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Abstract

We consider the problem of computing the Value Adjustment of European contingent claims when default
of either party is considered, possibly including also funding and collateralization requirements.

As shown in Brigo et al. ([12], [13]), this leads to a more articulate variety of Value Adjustments
(XVA) that introduce some nonlinear features. When exploiting a reduced-form approach for the default
times, the adjusted price can be characterized as the solution to a possibly nonlinear Backward Stochastic
Differential Equation (BSDE). The expectation representing the solution of the BSDE is usually quite
hard to compute even in a Markovian setting, and one might resort either to the discretization of the
Partial Differential Equation characterizing it or to Monte Carlo Simulations. Both choices are compu-
tationally very expensive and in this paper we suggest an alternative method based on an appropriate
change of numeraire and on a Taylor’s polynomial expansion when intensities are represented by means
of affine processes correlated with the asset’s price. The numerical discussion at the end of this work
shows that, at least in the case of the CIR intensity model, even the simple first-order approximation has
a remarkable computational efficiency.

Keywords: Credit Value Adjustment, Defaultable Claims, Counterparty Credit Risk, Wrong Way Risk,
XVA, Affine Processes

1. Introduction

Many financial institutions trade contracts in over-the-counter (OTC) markets, their counterparties
being other financial institutions or corporate clients. However, many of those contracts are subject to
counterparty risk, or in other words, they are subject to some default event that might happen during
their lifetime, concerning the solvency of either one of the parties. These contracts are called defaultable.
Defaultable European options, originally named vulnerable, were the first to be studied, where the credit
risk was coming only from the seller’s potential default. Over the years, two approaches emerged to
evaluate them: the structural approach and the reduced form approach.

Historically, the structural approach came first introduced by Johnson and Stulz in [29] when they
considered the option as the sole liability of the counterparty. In the same framework, in [31] Klein
discussed more general liability structures, in [32] he included interest rate risk, and in [33] he considered
a (stochastic) default barrier depending on the value of the option. More recently, [36] extended this
approach to jump-diffusion models, [27] considered multiple correlations, [18] treated it by using copulas.

Then researchers developed the alternative reduced-form approach. For a comprehensive presentation
of the topic, we refer the reader to [34]. In [19], and the references therein, one can find a general
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overview of the approach for defaultable bonds. Later, the approach’s mathematical framework was
carefully formalized in [5] and [6], and recently [17] and [21] extended it to defaultable claims in Levy
market models.

In the last decade, after the financial crisis of 2008-09, the interest in Counterparty Credit Risk
increased remarkably, and attention focused on building a general framework to define and evaluate the
premium to compensate the risk connected to defaultable products (in particular of Interest Rate Swaps).
This premium took the name of Credit Value Adjustment (CVA) in the seminal paper by Zhu and Pykhtin
[38], and it defines the appropriate reduction of the default-free value of a portfolio, to compensate for
the default risk. This discount became the crucial quantity to take into account when trading derivatives
in OTC markets, spurring much research in the field: see, for instance, [4], [10], [25].

Over the years, other value adjustments were introduced in the contract’s evaluation, leading to the
acronym (X)VA. Here, X stands for D= debt, L= liquidity, F=funding, to include also the risks due to
the default of both parties, funding investment strategies, lack of liquidity. We refer the reader to [26]
for a comprehensive exposition on the matter. In [24], one might find an updated overview of the recent
research directions under investigation, where the authors explain the characterization of the adjusted
value as the solution of a BSDE very well. In a Markovian setting, the connection between bilateral CVA
and Partial Differential Equations (PDEs) is also thoroughly investigated in [15] and further developed
in [16].

In this work, we treat a European claim, whose price is influenced by the default probabilities of either
party as well by liquidity, financing, and collateralization risks when exploiting the intensity approach
for the default times of both parties.

In a remarkable series of papers, ([12], [13], [14]), Brigo et al. describe in detail how introducing all
the value adjustments implies the loss of an explicit expression for the adjusted value. Indeed the BSDE
characterizing the contract’s value is generally nonlinear and hence hardly solvable. It depends on the
asset’s price and many other, possibly correlated, factors such as default intensities, interest rate, stochas-
tic volatility, so that even in a Markovian setting, also the associated PDE becomes extremely difficult
to solve. Hence to provide a numerical approximation, one may resort either to the discretization of the
PDE (see [30]) or to Monte Carlo simulations (as in [13]), which unfortunately result computationally
very expensive for the average computing resources.

We are interested in devising an approximation procedure simple and computationally efficient even
in the presence of many stochastic factors, provided we make some modeling choices. Indeed, we suggest
to view the evaluation expectation as a smooth function of the correlation parameters and to approximate
it by its Taylor polynomial expansion around the zero vector (the independent case), in the hope that
the first or second-order are enough to provide an accurate approximation. We apply our method to
estimate the price contribution that comes from considering stochastic default intensities correlated with
the underlying’s price. We remark, though, that we can straightforward extend the same technique to
include further stochastic factors.

To evaluate Taylor polynomial’s coefficients, we follow a two-step procedure to exploit, whenever pos-
sible, explicit formulae from option and bond’s pricing theory. First, we condition the underlying’s price
with respect to the Brownian motions driving the intensities, retrieving a conditional explicit formula.
Then, assuming the intensities to be described by affine models, we represent the single terms of the ex-
pansion using a change of Numeraire technique (similar to the one in [9]) to disentangle the correlations
between the asset’s price and the default intensities. The affinity of the processes makes it possible to
use a “bond-like” expression for the default component.

To carry out the calculations in detail and to perform the numerical analysis of the method, we restrict
to the Call option and we represent the intensities by two Cox Ingersoll Ross (CIR) processes. The final
section shows the method’s efficiency using Monte Carlo simulations as a benchmark.

A strong point of this approach is that it provides a relatively simple method that one can use with
many correlated processes. Correlation often destroys any affine property the dynamical system might

2



have, making the Riccati equations/Fourier transform framework inapplicable, and one can resort only to
Monte Carlo or PDE’s approximations. Since both are computationally expensive in several dimensions,
the construction of an alternative approach with much shorter computational time and the same accuracy
becomes very important.

Our method is particularly convenient when the correlation structure (as Monte Carlo simulations
show for the CIR model) seems to follow a linear pattern. In this case, a first-order Taylor’s polynomial
is enough to produce an accurate approximation, providing a rather handy evaluation formula. We
finally remark that the conditioning and change of numeraire techniques allow us to keep the coefficients’
approximations to a minimum. The expansion’s zeroth term corresponds to the independent case, and
we need to have a semi-explicit formula to evaluate it. This fact forced us to restrict our model choices.

The paper is structured as follows. In the next section, we describe the general problem leading to
the BSDE characterization under the reduced-form approach. We specify the model and the two-step
evaluation procedure to compute Taylor’s approximation in Section 3, while in Section 4, we specialize
the calculations when the default intensities are CIR processes. Section 5 concerns the numerical analysis
of our results.

