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A Weak convergence of stochastic systems

In this section, we gather a set of conditions for the weak convergence of a system of discrete-time stochastic

difference equations to a system of stochastic differential equations (SDEs) (see the works of Stroock and

Varadhan, 1979; Kushner, 1984; Ethier and Kurtz, 1986; Nelson, 1990).

Let h > 0 and k ∈ N. Let N ∈ N be the dimension of a discrete-time Markov chain indexed by

h, which will be denoted by x
(h)
kh . Let Fk h be the σ-algebra generated by the following set of variables(

kh, x
(h)
0 , x

(h)
h , x

(h)
2h , . . . , x

(h)
kh

)
. Let νh be a probability measure on

(
RN ,B

(
RN
))

, where B
(
RN
)

are the

Borel sets on RN . Let Π
(h)
kh (x, · ) be a transition function on RN , and P(h) a fixed probability measure on

D
(
[0,∞),RN

)
. Now, we specify the distribution of the starting point x

(h)
0 , the transition probabilities of

the N -dimensional discrete-time Markov process x
(h)
kh , and we construct a continuous-time process x

(h)
t from

x
(h)
kh through P(h) in the following way, respectively:

P(h)
[
x

(h)
0 ∈ Γ

]
= νh (Γ) for any Γ ∈ B

(
RN
)

(A.1)

P(h)
[
x

(h)
t = x

(h)
kh , kh < t < (k + 1)h

]
= 1 (A.2)

P(h)
[
x

(h)
kh ∈ Γ|F (h)

kh

]
= Π

(h)
kh

(
x

(h)
(k−1)h,Γ

)
(A.3)

a.s. under P(h), ∀ k ≥ 0 and Γ ∈ B
(
RN
)
. We denote now with xt the continuous-time process obtained from

x
(h)
t by shrinking h towards zero which represents, under suitable assumptions (see below), the diffusion

limit process to which x
(h)
t weakly converges as h ↓ 0.

In what follows, we give assumptions for this convergence result (Nelson, 1990).

Assumption 1. There exists a continuous mapping a (x, t) from RN × [0,∞) into the space of N×N non-

negative definite symmetric matrices and a continuous, measurable mapping b (x, t) from RN × [0,∞) into

RN such that for all R > 0 and (k − 1)h < t < kh we have:

(A1.1) limh→0 sup‖x‖≤R

∥∥∥h−1E
[
x

(h)
(k+1)h − x

(h)
kh |x

(h)
kh = x

]
− b(x, t)

∥∥∥ = 0.

(A1.2) limh→0 sup‖x‖≤R

∥∥∥∥∥h−1E

[(
x

(h)
(k+1)h − x

(h)
kh

)(
x

(h)
(k+1)h − x

(h)
kh

)′ ∣∣∣∣∣x(h)
kh = x

]
− a (x, t)

∥∥∥∥∥ = 0

(A1.3) ∃δ > 0 : limh→0 sup‖x‖≤R

∥∥∥∥∥h−1E

[∣∣∣(x(h)
(k+1)h − x

(h)
kh

)
i

∣∣∣2+δ
∣∣∣∣∣x(h)
kh = x

]∥∥∥∥∥ = 0

where (·)i is the ith element of the vector
(
x

(h)
(k+1)h − x

(h)
kh

)
.

Assumption 2. There exists a continuous mapping σ (x, t) from RN × [0,∞) into the space of N × N
matrices, such that for all x ∈ RN and all t ≥ 0, a (x, t) = σ (x, t)σ (x, t)

′
.

Assumption 3. x
(h)
0 converges in distribution, as h→ 0, to a random variable x0 with probability measure

ν0 on
(
RN ,B

(
RN
))

.

Assumption 4. ν0, b (x, t), a (x, t) uniquely specify the distribution of a diffusion process xt with initial

distribution ν0, drift vector b (x, t) and diffusion matrix a(x, t).

