courses c and c′ and there exists a curriculum p for which yearcp = yearc′p �= 0
and exactly one of the two courses is compulsory for p. In all the other cases, courses
c and c′ are considered non-conflicting (in time) and it is assumed bcc′ = 0. Each
couple (c, c′) of courses that are hard time-conflicting (bcc′ = 1) cannot be delivered

Table 1 Notations and definitions of sets

Sets Definitions

P Set of curricula

R Set of rooms

D Set of lecture week days, D = {Monday, . . . ,Saturday}
T Set of day time slots (lesson hours), T = {1, . . . , pause, . . . , |T |}; pause is the lunch

time hour, with 1 < pause < |T |
Q Set of teachers

Qch Subset of teachers of channel h of course c (Qch ⊆ Q)

C Set of all courses

C0 Subset of courses taught during both the first and the second semester (C0 ⊆ C)

Cs Subset of courses taught only during semester s ∈ {1, 2} (Cs ⊆ C)

C̃s Subset of courses taught during semester s ∈ {1, 2} (i.e., C̃s = C0 ∪ Cs ⊆ C)
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Table 2 Notations and definitions of parameters

Parameters Definitions

f wdt Student flow weight related to day time slot t ∈ T ∪ {|T | + 1} of day d ∈ D

ur Capacity of room r ∈ R

nyp Number of years of curriculum p ∈ P

qs
pτ Number of students of curriculum p ∈ P , year τ ∈ {1, . . . , nyp}, and

semester s ∈ {1, 2}
chc Number of channels of course c ∈ C

dc Number of students for each channel of course c ∈ C

whc Number of lesson hours per week of course c ∈ C (1 ≤ whc ≤ |D||T |)
dhmin

c Minimum duration (number of consecutive day lesson hours) of a
lesson of course c ∈ C (1 ≤ dhmin

c ≤ |T |)
dhmax

c Maximum duration of a lesson of course c ∈ C (1 ≤ dhmin
c ≤ dhmax

c ≤ |T |)
dhtot

c Maximum total number of day lesson hours of course c ∈ C (1 ≤
dhmin

c ≤ dhmax
c ≤ dhtot

c ≤ |T |)
satc Equal to 1 if course c ∈ C may have lesson on Saturday, and 0 otherwise

act Equal to 1 if course c ∈ C may have lesson in day time slot t ∈ T , and 0 otherwise

yearcp The year when course c ∈ C is taught for curriculum p ∈ P (yearcp ∈
{0} ∪ {1, . . . , nyp}), yearcp = 0 means that c is not a course of p

oblcp Equal to 1 if course c ∈ C is compulsory for curriculum p ∈ P , and 0 otherwise

bcc′ Equal to 1 if the lessons of courses c, c′ ∈ C cannot overlap in time (hard conflict),

equal to 2 if time overlapping is not forbidden but should be avoided (soft conflict),

and 0 otherwise

Table 3 Notations and definitions of binary variables

Binary variables Definitions

vchrdt Equal to 1 if room r ∈ R is assigned to channel h ∈ {1, . . . , chc}
of course c ∈ C in time slot t ∈ T of day d ∈ D, 0 otherwise

xs
cdt Equal to 1 if course c ∈ C̃s is taught in time slot t ∈ T of day d ∈ D during

semester s ∈ {1, 2}, and 0 otherwise

ys
cd Equal to 1 if course c ∈ C̃s is taught on day d ∈ D during semester s ∈ {1, 2},

and 0 otherwise

ws
pτd Equal to 1 if for curriculum p ∈ P there is a lecture on day d ∈ D during

semester s ∈ {1, 2} of year τ ∈ {1, . . . , nyp}, and 0 otherwise

zSs
pτdt Equal to 1 if the first lesson of a compulsory course of curriculum p ∈ P , taught

on day d ∈ D during semester s ∈ {1, 2}, starts in time slot t ∈ T , 0 otherwise

zEs
pτdt Equal to 1 if the last lesson of a compulsory course of curriculum p ∈ P , taught

on day d ∈ D during semester s ∈ {1, 2}, ends in time slot t ∈ T , 0 otherwise
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Table 4 Notations and definitions of continuous variables

Continuous variables Definitions

αFs
cd Ranging in [0, |T |], being the first time slot when course c ∈ C̃s is taught

on day d ∈ D (0 if c is not taught on day d) during semester s ∈ {1, 2}
αLs

cd Ranging in [0, |T |], being the last time slot when course c ∈ C̃s is taught

on day d ∈ D (0 if c is not taught on day d) during semester s ∈ {1, 2}
βFs

pτd Ranging in [0, |T |], being the first time slot when a lecture of curriculum p ∈ P

is delivered on day d ∈ D during semester s ∈ {1, 2} of year τ ∈ {1, . . . , nyp}
(0 if no lecture for p is delivered on that weekday)