2. XVA Evaluation of European claims under the intensity approach

We consider a finite time interval [0, T ] and a complete probability space (Ω,F ,P), endowed with a
filtration {Ft}t∈[0,T ], augmented with the P−null sets and made right continuous. We assume that all
processes have a cádlág version.

The market is described by the interest rate process rt determining the money market account and
by an adapted process Xt representing an asset log-price (we will specify its dynamics later), which may
also depend on additional stochastic factors. We assume

• that the filtration {Ft}t∈[0,T ] is rich enough (and possibly more) to support all the stochastic
processes that describe the market;

• to be in absence of arbitrage;

• that the given probability P is a risk-neutral measure, already selected by some criterion.

In this market model (as in [13]) we consider two parties (I = investor, C = counterparty) exchanging
some European claim with default-free payoff f(XT ), where f is a function (not necessarily nonnegative)
as regular as needed. We take for granted that the market processes fulfill the necessary integrability
hypotheses to guarantee a good definition of all the expectations we are going to write.

Both parties might default, due to some critical credit state, at respective random times τ1 (Counter-
party) and τ2 (Investor), which are not stopping times with respect to the filtration Ft. In this context
we define the filtration Gt = Ft ∨ H1

t ∨ H2
t , where Hit = σ(1{τ i≤s}, s ≤ t), i = 1, 2, which is the smallest

filtration extension that makes both random variables stopping times. Moreover, we assume there exists
a unique extension of the risk-neutral probability to Gt, that we keep denoting by P.

In general, the following fundamental assumption, known as the H-hypothesis (see e.g. [23] and [22]
and the references therein), ensures price coherence:

(H) Every Ft−martingale remains a Gt− martingale.

By Lemma 7.3.5.1 in [28], (H) is automatically satisfied, under square integrability of the payoff, by the
default-free price of any European contingent claim, whence we may affirm that

e
∫ t
0
rudueXt = E(e

∫ T
0
rudueXT |Ft) = E(e

∫ T
0
rudueXT |Gt)

e
∫ t
0
ruduc(t, T ) := E(e

∫ T
0
ruduf(XT )|Ft) = E(e

∫ T
0
ruduf(XT )|Gt)
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remain Gt− martingales under P, for all t ∈ [0, T ].
In what follows, to stress the significance of the term “adjustment”, we will point the corrections out

step by step, with their signs determined by the fact that we are taking the investor’s viewpoint.
We start assuming full knowledge that is we are in the Gt− filtration. The contract makes sense only

if the default of either party has not occurred yet at the evaluation time t. Denoting by τ = min(τ1, τ2),
this fact is represented by the indicator function 1{τ>t} to be placed in front of the price.

Either party may default, so a bilateral adjustment is needed. For the moment we assume nothing
is recovered at default. Denoting by CVA0(t, T ) the Credit Value Adjustment due to the counterparty’s
default, this quantity has to act as a discount to the default-free price to balance the investor’s risk
assumption. On the other hand, the Debt Value Adjustment due to the investor’s default, DVA0(t, T ),
has to act as an accrual of the default-free price as it compensates the counterparty’s risk assumption.
So, for the Gt−adapted adjusted value of the European claim cG(t, T ), we may write

1{τ>t}c
G(t, T ) = 1{τ>t}

[
c(t, T )− CVA0(t, T ) + DVA0(t, T )

]
, (1)

where CVA0(t, T ) and DVA0(t, T ) ≥ 0.
Now, let us admit the defaulting party might partially compensate for the loss due to his/her default.

In this case, we have to include other two nonnegative terms, CVArec(t, T ) and DVArec(t, T ) (respectively
for the counterparty and the investor), and we can rewrite the above as

1{τ>t}c
G(t, T ) = 1{τ>t}

[
c(t, T )− CVA0(t, T ) + DVA0(t, T ) + CVArec(t, T )−DVArec(t, T )

]
.

Moreover, as explained in [14], the two parties might be asked to collateralize their participation to the
contract, they might need to borrow money to finance this participation and/or the risky asset(s) from a
repo market to rea,lize their hedging strategies. All this leads to funding and liquidity risks that, again,
have to be included for the correct contract’s evaluation. Thus, we should write

1{τ>t}c
G(t, T ) =1{τ>t}

[
c(t, T )− CVA0(t, T ) + DVA0(t, T )

+ CVArec(t, T )−DVArec(t, T ) + FVA(t, T ) + LVA(t, T )
]
,

(2)

with FVA(t, T ), LVA(t, T ) ∈ R.The first represents the Funding Value Adjustment, the second the Liq-
uidity Value Adjustment, and they are both determined by strategy financing and collateralization.

It is then necessary to model these terms to get to a manageable formula. The range of possible
choices of mechanisms to include in the formation of prices is quite broad, and we refer the reader again
to [12], [13] and [14] for a detailed discussion. Of course, there is an interplay among the different cash
flows. For instance, collateralization changes the parties’ exposures, the amount of cash borrowed at rate
rφ increases its value at a rate rs.

Here we use the following set of assumptions.

1. The claim pays no dividends.
2. The adjustment processes all depend on a close-out value, εt, determined by a contractual agree-

ment. It is natural to consider it Ft−adapted since it is established on the basis of the information
before default. Usually, it is taken as the default-free price or as the price of the defaultable claim
itself.

3. We denote the collateralization process by Cs and it is a, possibly time-varying, percentage of the
close-out value

Cs =

{
αsε

+
s , when due by the counterparty

αsε
−
s , when due by the investor

0 < αs < 1, ∀s ∈ [0, T ]. (3)

Thus the net exposure is (εs −Cs)+ = (1− αs)ε+s for the investor and (εs −Cs)− = (1− αs)ε−s for
the counterparty. Moreover, the rate for collateralization is rcs.
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Symbol Definition Symbol Definition
rt Risk-free rate τ1 Default time Counterparty

rφt Funding rate τ2 Default time Investor
rct Collateral rate εt Close-out value
ht Hedging rate λit Default intensities
αt collateralization level f(·) Option payoff

Ri(t) Recovery rates i = 1, 2 v̄t
∫ T
t
vsds

r̃t rφt − ht r̂t rφt − rct

Table 1: Summary of notations.

4. R1(s) and R2(s) denote the close-out value recovery percentage in case of Counterparty’s or In-
vestor’s default. Similarly, the Losses Given Default are Li(s) = (1−Ri(s)), i = 1, 2.

5. To construct investing strategies, the parties may invest in the riskless asset at a rate rφ and in
the risky asset(s) on a parallel repo market at a rate ht. We denote by φu the quantity of riskless
asset, and by Ht the value of the portion of the risky asset(s) that hedging the contract requires.
Both can be either positive or negative. At the same time φ generates wealth at a rate rs and H
at a rate rφ. This aspect will have to be taken into account, too.

As we said, the recovery and the collateral agreements are usually fractions of the close-out value
hence they should be Ft−adapted. On the contrary, the funding and hedging processes (φ,H) could be
a priori Gt−adapted, since they might incorporate a contribution from the default events.