We remind the following Theorem (see Nelson, 1990, Theorem 2.1):

Theorem A.1. Under Assumptions 1-4 the sequence of x
(h)
t converges weakly (i.e., in distribution) as

h→ 0 to the xt process defined by the stochastic integral equation:

xt = x0 +

∫ t

0

b (xs, s) ds+

∫ t

0

σ (xs, s) dWN,s (A.4)
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where WN,s is a N -dimensional standard Brownian motion, independent of x0, and where for any Γ ∈
B
(
RN
)
, P [x0 ∈ Γ] = ν0 (Γ). Such an xt process exists and is distributional unique. This distribution does

not depend on the choice of σ (·, ·) made in Assumption 2. Finally, xt remains finite in finite time intervals

almost surely.

B Example in Remark 2

In Theorem 2.1, we show that the class of scale family models driven by the score of the conditional likelihood

converges in distribution to a non-degenerate diffusion. As score-driven models are characterized by a single

source of uncertainty, it may seem unnatural that they converge to a SDE characterized by two independent

noises. Here, we describe an elementary example of weak convergence of random variables to a set of

Brownian motions in which the number of independent noises is not invariant in the limit. Specifically,

we show that two independent Brownian motions may arise from manipulation of a single sequence of

independent random variables in a very natural way.

Example 1. Let, for i ∈ N, Zi
d∼ N (0, 1) be independent standard Gaussian random variables. It is

well known (see, for instance Pierre, 1971) that sample mean Zn := Z1+...+Zn
n and sample variance S2

n :=
1

n−1

∑n
i=1

(
Zi − Zn

)2
are independent. For every N ∈ N, let us introduce the times tNn = n

N , n = 1, 2, 3, ...

and the following two discrete time processes :

BNtNn :=
Z1 + ...+ Zn√

N
, WN

tNn
:=

(
Z2

1 − 1
)

+ ...+
(
Z2
n − 1

)
√

2
√
N

.

The previous two processes are centered and normalized in such a way that

E
[∣∣∣BNtNn ∣∣∣2

]
= E

[∣∣∣WN
tNn

∣∣∣2] = tNn .

Now, let us call BNt and WN
t the piecewise linear continuous processes, defined for all t ≥ 0, that coincide

with the previous ones at the discrete times tNn . In particular, Donsker invariance principle (Donsker,

1951) applies to both of them and gives that the process
(
BNt
)
t≥0

converges in law to a Brownian motion

(Bt)t≥0 and
(
WN
t

)
t≥0

converges in law to a Brownian motion (Wt)t≥0. In addition, using a simple algebraic

manipulation, thanks to the independence of sample mean and sample variance one gets that BNtNn
and

WN
tNn
− nZ

2
n√

2
√
N

are independent. Besides,
nZ

2
n√

2
√
N

converges to zero in probability as N →∞ since E
[
Z

2

n

]
= 1

N .

Therefore, one can deduce that BNtNn
and WN

tNn
are asymptotically independent and so that that (Bt)t≥0 and

(Wt)t≥0 are independent.

The previous example shows that from the same Gaussian sequence (Zi)i∈N we can construct, by a

scaling limit, a pair of independent Brownian motions, using as a main step the well known fact that the

sample mean and sample variance are independent. It is important to note that the increments
(Z2

i−1)√
2
√
N

of

the process WN
t have similar form as those of GARCH models, which are particular instances of score-driven

models. Hence the example is not just artificial, but corresponds to the examples of this work, although

being more elementary. The limit theorems proved in the present work generalize the simple example above

into two directions. First, they are related to non-normal random variables. A known theorem (see e.g.

Lukacs, 1963) states that sample mean and sample variance are independent if and only if the underlying

variables are normal; but asymptotic independence may hold for a much wider class of sequences of random

variables (see, for instance Hudson and Tucker, 1979; Polymenis et al., 2017). Second, the update of volatility

is determined by the score, which is generally different from the squared returns. Therefore, the results in

3



this work suggest that it might be possible to construct examples similar to the one above involving non-

normal random variables and sample scores. Nonetheless, the construction of such examples requires further

investigation and is left for further research.