βLs
pτd Ranging in [0, |T |], being the last time slot when a lecture of curriculum p ∈ P

is delivered on day d ∈ D during semester s ∈ {1, 2} of year τ ∈ {1, . . . , nyp}
(0 if no lecture for p is delivered on that weekday)

γ s
pτ Ranging in [0, |T |], being the maximum number of daily lesson time

slots (hours) delivered during semester s ∈ {1, 2} of year τ ∈
{1, . . . , nyp} for program p ∈ P

(0 if no lecture for p is delivered during semester s of year τ )

δs
cc′dt

Ranging in [0, 1], equal to 1 if for two soft conflicting courses c, c′ ∈ C

(i.e., with bcc′ = 2), the lessons are both delivered in time slot t ∈ T of
day d ∈ D during semester s ∈ {1, 2}

simultaneously; this can occur for two soft-conflicting courses (i.e., when bcc′ = 2)
but, as previously said, it could be preferable to avoid it.

The three criteria Student flows, Smoothing, and Soft conflicts are modeled by
considering the following three objective functions.

of 1 =
∑
p∈P

nyp∑
τ=1

∑
s∈{1,2}

∑
d∈D

∑
t∈T

qs
pτ (f wdt · zSs

pτdt + f wd,t+1 · zEs
pτdt ), (1)

of 2 =
∑
p∈P

nyp∑
τ=1

∑
s∈{1,2}

γ s
pτ , (2)

of 3 = 1

2

∑
p∈P

nyp∑
τ=1

∑
s∈{1,2}

∑
(c, c′) ∈ Ĉs

pτ × Ĉs
pτ :

c �= c′, bcc′ = 2

∑
d∈D

∑
t∈T

δs
cc′dt , (3)

where Ĉs
pτ = {c ∈ C̃s : yearcp = τ }, with p ∈ P , τ ∈ {1, . . . , nyp}, and s ∈ {1, 2},

are the sets of courses of curriculum p taught in semester s of year τ .
(1) Objective function of 1 is the sum of the total weighted students incoming flow

and the total weighted students leaving flow, calculated over the sets of curricula,
years, semesters, weekdays, and day time slots, where flow weight f wdt represents

SN Operations Research Forum (2020) 1: 11 Page 7 of 21 11



the level of road traffic congestion nearby the university during time slot t of day d .
In particular, incoming and leaving student flows are evaluated on the basis of the
number of students enrolled in the first and the last daily lesson hours, respectively,
of compulsory courses; it is assumed that students leave the campus during the next
time slot (hour) after the end of the last lecture: this is why variable zEs

pτdt is weighted
by f wd,t+1. By minimizing of 1 we minimize Student flows. Objective function
of 2 (2) is the sum of the maximum number of day lesson hours during the week,
calculated over the sets of curricula, years, and semesters: minimizing of 2 leads
to a balanced timetable with respect to the number of daily lesson hours, that is to
Smoothing. Finally, by minimizing objective function of 3 (3), being the total number
of soft conflicts, we minimize Soft conflicts.

The mathematical model contains many constraints and for the sake of clearness
they are grouped and then presented according to the following groups:

• Room assignment constraints: allow to assign rooms to course channels for each
time slot (hour) when course lessons are delivered, by linking variables vchrdt

with variables xs
cdt . Room assignment is done while respecting room capacities

and assuring the assignment of the same room to a course channel for the whole
course lesson duration.

• Slot preset and lunch time hour constraints: allow to avoid delivering courses
in forbidden time slots (hours). Moreover, they allow to deliver course lesson
during the lunch time (break hour), for the courses for which this is allowed,
only if the course lesson lasts at least two hours and avoiding to deliver it
both before and after the lunch time hour. In addition, these constraints also
allow to avoid delivering lessons on Saturday for the courses for which this is
forbidden.

• Course weekly and daily hours assignment constraints: allow to assign lesson
hours (time slots) to courses both on a daily and weekly basis, taking into account
the number of weekly course lesson hours to be delivered and the course lesson
requirements on a daily basis: for each course, the total number of daily les-
son hours cannot exceed a given maximum value and the duration (number of
consecutive hours) of each single lesson must be between given minimum and
maximum durations.