Finally, the price must verify
cG(t, T ) = φt +Ht + Ct. (4)

Following the crystal clear exposition in [13] (or in [12] and [14]), keeping in mind hypothesis (H) and
(4), one can obtain the following BSDE in the G−filtration

1{τ>t}c
G(t, T ) = 1{τ>t}

{
E
[
e−

∫ T
t
ruduf(XT )1{τ>T}

∣∣Gt]
+ E

[
e−

∫ τ
t
rudu1{τ≤T}

(
ετ−(1− ατ )

[
L1(τ)ε+τ 1{τ1=τ}−L2(τ)ε−τ 1{τ2=τ}

])∣∣∣Gt]
+

[∫ τ∧T

t

e−
∫ s
t
rudu

{
[rs − rφs ]cG(s, T )ds+ [rφs − rcs]Cs + [hs − rs]Hs

}
ds
∣∣∣Gt]}.

(5)

The random variables τ i, i = 1, 2, are not Ft−stopping times. Indeed, traders can only observe whether
the default events happened or not, conditioned to the available information. Thus, any risk-neutral
evaluation that would naturally take place in the G−filtration needs translating in terms of {Ft}. For
that, we have the following well known Key Lemma, to be found in [6] or [4], just to quote some references.

Lemma 2.1. Given a Gt−stopping time τ , for any integrable GT−measurable r.v. Y the following equality
holds

E
[
1{τ>t}Y |Gt

]
= 1{τ>t}

E
[
1{τ>t}Y |Ft

]
P(τ > t|Ft)

. (6)

This Lemma calls for the conditional distributions of the default times that we are going to treat
within the (Cox) reduced-form framework. We denote the random times’ conditional distributions by

F it = P(τ i ≤ t|Ft), i = 1, 2 ∀ t ≥ 0, (7)
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and we assume that they both verify F it < 1. Hence we can define the corresponding F- hazard processes
of the τ i’s as

Γit := − ln(1− F it ) ⇒ F it = 1− e−Γit ∀ t > 0, Γ0 = 0. (8)

We assume them to be differentiable, implying the existence of Ft−adapted intensity processes λi such
that

Γit =

∫ t

0

λiudu ⇒ F it = 1− e−
∫ t
0
λiudu.

As in the classical framework of [20], we assume the default times are conditionally independent

P(τ1 > t1, τ
2 > t2|Ft) = P(τ1 > t1|Ft)P(τ2 > t2|Ft), ∀t > 0, t1, t2 ∈ [0, t].

Thus we may conclude that λt := λ1
t + λ2

t is the intensity process of τ = inf{τ1, τ2}.

Remark 2.2. It is worth noting that the independence assumption certainly simplifies computations, but
it does not take into consideration default contagion effects. Within the intensity framework, more realistic
models allowing default dependence were recently proposed (see [7], [8] and the references therein), and
we remark that we could extend our method to the correlated case, provided we introduce an additional
parameter.

Exploiting the Key Lemma and the intensity processes as in [3], the above equation gets projected on
the smaller filtration, obtaining

1{τ>t}c
G(t, T ) = 1{τ>t}E

[
e−

∫ T
t

(ru+λu)duf(XT )

+

∫ T

t

e−
∫ s
t

(ru+λu)du
[
λsεs − (1− αs)

(
λ1
sL1(s)ε+s − λ2

sL2(s)ε−s
)]
ds

+

∫ T

t

e−
∫ s
t

(ru+λu)du
[(
rs − rφs

)
cG(s, T ) +

(
rφs − rcs

)
αsεs + (hs − rs)Hs

]
ds
∣∣∣Ft].

(9)

Applying the Key Lemma and its extension (Lemma 2 in [13]) to (9), we may conclude that there exists
an Ft−adapted adjusted price of the European claim, ca(t, T ) and an adapted hedging strategy (the part
hedging the default-free risks) H̃ such that

ca(t, T )1{τ>t} = cG(t, T )1{τ>t}, H̃t1{τ>t} = Ht1{τ>t}.

Hence on {τ > t} we have

1{τ>t}c
a(t, T ) = 1{τ>t}E

[
e−

∫ T
t

(ru+λu)duf(XT )

+

∫ T

t

e−
∫ s
t

(ru+λu)du
[
λsεs − (1− αs)

(
λ1
sL1(s)ε+s − λ2

sL2(s)ε−s
)]
ds

+

∫ T

t

e−
∫ s
t

(ru+λu)du
[(
rs − rφs

)
ca(s, T ) +

(
rφs − rcs

)
αsεs + (hs − rs)H̃s

]
ds
∣∣Ft]

(10)

Remark 2.3. Following [14], a few issues about the above BSDE need addressing.

1. We remark that the above equation has a unique strong solution, if the intensities and the close-
out value are square-integrable and the processes r, rc, rφ, h are bounded. This is going to be our
standing set of assumptions.
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2. The process H̃t is linked to the solution of the BSDE. If we restrict to a diffusion setting with
deterministic coefficients, the theory of BSDEs gives an explicit representation for this process. To
deal with it, we extend the observation made in [14] when they assume deterministic intensities.
More precisely, we assume that the stock price, Su = eXu , and the intensities processes, under the
given risk-neutral probability, verify

dSu =ruSudu+ σ(t, Su)dYu, and

dλiu =ai(u, λ
i
u)du+ bi(u, λ

i
u)dBiu, i = 1, 2,

for correlated Brownian motions Y,B1, B2 and deterministic coefficients σ(u, x), ai(u, λ), bi(u, λ)
chosen to ensure the existence and uniqueness of strong solutions. Then (10) can be equivalently
written on {τ > t} as

e−
∫ t
0

(ru+λu)duca(t, T ) = ca(0, T ) +

∫ t

0

ZsdYs +Mt

−
∫ t

0

e−
∫ s
0

(ru+λu)du
[
λsεs − (1− αs)

(
λ1
sL1(s)ε+s − λ2

sL2(s)ε−s
)]
ds

−
∫ t

0

e−
∫ s
0

(ru+λu)du
[(
rs − rφs

)
ca(s, T ) +

(
rφs − rcs

)
αsεs + (hs − rs)H̃s

]
ds,

(11)

where Z is the component of the solution of the BSDE coming from the martingale representation
theorem, while M is a martingale depending on the intensities and possibly on some other stochastic
factors (again represented by diffusions). In this context, ca(t, T ) is a deterministic function of the
state variables, and if it is regular enough, H̃ represents the δ−hedging of the contract given by

H̃u =
∂ca(u, T )

∂S
Su.

On the other hand, Itô’s formula implies that Z is also given by

Zu = σ(u, Su)
∂ca(u, T )

∂S
whence H̃u =

Su
σ(u, Su)

Zu,

provided that σ(u, x) > 0 for all u, x.

