	AR	LICLE IN PRESS
JID:YJNTH AID:651		[m1L; v1.285; Prn:19/05/2020; 8:42] P.1 (1-14) al of Number Theory ••• (••••) •••-•••
	Cont	ents lists available at ScienceDirect
8-310	Iour	nal of Number Theory
	Jouri	har of Number Theory
ELSEVIER		www.elsevier.com/locate/jnt
General Section	L	
On the ideal	l class grou	p of the normal closure
of $\mathbf{Q}(\sqrt[p]{n})$		
,		
René Schoof		
Dipartimento di Ma Italy	tematica, Univers	sità di Roma "Tor Vergata", I-00133 Roma,
ARTICLE	INFO	ABSTRACT
Article history:		For a prime number p and an integer n we determine the
Received 29 Novemb Received in revised		Galois cohomology groups of the class group of the normal closure of $\mathbf{Q}(\sqrt[q]{n})$ to a certain extent and use this information
2020 Accepted 10 April 2	-	to prove a result about the group structure of the class group.
Available online xxx Communicated by A	x	© 2020 Elsevier Inc. All rights reserved.
Keywords:		
Algebraic number field Class groups	elds	
Galois cohomology Class field theory		
1. Introduction		
		U
		ζ_m denote a primitive <i>m</i> -th root of unity. In 1971, Taira
		number of $\mathbf{Q}(\zeta_3, \sqrt[3]{n})$ is equal to h^2 or $3h^2$, where h is round 2016, L.C. Washington proposed a refinement of
		s of n , which was then proved by the author. The result
can be phrased a		- •

E-mail address: schoof.rene@gmail.com.

41 https://doi.org/10.1016/j.jnt.2020.04.004

0022-314 X/© 2020 Elsevier Inc. All rights reserved.

 $\mathbf{2}$

R. Schoof / Journal of Number Theory ••• (••••) •••-•••

Proposition 1.1. Let $n \in \mathbb{Z}$ not be a cube. If n is not divisible by any prime number congruent to 1 (mod 3), then the class group of $\mathbf{Q}(\zeta_3, \sqrt[3]{n})$ is isomorphic to $H \times H$ for some finite abelian group H.

In this note we put the statement of Proposition 1.1 in a more general context and replace our earlier ad hoc proof of it by more conceptual arguments. This leads to a study of the Galois module structure of the class groups of the fields $\mathbf{Q}(\zeta_n, \sqrt[p]{n})$ for primes $p \geq 3$. In a recent paper Hubbard and Washington write that their proof of [6, Thm. 7] was inspired by the original proof of Proposition 1.1 for p = 3. That's why we present it in an appendix.

The problem naturally splits into two parts. For the non-p-part of the class group, Proposition 1.1 can easily be generalized without any condition on p or on the prime divisors l of n. This is done in section 2 using Morita theory. For the p-part the problem is more subtle. We need to make the assumption that p is a *regular* prime, i.e. that p does not divide the class number of $\mathbf{Q}(\zeta_p)$. The following proposition follows from our main results, which are Proposition 3.2 and Theorem 4.4. For p = 3 we recover Proposition 1.1

Proposition 1.2. Let p > 2 be a regular prime and let $n \in \mathbb{Z}$ not be a p-th power. Suppose that all prime divisors $l \neq p$ of n are primitive roots modulo p. Then the kernel Cl^0 of the norm map from the class group of $\mathbf{Q}(\zeta_p, \sqrt[p]{n})$ to the class group of $\mathbf{Q}(\zeta_p)$ sits in an exact sequence

 $0 \longrightarrow V \longrightarrow Cl^0 \longrightarrow \underbrace{H \times H \times \ldots \times H}_{p-1 \text{ times}} \longrightarrow 0,$

where H is a finite abelian group H and V an \mathbf{F}_p -vector space of dimension at most $(\frac{p-3}{2})^2$.

Throughout this note we fix a prime p > 2 and a primitive p-th root of unity ζ_p . We study the ideal class groups of the fields

 $K = \mathbf{Q}(\zeta_n, \sqrt[p]{n}),$

where $n \in \mathbf{Z}$ is not a *p*-th power. We have inclusions

> $\mathbf{Q} \subset \mathbf{Q}(\zeta_p) \subset K.$

Put $\Omega = \operatorname{Gal}(K/\mathbf{Q}), G = \operatorname{Gal}(K/\mathbf{Q}(\zeta_p))$ and $\Delta = \operatorname{Gal}(K/\mathbf{Q}(\sqrt[p]{n}))$. Restriction to $\mathbf{Q}(\zeta_p)$ identifies Δ with $\operatorname{Gal}(\mathbf{Q}(\zeta_p)/\mathbf{Q})$. The group Ω is the semidirect product of Δ by G. There is a natural exact sequence

 $1 \longrightarrow G \longrightarrow \Omega \longrightarrow \Delta \longrightarrow 1$.

Please cite this article in press as: R. Schoof, On the ideal class group of the normal closure of $\mathbf{Q}(\sqrt[p]{n})$, J. Number Theory (2020), https://doi.org/10.1016/j.jnt.2020.04.004

З

The group G is isomorphic to $\mathbf{Z}/p\mathbf{Z}$ and Δ is somorphic to $(\mathbf{Z}/p\mathbf{Z})^*$. If t denotes a generator of G and $s \in \Delta \subset G$ is a generator of Δ , then a presentation of the group Ω is given by $\Omega = \langle t, s : s^{p-1} = 1, t^p = 1, sts^{-1} = t^{\omega(s)} \rangle.$ Here $\omega : \Delta \longrightarrow (\mathbf{Z}/p\mathbf{Z})^*$ denotes the *cyclotomic character*. In other words, we have $\sigma(\zeta_p) = \zeta_p^{\omega(\sigma)}$ for all $\sigma \in \Delta$. The class group Cl_K is a $\mathbb{Z}[\Omega]$ -module. The *G*-norm map $N_G: Cl_K \longrightarrow Cl_K$ factors through the class group of $\mathbf{Q}(\zeta_p)$: $\begin{array}{ccc} Cl_K & \xrightarrow{N_G} & Cl_K \\ &\searrow & &\swarrow \\ & Cl_{\mathbf{O}(\zeta_n)} \end{array} \end{array}$

The map from $Cl_{\mathbf{Q}(\zeta_p)}$ to the image of N_G is an isomorphism on the prime to *p*-parts. So, the sequence

 $0 \longrightarrow \ker N_G \longrightarrow Cl_K \longrightarrow Cl_{\mathbf{Q}(\zeta_p)} \longrightarrow 0$

is exact on the non-p-parts. We study the p-part of Cl_K under the assumption that p is a regular prime. In this case the p-parts of Cl_K and ker N_G are obviously equal.