• Hard and soft time-conflict constraints: avoid to deliver simultaneously the
lessons of couples of hard time-conflicting courses, and allow the identification
of soft time-conflicts among course lessons, necessary for the calculation of Soft
conflicts objective function of 3 (3).

• Starting and ending hours of compulsory course constraints: allow to find for
each day when the first compulsory course starts and when the last compulsory
course ends (if any), for each semester of each year of each curriculum. This
information is necessary for the calculation of Student flows objective function
of 1 (1).

• First and last lesson time slots constraints: are useful to calculate the values of
variables αFs

cd , αLs
cd , and the values of variables βFs

pτd , βLs
pτd . In addition, these

constraints allow to calculate the values of variables γ s
pτ , representing the maxi-

mum number of daily lesson hours of year τ of curriculum p during semester s.
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The latter variables are used for the calculation of Smoothing objective function
of 2 (2).

• Daily lecture delivering constraints: allow to link variables ys
cd with variables

xs
cdt , and to combine the former also with variables ws

pτd .

The Room assignment constraints are:

∑
r∈R

vchrdt = xs
cdt , ∀ s ∈ {1, 2}, c ∈ C̃s, h ∈ {1, . . . , chc}, d ∈ D, t ∈ T , (4)

∑
c∈C̃s

chc∑
h=1

vchrdt ≤ 1, ∀ s ∈ {1, 2}, r ∈ R, d ∈ D, t ∈ T , (5)

xs
cdt + xs

cd,t+1 + vchrdt ≤ 2 + vchrd,t+1,

∀ s ∈ {1, 2}, c ∈ C̃s, h ∈ {1, . . . , chc}, r ∈ R, d ∈ D, t ∈ T \{|T |},
(6)

dc · vchrdt ≤ ur, ∀ c ∈ C, h ∈ {1, . . . , chc}, r ∈ R, d ∈ D, t ∈ T . (7)

Constraint (4) imposes the assignment of exactly one (distinct) room to each channel
of a course only during each week-daily hour of a semester when the course is taught.
Constraint (5) assures that each room can be assigned to at most one course channel
during each week-daily hour of each semester. Constraint (6) assures assigning the
same room to a course channel during each hour of a course lesson if its duration
is greater than one hour. Constraint (7) avoids assigning (small) rooms to (crowded)
course channels if the room capacity is less than the number of students enrolled in
that course channel.

The Slot preset and lunch time hour constraints are:

∑
d∈D

xs
cdt = 0, ∀ s ∈ {1, 2}, c ∈ C̃s : act = 0, t ∈ T , (8)

pause+1∑
t=pause−1

xs
cdt ≤ 2, ∀ s ∈ {1, 2}, c ∈ C̃s : ac,pause = 1, d ∈ D, (9)

xs
cd,pause ≤ xs

cd,pause−1 + xs
cd,pause+1, ∀ s ∈ {1, 2}, c ∈ C̃s : ac,pause = 1,

d ∈ D, (10)∑
t∈T

xs
c,Saturday,t = 0, ∀ s ∈ {1, 2}, c ∈ C̃s : satc = 0. (11)

Constraint (8) avoids delivering courses during courses forbidden time slots
(hours). For the courses that may be delivered also during the lunch time (pause) hour,
constraints (9) and (10) allow one to deliver course lesson during the lunch time hour
only if the course lesson is also delivered during the previous or successive hour, but
not in both. Constraint (11) does not allow one to deliver course lessons on Saturday
for the courses for which this is forbidden.
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The course weekly and daily hours assignment constraints are:
∑
d∈D

∑
t∈T

xs
cdt = whc, ∀ s ∈ {1, 2}, c ∈ C̃s, (12)

∑
t∈T

xs
cdt ≤ dhtot

c , ∀ s ∈ {1, 2}, c ∈ C̃s, d ∈ D, (13)

t+dhmax
c∑

θ=t

xs
cdθ ≤ dhmax

c , ∀ s ∈ {1, 2}, c ∈ C̃s, d ∈ D,

t ∈ {1, . . . , |T | − dhmax
c }, (14)

dhmin
c · xs

cd1 ≤
dhmin

c∑
θ=1

xs
cdθ , ∀ s ∈ {1, 2}, c ∈ C̃s, d ∈ D, (15)

dhmin
c (xs

cdt − xs
cd,t−1) ≤

min(|T |,t+dhmin
c −1)∑

θ=t

xs
cdθ ,

∀ s ∈ {1, 2}, c ∈ C̃s, d ∈ D, t ∈ T \{1}. (16)

Constraint (12) assures that the total lesson hours assigned to each course must be
equal to the number of weekly lesson hours required for the course. For each day,
constraint (13) imposes that the number of total lesson hours assigned to a course
cannot be greater than the maximum daily lesson hours for the course, while con-
straints (14), (15), and (16) impose upper and lower bounds on the number of hours
to each course lesson.