In addition to the hypotheses stated in remark 1., we assume that

0 < σ0x ≤ σ(u, x) ≤ σ1x, ∀u, x

for some constants σ0 and σ1.
As in [13] or [14], this implies, that we may apply Girsanov’s theorem to change the Brownian motion

driving the above BSDE to include the term H̃. Indeed,

Bt = Yt +

∫ t

0

(ru − hu)
Su

σ(u, Su)
du

is a new Brownian motion with respect to the probability defined by the Radon-Nykodim derivative

dQ
dP

= e
−

∫ T
0

(ru−hu) Su
σ(u,Su)

dYu+ 1
2

∫ T
0

(ru−hu)2
S2
u

σ2(u,Su)
du
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which verifies the Novikov condition. Consequently, under Q the asset price equation and (11) become

dSt = Sthtdt+ σ(t, St)dBt

e−
∫ t
0

(ru+λu)duca(t, T ) = ca(0, T ) +

∫ t

0

ZsdBs +Mt

−
∫ t

0

e−
∫ s
0

(ru+λu)du
[
λsεs − (1− αs)

(
λ1
sL1(s)ε+s − λ2

sL2(s)ε−s
)]
ds

−
∫ t

0

e−
∫ s
0

(ru+λu)du
[(
rs − rφs

)
ca(s, T ) +

(
rφs − rcs

)
αsεs

]
ds.

(12)

Passing again to the conditional expectation and multiplying both sides by e
∫ t
0

(ru+λu)du, we obtain

1{τ>t}c
a(t, T ) = 1{τ>t}EQ

[
e−

∫ T
t

(ru+λu)duf(XT )

+

∫ T

t

e−
∫ s
t

(ru+λu)du
[
λsεs − (1− αs)

(
λ1
sL1(s)ε+s − λ2

sL2(s)ε−s
)]
ds

+

∫ T

t

e−
∫ s
t

(ru+λu)du
[(
rs − rφs

)
ca(s, T ) +

(
rφs − rcs

)
αsεs

]
ds
∣∣Ft].

(13)

The latter equation is linear, or nonlinear depending on the choice of εs. In the literature, there are
fundamentally two possibilities: either εs = c(s, T ) (the default-free value of the claim) or εs = ca(s, T ).

The first choice will always give a solvable linear BSDE. With the second choice, we might obtain a
solvable linear BSDE if the adjusted value has constant sign otherwise, the negative and positive parts
generate a nonlinear, not explicitly solvable, BSDE.

Here, we always choose εs = c(s, T ) (that corresponds to asking collateralization proportional to the
default-free price rather than to the current price) to guarantee the solvability of the BSDE. This choice
will help us exploit some explicit formulas from the classical literature.

Consequently, (13) becomes

1{τ>t}c
a(t, T ) = 1{τ>t}EQ

[
e−

∫ T
t

(ru+λu)duf(XT ) +

∫ T

t

e−
∫ s
t

(ru+λu)du
[
Ψs + (rs − rφs

)
ca(s, T )

]
ds
∣∣Ft],

where
Ψs =

[
λs + (rφs − rcs)αs

]
c(s, T )− (1− α)

[
λ1
sL1(s)c(s, T )+ − λ2

sL2(s)c(s, T )−
]
.

The equation is linear and it can be solved, obtaining

1{τ>t}c
a(t, T ) = 1{τ>t}EQ

[
e−

∫ T
t

(rφu+λu)duf(XT ) +

∫ T

t

e−
∫ s
t

(rφu+λu)duΨsds
∣∣Ft]. (14)

One can push the above equation to further generality, by considering distinct collateral rates, recovery
processes, and close-out values for the two parties. These generalizations, though, do not introduce any
additional mathematical complexity. Indeed, the nonlinearity of the equation is crucially determined by
the recovery terms, when the close-out value is chosen equal to the adjusted price.

Remark 2.4. The contribution to the price coming from funding, collateralization, rehypothecation is not
irrelevant. Indeed, if those features are present, even in absence of default (which implies that default-free
and close-out value coincide), (13) has the explicit solution

ca(t, T ) = EQ

[
e−

∫ T
t

[(1−αu)rφu+αur
c
u]duf(XT )

∣∣Ft],
which reduces to the usual Black & Scholes formula only if all the rates coincide with the risk-free one.
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From now on, we always refer to (14) and, to lighten notation, we omit the probability Q as subindex
of the expectation. In the next section, we introduce the market model, and in the next ones, we outline
our evaluation procedure by steps.

3. The evaluation procedure

In what follows, we specify the market model, where the asset price is a stochastic exponential, and
the default intensities are assumed to be affine processes. Then, we illustrate a conditioning procedure
that helps us exploit explicit expressions for the default-free price, as in the case of European Vanilla
Options or Futures. Finally, we apply a change of Numeraire that allows using the well-known expression
for Zero-Coupon Bonds for affine models. This last step helps to disentangle the contribution due to the
intensities and the one coming from the derivative.

In section 4, we specialize this procedure when the intensities are CIR processes. In that setting, we
will be able to derive semi-explicit formulas that we approximate by Taylor’s expansion with respect to
the correlation parameters.

3.1. The model

We keep denoting by t ∈ [0, T ] the initial time, and we make the following simplifying hypotheses:

1. all the rates, r, rc, rφ, h are deterministic;

2. for i = 1, 2, (1− α)Li are constant and we keep denoting them simply by Li.

So in (14) we have Ψs =
[
λs + (rφs − rcs)α

]
c(s, T ) −

[
λ1
sL1c(s, T )+ − λ2

sL2c(s, T )−
]
. For fixed initial

conditions (t, x, λ1, λ2) ∈ R+ × R× R+ × R+, ∀s ∈ [t, T ], our fundamental processes verify

Xs = x+

∫ s

t

(hu −
σ2

2
)du+ σ(Bs −Bt) x ∈ R (15)

λis = λi +

∫ s

t

[γiuλ
i
u + βiu]du+

∫ s

t

[ηiuλ
i
u + δiu]

1
2 dBiu, λi > 0, i = 1, 2. (16)

We take σ > 0, r, γi, βi, ηi, δi, i = 1, 2 bounded deterministic functions of time, while (B1, B2, B3) is a
3-dimensional Brownian motion, with

Bs = ρ1B
1
s + ρ2B

2
s +

√
1− ρ2

1 − ρ2
2B

3
s , ρ2

1 + ρ2
2 ≤ 1.

The processes Xs, λ
1
s, λ

2
s are jointly Markovian, therefore c(s, T ) and ca(s, T ) are deterministic functions

respectively of the state variables X and (X,λ1, λ2), which also depend on the correlation parameters
ρ = (ρ1, ρ2).

