
General Section
On the ideal class group of the normal closure of $\mathbf{Q}(\sqrt[p]{n})$

René SchoofDipartimento di Matematica, Università di Roma"Tor Vergata", I-00133 Roma,Italy14

\qquad
A R T I C L E I N F O
Article history:Received 29 November 2019Received in revised form 9 April2020

Accepted 10 April 2020
Available online xxxx
Communicated by A. Pal

Keywords:

Algebraic number fields
Class groups
Galois cohomology
Class field theory
A B S T R A C T

For a prime number p and an integer n we determine the Galois cohomology groups of the class group of the normal closure of $\mathbf{Q}(\sqrt[p]{n})$ to a certain extent and use this information to prove a result about the group structure of the class group.
© 2020 Elsevier Inc. All rights reserved.
\qquad

1. Introduction

For an integer $m \geq 1$, we let ζ_{m} denote a primitive m-th root of unity. In 1971, Taira Honda [5] proved that the class number of $\mathbf{Q}\left(\zeta_{3}, \sqrt[3]{n}\right)$ is equal to h^{2} or $3 h^{2}$, where h is the class number of $\mathbf{Q}(\sqrt[3]{n})$. Around 2016, L.C. Washington proposed a refinement of this statement for certain values of n, which was then proved by the author. The result can be phrased as follows.

Proposition 1.1. Let $n \in \mathbf{Z}$ not be a cube. If n is not divisible by any prime number congruent to $1(\bmod 3)$, then the class group of $\mathbf{Q}\left(\zeta_{3}, \sqrt[3]{n}\right)$ is isomorphic to $H \times H$ for some finite abelian group H.

In this note we put the statement of Proposition 1.1 in a more general context and replace our earlier ad hoc proof of it by more conceptual arguments. This leads to a study of the Galois module structure of the class groups of the fields $\mathbf{Q}\left(\zeta_{p}, \sqrt[p]{n}\right)$ for primes $p \geq 3$. In a recent paper Hubbard and Washington write that their proof of $[6$, Thm. 7] was inspired by the original proof of Proposition 1.1 for $p=3$. That's why we present it in an appendix.

The problem naturally splits into two parts. For the non-p-part of the class group, Proposition 1.1 can easily be generalized without any condition on p or on the prime divisors l of n. This is done in section 2 using Morita theory. For the p-part the problem is more subtle. We need to make the assumption that p is a regular prime, i.e. that p does not divide the class number of $\mathbf{Q}\left(\zeta_{p}\right)$. The following proposition follows from our main results, which are Proposition 3.2 and Theorem 4.4. For $p=3$ we recover Proposition 1.1

Proposition 1.2. Let $p>2$ be a regular prime and let $n \in \mathbf{Z}$ not be a p-th power. Suppose that all prime divisors $l \neq p$ of n are primitive roots modulo p. Then the kernel $C l^{0}$ of the norm map from the class group of $\mathbf{Q}\left(\zeta_{p}, \sqrt[p]{n}\right)$ to the class group of $\mathbf{Q}\left(\zeta_{p}\right)$ sits in an exact sequence

$$
0 \longrightarrow V \longrightarrow C l^{0} \longrightarrow \underbrace{H \times H \times \ldots \times H}_{p-1 \text { times }} \longrightarrow 0
$$

where H is a finite abelian group H and V an \mathbf{F}_{p}-vector space of dimension at most $\left(\frac{p-3}{2}\right)^{2}$ 。

Throughout this note we fix a prime $p>2$ and a primitive p-th root of unity ζ_{p}. We study the ideal class groups of the fields

$$
K=\mathbf{Q}\left(\zeta_{p}, \sqrt[p]{n}\right)
$$

where $n \in \mathbf{Z}$ is not a p-th power. We have inclusions

$$
\mathbf{Q} \subset \mathbf{Q}\left(\zeta_{p}\right) \subset K .
$$

Put $\Omega=\operatorname{Gal}(K / \mathbf{Q}), G=\operatorname{Gal}\left(K / \mathbf{Q}\left(\zeta_{p}\right)\right)$ and $\Delta=\operatorname{Gal}(K / \mathbf{Q}(\sqrt[p]{n}))$. Restriction to $\mathbf{Q}\left(\zeta_{p}\right)$38 identifies Δ with $\operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{p}\right) / \mathbf{Q}\right)$. The group Ω is the semidirect product of Δ by G. There is a natural exact sequence

$$
1 \longrightarrow G \longrightarrow \Omega \longrightarrow \Delta \longrightarrow 1
$$

The group G is isomorphic to $\mathbf{Z} / p \mathbf{Z}$ and Δ is somorphic to $(\mathbf{Z} / p \mathbf{Z})^{*}$. If t denotes a generator of G and $s \in \Delta \subset G$ is a generator of Δ, then a presentation of the group Ω is given by

$$
\Omega=\left\langle t, s: s^{p-1}=1, t^{p}=1, s t s^{-1}=t^{\omega(s)}\right\rangle
$$

Here $\omega: \Delta \longrightarrow(\mathbf{Z} / p \mathbf{Z})^{*}$ denotes the cyclotomic character. In other words, we have $\sigma\left(\zeta_{p}\right)=\zeta_{p}^{\omega(\sigma)}$ for all $\sigma \in \Delta$.

The class group $C l_{K}$ is a $\mathbf{Z}[\Omega]$-module. The G-norm map $N_{G}: C l_{K} \longrightarrow C l_{K}$ factors through the class group of $\mathbf{Q}\left(\zeta_{p}\right)$:

The map from $C l_{\mathbf{Q}\left(\zeta_{p}\right)}$ to the image of N_{G} is an isomorphism on the prime to p-parts. So, the sequence

$$
0 \longrightarrow \operatorname{ker} N_{G} \longrightarrow C l_{K} \longrightarrow C l_{\mathbf{Q}\left(\zeta_{p}\right)} \longrightarrow 0
$$

is exact on the non- p-parts. We study the p-part of $C l_{K}$ under the assumption that p is a regular prime. In this case the p-parts of $C l_{K}$ and ker N_{G} are obviously equal.