C Proof of results of Section 2

C.1 Proof of Theorem 2.2

The notation in this proof is concise to avoid clutter but is explicit in the main text. First, we compute the

score ∇.

∇ =
∂ log p (y|Λ (λ) ,Θ)

∂λ
=

∂

∂λ

[
log

1√
Λ(λ)h

Ψ

(
y√

Λ(λ)h
,Θ

)]

= −1

2

Λ′(λ)

Λ(λ)
− 1

2

Λ′(λ)

Λ(λ)

Ψ′
(

y√
Λ(λ)h

,Θ

)
Ψ

(
y√

Λ(λ)h
,Θ

) y√
Λ(λ)h

= −1

2

Λ′(λ)

Λ(λ)

1 +

Ψ′
(

y√
Λ(λ)h

,Θ

)
Ψ

(
y√

Λ(λ)h
,Θ

) y√
Λ(λ)h

 (C.1)

Therefore, the `-th moment of the score is given by:

E
[
∇`
]

=

∫ ∞
−∞
∇` p (y|Λ(λ),Θ) dy

= (−1)`
[

1

2

Λ′(λ)

Λ(λ)

]` ∫ ∞
−∞

1 +

Ψ′
(

y√
Λ(λ)h

,Θ

)
Ψ

(
y√

Λ(λ)h
,Θ

) y√
Λ(λ)h


`

1√
Λ(λ)h

Ψ

(
y√

Λ(λ)h
,Θ

)
dy

= (−1)`
[

1

2

Λ′(λ)

Λ(λ)

]` ∫ ∞
−∞

(
1 +

Ψ′(z,Θ)

Ψ(z,Θ)
z

)`
Ψ(z,Θ) dz (C.2)

In particular, E
[
∇`
]

is independent of h. For further reference, we show that E [∇ ε] = 0, where ε
d∼

h−1/2Ψ(·) and has zero mean. We have:

E [∇ ε] = −
∫ ∞
−∞

1

2

Λ
′
(λ)

Λ (λ)

1 +

Ψ
′
(

y√
hΛ(λ)

,Θ

)
Ψ

(
y√
hΛ(λ)

,Θ

) y√
hΛ (λ)

 y
√
h√

hΛ(λ)

1√
hΛ(λ)

Ψ

(
y√
hf(Λ)

,Θ

)
dy

= −1

2

Λ
′
(λ)

Λ(λ)

∫ ∞
−∞

[
1 +

Ψ
′
(z,Θ)

Ψ(z,Θ)
z

]
z
√
hΨ(z,Θ) dz

= −1

2

Λ
′
(λ)

Λ(λ)

√
h

∫ ∞
−∞

[
1 +

Ψ
′
(z,Θ)

Ψ(z,Θ)
z

]
zΨ(z,Θ) dz.
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At this point, to conclude it is sufficient to note that:

∫ +∞

−∞

[
1 +

Ψ
′
(z,Θ)

Ψ(z,Θ)
z

]
zΨ (z,Θ) dz =

∫ ∞
−∞

zΨ(z,Θ)dz +

∫ +∞

−∞
z2Ψ

′
(z,Θ) dz = 0

where in the last passage we integrated by parts and used the fact that z has zero-mean by assumption.

C.2 Computation of (A1.1), (A1.2) and (A1.3) for dynamic scale

family models.

We show that, under the assumptions of Theorem 2.1, the conditional moments in (A1.1), (A1.2) and

(A1.3) converge, as the interval between observations shrinks to zero, to well defined limits. The first step

is to compute the increments of the process x
(h)
kh and λ

(h)
kh , that is:

x
(h)
kh − x

(h)
(k−1)h =

√
Λ(λ

(h)
kh ε

(h)
kh ,

λ
(h)
(k+1)h − λ

(h)
kh = ωh − (1− βh)λ

(h)
kh + αhs(λ

(h)
kh )∇(h)

kh

Condition (A1.1)