For any t ≤ s ≤ T , we define the processes

Ni(u, s) := E(e−
∫ s
t
λivdv|Fu), i = 1, 2, (17)

which are martingales for t ≤ u ≤ s. Having chosen the intensities as affine processes, we have the explicit
expressions

Ni(t, s) = eAi(t,s)λi+Bi(t,s) ⇒ Ni(u, s) = eAi(u,s)λi+Bi(u,s)−
∫ u
t
λivdv, (18)

where λi is the initial condition of the intensity and Ai and Bi are deterministic functions verifying a set
of Riccati equations. We remark that by independence of the intensities we also have

N(u, s) := E(e−
∫ s
t
λvdv|Fu) = E(e−

∫ s
t

(λ1
v+λ2

v)dv|Fu) = N1(u, s)N2(u, s),

9



which is still a martingale as product of independent martingales. By applying Itô’s formula, the dynamics
of these martingales are given by

dNi(u, s) = Ni(u, s)Ai(u, s)(η
i
uλ

i
u + δiu)

1
2 dBiu

dN(u, s) = N(u, s)
[
A1(u, s)(η1

uλ
1
u + δ1

u)
1
2 dB1

u +A2(u, T )(η2
uλ

2
u + δ2

u)
1
2 dB2

u

]
.

(19)

In some classical specifications of the affine modeling framework:

• γiu = −γi, βi(λ) = γiθi, δiu = δ2
i , ηiu = 0 (Vasicek)

• γiu = −γi, βi(λ) = γiθi, δiu = 0, ηiu = η2
i (CIR),

for γi, θi, i = 1, 2 positive constants, it is possible to compute Ai(t, s) and Bi(t, s) in closed form.

3.2. Conditioning

In this subsection, we express an alternative formulation for the expectations in (14), useful to exploit
(conditionally) when possible, the explicit formula for the default-free price. To simplify notation, from
now on we denote by Et the conditional expectation with respect to Ft.

Since the interest rate rφ is deterministic, we rewrite (14) as

1{τ>t}c
a(t, T ) =1{τ>t}

{
e−

∫ T
t
rφuduEt

(
e−

∫ T
t
λuduf(XT )

)
+

∫ T

t

e−
∫ s
t
rφuduEt

(
e−

∫ s
t
λuduΨs

)
ds
}

(20)

and we focus on the inner expectations.

Proposition 3.1. Let

Ats = FB
1,B2

s ∨ Ft = σ({B1
u, B

2
u, u ≤ s}) ∨ Ft, t ≤ s ≤ T.

Then
Et
[
e−

∫ T
t
λuduf(XT )

]
= e

∫ T
t
huduEt

[
e−

∫ T
t
λuduE

(
e−

∫ T
t
huduf(XT )

∣∣∣AtT)],
where XT

∣∣∣AtT ∼ N(ζT (ρ) +

∫ T

t

(
hudu−

Σ2(ρ)

2

)
du; Σ2(ρ)(T − t)

)
and

ζT (ρ) = x+ σ(B1
T −B1

t )ρ1 + σ(B2
T −B2

t )ρ2 −
σ2|ρ|2

2
(T − t), Σ(ρ) = σ

√
1− |ρ|2.

Proof: From (15) the log-price at time T is

XT = ζT (ρ) +

∫ T

t

hudu+ Σ(ρ)(B3
T −B3

t )− Σ2(ρ)

2
(T − t),

and a simple application of the conditional expectation’s tower-property gives

Et
[
e−

∫ T
t
λuduf(XT )

]
= Et

[
E
(

e−
∫ T
t
λuduf(XT )

∣∣∣AtT)] = Et
[
e−

∫ T
t
λuduE

(
f(XT )

∣∣∣AtT)]
= e

∫ T
t
huduEt

[
e−

∫ T
t
λuduE

(
e−

∫ T
t
huduf(XT )

∣∣∣AtT)]. 2

10



3.3. Changing Numeraires

As a final step to evaluate the expectations Et in the previous expression, we apply the following
family of changes of probability

dQs

dQ

∣∣∣
Fs

=
N(s, s)

N(t, s)
, (21)

defining the s−forward measures, for any t ≤ s ≤ T . Recalling (19), by Girsanov’s theorem under Qs,

W i
v = Biv −

∫ v

t

Ai(u, s)(η
i
uλ

i
u + δiu)

1
2 du, i = 1, 2, t ≤ v ≤ s

define independent Brownian motions. The market dynamics, for t ≤ v ≤ s ≤ T , become

Xv = x+

∫ v

t

(
hu −

σ2

2
+ σ

∑
i=1,2

ρiAi(u, s)(η
i
uλ

i
u + δiu)

1
2

)
du+ σ(Ws −Wt) (22)

λiv = λi +

∫ v

t

[
(γiu +Ai(u, s)η

i
u)λiu + (βiu +Ai(u, s)δ

i
u)
]
du+

∫ v

t

[ηiuλ
i
u + δiu]

1
2 dW i

u, (23)

where (W 1,W 2, B3) is a 3-dimensional Brownian motion, on [t, s] with

Wv = ρ1W
1
v + ρ2W

2
v +

√
1− ρ2

1 − ρ2
2B

3
v , ρ2

1 + ρ2
2 ≤ 1

and we may conclude that the affine structure of the model is preserved.
We remark that for each fixed s, different Brownian motions are generated. We keep denoting them

in the same manner, as they all have the same distributional properties.
In conclusion, for any t ≤ s ≤ T and any Fs−measurable random variable Y , we have

Et
(

e
∫ s
t
λuduY

)
= N(t, s)Est

(
Y
)
, (24)

where Est denotes the expectation under Qs.

4. Semiexplicit formulae

In this section, we restrict our analysis to a European call with strike price eκ, κ ∈ R, and maturity
T, for which we will be able to exploit conditionally the Black & Scholes formula. We remark that by
exploiting the put-call parity, it is possible to extend the evaluation to forward contracts.

Both intensities are described by CIR processes verifying Feller’s condition in order to guarantee their
positivity. By contrast, we do not consider the Vasicek model appropriate to represent intensities, even
though it has been previously employed in credit risk modeling (see for instance [21]) as it allows writing
very computable explicit formulas.

4.1. The CIR specification

In this case, the dynamics of the market, for any t ≤ s ≤ T , are given by

Xs = x+

∫ s

t

(
hu −

σ2

2

)
du+ σ(Bs −Bt) (25)

λis = λi +

∫ s

t

γi(θi − λiu)du+ ηi

∫ s

t

√
λiudB

i
u, i = 1, 2. (26)

11



We denote by r̃u = rφu − hu and , r̂u = rφu − rcu, and we have to compute

1{τ>t}c
a(t, T ) = 1{τ>t}

{
e−

∫ T
t
r̃uduEt

[
e−

∫ T
t
λudue−

∫ T
t
huduf(XT )

]
+

∫ T

t

e−
∫ s
t
rφuduEt

[
e−

∫ s
t
λuduΛsc(s, T )

]
ds

}
,

(27)

where Λs = λs + αr̂s − L1λ
1
s.