Since we fix p, we concentrate on ker N_{G} as K varies. This is a left module over the non-commutative ring $R=\mathbf{Z}[\Omega] /\left(\operatorname{Tr}_{G}\right)$, where Tr_{G} denotes the central element $\sum_{g \in G}[g]$ of $\mathbf{Z}[\Omega]$. Since we have $\mathbf{Z}[G] /\left(\operatorname{Tr}_{G}\right) \cong \mathbf{Z}\left[\zeta_{p}\right]$, the ring R is isomorphic to the twisted group ring $\mathbf{Z}\left[\zeta_{p}\right][\Delta]^{\prime}$. Multiplication in this ring satisfies $[\sigma] \lambda=\sigma(\lambda)[\sigma]$ for $\lambda \in \mathbf{Z}\left[\zeta_{p}\right]$ and $\sigma \in \Delta$. A module over $\mathbf{Z}\left[\zeta_{p}\right][\Delta]^{\prime}$ can alternatively be viewed as a module over $\mathbf{Z}\left[\zeta_{p}\right]$, equipped with a semilinear action of Δ.

2. The non-p-part

Using the notations of the introduction, the non-p-part of the class group of K is a left module over the twisted group ring $\mathbf{Z}\left[\zeta_{p}, \frac{1}{p}\right][\Delta]^{\prime}$. Alternatively, it is a $\mathbf{Z}\left[\zeta_{p}, \frac{1}{p}\right]-$ module equipped with semilinear left Δ-action. The category of such modules is Morita equivalent to the category of modules over $\mathbf{Z}\left[\zeta_{p}, \frac{1}{p}\right]$. This follows from the following general result.

Theorem 2.1. Let $R \subset S$ be a finite Galois extension of commutative rings with Galois group Δ. Then the ring R and the twisted group ring $S[\Delta]^{\prime}$ are Morita equivalent. In other words, the functors R-Mod $\longrightarrow S[\Delta]^{\prime}-\underline{\text { Mod given by } M \mapsto M \otimes_{R} S \text { and } S[\Delta]^{\prime}-\underline{M o d} \longrightarrow}$ R-Mod given by $N \mapsto N^{\Delta}$, induce an equivalence of categories.

Proof. Since S is Galois over R, it is a faithful projective R-module and hence an R progenerator. Since the natural map $S[\Delta]^{\prime} \longrightarrow \operatorname{End}_{R}(S)$ is an isomorphism [1, appendix], the result follows from Morita's Theorem as presented in [4, Prop.3.3]. To see this, note that for a left S-module N we have isomorphisms

$$
N^{\Delta} \cong \operatorname{Hom}_{S}(A, N) \cong \operatorname{Hom}_{R}\left(R, A^{\vee} \otimes_{S} N\right) \cong A^{\vee} \otimes_{S} N
$$

Here A^{\vee} denotes the right S-module $\operatorname{Hom}_{R}(A, R)$ that appears in [4, Prop.3.3].
Let p be a prime. An application of Theorem 2.1 to the Galois extension $\mathbf{Z}\left[\frac{1}{p}\right] \subset$ $\mathbf{Z}\left[\zeta_{p}, \frac{1}{p}\right]$ with Galois group $\Delta \cong(\mathbf{Z} / p \mathbf{Z})^{*}$ implies the following result.

Corollary 2.2. Let p be prime, let $n \in \mathbf{Z}$ not be a p-th power, and let $K=\mathbf{Q}\left(\zeta_{p}, \sqrt[p]{n}\right)$. Let M denote the non-p-part of the kernel of the G-norm map $C l_{K} \longrightarrow C l_{K}$. Then M is isomorphic to $M^{\Delta} \otimes_{\mathbf{Z}} \mathbf{Z}\left[\zeta_{p}\right]$. In particular, as an abelian group, M is isomorphic to a product of $p-1$ copies of M^{Δ}.

The following proposition also implies Corollary 2.2. Its proof avoids general Morita theory and is based on an explicit computation.

Proposition 2.3. Let $\mathbf{Q} \subset F$ be a Galois extension with $\Delta=\operatorname{Gal}(F / \mathbf{Q})$. Let M be a module over the ring of integers O_{F} that is equipped with a semilinear action by Δ. Let M^{Δ} denote its subgroup of Δ-invariant elements and let ϕ denote the natural O_{F}-linear map

$$
\phi: M^{\Delta} \otimes_{\mathbf{Z}} O_{F} \longrightarrow M
$$

given by $\phi(m \otimes \lambda)=\lambda m$ for $m \in M^{\Delta}$ and λ in O_{F}. Then the kernel and the cokernel of ϕ are O_{F}-modules that are killed by the different δ_{F} of F.

Proof. Let $\omega_{1}, \ldots, \omega_{n}$ be a \mathbf{Z}-basis for O_{F}. Then any element in $M^{\Delta} \otimes_{\mathbf{z}} O_{F}$ can be written as $\sum_{i} m_{i} \otimes \omega_{i}$, where $m_{i} \in M^{\Delta}$. Suppose that $x=\sum_{i} m_{i} \otimes \omega_{i}$ is in the kernel of ϕ. This means that $\sum_{i} \omega_{i} m_{i}=0$ in M. Applying $\sigma \in \Delta$, we see that $\sum_{i} \sigma\left(\omega_{i}\right) m_{i}=0$ for every $\sigma \in \Delta$.

Now let $z \in \delta_{F}$. Let $\omega_{1}^{*}, \ldots, \omega_{n}^{*} \in F$ be the dual base of $\omega_{1}, \ldots, \omega_{n}$. This means that

$$
\sum_{\sigma \in \Delta} \sigma\left(\omega_{i} \omega_{j}^{*}\right)= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

By definition of the different, $z \sigma\left(\omega_{j}^{*}\right)$ is in O_{F} for every j and for every $\sigma \in \Delta$. We have

$$
\sum_{\sigma \in \Delta} z \sigma\left(\omega_{j}^{*}\right) \sum_{i} \sigma\left(\omega_{i}\right) m_{i}=0, \quad \text { for all } j
$$

Therefore

$$
\sum_{i} z\left(\sum_{\sigma \in \Delta} \sigma\left(\omega_{j}^{*}\right) \sigma\left(\omega_{i}\right)\right) m_{i}=0, \quad \text { for all } j
$$

It follows that $z m_{i}=0$ for every i and hence $z x=0$. This implies that δ_{F} annihilates x, as required.