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)
|F (h)
kh

]
= h−1E

[√
Λ(λ

(h)
kh )ε

(h)
kh |F

(h)
kh

]
= h−1

√
Λ (λkh)E

[
ε
(h)
kh |F

(h)
kh

]
= 0

(C.3)

h−1E
[(
λ

(h)
(k+1)h − λ

(h)
kh

)
|F (h)
kh

]
= h−1ωh + h−1 (βh − 1)λ

(h)
kh + αhs

(
λ

(h)
kh

)
E
[
∇(h)
kh |F

(h)
kh

]
= h−1ωh − h−1 (1− βh)λ

(h)
kh (C.4)

In the last step we use the well known fact that E
[
∇(h)
kh |F

(h)
kh

]
= 0. In particular, if assumptions of Theorem

2.1 are in force the above quantities are finite when h ↓ 0.

Condition (A1.2)

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)2

|F (h)
kh

]
= h−1Λ(λ

(h)
kh )E

[
(ε

(h)
kh )2|F (h)

kh

]
= Λ(λ

(h)
kh )

∫
R
z2Ψ (z) dz = Λ(λ

(h)
kh )ζ(2)

(C.5)

h−1E
[(
λ

(h)
(k+1)h − λ

(h)
kh

)2

|F (h)
kh

]
= h−1ω2

h + h−1 (βh − 1)
2
(
λ

(h)
kh

)2

+ h−1α2
hs
(
λ

(h)
kh

)2

ξ
(2)
kh

− 2h−1ωh (1− βh)λ
(h)
kh

(C.6)

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)(
λ

(h)
(k+1)h − λ

(h)
kh

)
|F (h)
kh

]
= h−1

√
Λ(λ

(h)
kh )ωhE

[
ε
(h)
kh |F

(h)
kh

]
− h−1

√
Λ
(
λ

(h)
kh

)
(1− βh)λ

(h)
kh E

[
ε
(h)
kh |F

(h)
kh

]
+ h−1

√
Λ
(
λ

(h)
kh

)
αhs

(
λ

(h)
kh

)
E
[
ε
(h)
kh∇

(h)
kh |F

(h)
kh

]
= h−1

√
Λ
(
λ

(h)
kh

)
αhs

(
λ

(h)
kh

)
E
[
ε
(h)
kh∇

(h)
kh |F

(h)
kh

]
= 0,

(C.7)
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where in the last step we use the fact that E
[
ε
(h)
kh∇

(h)
kh |F

(h)
kh

]
= 0. At this point we use Theorem 2.2 and

assumptions of Theorem (2.1) to conclude that:

h−1E
[(
λ

(h)
(k+1)h − λ

(h)
kh

)2

|F (h)
kh

]
= α2s

(
λ

(h)
kh

)2

ξ
(2)
kh + o (1) .

Condition (A1.3)

By straightforward computations as in Nelson (1990), and by setting ωh = hω, αh = h1/2α and βh = 1−hθ,
condition (A1.3) holds for δ = 2. Indeed:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)4

|F (h)
kh

]
= h−1Λ2

(
λ

(h)
kh

)
E
[(
ε
(h)
kh

)4

|F (h)
kh

]
= hΛ2

(
λ

(h)
kh

)
ζ(4).

(C.8)

h−1E
[(
λ

(h)
kh − λ

(h)
(k−1)h

)4

|F (h)
kh

]
= hα4s

(
λ

(h)
kh

)4

E
[(
∇(h)
kh

)4

|F (h)
kh

]
+O (hγ) , γ ≥ 3/2 (C.9)

Both quantities on the right hand of the previous equations converge to zero as h→ 0, where we use, again,

Theorem 2.2 and the fact that ζ(4) is finite by assumption.

C.3 Proof of Theorems 2.3 and 2.4

We report here only the proof of Theorem 2.3. The proof of Theorem 2.4 is omitted since it follows

immediately from the former.