Since we fix p, we concentrate on ker N_G as K varies. This is a left module over the non-commutative ring $R = \mathbf{Z}[\Omega]/(\mathrm{Tr}_G)$, where Tr_G denotes the central element $\sum_{g \in G} [g]$ of $\mathbf{Z}[\Omega]$. Since we have $\mathbf{Z}[G]/(\mathrm{Tr}_G) \cong \mathbf{Z}[\zeta_p]$, the ring R is isomorphic to the twisted group ring $\mathbf{Z}[\zeta_p][\Delta]'$. Multiplication in this ring satisfies $[\sigma]\lambda = \sigma(\lambda)[\sigma]$ for $\lambda \in \mathbf{Z}[\zeta_p]$ and $\sigma \in \Delta$. A module over $\mathbf{Z}[\zeta_p][\Delta]'$ can alternatively be viewed as a module over $\mathbf{Z}[\zeta_p]$, equipped with a *semilinear* action of Δ .

2. The non-*p*-part

Using the notations of the introduction, the non-p-part of the class group of K is a left module over the twisted group ring $\mathbf{Z}[\zeta_p, \frac{1}{p}][\Delta]'$. Alternatively, it is a $\mathbf{Z}[\zeta_p, \frac{1}{p}]$ module equipped with semilinear left Δ -action. The category of such modules is *Morita* equivalent to the category of modules over $\mathbf{Z}[\zeta_p, \frac{1}{p}]$. This follows from the following general result.

Theorem 2.1. Let $R \subset S$ be a finite Galois extension of commutative rings with Galois group Δ . Then the ring R and the twisted group ring $S[\Delta]'$ are Morita equivalent. In other words, the functors $R\operatorname{-Mod} \longrightarrow S[\Delta]'\operatorname{-Mod}$ given by $M \mapsto M \otimes_R S$ and $S[\Delta]'\operatorname{-Mod} \longrightarrow$ R-<u>Mod</u> given by $N \mapsto N^{\Delta}$, induce an equivalence of categories.

R. Schoof / Journal of Number Theory ••• (••••) •••-•••

Proof. Since S is Galois over R, it is a faithful projective R-module and hence an R-12progenerator. Since the natural map $S[\Delta]' \longrightarrow \operatorname{End}_R(S)$ is an isomorphism [1, appendix],23the result follows from Morita's Theorem as presented in [4, Prop.3.3]. To see this, note34that for a left S-module N we have isomorphisms4

$$N^{\Delta} \cong \operatorname{Hom}_{S}(A, N) \cong \operatorname{Hom}_{R}(R, A^{\vee} \otimes_{S} N) \cong A^{\vee} \otimes_{S} N.$$

Here A^{\vee} denotes the right S-module $\operatorname{Hom}_R(A, R)$ that appears in [4, Prop.3.3].

Let p be a prime. An application of Theorem 2.1 to the Galois extension $\mathbf{Z}[\frac{1}{p}] \subset \mathbf{Z}[\zeta_p, \frac{1}{p}]$ with Galois group $\Delta \cong (\mathbf{Z}/p\mathbf{Z})^*$ implies the following result.

Corollary 2.2. Let p be prime, let $n \in \mathbb{Z}$ not be a p-th power, and let $K = \mathbb{Q}(\zeta_p, \sqrt[n]{n})$. Let M denote the non-p-part of the kernel of the G-norm map $Cl_K \longrightarrow Cl_K$. Then M is isomorphic to $M^{\Delta} \otimes_{\mathbb{Z}} \mathbb{Z}[\zeta_p]$. In particular, as an abelian group, M is isomorphic to a product of p-1 copies of M^{Δ} .

The following proposition also implies Corollary 2.2. Its proof avoids general Morita theory and is based on an explicit computation.

Proposition 2.3. Let $\mathbf{Q} \subset F$ be a Galois extension with $\Delta = \operatorname{Gal}(F/\mathbf{Q})$. Let M be a module over the ring of integers O_F that is equipped with a semilinear action by Δ . Let M^{Δ} denote its subgroup of Δ -invariant elements and let ϕ denote the natural O_F -linear map

 $\phi: M^{\Delta} \otimes_{\mathbf{Z}} O_F \longrightarrow M,$

given by $\phi(m \otimes \lambda) = \lambda m$ for $m \in M^{\Delta}$ and λ in O_F . Then the kernel and the cokernel of ϕ are O_F -modules that are killed by the different δ_F of F.

³⁰ **Proof.** Let $\omega_1, \ldots, \omega_n$ be a **Z**-basis for O_F . Then any element in $M^{\Delta} \otimes_{\mathbf{Z}} O_F$ can be ³¹ written as $\sum_i m_i \otimes \omega_i$, where $m_i \in M^{\Delta}$. Suppose that $x = \sum_i m_i \otimes \omega_i$ is in the kernel ³² of ϕ . This means that $\sum_i \omega_i m_i = 0$ in M. Applying $\sigma \in \Delta$, we see that $\sum_i \sigma(\omega_i)m_i = 0$ ³³ for every $\sigma \in \Delta$.