To prove that the cokernel of ϕ is also killed by δ_{F}, let $m \in M$. Then $\sum_{\sigma \in \Delta} \sigma\left(\omega_{i} m\right)$ is Δ-invariant for every i and hence is in $\operatorname{im} \phi=M^{\Delta} O_{F}$. For all $z \in \delta_{F}$ and every $\tau \in \Delta$ the elements

$$
\begin{equation*}
\sum_{\sigma \in \Delta} \sum_{i} z \tau\left(\omega_{i}^{*}\right) \sigma\left(\omega_{i}\right) \sigma(m), \tag{*}
\end{equation*}
$$

are in $M^{\Delta} O_{F}$. Since the matrices $\sigma\left(\omega_{i}\right)$ and $\sigma\left(\omega_{i}^{*}\right)$ are inverse to one another, we have that $\sum_{i} \tau\left(\omega_{i}^{*}\right) \sigma\left(\omega_{i}\right)=1$ when $\sigma=\tau$ and zero otherwise. Therefore the expression $(*)$ is equal to $z \tau(m)$ for each τ. In particular $z m$ is in the image of ϕ. It follows that δ_{F} kills the cokernel of ϕ, as required.

For a prime p the different δ_{F} of $F=\mathbf{Q}\left(\zeta_{p}\right)$ is equal to $\left(\zeta_{p}-1\right)^{p-2}$. Therefore δ_{F} is a divisor of p. It follows that for a finite O_{F}-module of order prime to p, multiplication by δ_{F} is an isomorphism and hence the map $M^{\Delta} \otimes_{\mathbf{Z}} O_{F} \longrightarrow M$ is an isomorphism. This easily implies Corollary 2.2.

Proposition 2.3 is in some sense best possible. Indeed, consider $F=\mathbf{Q}\left(\zeta_{p}\right)$ and $A=$ $\mathbf{Z}\left[\zeta_{p}\right]=O_{F}$ and $M=\mathbf{Z}\left[\zeta_{p}\right] /\left(\zeta_{p}-1\right)=\mathbf{Z} / p \mathbf{Z}$ with trivial Δ-action. Then $M^{\Delta}=M$ and $M \otimes \mathbf{Z} \mathbf{Z}\left[\zeta_{p}\right]=\mathbf{Z}\left[\zeta_{p}\right] /(p)$. In this case the kernel of ϕ is isomorphic to $\left(\zeta_{p}-1\right) /(p) \cong$ $\mathbf{Z}\left[\zeta_{p}\right] / \delta_{F}$. On the other hand, let $M=\left(\zeta_{p}-1\right) /(p)$. In this case there are no Δ-invariant elements, so that the cokernel of ϕ is $M=\left(\zeta_{p}-1\right) /(p)$.

3. The p-part

For any prime $p \geq 3$ let \mathbf{Z}_{p} denote the ring of p-adic integers and put $A=\mathbf{Z}_{p}\left[\zeta_{p}\right]$. In the notation of section 1, the p-part of the kernel of the norm map $C l_{K} \longrightarrow C l_{K}$ is a module over the twisted group ring $A[\Delta]^{\prime}$ as defined in section 1 . In other words, it is a module over the discrete valuation ring A and it comes equipped with a semilinear Δ-action.

In this section we study this type of modules. They form an abelian category. Since the natural action of Δ on A is semilinear, the $\operatorname{ring} A$ is itself an example. So are its ideals and quotients. The ideals are of the form $\pi^{i} A$ for $i \geq 0$. Here π denotes a $p-1$-th root of $-p$ in A. It is easy to see that π is equal to $\zeta_{p}-1$ times a unit, so that π generates the maximal ideal of A. For any $\sigma \in \Delta$ we have $\sigma(\pi)=\omega(\sigma) \pi$. The residue field $A / \pi A$ is isomorphic to \mathbf{F}_{p} with trivial Δ-action.

[^0]For every character $\chi: \Delta \longrightarrow \mathbf{Z}_{p}^{*}$ and every $A[\Delta]^{\prime}$-module M, we write $M(\chi)$ for the χ-twist of M. This is also an $A[\Delta]^{\prime}$-module. As an A-module it is just M, but the Δ-action is twisted by χ : on $M(\chi)$ multiplying $m \in M(\chi)$ by $\sigma \in \Delta$ gives $\chi(\sigma) \sigma m$, where σm denotes the product of m by σ in the untwisted module M. The map $A\left(\omega^{i}\right) \longrightarrow \pi^{i} A$ given by $\lambda \mapsto \lambda \pi^{i}$ is an $A[\Delta]^{\prime}$-linear isomorphism.

For every character $\chi: \Delta \longrightarrow \mathbf{Z}_{p}^{*}$ and an $A[\Delta]^{\prime}$-module M, we define its χ-eigenspace by

$$
M_{\chi}=\{x \in M: \sigma(x)=\chi(\sigma) x \text { for all } \sigma \in \Delta\}
$$

This is a \mathbf{Z}_{p}-submodule of M. It is, in general, not an A-module. The natural map

$$
\underset{\chi}{\oplus} M_{\chi} \longrightarrow M
$$

is an isomorphism. For $\chi=1$ we recover the subgroup of Δ-invariants $M_{1}=M^{\Delta}$. We have that $M(\chi)^{\Delta}=M_{\chi^{-1}}$.