Proposition 4.1. Let f(x) = (ex − eκ)+ and

c(s, T ) ≡ c(s, T )+ = cBS(Xs, s, v̄s, σ)

cBS(x, s, v̄s, σ) = exN
(
d1(x, s, v̄s, σ)

)
− eκ−v̄sN

(
d2(x, s, v̄s, σ)

)
d1,2(x, s, v̄s, σ) =

x− κ+ v̄s ± σ2

2 (T − s)
σ
√

(T − s)
,

where we denoted by v̄s =

∫ T

s

vudu, for any v : [0, T ] −→ R. Then we have

1{τ>t}c
a(t, T ;ρ) = 1{τ>t}

{
e−

∫ T
t
r̃uduEt

[
e−

∫ T
t
λuducBS

(
ζT (ρ), t, h̄t,Σ(ρ)

)]
+

∫ T

t

e−
∫ s
t
rφuduEt

[
e−

∫ s
t
λuduΛscBS

(
Xs(ρ), s, r̄s, σ

)]
ds

}
.

(28)

Proof: Applying inside the first expectation the conditioning with respect to AtT , we obtain

Et
[
e−

∫ T
t
λudue−

∫ T
t
huduf(XT )

]
= Et

[
Et
(

e−
∫ T
t
λudue−

∫ T
t
huduf(XT )|AtT

)]
=Et

[
e−

∫ T
t
λuduEt

(
e−

∫ T
t
huduf(XT )

∣∣∣AtT)] = Et
[
e−

∫ T
t
λuducBS

(
ζtT (ρ), t, h̄t,Σ(ρ)

)]
.

We may view the second expectation in (27) as Et
[
e−

∫ s
t
λuduΛscBS(Xs(ρ), s, r̄s, σ)

]
where, setting M i

s =

Bis −Bit, for i = 1, 2 and t ≤ s ≤ T , we have

Xs(ρ) = x+

∫ s

t

(
hu −

σ2

2

)
du+ σ

(
M1
s ρ1 +M2

s ρ2 +M3
s

√
1− |ρ|2

)
.

Consequently, we have

d1,2(ζT (ρ), t, h̄t,Σ(ρ)) =


[
d1(x, t, h̄t, σ) +

M1
T

σ
√
T−tρ1 +

M2
T

σ
√
T−tρ2 − σ

√
T − t|ρ|2

]
1√

1−|ρ|2[
d2(x, s, h̄t, σ) +

M1
T

σ
√
T−tρ1 +

M2
T

σ
√
T−tρ2

]
1√

1−|ρ|2
.

Pointing out the dependence on ρ of ca(t, T ), we get (28). 2

We want to approximate (28) by Taylor’s expansion with respect to the correlation parameters ρ =
(ρ1, ρ2) around 0 = (0, 0) on {τ > t}.

Remark 4.2. For the sake of exposition, we restrict our discussion to the first-order expansion. This
approximation might be accurate if the model has a roughly linear dependence upon the correlation pa-
rameters. Monte Carlo simulations showed that was the case in the CIR intensity setting (section 5),
and indeed the accuracy of our method turned out to be very good. If the dependence on the correlation
parameters is more markedly nonlinear, one may develop Taylor’s polynomial to a higher order to capture
this behavior. We computed fully also a second-order formula: it is computationally longer, but it does
not present any additional theoretical complexity. We did not report it here to keep the exposition light.
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The first-order approximation then is

ca(t, T ;ρ) ≈ ca(t, T ;0) +
∂ca(t, T ;0)

∂ρ1
ρ1 +

∂ca(t, T ;0)

∂ρ2
ρ2.

Since the integrability conditions are satisfied, the derivatives pass under the integral and expectation
signs, and the problem reduces to computing the derivatives with respect to the correlation parameters
of cBS

(
ζT (ρ), t, T,Σ(ρ)

)
and cBS

(
Xs(ρ), s, T, σ

)
and evaluating them at 0. After some calculations, one

arrives at the following expressions

cBS
(
ζT (ρ), t, h̄t,Σ(ρ)

)
≈ cBS

(
x, t, h̄t, σ

)
+ σexN

(
d1(x, t, h̄t, σ)

)[
M1
T ρ1 +M2

T ρ2

]
,

cBS
(
Xs(ρ), s, r̄s, σ

)
≈ cBS

(
Xs(0), s, r̄s, σ

)
+ σeXs(0)N

(
d1(Xs(0), s, r̄s, σ)

)[
M1
s ρ1 +M2

s ρ2

]
,

to be plugged into (27), and each term is going to be computed following the procedure outlined in the
previous section. Exploiting the independence between Xs(0) and B1, B2, we have

ca(t, T ;ρ) ≈e−
∫ T
t
r̃udu

{
N(t, T )cBS

(
x, t, h̄t, σ

)
+σexN

(
d1(x, t, h̄t, σ)

)
Et
[
e−

∫ T
t
λudu(M1

T ρ1+M2
T ρ2)

]}

+

∫ T

t

e−
∫ s
t
rφudu

{
Et
[
e
∫ s
t
λuduΛs

]
Et
[
cBS

(
Xs(0), s, r̄s, σ

)]
+ σEt

[
eXs(0)N

(
d1(Xs(0), s, r̄s, σ)

)] 2∑
i=1

Et
(

e−
∫ s
t
λuduΛsM

i
s

)
ρi

}
ds

and we now have to compute each single expectation. We proceed by steps, showing that we may restrict
to some basic cases.

1. Noticing that

M3
s ∼ N(0;σ2(s− t))

Xs(0) = x+

∫ s

t

(hu −
σ2

2
)du+M3

s ∼ N
(
x+

∫ s

t

(hu −
σ2

2
)du;σ2(s− t)

)
,

di(Xs(0), s, r̄s, σ) =
Xs(0)−k+ r̄s ± σ2

2 (T − s)
σ
√
T−s

=
M3
s√

T−s
+di(x, s, r̄s, σ) +

1

σ
√
T−s

∫ s

t

(hu −
σ2

2
)du

∼ N
(
di(x, s, r̄s, σ) +

1

σ
√
T−s

∫ s

t

(hu −
σ2

2
)du,

s− t
T − s

)
, i = 1, 2

Et
[
cBS

(
Xs(0), s, r̄s, σ

)]
= Et

[
eXs(0)N

(
d1(Xs(0), s, r̄s, σ)

)]
− eκ−r̄sEt

[
N
(
d2(Xs(0), s, r̄s, σ)

)]
,

we have that the Gaussian integrals can be computed explicitly

Et
[
eXs(0)N

(
d1(Xs(0), s, r̄s, σ)

)]
=ex+

∫ s
t
huduN

(
d1(x+ (r̄s − h̄s), t, h̄t, σ)

)
Et
[
N
(
d2(Xs(0), s, r̄s, σ)

)]
=N

(
d2(x+ (r̄s − h̄s), t, h̄t, σ)

)
,

by applying the following
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Lemma 4.3. Let p ∈ R and X ∼ N(µ, ν2), then

E(epXN (X)) = epµ+
(pν)2

2 N
(
µ+ pν2

√
1 + ν2

)
where by N we denote the standard Normal distribution function.