Now let $z \in \delta_F$. Let $\omega_1^*, \ldots, \omega_n^* \in F$ be the dual base of $\omega_1, \ldots, \omega_n$. This means that

$$\sum_{\sigma \in \Delta} \sigma(\omega_i \omega_j^*) = \begin{cases} 1, & \text{if } i = j; \\ 0, & \text{if } i \neq j. \end{cases}$$
36
37
38

By definition of the different, $z\sigma(\omega_j^*)$ is in O_F for every j and for every $\sigma \in \Delta$. We have

$$\sum_{\sigma \in \Delta} z\sigma(\omega_j^*) \sum_i \sigma(\omega_i) m_i = 0, \quad \text{for all } j.$$
⁴¹
42

Please cite this article in press as: R. Schoof, On the ideal class group of the normal closure of $\mathbf{Q}(\sqrt[4]{n})$, J. Number Theory (2020), https://doi.org/10.1016/j.jnt.2020.04.004

R. Schoof / Journal of Number Theory ••• (••••) •••-•••

 $\mathbf{5}$

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

29

30

31

1 Therefore

2

5

6

7

8

9

3 4 $\sum_{i} z(\sum_{\sigma \in \Delta} \sigma(\omega_j^*) \sigma(\omega_i)) m_i = 0, \quad \text{for all } j.$

It follows that $zm_i = 0$ for every *i* and hence zx = 0. This implies that δ_F annihilates *x*, as required.

To prove that the cokernel of ϕ is also killed by δ_F , let $m \in M$. Then $\sum_{\sigma \in \Delta} \sigma(\omega_i m)$ is Δ -invariant for every i and hence is in $\mathrm{im} \phi = M^{\Delta}O_F$. For all $z \in \delta_F$ and every $\tau \in \Delta$ the elements

10 11

12 13

14

15

16

17

18

 $\sum_{\sigma \in \Delta} \sum_{i} z \tau(\omega_i^*) \sigma(\omega_i) \sigma(m),$ (*)

are in $M^{\Delta}O_F$. Since the matrices $\sigma(\omega_i)$ and $\sigma(\omega_i^*)$ are inverse to one another, we have that $\sum_i \tau(\omega_i^*)\sigma(\omega_i) = 1$ when $\sigma = \tau$ and zero otherwise. Therefore the expression (*) is equal to $z\tau(m)$ for each τ . In particular zm is in the image of ϕ . It follows that δ_F kills the cokernel of ϕ , as required.

For a prime p the different δ_F of $F = \mathbf{Q}(\zeta_p)$ is equal to $(\zeta_p - 1)^{p-2}$. Therefore δ_F is a divisor of p. It follows that for a finite O_F -module of order prime to p, multiplication by δ_F is an isomorphism and hence the map $M^{\Delta} \otimes_{\mathbf{Z}} O_F \longrightarrow M$ is an isomorphism. This easily implies Corollary 2.2.

Proposition 2.3 is in some sense best possible. Indeed, consider $F = \mathbf{Q}(\zeta_p)$ and $A = _{24}$ $\mathbf{Z}[\zeta_p] = O_F$ and $M = \mathbf{Z}[\zeta_p]/(\zeta_p - 1) = \mathbf{Z}/p\mathbf{Z}$ with trivial Δ -action. Then $M^{\Delta} = M_{25}$ and $M \otimes_{\mathbf{Z}} \mathbf{Z}[\zeta_p] = \mathbf{Z}[\zeta_p]/(p)$. In this case the kernel of ϕ is isomorphic to $(\zeta_p - 1)/(p) \cong _{26}$ $\mathbf{Z}[\zeta_p]/\delta_F$. On the other hand, let $M = (\zeta_p - 1)/(p)$. In this case there are no Δ -invariant elements, so that the cokernel of ϕ is $M = (\zeta_p - 1)/(p)$.

30 3. The *p*-part

31

29

For any prime $p \ge 3$ let \mathbb{Z}_p denote the ring of *p*-adic integers and put $A = \mathbb{Z}_p[\zeta_p]$. In the notation of section 1, the *p*-part of the kernel of the norm map $Cl_K \longrightarrow Cl_K$ is a module over the twisted group ring $A[\Delta]'$ as defined in section 1. In other words, it is a module over the discrete valuation ring A and it comes equipped with a semilinear Δ -action. Section 1.

In this section we study this type of modules. They form an abelian category. Since 37 37 38 the natural action of Δ on A is semilinear, the ring A is itself an example. So are its 38 ideals and quotients. The ideals are of the form $\pi^i A$ for $i \geq 0$. Here π denotes a p-1-th 39 39 root of -p in A. It is easy to see that π is equal to $\zeta_p - 1$ times a unit, so that π generates 40 40 41 the maximal ideal of A. For any $\sigma \in \Delta$ we have $\sigma(\pi) = \omega(\sigma)\pi$. The residue field $A/\pi A$ 41 42 42 is isomorphic to \mathbf{F}_p with trivial Δ -action.

ARTICLE IN PRES

JID:YJNTH AID:6517 /FLA

A [m1L; v1.285; Prn:19/05/2020; 8:42] P.6 (1-14) R. Schoof / Journal of Number Theory ••• (••••) •••--•••

1 For every character $\chi : \Delta \longrightarrow \mathbf{Z}_p^*$ and every $A[\Delta]'$ -module M, we write $M(\chi)$ for 1 2 the χ -twist of M. This is also an $A[\Delta]'$ -module. As an A-module it is just M, but the 2 3 Δ -action is twisted by χ : on $M(\chi)$ multiplying $m \in M(\chi)$ by $\sigma \in \Delta$ gives $\chi(\sigma)\sigma m$, where 3 4 σm denotes the product of m by σ in the untwisted module M. The map $A(\omega^i) \longrightarrow \pi^i A$ 4 5 given by $\lambda \mapsto \lambda \pi^i$ is an $A[\Delta]'$ -linear isomorphism. 5

6 For every character $\chi : \Delta \longrightarrow \mathbf{Z}_p^*$ and an $A[\Delta]'$ -module M, we define its χ -eigenspace 7 by
7

$$M_{\chi} = \{ x \in M : \sigma(x) = \chi(\sigma)x \text{ for all } \sigma \in \Delta \}.$$

11 This is a \mathbb{Z}_p -submodule of M. It is, in general, not an A-module. The natural map

$$\underset{\chi}{\oplus} M_{\chi} \longrightarrow M,$$

is an isomorphism. For $\chi = 1$ we recover the subgroup of Δ -invariants $M_1 = M^{\Delta}$. We have that $M(\chi)^{\Delta} = M_{\chi^{-1}}$.