If M is killed by π, then M is a module over the ring $A[\Delta]^{\prime} / \pi A[\Delta]^{\prime} \cong \mathbf{F}_{p}[\Delta]$. So, the semilinear Δ-action on M is actually linear. As an $A[\Delta]^{\prime}$-module, $\mathbf{F}_{p}[\Delta]$ is a product of modules of the form $\mathbf{F}_{p}(\chi)$, one for each character χ of Δ. Every module M that is killed by π is therefore a product of various copies of $\mathbf{F}_{p}(\chi)$.

Every $A[\Delta]^{\prime}$-module admits a filtration with submodules

$$
M \supset \pi M \supset \pi^{2} M \supset \pi^{3} M \supset \ldots
$$

The successive subquotients are killed by π and hence are isomorphic to products of copies of $\mathbf{F}_{p}(\chi)$ for certain characters χ of Δ. For the ring A itself we have

$$
A \supset \pi A \supset \pi^{2} A \supset \pi^{3} A \supset \ldots
$$

with successive subquotients (from left to right) isomorphic to $\mathbf{F}_{p}, \mathbf{F}_{p}(\omega), \mathbf{F}_{p}\left(\omega^{2}\right), \ldots$. When $i<j$ we have for $\pi^{i} A / \pi^{j} A$ the filtration

$$
\pi^{i} A / \pi^{j} A \supset \pi^{i+1} A / \pi^{j} A \supset \pi^{i+2} A / \pi^{j} A \supset \ldots \supset \pi^{j-1} A / \pi^{j} A \supset 0
$$

with successive subquotients isomorphic to $\mathbf{F}_{p}\left(\omega^{i}\right), \mathbf{F}_{p}\left(\omega^{i+1}\right), \ldots, \mathbf{F}_{p}\left(\omega^{j-1}\right)$.
The next result describes the structure of finite $A[\Delta]^{\prime}$-modules that are generated by Δ-invariant elements.

Proposition 3.1. Let M be a finite $A[\Delta]^{\prime}$-module. Then Δ acts trivially on the quotient $M / \pi M$ if and only if there is an $A[\Delta]^{\prime}$-isomorphism

$$
M \cong \underset{i=1}{\oplus} A / \pi^{n_{i}} A, \quad \text { for certain integers } n_{i} \geq 1
$$

Proof. For any module M of this type, the quotient $M / \pi M$ is isomorphic to a product of copies of $A / \pi A=\mathbf{F}_{p}$ with trivial Δ-action. Conversely, suppose that $M / \pi M$ has trivial Δ-action. Since the order of Δ is prime to p, the map $M^{\Delta} \longrightarrow(M / \pi M)^{\Delta}=M / \pi M$ is surjective. This implies that M can be generated over A by Δ-invariant elements v_{1}, \ldots, v_{t} say. In other words, the A-homomorphism $A^{t} \longrightarrow M$ that maps the i-th basis vector to v_{i} is a well defined surjective $A[\Delta]^{\prime}$-homomorphism. Since M is finite, it induces a surjective $A[\Delta]^{\prime}$-homomorphism of the form

$$
\phi: \stackrel{t}{\oplus} A / \pi^{n_{i}} A \longrightarrow M
$$

for certain $n_{i} \geq 1$. If ϕ is also injective, we are done. If not, $\operatorname{ker} \phi$ contains a non-zero element x that is killed by π on which Δ acts via some character $\chi=\omega^{m}$. So x generates an $A[\Delta]^{\prime}$-module isomorphic to $\mathbf{F}_{p}(\chi)$. We have $x=\left(\lambda_{1}\left(\bmod \pi^{n_{1}}\right), \ldots, \lambda_{t}\left(\bmod \pi^{n_{t}}\right)\right)$ for certain $\lambda_{i} \in A$ for which $\lambda_{i} \equiv 0\left(\bmod \pi^{n_{i}-1}\right)$ for each i and for which $\sum_{i=1}^{t} \lambda_{i} v_{i}=0$ in M.

Since $\pi^{n_{i}-1} / \pi^{n_{i}} A \cong \mathbf{F}_{p}\left(\omega^{n_{i}-1}\right)$, the coordinates λ_{i} must be congruent to $0\left(\bmod \pi^{n_{i}}\right)$ for the indices i for which $n_{i}-1 \not \equiv m(\bmod p-1)$. Let I denote the set of indices for which $n_{i}-1 \equiv m(\bmod p-1)$. For $i \in I$ we define k_{i} by $n_{i}-1=m+k_{i}(p-1)$. For at least one index $i \in I$ we have $\lambda_{i} \not \equiv 0\left(\bmod \pi^{n_{i}}\right)$. Without loss of generality we may assume that this happens for $i=1$ and that moreover n_{1} and hence k_{1} is minimal. For $i \in I$ we define $\mu_{i} \in A$ by

$$
\lambda_{i}=\pi^{m} p^{k_{i}} \mu_{i}
$$

We let $m_{i} \in \mathbf{Z}$ such that $\mu_{i} \equiv m_{i}(\bmod \pi)$. Note that μ_{i} and hence m_{i} are invertible in A.

From ϕ we construct now a second R-homomorphism ϕ^{\prime}

$$
\begin{equation*}
\phi^{\prime}:\left(A / \pi^{n_{1}-1} A\right) \oplus \underset{i=2}{\stackrel{t}{\oplus}} A / \pi^{n_{i}} A \longrightarrow M \tag{*}
\end{equation*}
$$

by mapping the first basis vector $e_{1}=(1,0,0, \ldots)$ to $\sum_{i=1}^{t} m_{i} p^{k_{i}-k_{1}} v_{i}$, mapping the basis vectors e_{i} to $\phi\left(e_{i}\right)$ when $i \geq 2$ and extend A-linearly. In this way $\phi^{\prime}\left(e_{i}\right) \in M^{\Delta}$ for every i. Since ϕ is surjective and m_{1} is invertible in \mathbf{Z}_{p}, the morphism ϕ^{\prime} is also surjective. We only need to check that it is well defined. This means that ϕ^{\prime} should map $p^{k_{1}} \pi^{m} e_{1}$ to zero. We have

$$
\phi^{\prime}\left(p^{k_{1}} \pi^{m} e_{1}\right)=\sum_{i} m_{i} p^{k_{i}} \pi^{m} v_{i}=\sum_{i} \mu_{i} p^{k_{i}} \pi^{m} v_{i}=\sum_{i} \lambda_{i} v_{i}=0 .
$$

Note that the left hand side module in $(*)$ is strictly smaller than the one we started with. Therefore, by repeating this process, we eventually end up with an isomorphism.