The Hard and soft time–conflict constraints are:

xs
cdt + xs

c′dt ≤ 1, ∀ s ∈ {1, 2}, (c, c′) ∈ C̃s × C̃s : c �= c′ and bcc′ = 1,

d ∈ D, t ∈ T , (17)

δs
cc′dt ≤ xs

cdt , ∀ s ∈ {1, 2}, (c, c′) ∈ C̃s × C̃s : c �= c′ and bcc′ = 2,

d ∈ D, t ∈ T , (18)

δs
cc′dt ≤ xs

c′dt , ∀ s ∈ {1, 2}, (c, c′) ∈ C̃s × C̃s : c �= c′ and bcc′ = 2,

d ∈ D, t ∈ T , (19)

δs
cc′dt ≥ xs

cdt + xs
c′dt − 1, ∀ s ∈ {1, 2}, (c, c′) ∈ C̃s × C̃s : c �= c′ and bcc′ = 2,

d ∈ D, t ∈ T , (20)

δs
cc′dt = δs

c′cdt , ∀ s ∈ {1, 2}, (c, c′) ∈ C̃s × C̃s : c �= c′ and bcc′ = 2,

d ∈ D, t ∈ T . (21)

Constraint (17) does not allow one to deliver simultaneously the lessons of couples
of courses for which this is forbidden (hard time-conflict): that is, for two compul-
sory courses of the same curriculum that are delivered during the same year and
semester. Constraints (18)–(21) allow one to detect soft time-conflict occurrences
between a compulsory course and a non-compulsory course, of the same year for a
certain curriculum, that are taught during the same semester.
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The Starting and ending hours of compulsory course constraints are:
t∑

θ=1

zSs
pτdθ ≥

∑
c∈Ĉs

pτ

oblcp · xs
cdt , ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp},

d ∈ D, t ∈ T , (22)

zSs
pτdt ≤

∑
c∈Ĉs

pτ

oblcp · xs
cdt , ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp},

d ∈ D, t ∈ T , (23)∑
t∈T

zSs
pτdt ≤ 1, ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp}, d ∈ D, (24)

|T |∑
θ=t

zEs
pτdθ ≥

∑
c∈Ĉs

pτ

oblcp · xs
cdt , ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp},

d ∈ D, t ∈ T , (25)

zEs
pτdt ≤

∑
c∈Ĉs

pτ

oblcp · xs
cdt , ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp},

d ∈ D, t ∈ T , (26)∑
t∈T

zEs
pτdt ≤ 1, ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp}, d ∈ D. (27)

Constraints (22)–(24) and constraints (25)–(27) allow one to detect, for each semester
and for each weekday, the first and last time slots when the lesson of a compulsory
course of year τ for curriculum p is delivered, respectively.

The first and last lesson time slots constraints are:

t xs
cdt + |T |(1 − xs

cdt ) ≥ αFs
cd , ∀ s ∈ {1, 2}, c ∈ C̃s, d ∈ D, t ∈ T , (28)

t xs
cdt ≤ αLs

cd , ∀ s ∈ {1, 2}, c ∈ C̃s, d ∈ D, t ∈ T , (29)

αFs
cd ≤ αLs

cd , ∀ s ∈ {1, 2}, c ∈ C̃s, d ∈ D, (30)

αLs
cd − αSs

cd ≤ |T | − 1, ∀ s ∈ {1, 2}, c ∈ C̃s, d ∈ D, (31)

αLs
cd ≤ |T | · ys

cd , ∀ s ∈ {1, 2}, c ∈ C̃s, d ∈ D, (32)

βFs
pτd ≤ αFs

cd + |T |(1 − ys
cd), ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp},

c ∈ Ĉs
pτ , d ∈ D, (33)

βLs
pτd ≥ αLs

cd + |T |(1 − ys
cd), ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp},

c ∈ Ĉs
pτ , d ∈ D, (34)

βFs
pτd ≤ βLs

pτd, ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp}, d ∈ D, (35)

βLs
pτd − βFs

pτd ≤ |T | − 1, ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp}, d ∈ D, (36)

βLs
pτd ≤ |T | · ws

pτd, ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp}, d ∈ D, (37)

βLs
pτd − βFs

pτd + ws
pτd ≤ γ s

pτ , ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp}, d ∈ D.