17 If M is killed by π , then M is a module over the ring $A[\Delta]'/\pi A[\Delta]' \cong \mathbf{F}_p[\Delta]$. So, the 18 semilinear Δ -action on M is actually linear. As an $A[\Delta]'$ -module, $\mathbf{F}_p[\Delta]$ is a product of 19 modules of the form $\mathbf{F}_p(\chi)$, one for each character χ of Δ . Every module M that is killed 20 by π is therefore a product of various copies of $\mathbf{F}_p(\chi)$.

Every $A[\Delta]'$ -module admits a filtration with submodules

 $M \supset \pi M \supset \pi^2 M \supset \pi^3 M \supset \dots$ 23

²⁵ The successive subquotients are killed by π and hence are isomorphic to products of ²⁶ copies of $\mathbf{F}_p(\chi)$ for certain characters χ of Δ . For the ring A itself we have ²⁶ 26

> $A \supset \pi A \supset \pi^2 A \supset \pi^3 A \supset \dots$ ²⁷

with successive subquotients (from left to right) isomorphic to \mathbf{F}_p , $\mathbf{F}_p(\omega)$, $\mathbf{F}_p(\omega^2)$, When i < j we have for $\pi^i A / \pi^j A$ the filtration

$$\pi^{i}A/\pi^{j}A \supset \pi^{i+1}A/\pi^{j}A \supset \pi^{i+2}A/\pi^{j}A \supset \ldots \supset \pi^{j-1}A/\pi^{j}A \supset 0$$

with successive subquotients isomorphic to $\mathbf{F}_p(\omega^i)$, $\mathbf{F}_p(\omega^{i+1})$, ..., $\mathbf{F}_p(\omega^{j-1})$.

The next result describes the structure of finite $A[\Delta]'$ -modules that are generated by Δ -invariant elements.

³⁹ **Proposition 3.1.** Let M be a finite $A[\Delta]'$ -module. Then Δ acts trivially on the quotient ⁴⁰ $M/\pi M$ if and only if there is an $A[\Delta]'$ -isomorphism

$$M \cong \bigoplus_{i=1}^{t} A/\pi^{n_i}A, \quad \text{for certain integers } n_i \ge 1.$$

Please cite this article in press as: R. Schoof, On the ideal class group of the normal closure of $\mathbf{Q}(\sqrt[q]{n})$, J. Number Theory (2020), https://doi.org/10.1016/j.jnt.2020.04.004

ARTICLE IN PRESS

 [m1L; v1.285; Prn:19/05/2020; 8:42] P.7 (1-14)

 R. Schoof / Journal of Number Theory ••• (••••) •••--••
 7

Proof. For any module M of this type, the quotient $M/\pi M$ is isomorphic to a product of copies of $A/\pi A = \mathbf{F}_p$ with trivial Δ -action. Conversely, suppose that $M/\pi M$ has trivial Δ -action. Since the order of Δ is prime to p, the map $M^{\Delta} \longrightarrow (M/\pi M)^{\Delta} = M/\pi M$ is surjective. This implies that M can be generated over A by Δ -invariant elements v_1, \ldots, v_t say. In other words, the A-homomorphism $A^t \longrightarrow M$ that maps the *i*-th basis vector to v_i is a well defined surjective $A[\Delta]'$ -homomorphism. Since M is finite, it induces a surjective $A[\Delta]'$ -homomorphism of the form

 $\phi: \bigoplus_{i=1}^{t} A/\pi^{n_i} A \longrightarrow M,$

for certain $n_i \ge 1$. If ϕ is also *injective*, we are done. If not, ker ϕ contains a non-zero element x that is killed by π on which Δ acts via some character $\chi = \omega^m$. So x generates an $A[\Delta]'$ -module isomorphic to $\mathbf{F}_p(\chi)$. We have $x = (\lambda_1 \pmod{\pi^{n_1}}, \dots, \lambda_t \pmod{\pi^{n_t}})$ for certain $\lambda_i \in A$ for which $\lambda_i \equiv 0 \pmod{\pi^{n_i-1}}$ for each i and for which $\sum_{i=1}^t \lambda_i v_i = 0$ in M.

Since $\pi^{n_i-1}/\pi^{n_i}A \cong \mathbf{F}_p(\omega^{n_i-1})$, the coordinates λ_i must be congruent to 0 (mod π^{n_i}) for the indices i for which $n_i - 1 \not\equiv m \pmod{p-1}$. Let I denote the set of indices for which $n_i - 1 \equiv m \pmod{p-1}$. For $i \in I$ we define k_i by $n_i - 1 = m + k_i(p-1)$. For at least one index $i \in I$ we have $\lambda_i \not\equiv 0 \pmod{\pi^{n_i}}$. Without loss of generality we may assume that this happens for i = 1 and that moreover n_1 and hence k_1 is minimal. For $i \in I$ we define $\mu_i \in A$ by

 $\lambda_i = \pi^m p^{k_i} \mu_i.$

We let $m_i \in \mathbf{Z}$ such that $\mu_i \equiv m_i \pmod{\pi}$. Note that μ_i and hence m_i are invertible in A.