This proves the proposition.

Proposition 3.2. Let M be a finite $A[\Delta]^{\prime}$-module that is generated by Δ-invariant elements. Let $d_{i}=\operatorname{dim} M[\pi]_{\omega^{i-1}}$ for $1 \leq i \leq p-2$. Then there is a finite abelian p-group H and an exact sequence of $A[\Delta]^{\prime}$-modules

$$
0 \longrightarrow \underset{i=1}{p-2}\left(A / \pi^{i} A\right)^{d_{i}} \longrightarrow M \longrightarrow H \otimes_{\mathbf{z}_{p}} A \longrightarrow 0
$$

Proof. Suppose that M is of the form $A / \pi^{n} A$ for some $n \geq 0$ Then there are integers $m \geq 0$ and $i \in\{0,1, \ldots, p-2\}$ for which $n=(p-1) m+i$. Since $p=\pi^{p-1}$ times a unit, we get an exact sequence

$$
0 \longrightarrow A / \pi^{i} A \longrightarrow M \longrightarrow A / p^{m} A \longrightarrow 0
$$

Putting $H=\mathbf{Z} / p^{m} \mathbf{Z}$, we have $A / p^{m} A=H \otimes_{\mathbf{z}_{p}} A$. We put $V=A / \pi^{i} A$. Then $V=0$ for $i=0$. For $1 \leq i \leq p-2$, the submodule $M[\pi]$ is the same as the π-torsion submodule of V, which is isomorphic to $\mathbf{F}_{p}\left(\omega^{i-1}\right)$. So $d_{i}=1$, while $d_{j}=0$ for $j \in\{1, \ldots, p-2\}$ different from i.

This takes care of $M=A / \pi^{n} A$. By Proposition 3.1, an arbitrary module M generated by Δ-invariant elements is a direct sum of modules of the form $A / \pi^{n} A$. Since the statement of the proposition is additive in M, the proposition is also proved for general modules M.

The $A[\Delta]^{\prime}$-module $\oplus_{i=1}^{p-2}\left(A / \pi^{i} A\right)^{d_{i}}$ of Proposition 3.2 is killed by π^{p-2} and hence by p. Its \mathbf{F}_{p}-dimension is $\sum_{i=1}^{p-2} i d_{i}$.

4. Class field theory

As in the introduction, $p>2$ is a prime and ζ_{p} is a primitive p-th root of unity. Let $n \in \mathbf{Z}$ not be a p-th power and let $K=\mathbf{Q}\left(\zeta_{p}, \sqrt[p]{n}\right)$. Let G denote the Galois group of K over $\mathbf{Q}\left(\zeta_{p}\right)$, let $\Omega=\operatorname{Gal}(K / \mathbf{Q})$ and let $\Delta=\operatorname{Gal}\left(K / \mathbf{Q}(\sqrt[p]{n}) \cong \operatorname{Gal}\left(\mathbf{Q}\left(\zeta_{p}\right) / \mathbf{Q}\right)\right.$.

In this section we study the Tate G-cohomology groups of the class group of K. The class group of K is a $\mathbf{Z}[\Omega]$-module, and Tate G-cohomology groups of $\mathbf{Z}[\Omega]$-modules are $\mathbf{F}_{p}[\Delta]$-modules. This follows from the fact that Tate G-cohomology groups are killed by p and are G-invariant. Since G is cyclic, its Tate cohomology groups are periodic with period 2 . The isomorphism, given by cupping with a generator of $H^{2}(G, \mathbf{Z})$, is not Δ-equivariant. Indeed, $\widehat{H}^{0}(G, \mathbf{Z})=\mathbf{Z} / p \mathbf{Z}$ has trivial Δ-action, while $H^{2}(G, \mathbf{Z})=G^{\text {dual }}$ has Δ-action via ω^{-1}. For $q \in \mathbf{Z}$ and an arbitrary Ω-module M the maps

$$
\widehat{H}^{q}(G, M) \stackrel{\cong}{\Longrightarrow} \widehat{H}^{q+2}(G, M)(\omega),
$$

given by cupping with a generator of $H^{2}(G, \mathbf{Z})$, are $\mathbf{F}_{p}[\Delta]$-isomorphisms.

For future reference we recall a property of the cohomology groups of $\mathbf{Z}[\Omega]$-modules M.

Lemma 4.1. Let M be a $\mathbf{Z}[\Omega]$-module and let $q \geq 1$. Then the inflation-restriction sequences

$$
0 \longrightarrow H^{q}\left(\Delta, M^{G}\right) \longrightarrow H^{q}(\Omega, M) \longrightarrow H^{q}(G, M)^{\Delta} \longrightarrow 0
$$

are exact

Proof. Since the orders of Δ and G are coprime, the E_{2}-terms of the Hochschild-Serre spectral sequence [2, Ch.XVI] off the axes are zero. This implies the lemma.

By O_{K} we denote the ring of integers of K and by O_{K}^{*} its group of units. By U_{K} we denote the idele unit group and by C_{K} the idele class group of K. See [3] for the basic properties of the Galois cohomology groups of these $\mathbf{Z}[\Omega]$-modules. There is a natural exact sequence

$$
0 \longrightarrow O_{K}^{*} \longrightarrow U_{K} \longrightarrow C_{K} \longrightarrow C l_{K} \longrightarrow 0 .
$$

We use the same notation with K replaced by $\mathbf{Q}\left(\zeta_{p}\right)$. In order to get information on the $\mathbf{F}_{p}[\Delta]$-structure of the G-cohomology groups of $C l_{K}$, we determine the Δ-action on the G-cohomology groups of U_{K} and, for completeness, also of C_{K}.