(38)
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Constraints (28)–(32) allow one to calculate, for each weekday of a semester and
for each course taught during the semester, when the first lesson of the course starts
and when the last lesson of the same course ends, according to the assignment of time
slots to the course; in particular, constraint (32), together with (31), forces the last
and first time slots to be null (the relative variables are set to 0) if the course is not
taught on that day during the semester. Similarly, constraints (33)–(37) allow one to
calculate, for each weekday of a semester and for each year of each curriculum, when
the first lesson starts and when the last lesson ends if there is at least one lesson for
the given year and semester of the given curriculum. The calculations are respectively
done by taking the minimum among the starting hours and the maximum among the
ending hours of the course lessons of the specific year of the curriculum delivered
on the specific day of the semester; also in this case, constraint (37), together with
(36), forces the last and first time slots to be null (the relative variables are set to
0) if no lesson is delivered on that day for the semester of the specific year of the
curriculum. Finally, constraint (38) allows the calculation of the maximum number
of daily lesson hours over the weekdays, for each given year of each curriculum and
during each semester.

The daily lecture delivering constraints are:
∑
t∈T

xs
cdt ≤ |T | · ys

cd , ∀ s ∈ {1, 2}, c ∈ C̃s, d ∈ D, (39)

∑
t∈T

xs
cdt ≥ ys

cd , ∀ s ∈ {1, 2}, c ∈ C̃s, d ∈ D, (40)

∑
c∈Ĉs

pτ

ys
cd ≤ |Ĉs

pτ | · ws
pτd, ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp}, d ∈ D,

(41)∑
c∈Ĉs

pτ

ys
cd ≥ ws

pτd, ∀ s ∈ {1, 2}, p ∈ P, τ ∈ {1, . . . , nyp}, d ∈ D. (42)

Constraints (39)–(42) combine together decision variables xs
cdt , ys

cd , and ws
pτd , in

order to derive from the former, representing the assignment of lesson hours (time
slot) to courses (xs

cdt ), the decisions of delivering respectively lessons of distinct
courses (ys

cd ) and lessons of specific years of distinct curricula (ws
pτd ), during a

certain weekday of a semester.
Therefore, the whole mathematical model of our CB-CTT problem is the follow-

ing multi-objective mixed-integer problem:

min of i, ∀ i ∈ {1, . . . , 3},
s.t . (4)–(42),

binary variables of Table 3 in {0,1},
non-negative variables of Table 4 in the specified range.

Before concluding this section, we note that in the CB-CTT literature (see, e.g., [7,
14], and [23]), there are similar constraints; in order to give an immediate idea of
which constraints are new and which are the same as in the literature, in Fig. 1, we
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noitpircseDstniartsnocruO Hard
Soft

Analogies with CB - CTT
Competition constraints
(name and description)

Differences

Room assignment 
constraints

i) Impose the assignment of exactly one (distinct) room to 
each channel of a course only during each week-daily 
hour of a semester when the course is taught; ii) assure 
that each room can be assigned to at most one course 
channel during each week-daily hour of each semester; iii) 
assign the same room to a course channel during each 
hour of a course lesson if its duration is greater than one 
hour; iv) forbid assigning rooms to course if the room 
capacity is less than the number of students enrolled in 
that course.

Hard RoomOccupancy (hard): 
Two lectures cannot take 
place in the same room in the 
same period.
RoomStability (soft): All 
lectures of a course should be 
given in the same room. 

Our constraints consider 
channels and semesters (this 
difference applies to all the 
constraints). All room 
constraints are hard. Rooms
may not be all available and 
the user can forbid the use 
of a subset of them.

Slot preset and lunch 
time hour constraints

i) Avoid delivering courses during courses forbidden time 
slots (hours).; ii) for the courses that may be delivered 
also during the lunch time (pause) hour, allow one to 
deliver course lesson during the lunch time hour only if 
the course lesson is also delivered during the previous or 
successive hour, but not in both; iii) do not allow one to 
deliver course lessons on Saturday when this is 
forbidden.

Hard Availabilities (hard): If the 
teacher of the course is not 
available to teach that course 
at a given period, then no 
lectures of the course can be 
scheduled at that period. 

We consider the lunch 
break and Saturday lessons. 
Teachers may select not to 
deliver lessons during the 
lunch hour as well as not to 
deliver courses on 
Saturdays and the model 
will take these settings as 
hard constraint.