From ϕ we construct now a second *R*-homomorphism ϕ'

by mapping the first basis vector $e_1 = (1, 0, 0, ...)$ to $\sum_{i=1}^{t} m_i p^{k_i - k_1} v_i$, mapping the basis vectors e_i to $\phi(e_i)$ when $i \ge 2$ and extend A-linearly. In this way $\phi'(e_i) \in M^{\Delta}$ for every *i*. Since ϕ is surjective and m_1 is invertible in \mathbf{Z}_p , the morphism ϕ' is also surjective. We only need to check that it is well defined. This means that ϕ' should map $p^{k_1} \pi^m e_1$ to zero. We have

$$\phi'(p^{k_1}\pi^m e_1) = \sum_i m_i p^{k_i}\pi^m v_i = \sum_i \mu_i p^{k_i}\pi^m v_i = \sum_i \lambda_i v_i = 0.$$
37
38
39

Note that the left hand side module in (*) is strictly smaller than the one we started40with. Therefore, by repeating this process, we eventually end up with an isomorphism.41This proves the proposition.42

Please cite this article in press as: R. Schoof, On the ideal class group of the normal closure of $\mathbf{Q}(\sqrt[3]{n})$, J. Number Theory (2020), https://doi.org/10.1016/j.jnt.2020.04.004

[m1L: v1.285: Prn:19/05/2020: 8:42] P.8 (1-14) R. Schoof / Journal of Number Theory ••• (••••) •••-•••

Proposition 3.2. Let M be a finite $A[\Delta]'$ -module that is generated by Δ -invariant ele-ments. Let $d_i = \dim M[\pi]_{\omega^{i-1}}$ for $1 \leq i \leq p-2$. Then there is a finite abelian p-group H and an exact sequence of $A[\Delta]'$ -modules

$$0 \longrightarrow \bigoplus_{i=1}^{p-2} (A/\pi^i A)^{d_i} \longrightarrow M \longrightarrow H \otimes_{\mathbf{Z}_p} A \longrightarrow 0.$$

Proof. Suppose that M is of the form $A/\pi^n A$ for some $n \ge 0$ Then there are integers $m \ge 0$ and $i \in \{0, 1, \dots, p-2\}$ for which n = (p-1)m + i. Since $p = \pi^{p-1}$ times a unit, we get an exact sequence

 $0 \longrightarrow A/\pi^i A \longrightarrow M \longrightarrow A/p^m A \longrightarrow 0.$

Putting $H = \mathbf{Z}/p^m \mathbf{Z}$, we have $A/p^m A = H \otimes_{\mathbf{Z}_p} A$. We put $V = A/\pi^i A$. Then V = 0 for i = 0. For $1 \le i \le p - 2$, the submodule $M[\pi]$ is the same as the π -torsion submodule of V, which is isomorphic to $\mathbf{F}_p(\omega^{i-1})$. So $d_i = 1$, while $d_j = 0$ for $j \in \{1, \ldots, p-2\}$ different from i.

This takes care of $M = A/\pi^n A$. By Proposition 3.1, an arbitrary module M gener-ated by Δ -invariant elements is a direct sum of modules of the form $A/\pi^n A$. Since the statement of the proposition is additive in M, the proposition is also proved for general modules M.

The $A[\Delta]'$ -module $\bigoplus_{i=1}^{p-2} (A/\pi^i A)^{d_i}$ of Proposition 3.2 is killed by π^{p-2} and hence by p. Its \mathbf{F}_p -dimension is $\sum_{i=1}^{p-2} i d_i$.

4. Class field theory

As in the introduction, p > 2 is a prime and ζ_p is a primitive p-th root of unity. Let $n \in \mathbf{Z}$ not be a p-th power and let $K = \mathbf{Q}(\zeta_p, \sqrt[p]{n})$. Let G denote the Galois group of K over $\mathbf{Q}(\zeta_n)$, let $\Omega = \operatorname{Gal}(K/\mathbf{Q})$ and let $\Delta = \operatorname{Gal}(K/\mathbf{Q}(\sqrt[p]{n})) \cong \operatorname{Gal}(\mathbf{Q}(\zeta_n)/\mathbf{Q})$.

In this section we study the Tate G-cohomology groups of the class group of K. The class group of K is a $\mathbf{Z}[\Omega]$ -module, and Tate G-cohomology groups of $\mathbf{Z}[\Omega]$ -modules are $\mathbf{F}_{p}[\Delta]$ -modules. This follows from the fact that Tate G-cohomology groups are killed by p and are G-invariant. Since G is cyclic, its Tate cohomology groups are periodic with period 2. The isomorphism, given by cupping with a generator of $H^2(G, \mathbf{Z})$, is not Δ -equivariant. Indeed, $\widehat{H}^0(G, \mathbf{Z}) = \mathbf{Z}/p\mathbf{Z}$ has trivial Δ -action, while $H^2(G, \mathbf{Z}) = G^{\text{dual}}$ has Δ -action via ω^{-1} . For $q \in \mathbb{Z}$ and an arbitrary Ω -module M the maps

given by cupping with a generator of $H^2(G, \mathbf{Z})$, are $\mathbf{F}_p[\Delta]$ -isomorphisms.