Lemma 4.2. The cohomology groups $\widehat{H}^{q}\left(G, C_{K}\right)$ are trivial when q is odd and isomorphic to \mathbf{F}_{p} if q is even. In the latter case, Δ acts on $\widehat{H}^{q}\left(G, C_{K}\right)$ through the character $\omega^{1-q / 2}$.

Proof. The first statement follows from global class field theory. See [3, VII, Thms. 8.3 and 9.1] To prove the second, it suffices to show that Δ acts trivially on $H^{2}\left(G, C_{K}\right)$. By global class field theory the groups $H^{2}\left(\Omega, C_{K}\right), H^{2}\left(G, C_{K}\right)$ and $H^{2}\left(\Delta, C_{\mathbf{Q}\left(\zeta_{p}\right)}\right)$ are isomorphic to the groups $\widehat{H}^{0}(\Omega, \mathbf{Z}), \widehat{H}^{0}(G, \mathbf{Z})$ and $\widehat{H}^{0}(\Delta, \mathbf{Z})$, and hence are cyclic of orders $p(p-1), p$ and $p-1$ respectively. By Lemma 4.1 with $M=C_{K}$, the sequence

$$
0 \longrightarrow H^{2}\left(\Delta, C_{\mathbf{Q}\left(\zeta_{p}\right)}\right) \longrightarrow H^{2}\left(\Omega, C_{K}\right) \longrightarrow H^{2}\left(G, C_{K}\right)^{\Delta} \longrightarrow 0
$$

is exact. It follows that $H^{2}\left(G, C_{K}\right)=H^{2}\left(G, C_{K}\right)^{\Delta}$ as required.
Lemma 4.3. The cohomology groups $\widehat{H}^{q}\left(G, U_{K}\right)$ are isomorphic to twists of the Δ-module

$$
\underset{l \mathrm{ram} \text { in K }}{\oplus} \mathbf{Z} / p \mathbf{Z}\left[\Delta / \Delta_{l}\right] .
$$

Here the sum runs over primes l for which the primes v lying over lin $\mathbf{Q}\left(\zeta_{p}\right)$ are ramified in K and $\Delta_{l} \subset \Delta$ denotes the decomposition subgroup of v. The Δ-action on $H^{1}\left(G, U_{K}\right)$ and $H^{2}\left(G, U_{K}\right)$ is the natural action on the various summands $\mathbf{Z} / p \mathbf{Z}\left[\Delta / \Delta_{l}\right]$. The Δ action on $\widehat{H}^{q}\left(G, U_{K}\right)$ is twisted by $\omega^{1-q / 2}$ if q is even and by $\omega^{(1-q) / 2}$ if q is odd.

Proof. For a prime number l, let v denote a prime of $\mathbf{Q}\left(\zeta_{p}\right)$ lying over l and let w be a prime of K lying over v. Let $\Omega_{w} \subset \Omega$ denote the decomposition group of w. Let $\Delta_{l} \subset \Delta$ denote the decomposition group of v. It only depends on l. Let $G_{v} \subset G$ denote the decomposition group of w. It only depends on v. There is an exact sequence

$$
1 \longrightarrow G_{v} \longrightarrow \Omega_{w} \longrightarrow \Delta_{l} \longrightarrow 1
$$

as required.

For $q=2$ we consider the exact sequence of Lemma 4.2 for $M=K_{w}^{*}$:

$$
0 \longrightarrow H^{2}\left(\Delta_{l}, \mathbf{Q}\left(\zeta_{p}\right)_{v}^{*}\right) \longrightarrow H^{2}\left(\Omega_{v}, K_{w}^{*}\right) \longrightarrow H^{2}\left(G_{v}, K_{w}^{*}\right)^{\Delta_{v}} \longrightarrow 0
$$

By local class field theory, the cohomology groups $H^{2}\left(\Delta_{l}, \mathbf{Q}\left(\zeta_{p}\right)_{v}^{*}\right), H^{2}\left(\Omega_{v}, K_{w}^{*}\right)$ and $H^{2}\left(G_{v}, K_{w}^{*}\right)$ have orders equal to the cardinality of Δ_{l}, Ω_{v} and G_{v} respectively. The exactness of the sequence then shows that $H^{2}\left(G_{v}, K_{w}^{*}\right)$ is Δ_{l}-invariant. Since the natural $\operatorname{map} H^{2}\left(G_{v}, O_{w}^{*}\right) \longrightarrow H^{2}\left(G_{v}, K_{w}^{*}\right)$ is injective, the same is true for $H^{2}\left(G_{v}, O_{w}^{*}\right)$.

Since $H^{2}\left(G_{v}, O_{w}^{*}\right)$ is isomorphic to the order p group $\widehat{H}^{0}\left(G_{v}, O_{w}^{*}\right)$, we find as in the previous case an isomorphism of Δ-modules

$$
H^{2}\left(G, U_{K}\right)=\underset{l \mathrm{ramin} \mathrm{~K}}{\oplus} \mathbf{Z} / p \mathbf{Z}\left[\Delta / \Delta_{l}\right]
$$

with the required Δ-action. This proves the lemma.