Proof: When p = 0 we refer the reader to [37], while the general case follows by a “completing the
squares” argument. �

Therefore, we may conclude that

Et
[
cBS

(
Xs(0), s, r̄s, σ

)]
= e−(r̄s−h̄s)+

∫ s
t
huducBS

(
x+ (r̄s − h̄s), t, h̄t, σ

)
(29)

2. It remains to evaluate the expectations

Et
(

e−
∫ s
t
λuduΛs

)
, Et

(
e−

∫ s
t
λudu(Bis −Bit)

)
, Et

(
e−

∫ s
t
λuduΛs (Bis −Bit)

)
i = 1, 2.

Recalling that Λs = λs + αr̂s − L1λ
1
s, the above expressions reduce to computing

Et
[
e−

∫ s
t
λudu(λis)

α(Bjs −B
j
t )
k
]

for i, j = 1, 2, and α, k = 0, 1. To do so, we apply the change of Numeraire described in subsection
3.3, obtaining

Et
[
e−

∫ s
t
λudu(λis)

α(Bjs −B
j
t )
k
]

=N(t, s)Est
[
(λis)

α
[
(W j

s −W
j
t ) + ηj

∫ s

t

Aj(u, s)

√
λjudu

]k]
. (30)

For i 6= j, we can exploit the independence of W 1 and W 2, so the above expectation becomes

ηjEst
[
(λis)

α
][ ∫ s

t

Aj(u, s)Est
(√

λju
)
du

]k
,

where for t ≤ u ≤ s

λiu = λi +

∫ u

t

[
γiθi −

(
γi − η2

iAi(v, s)
)
λiu

]
dv + ηi

∫ u

t

√
λivdW

i
v.

When i = j, if k = 0, in (30) clearly we have only the first expectation, if α = 0 only the second,
and for α = k = 1, we end up with

Est
[
λis(W

i
s −W i

t )
]

+ ηj

∫ s

t

Ai(u, s)Est
[
λis
√
λiu

]
du.

3. Thus we reduced the problem to considering the expectations, for u ≤ s,

Est
(
λis
)
, Est

(√
λiu
)
, Est

(
λis
√
λiu
)
, (31)

Est
(
λis(W

i
s −W i

t )
)
, (32)

The third of (31), again by the independence of the increments, can be written as

Est
(
λis
√
λiu
)

= Est
(
(λis − λiu)

√
λiu
)

+ Est
(
(λiu)

3
2

)
= Est

(
λis − λiu

)
Est
(√

λiu
)

+ Est
(
(λiu)

3
2

)
.
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To compute the expectations of the intensities’ powers, we apply Itô’s formula, and for t ≤ u ≤ s ≤
T , we obtain

Est
(
λiu
)

= e−
∫ u
t

[γi−η2iAi(ξ,s)]dξ
{
λi + γiθi

∫ u

t

e
∫ v
t

[γi−η2iAi(ξ,s)]dξdv

}
,

Est
[√

λiu

]
= e−

1
2

∫ u
t

[γi−η2iAi(ξ,s)]dξ

[√
λi+

1

2

[
γiθi−

η2
i

4

]∫ u

t

e
1
2

∫ v
t

[γi−η2iAi(ξ,s)]dξEst
[ 1√

λiv

]
dv

]
,

Est
[
(λiu)

3
2

]
= e−

3
2

∫ u
t

[γi−η2iAi(ξ,s)]dξ
[
(λi)

3
2 +

3

2

[
γiθi+

η2
i

4

]∫ u

t

e
3
2

∫ v
t

[γi−η2iAi(ξ,s)]dξEst
[√

λiv

]
dv

]
,

From the above expressions, it is clear that the key point is computing Est
[ 1√

λiv

]
. We decide to

approximate this quantity by either
1√
λi

or
1√
θi

, freezing the process either at the initial condition

or at the mean reversion parameter. This choice usually provides simple and numerically quite
accurate approximations of the (fractional) moments of a CIR process.
Finally, applying the integration by parts, we can compute expectation (32), obtaining

Est
(
λis(W

i
s −W i

t )
)

= ηi

∫ s

t

e−
∫ s
u

[γi−η2iAi(ξ,s)]dξEst
[√

λiu

]
du.

In conclusion, all the pieces appearing in (4.1) can be computed explicitly, provided we freeze the

process (λiu)−
1
2 .

Summarizing, we can write

ca(t, T ;ρ) ≈ g0(t, T ;0) + g1(t, T ;0)ρ1 + g2(t, T ;0)ρ2, (33)

where the zeroth term is (with R1 = 1− L1)

g0(t, T ;0) = e−
∫ T
t
r̃uduN(t, T )cBS

(
x, t, h̄t,σ

)
+

∫ T

t

e−
∫ s
t
r̃udu−(r̄s−h̄s)N(t, s)

[
R1Est (λ1

s)+Est (λ2
s) + αr̂s

]
cBS

(
x+ (r̄s−h̄s), t, h̄t, σ

)
ds,

(34)

and the first-order coefficients are

g1(t, T ;0) = σ

{
η1ex−

∫ T
t
r̃uduN(t, T )N

(
d1(x, t, h̄t, σ)

) ∫ T

t

A1(s, T )ETt
(√

λ1
s

)
ds

+

∫ T

t

ex−
∫ s
t
r̃uduN(t, s)N

(
d1(x+ (r̄s − h̄s), t, h̄t, σ)

)[
R1Est

(
λ1
s(W

1
s−W 1

t )
)

+ η1

∫ s

t

A1(u, s)
[
Est (λ1

s − λ1
u)Est (

√
λ1
u) + Est

(
(λ1
u)

3
2

)
+
(
Est (λ2

s) + αr̂s
)
Est (
√
λ1
u)
]
du
]
ds

}
,

(35)

g2(t, T ;0) = σ

{
η2ex−

∫ T
t
r̃uduN(t, T )N

(
d1(x, t, h̄t, σ)

) ∫ T

t

A2(s, T )ETt
(√

λ2
s

)
ds

+

∫ T

t

ex−
∫ s
t
r̃uduN(t, s)N

(
d1(x+ (r̄s − h̄s), t, h̄t, σ)

)[
Est
(
λ2
s(W

2
s−W 2

t )
)

+η2

∫ s

t

A2(u, s)
[(
R1Est (λ1

s) + αr̂s
)
Est (
√
λ2
u) + Est (λ2

s − λ2
u)Est (

√
λ2
u) + Est

(
(λ2
u)

3
2

)]
du
]
ds

}
,

(36)
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and we recall that
Ni(t, s) = eAi(t,s)λi+Bi(t,s), N(t, s) = N1(t, s)N2(t, s),

for t ≤ s ≤ T and i = 1, 2, with

hi =
√
γ2
i + 2η2

i , Ai(t, T ) = − 2(ehi(T−t) − 1)

hi − γi + (hi + γi)ehi(T−t)

Bi(t, T ) =
2γiθi
η2
i

ln

(
2hie

γi+hi(T−t)

hi − γi + (hi + γi)ehi(T−t)

)
.