[m1L: v1.285: Prn:19/05/2020: 8:42] P.9 (1-14) R. Schoof / Journal of Number Theory ••• (••••) •••-•••

For future reference we recall a property of the cohomology groups of $\mathbf{Z}[\Omega]$ -modules M. **Lemma 4.1.** Let M be a $\mathbb{Z}[\Omega]$ -module and let q > 1. Then the inflation-restriction se-*quences* $0 \longrightarrow H^q(\Delta, M^G) \longrightarrow H^q(\Omega, M) \longrightarrow H^q(G, M)^{\Delta} \longrightarrow 0$ are exact **Proof.** Since the orders of Δ and G are coprime, the E_2 -terms of the Hochschild-Serre spectral sequence [2, Ch.XVI] off the axes are zero. This implies the lemma. By O_K we denote the ring of integers of K and by O_K^* its group of units. By U_K we denote the idele unit group and by C_K the idele class group of K. See [3] for the basic properties of the Galois cohomology groups of these $\mathbf{Z}[\Omega]$ -modules. There is a natural exact sequence $0 \longrightarrow O_K^* \longrightarrow U_K \longrightarrow C_K \longrightarrow Cl_K \longrightarrow 0.$ We use the same notation with K replaced by $\mathbf{Q}(\zeta_p)$. In order to get information on the $\mathbf{F}_{p}[\Delta]$ -structure of the G-cohomology groups of Cl_{K} , we determine the Δ -action on the G-cohomology groups of U_K and, for completeness, also of C_K . **Lemma 4.2.** The cohomology groups $\widehat{H}^q(G, C_K)$ are trivial when q is odd and isomorphic to \mathbf{F}_p if q is even. In the latter case, Δ acts on $\widehat{H}^q(G, C_K)$ through the character $\omega^{1-q/2}$. **Proof.** The first statement follows from *global* class field theory. See [3, VII, Thms. 8.3 and 9.1] To prove the second, it suffices to show that Δ acts trivially on $H^2(G, C_K)$. By global class field theory the groups $H^2(\Omega, C_K)$, $H^2(G, C_K)$ and $H^2(\Delta, C_{\mathbf{Q}(\zeta_p)})$ are isomorphic to the groups $\widehat{H}^0(\Omega, \mathbf{Z}), \ \widehat{H}^0(G, \mathbf{Z})$ and $\widehat{H}^0(\Delta, \mathbf{Z})$, and hence are cyclic of orders p(p-1), p and p-1 respectively. By Lemma 4.1 with $M = C_K$, the se-quence $0 \longrightarrow H^2(\Delta, C_{\mathbf{Q}(\zeta_p)}) \longrightarrow H^2(\Omega, C_K) \longrightarrow H^2(G, C_K)^{\Delta} \longrightarrow 0$ is exact. It follows that $H^2(G, C_K) = H^2(G, C_K)^{\Delta}$ as required. **Lemma 4.3.** The cohomology groups $\widehat{H}^q(G, U_K)$ are isomorphic to twists of the Δ -module $\bigoplus_{l \text{ ram in } K} \mathbf{Z}/p\mathbf{Z}[\Delta/\Delta_l].$

	ARTICLE IN PRESS	
	JID:YJNTH AID:6517 /FLA [m1L; v1.285; Prn:19/05/2020; 8:42] P.10 (1-14)	
	10 R. Schoof / Journal of Number Theory ••• (••••) •••-•••	
1	Here the sum runs over primes l for which the primes v lying over l in $\mathbf{Q}(\zeta_p)$ are ramified	1
2	in K and $\Delta_l \subset \Delta$ denotes the decomposition subgroup of v. The Δ -action on $H^1(G, U_K)$	2
3	and $H^2(G, U_K)$ is the natural action on the various summands $\mathbf{Z}/p\mathbf{Z}[\Delta/\Delta_l]$. The Δ -	3
4	action on $\widehat{H}^q(G, U_K)$ is twisted by $\omega^{1-q/2}$ if q is even and by $\omega^{(1-q)/2}$ if q is odd.	4
5		5
6	Proof. For a prime number l, let v denote a prime of $\mathbf{Q}(\zeta_p)$ lying over l and let w be a	6
7	prime of K lying over v. Let $\Omega_w \subset \Omega$ denote the decomposition group of w. Let $\Delta_l \subset \Delta$	7
8	denote the decomposition group of v. It only depends on l. Let $G_v \subset G$ denote the	8
9	decomposition group of w . It only depends on v . There is an exact sequence	9
10		10
11	$1 \longrightarrow G_v \longrightarrow \Omega_w \longrightarrow \Delta_l \longrightarrow 1.$	11
12		12
13	By Shapiro's Lemma, for every $q \in \mathbf{Z}$, the cohomology group $\widehat{H}^q(G, U_K)$ is isomorphic	13
14	by Shapho's Lemma, for every $q \in \mathbb{Z}$, the cohomology group if $(0, 0, K)$ is isomorphic to	14
15		15
16	$\phi = \phi \widehat{\Pi}^{q}(C = O^{*})$	16
17	$\oplus_{\substack{l \text{ ram in } K \ v \mid l}} \widehat{H}^q(G_v,O_w^*).$	17
18		18
19	Each summand $\widehat{H}^q(G_v, O_w^*)$ is naturally an $\mathbf{F}_p[\Delta_l]$ -module and we have isomorphisms	19
20		20
21	$\bigoplus_{v l} \widehat{H}^q(G_v, O_w^*) \cong \operatorname{Ind}_{\Delta_v}^{\Delta} \widehat{H}^q(G_v, O_w^*)$	21
22	$\oplus_{v l}^{\oplus} \prod_{v v} (\Im_v, \Im_w) = \prod_{v v } (\Im_v, \Im_w)$	22
23		23
24	of $\mathbf{F}_p[\Delta]$ -modules. By periodicity of the cohomology of G , it suffices to compute	24
25	$H^1(G, U_K)$ and $H^2(G, U_K)$ and determine the Δ -action.	25
26	First we show for $q = 1$ and 2, that the action of Δ_v on $\widehat{H}^q(G_v, O_w^*)$ is triv-	26
27	ial. By Hilbert 90, the orders of the cohomology groups $H^1(\Delta_l, O_v^*)$, $H^1(\Omega_v, O_w^*)$ and	27
28	$H^1(G_v, O_w^*)$ are equal to the ramification indices of v over l, of w over l and of w over v	28
29	respectively. It follows that $\#H^1(\Omega_v, O_w^*)$ is equal to the product of the cardinalities of	29
30	the groups $H^1(\Delta_l, O_v^*)$ and $H^1(G_v, O_w^*)$.	30
31	The exactness of the sequence of Lemma 4.2	31
32		32
33	$0 \longrightarrow H^1(\Delta_l, O_v^*) \longrightarrow H^1(\Omega_v, O_w^*) \longrightarrow H^1(G_v, O_w^*)^{\Delta_l} \longrightarrow 0,$	33
34		34
35	shows then that $H^1(G_v, O_w^*)$ is Δ_l -invariant. So Δ permutes the summands of	35
36	$H^1(G, U_K)$. Since $H^1(G_v, O_w^*) = \mathbf{Z}/p\mathbf{Z}$ for each prime v of $\mathbf{Q}(\zeta_p)$ that is ramified in K,	36
37	we find that	37
38		38
39	$H^1(G, U_K) = \bigoplus_{l \text{ ram in } K} \mathbf{Z}/p\mathbf{Z}[\Delta/\Delta_l],$	39
40	$\frac{1}{l \operatorname{ram in K}} = \frac{1}{l \operatorname{ram in K}} $	40
41		41

42 as required.