We now turn to the class group $C l_{K}$. It is convenient to put $Q_{K}=U_{K} / O_{K}^{*}$, so that we have short exact sequences

$$
\begin{gathered}
0 \longrightarrow O_{K}^{*} \longrightarrow U_{K} \longrightarrow Q_{K} \longrightarrow 0 \\
0 \longrightarrow Q_{K} \longrightarrow C_{K} \longrightarrow C l_{K} \longrightarrow 0
\end{gathered}
$$

and the long exact sequences of G-cohomology groups associated to them.
We make the assumption that p is regular, i.e. that p does not divide the class number of $\mathbf{Q}\left(\zeta_{p}\right)$. This implies that the cokernel of the natural map $U_{\mathbf{Q}\left(\zeta_{p}\right)} \rightarrow C_{\mathbf{Q}\left(\zeta_{p}\right)}$ has order prime to p, so that $\widehat{H}^{0}\left(G, U_{K}\right) \longrightarrow \widehat{H}^{0}\left(G, C_{K}\right)$ is surjective. It follows that the map $\widehat{H}^{0}\left(G, Q_{K}\right) \longrightarrow \widehat{H}^{0}\left(G, C_{K}\right)$ is also surjective. An application of the snake lemma to the commutative diagram

shows that the natural map $Q_{\mathbf{Q}\left(\zeta_{p}\right)} \longrightarrow Q_{K}^{G}$ is an isomorphism. This implies that the map $U_{\mathbf{Q}\left(\zeta_{p}\right)} \longrightarrow Q_{K}^{G}$ is surjective, so that $\widehat{H}^{0}\left(G, U_{K}\right) \longrightarrow \widehat{H}^{0}\left(G, Q_{K}\right)$ is also surjective. Finally, by class field theory we have $H^{1}\left(G, C_{K}\right)=0$. This leads to the following diagram with exact rows and columns.

[^1]

The G-cohomology groups are $\mathbf{F}_{p}[\Delta]$-modules and all maps, including the connecting homomorphisms, are Δ-linear. Since this last fact plays an important role, we explain why this is so. A complete Ω-resolution $P_{\bullet}=\left\{P_{i}\right\}_{i \in \mathbf{Z}}$ as in [3, IV.6] is also a complete G-resolution. For any Ω-module M and any $i \in \mathbf{Z}$, the groups $\operatorname{Hom}_{G}\left(P_{i}, M\right)$ are naturally objects of the abelian category of Δ-modules. The cohomology groups of the complex $X^{\bullet}(M)=\operatorname{Hom}_{G}\left(P_{\bullet}, M\right)$ are the usual Tate G-cohomology groups. The long exact sequence of cohomology groups associated to the exact sequence of complexes $0 \rightarrow X^{\bullet}(A) \rightarrow X^{\bullet}(B) \rightarrow X^{\bullet}(C) \rightarrow 0$ is a sequence of morphisms in the category of Δ-modules.

Theorem 4.4. Let M denote the p-part of the class group of K. Suppose that p is a regular prime and that all primes $l \neq p$ that ramify in K are primitive roots modulo p. Then (i) the group Δ acts via ω on $M / \pi M$;
(ii) for every non-trivial character χ of Δ the \mathbf{F}_{p}-dimension of $M[\pi]_{\chi}$ is at most 1 . Moreover, if χ is a non-trivial even character or $\chi=\omega^{-1}$, then $M[\pi]_{\chi}$ vanishes.

Proof. For $l=p$ we always have that $\Delta_{p}=\Delta$. The assumption on the primes l means that $\Delta_{l}=\Delta$ for the ramified primes $l \neq p$ as well. Lemma 4.3 implies therefore that both $H^{1}\left(G, U_{K}\right)$ and $H^{2}\left(G, U_{K}\right)$ are isomorphic to

$$
\underset{l \mathrm{ram} \operatorname{in} \mathrm{~K}}{\oplus} \mathbf{Z} / p \mathbf{Z},
$$

equipped with trivial Δ-action. Therefore Δ acts via ω on $\widehat{H}^{0}\left(G, U_{K}\right)$. It follows from the diagram that the Δ-module $\widehat{H}^{-1}\left(G, C l_{K}\right)$ is a subquotient of $\widehat{H}^{0}\left(G, U_{K}\right)$, so that Δ acts also via ω on $\widehat{H}^{-1}\left(G, C l_{K}\right)$.

[^2]On the other hand, the diagram shows that the Δ-module $\widehat{H}^{0}\left(G, C l_{K}\right)$ sits in an exact sequence

$$
H^{1}\left(G, U_{K}\right) \longrightarrow \widehat{H}^{0}\left(G, C l_{K}\right) \longrightarrow H^{2}\left(G, O_{K}^{*}\right) .
$$

The group Δ acts trivially on $H^{1}\left(G, U_{K}\right)$. Therefore the χ-eigenspace of $\widehat{H}^{0}\left(G, C l_{K}\right)$ is contained in the one of $H^{2}\left(G, O_{K}^{*}\right)$ when χ is non-trivial. The Δ-module $H^{2}\left(G, O_{K}^{*}\right)$ is isomorphic to $\widehat{H}^{0}\left(G, O_{K}^{*}\right)\left(\omega^{-1}\right)$ and is hence a quotient of $\left(\mathbf{Z}\left[\zeta_{p}\right]^{*} / \mathbf{Z}\left[\zeta_{p}\right]^{* p}\right)\left(\omega^{-1}\right)$. By an equivariant version [7, Prop.13.7] of Dirichlet's Unit Theorem, $\mathbf{Z}\left[\zeta_{p}\right]^{*} / \mathbf{Z}\left[\zeta_{p}\right]^{* p}$ is a product of copies of $\mathbf{F}_{p}(\chi)$, one for each non-trivial even character χ and one copy of $\mathbf{F}_{p}(\omega)$.

Since p is regular, M is killed by the G-norm N_{G}, so that it is a $\mathbf{Z}_{p}[\Delta]^{\prime}$-module. Recalling the fact that a G-module that is killed by N_{G} is invariant, if and only if it is killed by a generator of the maximal ideal of $\mathbf{Z}_{p}\left[\zeta_{p}\right]=\mathbf{Z}_{p}[G] /\left(\operatorname{Tr}_{G}\right)$, we find that $M / \pi M=\widehat{H}^{-1}\left(G, C l_{K}\right)$ and $M[\pi]=\widehat{H}^{0}\left(G, C l_{K}\right)$.