We prove existence and uniqueness of the limiting SDE in Theorem 2.3, which ensures that the initial

distribution, the drift and the diffusion coefficients uniquely specify the distribution of a diffusion process

characterized by these data; see Assumption 4. The proof is based on two steps. In the first, one assumes

that the pair
(
xt, σ

2
t

)
is a solution of the system of SDEs and proves that this solution is actually given by

the explicit formula. In the second, one assumes that the process given by the explicit formula is a solution

of the system of SDEs. In particular, the first step proves uniqueness and the second existence. We here

prove explicitly only uniqueness, since the existence is proved in a similar manner.

For shortness of notation we set yt = σ2
t and C = C (Θ). The SDE for σ2

t reads as:

dyt = (ω − θyt) dt+ CytdW
(2)
t ,

which is a closed equation in the single unknown yt, with globally Lipschitz continuous coefficients. There-

fore, it has a unique solution. In particular, the process:

ỹt = exp

(
−
(
θ +

1

2
C2

)
t+ CW

(2)
t

)
is the unique solution of the following homogeneous equation:

dỹt = −θỹtdt+ CỹtdW
(2)
t ỹ0 = 1.

Indeed, by Itô formula one obtains:

dỹt = ỹt

(
−
(
θ +

1

2
C2

)
dt+ CdW

(2)
t

)
+

1

2
ỹtC

2dt = −θỹtdt+ CdW
(2)
t .

6



Then the process:

yt = ỹt

(
σ2

0 + ω

∫ t

0

1

ỹs
ds

)
= e−(θ+ 1

2C
2)t+CW (2)

t

(
σ2

0 + ω

∫ t

0

e(θ+
1
2C

2)s−CW (2)
t ds

)
is the unique solution of the previous SDE with initial condition σ2

0 . Indeed, by Itô formula one has:

dyt =

(
σ2

0 + ω

∫ t

0

1

ỹs
ds

)
dỹt + ỹtω

1

ỹt
dt

=

(
σ2

0 + ω

∫ t

0

1

ỹs
ds

)(
−θỹtdt+ CỹtdW

(2)
t

)
+ ωdt

= −θytdt+ CytdW
(2)
t + ωdt.

Therefore, we prove that σ2
t is given by the correct explicit formula. Let xt be a process satisfying dxt =

σtdW
(1)
t with given x0. Then:

xt = x0 +

∫ t

0

σsW
(2)
s .

However, we know that

σs = e−
1
2 (θ+ 1

2C
2)s+ 1

2CW
(2)
s

√(
σ2

0 + ω

∫ s

0

e(θ+
1
2C

2)r−CW (2)
r dr

)
,

whence the thesis.

D Proofs of results of Section 3

D.1 Proof of Theorem 3.1

The proof follows the steps in Section C.2. Thus, we start by the computation of the increments of the

processes x
(h)
kh and σ

(h),2
kh :

x
(h)
kh − x

(h)
(k−1)h = σ

(h)
kh ε

(h)
kh

σ
(h),2
(k+1)h − σ

(h),2
kh = ωh − (1− βh)σ

(h),2
kh + h−1αhσ

(h),2
kh ε

(h),2
kh

Condition (A1.1)

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)
|F (h)
kh

]
= h−1σ

(h)
kh E

[
ε
(h)
kh |F

(h)
kh

]
= 0 (D.1)

h−1E
[(
σ

(h),2
(k+1)h − σ

(h),2
kh

)
|F (h)
kh

]
= h−1ωh − h−1 (1− βh)σ

(h),2
kh + h−2αhσ

(h),2
kh E

[
ε
(h),2
kh |F

(h)
kh

]
= h−1ωh − h−1 (1− βh − αh)σ

(h),2
kh . (D.2)
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In particular, if the assumptions of Theorem 3.1 are satisfied the above quantities are finite when h ↓ 0.