5. Numerical results

In this section, we present some numerical results of our approximation method for the call price. As
a first step, we assess the performance of the first-order approximation (33) by using the Monte Carlo
evaluations with control variates as a benchmark. We employ the default-free price as control: in the
considered cases, this reduces the length of the confidence interval by at least one order of magnitude. For
the simulations, we generated M = 106 sample paths with a time step equal to 10−3 for any considered
maturity. The benchmark Monte Carlo method was implemented to approximate the call price (14) by
using Euler’s discretization scheme with full truncation for the intensity processes λ1

t and λ2
t (see [35]) and

with an exact simulation of the Brownian motion for the underlying Xt. The running integrals appearing
in the expectations were evaluated by a trapezoidal routine. All the algorithms were implemented in
MatLab (R2019b).

The evaluation of the zeroth and first-order terms of our approximation ((34), (35), (36)) requires the
computation of nested one-dimensional integrals of well-behaved functions once for each set of chosen
parameters and this step was implemented through the vectorized global adaptive quadrature MatLab
algorithm.

The parameters of the intensity processes were chosen as in [11] and [3] (see Table 2), and they
agree with calibrated default intensities. The strike price was fixed to K = eκ = 100 and we considered
two maturities, T = 0.5 and T = 2. Lastly, without loss of generality, we took t = 0, the log-asset’s
initial value was set to 4.6052, and its volatility to σ = 40%. The remaining parameters were chosen as
r = h = 0.001, rφ = 0.005, rc = 0.002 and α = 0.5.

The accuracy of the first-order approximation is summarized in Tables (3), (4), listing the errors with
respect to the benchmark MC prices (see also figure (1)) at the two maturities, using two distinct sets of
the default parameters for the Investor and the Counterparty. It is apparent how the approximation is
highly satisfactory for short term maturity while it tends to deteriorate a little when the horizon increases.

In Table (5) we report the separate contributions of the zeroth and first-order terms in (33). These
are quite sizeable, highlighting that the correlations between the underlying and the intensities affect
significantly the price. This fact supports the choice of stochastic processes versus deterministic functions
to represent the intensities. We notice that g1 is more relevant than g2, which instead appears to be always
rather small. This is to be expected, since we are considering a call option and its price should be affected
more by the Counterparty’s default than by the Investor’s default. As natural, we also observe g1 to
decrease as the collateralization tends to one.

The contribution coming from the stochastic nature of the intensities can be better appreciated by
looking at the results of the further set of numerical experiments reported in Table (6). In order to compare
with the results in [14], we considered the rates r = 0.001, h = 0.005, rφ = 0.005, rc = 0.002, λ1

0 = 0.04,
λ2

0 = 0.02, and the other parameters as in (2). The losses given default were set to L1 = L2 = 60% and
we took T = 0.5. The correction that we obtain with respect to the prices in [14] (constant intensities)
is of order 10−2, which can become very relevant as the volume of the transaction grows.
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λ0 γ θ η 6-months surv. prob. 2-years surv. prob.
τ1 (counterparty) 0.03 0.02 0.161 0.08 0.9848 0.9371
τ2 (investor) 0.035 0.35 0.45 0.15 0.9660 0.7399

Table 2: Parameter sets for the CIR default intensities.

ρ2\ρ1 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.6 -7.478e-04 -5.850e-04 -3.852e-04 -1.951e-04 -4.362e-05 7.122e-05 1.881e-04
-0.4 -5.338e-04 -3.423e-04 -1.508e-04 5.306e-05 1.955e-04 3.118e-04 3.636e-04
-0.2 -3.104e-04 -9.415e-05 8.240e-05 2.456e-04 3.640e-04 4.693e-04 5.321e-04

0 -1.194e-04 8.440e-05 2.489e-04 4.203e-04 5.234e-04 6.252e-04 7.105e-04
0.2 5.723e-05 2.527e-04 4.217e-04 5.816e-04 7.102e-04 8.091e-04 9.161e-04
0.4 2.584e-04 4.708e-04 6.296e-04 7.458e-04 8.760e-04 9.736e-04 1.079e-03
0.6 4.854e-04 6.768e-04 8.431e-04 9.614e-04 1.074e-03 1.167e-03 1.241e-03

Table 3: Approximation errors, Set 1 for τ1, Set 2 for τ2, T = 0.5. The average length of the 95% confidence interval for
the MC estimates is 5.3939e− 04.

As a final remark, we write explicitly our evaluation formula when constant intensities λit ≡ λi are
taken. It is immediately seen by using (29) that the price (27) becomes

ca(t, T ) = e(λ1+λ2−(rφ−h))(T−t)cBS(x, t, h̄, σ) + (λ1 + λ2 + (rφ − rc)α− λ1L1)×∫ T

t

e−(λ1+λ2+(rφ−h))(s−t)e−(r−h)(T−s)cBS(x+ (r − h)(T − s), t, h̄, σ)ds (37)

which, as noticed in [13] and [14], shows that the interplay among all the rates changes significantly the
classical default-free price.

Last but not least, we would like to point out that our approximation implies a very big reduction of
the computational time compared with Monte Carlo Simulations, providing a fast and flexible alternative
approximation method.
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ρ2\ρ1 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.6 -6.619e-02 -5.728e-02 -4.887e-02 -3.983e-02 -3.114e-02 -2.303e-02 -1.427e-02
-0.4 -5.191e-02 -4.320e-02 -3.409e-02 -2.552e-02 -1.726e-02 -9.017e-03 -7.615e-04
-0.2 -3.706e-02 -2.828e-02 -1.938e-02 -1.138e-02 -3.327e-03 4.780e-03 1.299e-02
0 -2.246e-02 -1.338e-02 -5.165e-03 2.822e-03 1.095e-02 1.877e-02 2.686e-02

0.2 -7.224e-03 1.505e-03 9.585e-03 1.776e-02 2.559e-02 3.352e-02 4.164e-02
0.4 8.800e-03 1.771e-02 2.568e-02 3.327e-02 4.091e-02 4.864e-02 5.639e-02
0.6 2.543e-02 3.414e-02 4.206e-02 4.961e-02 5.704e-02 6.453e-02 7.191e-02

Table 4: Approximation errors, Set 1 for τ1, Set 2 for τ2, T = 2. The average length of the 95% confidence interval for the
MC estimates is 0.0086.

T g0 g1 g2

0.5 11.3300 −0.0071 0.0003
2 22.4224 −0.0435 0.0370

Table 5: Contribution of zero-th and first order terms in the expansion approximation with Set 1 for τ1 and Set 2 for
τ2. The corresponding default-free prices according to the B&S formula are cBS(X0, 0, r̄s, σ) = 11.2685 (T = 0.5) and
cBS(X0, 0, r̄s, σ) = 22.3480 (T = 2).
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