Please cite this article in press as: R. Schoof, On the ideal class group of the normal closure of $\mathbf{Q}(\sqrt[p]{n})$, J. Number Theory (2020), https://doi.org/10.1016/j.jnt.2020.04.004

[m1L; v1.285; Prn:19/05/2020; 8:42] P.11 (1-14) R. Schoof / Journal of Number Theory ••• (••••) •••-•••

11

42 with exact rows and columns.

[m1L: v1.285: Prn:19/05/2020: 8:42] P.12(1-14)

R. Schoof / Journal of Number Theory ••• (••••) •••-•••

$$\widehat{H}^0(G, O_K^*)$$

 $\stackrel{\downarrow}{\widehat{H}^0(G,U_K)}$

 $H^{1}(\vec{G}, O_{K}^{*})$

 $\bigcup_{H^1(G,U_K)}$

 $\widehat{H}^0(G, Cl_K) \longrightarrow H^1(G, Q_K)$ $H^{2}(\vec{G}, O_{K}^{*})$ $\overset{\downarrow}{\overset{\downarrow}{H^2(G,U_K)}}$

The G-cohomology groups are $\mathbf{F}_p[\Delta]$ -modules and all maps, including the connecting homomorphisms, are Δ -linear. Since this last fact plays an important role, we explain why this is so. A complete Ω -resolution $P_{\bullet} = \{P_i\}_{i \in \mathbb{Z}}$ as in [3, IV.6] is also a com-plete G-resolution. For any Ω -module M and any $i \in \mathbb{Z}$, the groups $\operatorname{Hom}_G(P_i, M)$ are naturally objects of the abelian category of Δ -modules. The cohomology groups of the complex $X^{\bullet}(M) = \operatorname{Hom}_{G}(P_{\bullet}, M)$ are the usual Tate G-cohomology groups. The long exact sequence of cohomology groups associated to the exact sequence of complexes $0 \to X^{\bullet}(A) \to X^{\bullet}(B) \to X^{\bullet}(C) \to 0$ is a sequence of morphisms in the category of Δ -modules.

Theorem 4.4. Let M denote the p-part of the class group of K. Suppose that p is a regular prime and that all primes $l \neq p$ that ramify in K are primitive roots modulo p. Then (i) the group Δ acts via ω on $M/\pi M$;

(ii) for every non-trivial character χ of Δ the \mathbf{F}_p -dimension of $M[\pi]_{\chi}$ is at most 1. Moreover, if χ is a non-trivial even character or $\chi = \omega^{-1}$, then $M[\pi]_{\chi}$ vanishes.

Proof. For l = p we always have that $\Delta_p = \Delta$. The assumption on the primes l means that $\Delta_l = \Delta$ for the ramified primes $l \neq p$ as well. Lemma 4.3 implies therefore that both $H^1(G, U_K)$ and $H^2(G, U_K)$ are isomorphic to

$$\bigoplus_{l \operatorname{ram in K}} \mathbf{Z}/p\mathbf{Z},$$

equipped with trivial Δ -action. Therefore Δ acts via ω on $\widehat{H}^0(G, U_K)$. It follows from the diagram that the Δ -module $\widehat{H}^{-1}(G, Cl_K)$ is a subquotient of $\widehat{H}^0(G, U_K)$, so that Δ acts also via ω on $\hat{H}^{-1}(G, Cl_K)$.

[m1L: v1.285: Prn:19/05/2020: 8:42] P.13 (1-14) R. Schoof / Journal of Number Theory ••• (••••) •••-•••

On the other hand, the diagram shows that the Δ -module $\widehat{H}^0(G, Cl_K)$ sits in an exact sequence

 $H^1(G, U_K) \longrightarrow \widehat{H}^0(G, Cl_K) \longrightarrow H^2(G, O_K^*).$

The group Δ acts trivially on $H^1(G, U_K)$. Therefore the χ -eigenspace of $\widehat{H}^0(G, Cl_K)$ is contained in the one of $H^2(G, O_K^*)$ when χ is non-trivial. The Δ -module $H^2(G, O_K^*)$ is isomorphic to $\widehat{H}^0(G, O_K^*)(\omega^{-1})$ and is hence a quotient of $(\mathbf{Z}[\zeta_p]^*/\mathbf{Z}[\zeta_p]^{*p})(\omega^{-1})$. By an equivariant version [7, Prop.13.7] of Dirichlet's Unit Theorem, $\mathbf{Z}[\zeta_p]^*/\mathbf{Z}[\zeta_p]^{*p}$ is a product of copies of $\mathbf{F}_{p}(\chi)$, one for each non-trivial even character χ and one copy of $\mathbf{F}_{p}(\omega).$

Since p is regular, M is killed by the G-norm N_G , so that it is a $\mathbf{Z}_p[\Delta]'$ -module. Recalling the fact that a G-module that is killed by N_G is invariant, if and only if it is killed by a generator of the maximal ideal of $\mathbf{Z}_p[\zeta_p] = \mathbf{Z}_p[G]/(\mathrm{Tr}_G)$, we find that $M/\pi M = \widehat{H}^{-1}(G, Cl_K)$ and $M[\pi] = \widehat{H}^0(G, Cl_K)$.