This implies the theorem.
Proof of Proposition 1.2. Corollary 2.2 takes care of the prime to p-part of $C l_{K}$. We now consider the p-part. Since the statement does not regard the Δ-structure, we may twist the p-part M of the class group of K by the character ω^{-1}. We denote the result by M^{\prime}. By Theorem 4.4, the group Δ acts trivially on $M^{\prime} / \pi M^{\prime}$, so that the A-module M^{\prime} is generated by Δ-invariant elements. By Proposition 3.2 there is an exact sequence

$$
0 \longrightarrow \stackrel{p-2}{\oplus}\left(A / \pi^{i} A\right)^{d_{i}} \longrightarrow M^{\prime} \longrightarrow H \otimes \mathbf{z}_{p} A \longrightarrow 0
$$

where $d_{i}=\operatorname{dim} M^{\prime}[\pi]\left(\omega^{i-1}\right)=\operatorname{dim} M[\pi]\left(\omega^{i}\right)$ for $1 \leq i \leq p-2$. Theorem 4.4 implies that $d_{i}=0$ when i is even, while $d_{i} \leq 1$ when i is odd but not $p-2$. It follows that

$$
\operatorname{dim} \underset{i=1}{p-2}\left(A / \pi^{i} A\right)^{d_{i}}=\sum_{i=1}^{p-2} i d_{i} \leq \sum_{i=1, \text { odd }}^{p-4} i=\left(\frac{p-3}{2}\right)^{2}
$$

as required.

5. Appendix

In this appendix we present our original proof of Proposition 1.1. Let S_{3} denote the symmetric group on three letters. Let $\sigma \in S_{3}$ of order 2 and let $\rho \in S_{3}$ of order 3. For any $\mathbf{Z}\left[S_{3}\right]$-module, let $M^{-}=\{x \in M: \sigma x=-x\}$ and write $M[\rho-1]$ for $\{x \in M: \rho x=x\}$.

Lemma 5.1. Let M be a finite $\mathbf{Z}\left[S_{3}\right]$-module of odd order. Suppose that one of the following holds:
(a) 3 does not divide $\# M$ and $\rho^{2}+\rho+1$ kills M.
(b) $\# M$ is odd and σ acts trivially on $M[\rho-1]$ and as -1 on $M /(\rho-1) M$. Then the homomorphism

$$
f: M^{-} \times M^{-} \longrightarrow M
$$

given by $f(x, y)=x-\rho y$ is bijective.
Proof. Suppose that $x, y \in M^{-}$and $(x, y) \in \operatorname{ker} f$. Then we have $x=\rho y$ and hence $y=-\sigma y=-\rho \sigma \rho y=-\rho \sigma x=\rho x=\rho^{2} y$. Since ρ has order 3 , it follows that $\rho-1$ kills y and hence x. It follows that ker $f \subset M[\rho-1]$. Similarly, let $m \in M$. Then $(\sigma-1) m$ and $(\sigma-1) \rho m$ are in M^{-}. We have

$$
f((\sigma-1) m,(\sigma-1) \rho m)=(\sigma-1-\rho(\sigma-1) \rho) m=\left(-1+\rho^{2}\right) m
$$

This means that $(\rho-1) M$ is contained in the image of f. So there is a natural surjective homomorphism $M /(\rho-1) M \rightarrow \operatorname{cok} f$.

In case (a) we observe that since $\rho^{2}+\rho+1=0$, both $M[\rho-1]$ and $M /(\rho-1) M$ are killed by 3 . Since 3 does not divide $\# M$, both groups are trivial and hence so are ker f and $\operatorname{cok} f$.

For (b) we note that by assumption σ acts trivially on $M[\rho-1]$ and hence on ker f. Since σ acts as -1 on M^{-}and since $\# M$ is odd, it follows that $\operatorname{ker} f=0$. For the surjectivity, we note that by assumption σ acts as -1 on $M /(\rho-1) M$ and hence on $\operatorname{cok} f$. On the other hand, M^{-}is in the image of f, so that σ acts trivially on cok f. We conclude that $\operatorname{cok} f$ is trivial.

This proves the lemma.
If $n \in \mathbf{Z}$ is not a cube, the Galois group of $\mathbf{Q}\left(\zeta_{3}, \sqrt[3]{n}\right)$ is isomorphic to S_{3}. An application of part (a) of the lemma to $M=C l_{K}$ proves Corollary 2.2 for the non-3-part of $C l_{K}$. Part (b) takes care of the 3 -part. To see this, we must check the conditions that σ acts trivially on $\widehat{H}^{0}\left(G, C l_{K}\right)=M[\rho]$ and acts as -1 on $M /(\rho-1) M=\widehat{H}^{-1}\left(G, C l_{K}\right)$. Since n is not divisible by any primes congruent to $1(\bmod 3)$, this follows from Theorem 4.4.

References

[1] M. Auslander, O. Goldman, The Brauer group of a commutative ring, Trans. Am. Math. Soc. 97 (1960) 367-409.
[2] H. Cartan, S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, 1956.
[3] J. Cassels, A. Fröhlich (Eds.), Algebraic Number Theory, Proceedings of an Instructional Conference, Academic Press, London, 1967.
[4] F. DeMeyer, E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, Berlin, 1971.
[5] T. Honda, Pure cubic fields whose class numbers are multiples of three, J. Number Theory 3 (1971) 7-12.
[6] D. Hubbard, L. Washington, Iwasawa invariants of some non-cyclotomic \mathbf{Z}_{p}-extensions, J. Number Theory 188 (2018) 18-47.
[7] R. Schoof, Catalan's Conjecture, Universitext, Springer-Verlag, London, ISBN 978-1-84800-184-8, 2008.

[^0]: Please cite this article in press as: R. Schoof, On the ideal class group of the normal closure of $\mathbf{Q}(\sqrt[p]{n})$, J. Number Theory (2020), https://doi.org/10.1016/j.jnt.2020.04.004

[^1]: Please cite this article in press as: R. Schoof, On the ideal class group of the normal closure of $\mathbf{Q}(\sqrt[p]{n})$, J. Number Theory (2020), https://doi.org/10.1016/j.jnt.2020.04.004

[^2]: Please cite this article in press as: R. Schoof, On the ideal class group of the normal closure of $\mathbf{Q}(\sqrt[p]{n})$, J. Number Theory (2020), https://doi.org/10.1016/j.jnt.2020.04.004