Course weekly and 
daily hours assignment 
constraints

i) Assure that the total lesson hours assigned to each 
course must be equal to the number of weekly lesson
hours required for the course; ii) for each day, impose that 
the number of total lesson hours assigned to a course 
cannot be greater than the maximum daily lesson hours 
for the course; iii) impose upper and lower bounds on the 
number of hours to each course lesson.

Hard Lectures (hard): All lectures 
of a course must be 
scheduled, and they must be 
assigned to distinct periods. 
MinimumWorkingDays 
(soft): The lectures of each 
course must be spread into the 
minimum number of days. 

We have upper and lower 
bounds on the number of 
(consecutive) hours for each 
course lesson. Moreover, 
there is a constraint on the 
maximum number of daily 
lesson hours. 

Hard and soft time 
conflict constraints

They allow one i) not to deliver simultaneously lessons of 
couples of courses for which this is forbidden (hard-time 
conflict); (ii) to detect soft time-conflict occurrences 
between a compulsory course and a non-compulsory 
course, of the same year for a certain curriculum, that are 
taught during the same semester.

i) 
Hard; 
ii)
Soft

Conflicts (hard): Lectures of 
courses in the same 
curriculum or taught by the 
same teacher must be all 
scheduled in different periods.

We have two kinds of 
conflicts among courses of 
the same curriculum: one 
hard and one soft. They are 
used to define Soft 
Constraints objective.

Starting and ending 
hours of compulsory 
course constraints and 
First and last lesson 
time slots constraints
and Daily lecture 
delivering constraints

They allow one i) to detect, for each semester and for each 
weekday, the first and last time slots when the lesson of a 
compulsory course is delivered; (ii) to calculate, for each 
weekday of a semester and for each course taught during 
the semester, when the first lesson of the course starts and 
when the last lesson of the same course ends.

Soft CurriculumCompactness
(soft): Lectures belonging to 
a curriculum should be 
adjacent to each other (i.e., in 
consecutive periods).

These constraints allow the 
calculation of the objectives 
related to Student flow and 
Smoothing. These kinds of 
objectives are new in the 
curriculum-based 
timetabling arena.

Fig. 1 Comparison between the constraints in our model and those in the literature

report a comparison between the (hard and soft) constraints reported in this paper
and those from the literature (in particular in the curriculum-based course timetabling
problem as treated in the international competition).

4 The Case Study

We applied our timetable model to timetabling a subset of the courses of a two
semesters academic year of our faculty (the Faculty of Engineering at the University
of Rome “Tor Vergata,” Rome, Italy). The case study is related to a project of our
University in which the goal was to consider both traffic congestion due to student
flow and quality of the timetable. The case study considers 5 bachelor degree curric-
ula in Management Engineering, each one organized in three years and two semesters
per year, a set of 55 courses, and the availability of a set of 34 rooms of different size
(capacity). Table 5 lists rooms availability with related capacities.

Both curricula and courses have different amount of student enrolled. In particular,
we consider a curriculum with many students enrolled (large size), two medium size
curricula and other two of small size. Table 6 lists the number of students enrolled in
each curriculum, for each semester and for each year.

In general, a course is taught for more than one curriculum, and the courses with
a large number of students (greater than 200) are subdivided into a set of channels,
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Table 5 Number of rooms of
distinct capacities Capacity Number of rooms

234 4

165 6

135 5

123 2

83 2

70 1

62 4

54 9

45 1

Total 34

each one followed by at most 200 students (typically such courses serve also other
curricula besides those considered in our case study): two courses are subdivided
into six channels, one course into three channels and one into two channels, while
all the other courses have only one channel. Recall that all the channels of a course
require their lessons to be delivered simultaneously on distinct rooms. Table 7 lists
the number of courses with respect to the students enrolled.

Courses also differ in compulsory and non-compulsory, delivering period, and
according to lesson hours per week. Table 8 lists the number of courses with respect
to the curricula and Table 9 shows the number of courses based on the other char-
acteristics. Typically, the lessons of courses with 8 or 6 lesson hours per week have
durations of two or three (consecutive) hours, while lessons of the courses with 4
hours per week last exactly two hours; only two (laboratory) courses of 4 hours per
week are in exception with lessons’ duration of four hours (i.e., for these two courses,
there is only one lesson of 4 consecutive hours per week). For each course, the max-
imum number of lesson hours per day is equal to the largest possible duration of its
lessons, and this (along with the minimum durations of course lessons) implies that
there will be at most one lesson per day for each course.