This implies the theorem.

Proof of Proposition 1.2. Corollary 2.2 takes care of the prime to *p*-part of Cl_K . We now consider the *p*-part. Since the statement does not regard the Δ -structure, we may twist the *p*-part M of the class group of K by the character ω^{-1} . We denote the result by M'. By Theorem 4.4, the group Δ acts trivially on $M'/\pi M'$, so that the A-module M' is generated by Δ -invariant elements. By Proposition 3.2 there is an exact sequence

 $0 \longrightarrow \bigoplus_{i=1}^{p-2} (A/\pi^i A)^{d_i} \longrightarrow M' \longrightarrow H \otimes_{\mathbf{Z}_p} A \longrightarrow 0$

where $d_i = \dim M'[\pi](\omega^{i-1}) = \dim M[\pi](\omega^i)$ for $1 \le i \le p-2$. Theorem 4.4 implies that $d_i = 0$ when i is even, while $d_i \leq 1$ when i is odd but not p - 2. It follows that

$$\dim \bigoplus_{i=1}^{p-2} (A/\pi^i A)^{d_i} = \sum_{i=1}^{p-2} i d_i \le \sum_{i=1, \text{ odd}}^{p-4} i = (\frac{p-3}{2})^2,$$
²⁹
³⁰
³¹

as required.

5. Appendix

- In this appendix we present our original proof of Proposition 1.1. Let S_3 denote the symmetric group on three letters. Let $\sigma \in S_3$ of order 2 and let $\rho \in S_3$ of order 3. For any $\mathbb{Z}[S_3]$ -module, let $M^- = \{x \in M : \sigma x = -x\}$ and write $M[\rho - 1]$ for $\{x \in M : \rho x = x\}$.
- **Lemma 5.1.** Let M be a finite $\mathbf{Z}[S_3]$ -module of odd order. Suppose that one of the follow-ing holds:
- (a) 3 does not divide #M and $\rho^2 + \rho + 1$ kills M.

R. Schoof / Journal of Number Theory ••• (••••) •••-•••

[m1L: v1.285: Prn:19/05/2020: 8:42] P.14 (1-14)

(b) #M is odd and σ acts trivially on $M[\rho - 1]$ and as -1 on $M/(\rho - 1)M$. Then the homomorphism

 $f: M^- \times M^- \longrightarrow M$

given by $f(x,y) = x - \rho y$ is bijective.

Proof. Suppose that $x, y \in M^-$ and $(x, y) \in \ker f$. Then we have $x = \rho y$ and hence $y = -\sigma y = -\rho \sigma \rho y = -\rho \sigma x = \rho x = \rho^2 y$. Since ρ has order 3, it follows that $\rho - 1$ kills y and hence x. It follows that ker $f \subset M[\rho - 1]$. Similarly, let $m \in M$. Then $(\sigma - 1)m$ and $(\sigma - 1)\rho m$ are in M^- . We have

$$f((\sigma - 1)m, (\sigma - 1)\rho m) = (\sigma - 1 - \rho(\sigma - 1)\rho)m = (-1 + \rho^2)m.$$

14 This means that $(\rho - 1)M$ is contained in the image of f. So there is a natural surjective 15 homomorphism $M/(\rho - 1)M \to \operatorname{cok} f$.

In case (a) we observe that since $\rho^2 + \rho + 1 = 0$, both $M[\rho - 1]$ and $M/(\rho - 1)M$ are killed by 3. Since 3 does not divide #M, both groups are trivial and hence so are ker fand cok f.

For (b) we note that by assumption σ acts trivially on $M[\rho - 1]$ and hence on ker f. Since σ acts as -1 on M^- and since #M is odd, it follows that ker f = 0. For the surjectivity, we note that by assumption σ acts as -1 on $M/(\rho - 1)M$ and hence on cok f. On the other hand, M^- is in the image of f, so that σ acts trivially on cok f. We conclude that cok f is trivial.

24 This proves the lemma.

If $n \in \mathbf{Z}$ is not a cube, the Galois group of $\mathbf{Q}(\zeta_3, \sqrt[3]{n})$ is isomorphic to S_3 . An applica-tion of part (a) of the lemma to $M = Cl_K$ proves Corollary 2.2 for the non-3-part of Cl_K . Part (b) takes care of the 3-part. To see this, we must check the conditions that σ acts trivially on $\widehat{H}^0(G, Cl_K) = M[\rho]$ and acts as -1 on $M/(\rho - 1)M = \widehat{H}^{-1}(G, Cl_K)$. Since n is not divisible by any primes congruent to 1 (mod 3), this follows from Theorem 4.4.

References

- [1] M. Auslander, O. Goldman, The Brauer group of a commutative ring, Trans. Am. Math. Soc. 97 (1960) 367-409.
- 35 [2] H. Cartan, S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, 1956.
- [3] J. Cassels, A. Fröhlich (Eds.), Algebraic Number Theory, Proceedings of an Instructional Conference, Academic Press, London, 1967.
- [4] F. DeMeyer, E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, Berlin, 1971.
 [5] T. Handa, Dura and S. Barlin, 1971.
- [5] T. Honda, Pure cubic fields whose class numbers are multiples of three, J. Number Theory 3 (1971)
 7-12.
- 40 [6] D. Hubbard, L. Washington, Iwasawa invariants of some non-cyclotomic \mathbf{Z}_p -extensions, J. Number Theory 188 (2018) 18–47.
- [7] R. Schoof, Catalan's Conjecture, Universitext, Springer-Verlag, London, ISBN 978-1-84800-184-8,
 2008.

Please cite this article in press as: R. Schoof, On the ideal class group of the normal closure of $\mathbf{Q}(\sqrt[4]{n})$, J. Number Theory (2020), https://doi.org/10.1016/j.jnt.2020.04.004