Finally, congestion flow weights are evaluated for each time slot of a weekday,
according to the estimations of different travel times of a typical trip traversing por-
tion of the road network nearby the location of the campus, in relation to different

Table 6 Number of students
enrolled in the given curricula Periods Curricula

Year Semester 1 2 3 4 5

1 1 180 30 20 10 10

2 150 25 18 8 8

2 1 120 20 15 7 7

2 100 18 12 6 6

3 1 90 16 10 5 5

2 80 14 8 4 4
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Table 7 Number of courses per
courses per enrolled student
range

Student range Number of courses

[0, 40] 19

[41, 70] 11

[71, 135] 9

[136, 165] 16∗

Total 55*With 2 in 6 channels, 1 in 3
channels, and 1 in 2 channels

traffic congestion conditions during each hour of a weekday. Congestion flow
weights are scaled in a range between 0 and 10 (the higher is the congestion level
and the larger is the flow weight). Lessons can be delivered during the first ten time
slots of a weekday. The last (number 11) time slot are considered to weight the out-
flow of students enrolled in the very last lectures of a day, assuming that each day
the students leave the campus after the end of last followed lecture. Table 10 reports
the considered congestion flow weights for each time slot (hour) of a weekday. In
particular, the larger values (greater than 7 over 10) are concentrated in the first two
time slot of each day (with the exception of Saturday), where typically we register the
traffic congestion peak hour, while we have the smallest values during the two time
slots (hours) before lunch time (time slot 6). Another traffic congestion peak period
is located after 5:00pm.

We note that the considered case study can be decomposed for the two semesters,
but the model can handle the more general case of annual courses.

5 Experimental Results

In this section, we show the findings of our experimental campaign. Tests were con-
ducted on a PC with processor Inter Core i5 AMD Atlon with 2.4GHz and 2GB
VRAM. The mathematical model described in the previous section has been imple-
mented in the AMPL language and solved by means of the CPLEX solver version
12.3.0.1.

We solved the mathematical model both in a single-objective version using proper
weights for the objectives, i.e., 1 for the target objective (e.g., Student Flow) and 0
otherwise, and in a multi-objective version to evaluate the capability of the model to
reconstruct the Pareto front.

Table 8 Number of courses per
curriculum Curriculum Number of courses (Compulsory courses)

1 31 (19)

2 41 (20)

3 38 (20)

4 32 (24)

5 25 (18)
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Table 9 Courses characteristics
Characteristic Number of courses

Semester 1 19

2 36

Weekly hours 4 29

6 14

8 12

We set a time limit for the computation equal to 3 h.

Single-objective analysis In the left part of Fig. 2, we report the values of the three
objectives when Student Flow is minimized (for ease of presentation, here and
through the values of the objective functions are normalized to 1). The best value
obtained for the latter objective within the time limit is 0.15 and is the lowest than
the other two objective values which are 0.45 and 0.48 for the Soft Conflicts and
Smoothing objectives, respectively. In the right part of Fig. 2, we show the trend
of the Student Flow objective over time. We note that the solver is able to improve
the solution value from 0.71 to 0.15 in about 2 h while in the remaining hour it
was not able to provide further best solutions. The optimality gap at the time limit
was 2.4%.
In Fig. 3, we report a chart related to the best values of the three objectives

when, in turn, they are minimized.
Bi-objective analysis In the following, we report our analysis on bi-objective sce-

narios. Among the three pairs of objectives, in this analysis, we took into account
Student Flow in association with one of the remaining two objectives. Under this
hypothesis, in Fig. 4, we report the Pareto curves obtained by considering Soft
Conflicts vs Student Flow (left chart) and Smoothing vs Student Flow objectives
(right chart), respectively. The values of the objectives reported in the charts have

Table 10 Congestion flow weights

Time slots Times Monday Tuesday Wednesday Thursday Friday Saturday

1 08:30–09:30 9.48 10.00 9.87 9.74 8.83 0.65

2 09:30–10:30 7.58 8.00 7.90 7.79 7.06 0.52

3 10:30–11:30 5.69 6.00 5.92 5.84 5.30 0.39

4 11:30–12:30 0.95 1.00 0.99 0.97 0.88 0.06

5 12:30–12:30 0.95 1.00 0.99 0.97 0.88 0.06

6 13:30–14:00 4.75 5.30 5.45 5.61 5.38 0.78

7 14:00–15:00 3.17 3.53 3.64 3.74 3.58 0.52

8 15:00–16:00 1.58 1.77 1.82 1.87 1.79 0.26

9 16:00–17:00 4.75 5.30 5.45 5.61 5.38 0.78

10 17:00–18:00 6.34 7.06 7.27 7.48 7.17 1.04

11 18:00–19:00 7.92 8.83 9.09 9.35 8.96 1.30
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Fig. 2 Objective function values when student flow is minimized

been obtained as follows. Each bi-objective problem has been solved 100 times by
specific instantiations of the convex combination between the two target (normal-
ized) objectives. In particular, we firstly set to 0 and to 1, respectively, the weights
of the two objectives and then iteratively increased the former and decreased the
latter by an amount of 0.01, respectively. For each test, we stored the values of the
two objectives and drawn a chart in which the R2 vectors so obtained have been
represented in the Cartesian plane.

By the charts, one can note that there is a conflicting behavior of the two pairs
of objectives. In the left chart, we see that the Student Flow values range from 0.15
to 0.23 while the Soft Conflicts values range from 0.16 to 0.45. The ideal point

wolF tnedutSstcilfnoC tfoSgnihtoomS

0.1

0.15

O
bj

ec
tiv

e 
va

lu
es

Fig. 3 Best objective function values when minimizing them individually
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Fig. 4 Pareto curves obtained by considering Soft Conflicts vs Student Flow (left chart) and Smoothing vs
Student Flow objectives (right chart), respectively

with coordinates [0.15, 0.16] has an Euclidean distance from the curve equal to 0.13.
The rationale behind the obtained results is that trying to diminish the effect of the
soft time-conflicts—which means trying to obtain a schedule where the set of non-
compulsory courses is not in conflict with the set of compulsory courses as much as
possible—tends to spread the flow of students in quite a large number of different
daily time slots (hours) and with a consequent increase of the (congested weighted)
Student Flow values. In fact, spreading the student flows on a larger set of time peri-
ods implies the arrival of part of the students at the university during more congested
time periods, i.e., with larger flow weights, and similarly for their return home from
the university. Conversely, as soon as one reduces the weight of the former objective
function, the model tends to produce a timetable that allows the students to arrive and
leave the campus during less congested time slots, therefore decreasing the value of
Student Flow.

As for the right chart, the Smoothing values range from 0.17 to 0.48. The ideal
point with coordinates [0.15, 0.17] has an Euclidean distance from the curve equal to
0.18. We can borrow from the previous chart the same analysis: indeed, for increasing
weights of Smoothing, the model tends to generate a timetable with more or less the
same number of lesson hours during all the weekdays with a consequent increase of
the student flow on more congested time slots in place of a schedule which tries to
minimize the (congested weighted) Student Flow. The latter situation happens when
one reduces the weight associated with Smoothing and, consequently, increases that
of Student Flow objective function.

5.1 Comparison with the Real Practical Timetable

The proposed model is able to provide satisfactorily solutions as compared with
the real scenario under consideration. In fact, its affectiveness can be appreciated
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calculating the objective values of the solution currently adopted at our University;
this can be done by running the model after having properly fixed decision variables
vchrdt and xs

cdt . The results say that the current timetable, i.e., before the introduction
of such a tool, produces a Student Flow value equal to 0.40, a Soft Constraints value
equal to 0.48, and a Smoothing value equal to 0.50. These values, compared with the
results obtained in the previous section, show the benefits of the introduction of our
model.

6 Conclusions and Further Research

In this paper, we tackled a curriculum-based university course timetabling problem.
A real-world application associated with the scenario of the Faculty of Engineering
at the University of Rome “Tor Vergata” has stimulated the definition of a mathemat-
ical program with many specific constraints and a three-objective function aiming at
(i) minimizing the (weighted) flow produced by the students enrolled in the lectures,
(ii) minimizing soft conflicts generated by the possible overlap among compulsory
and non-compulsory courses of the same curriculum, and (iii) smoothing the number
of lecture hours per curriculum within the weekdays. The proposed mixed-integer
program has been implemented and solved by means of a commercial solver and
the experimental findings showed that our modeling proposal is effective in produc-
ing satisfactorily timetables for the considered application. Future research will be
devoted to enlarge the pool of objectives taking into account the desiderata of stu-
dents and teachers by distributing questionnaires to the latter and producing an AHP
analysis from which one can derive proper weights for the objectives and experiment
with the associated scalarized objective function. Also, we plan to formalize the anal-
ysis on the transportation aspects related to the local flow of students generated by the
course timetable considering the impact on the traffic jam in a more comprehensive
area comprising also trajectories of vehicles directed to the university and coming
from further places.
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