Condition (A1.2)

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)2

|F (h)
kh

]
= h−1σ

(h),2
kh E

[
ε
(h),2
kh |F

(h)
kh

]
= σ

(h),2
kh (D.3)

h−1E
[(
σ

(h),2
(k+1)h − σ

(h),2
kh

)2

|F (h)
kh

]
= h−1ω2

h + h−1 (1− βh)
2
σ

(h),4
kh + h−1α2

hσ
(h),4
kh E

[
ε
(h),4
kh |F

(h)
kh

]
− 2h−1ωh (1− βh)σ

(h),2
kh − 2h−2(1− βh)αhσ

(h),2
kh E

[
ε
(h),2
kh |F

(h)
kh

]
+ 2h−2ωh αh σ

(h),2
kh E

[
ε
(h),2
kh |F

(h)
kh

]
(D.4)

We use now the fact that E
[
ε
(h),4
kh |F

(h)
kh

]
= 3h2 (ν−2)

(ν−4) and E
[
ε
(h),2
kh |F

(h)
kh

]
= h. By rearranging the terms we

obtain:

h−1E
[(
σ

(h),2
(k+1)h − σ

(h),2
kh

)2

|F (h)
kh

]
= h−1ω2

h + h−1σ
(h),4
kh (αh + βh − 1)

2
+ 2ωhσ

(h),2
kh (αh + βh − 1) + σ

(h),4
kh α2

h2
(ν − 1)

(ν − 4)

= σ
(h),4
kh α2

h2
(ν − 1)

(ν − 4)
+ o(1)

where in the last step we use the assumptions of Theorem 3.1 on the parameters. Now, by using the fact

that E
[
ε
(h)
kh |F

(h)
kh

]
= 0 and E

[
ε
(h),3
kh |F

(h)
kh

]
= 0 we obtain:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)(
σ

(h),2
(k+1)h − σ

(h),2
kh

)]
= o(1). (D.5)

It is immediate to check that the the fourth moments go to zero. The weak existence, the uniqueness and

the finiteness of the solution of the SDE on compact sets are guaranteed by Theorem 2.3.

D.2 Proof of Theorem 3.2

The proof follows the lines of the proof of Theorem (3.1). The only difference is that ε
(h)
kh

d∼ GED (ν, h),

where GED (ν, h) denotes the generalized error distribution with shape parameter ν and scale parameter h.

In particular, E
[
ε2kh|Fkh

]
= 2

2
ν h

Γ( 3
ν )

Γ( 1
ν )

and E
[
ε4kh
]

= 2
4
ν h2 Γ( 5

ν )
Γ( 1

ν )
. We report details for the following quantity

only:

h−1E
[(
σ

(h),2
(k+1)h − σ

(h),2
kh

)2

|F (h)
kh

]
= h−1ω2

h − 2h−1ωhσ
(h),2
kh (1− βh − αh)

+h−1σ
(h),4
kh (βh + αh − 1)

2
+ 2h−1ωhσ

(h),2
kh αh

(
2

2
ν

Γ
(

3
2

)
Γ
(

1
2

) − 1

)
+ h−1σ

(h),4
kh

(
2

4
ν h2 Γ

(
5
ν

)
Γ
(

1
ν

) − 1

)
α2
h

+2h−1σ
(h),4
kh βhαh

(
Γ
(

3
ν

)
Γ
(

1
ν

)2
2
ν − 1

)
+ h−1σ

(h),4
kh

(
1−

Γ
(

3
ν

)
Γ
(

1
ν

)2
2
ν

)
(D.6)

Under the assumptions of Theorem 3.2, we have:

h−1E
[(
σ

(h),2
(k+1)h − σ

(h),2
kh

)2

|F (h)
kh

]
= α2

Γ
(

1
ν

)
+ 4

1
ν

(
4

1
ν Γ
(

5
ν

)
− 2 Γ

(
3
ν

))
Γ
(

1
ν

) + o(1) (D.7)

Weak existence, uniqueness and the finiteness of the solution of the SDE on compact sets are guaranteed

by Theorem 2.3.

8



D.3 Proof of Theorem 3.3

The proof follows the lines of the proof of Theorems (3.1) and (3.2). As in Appendix (D.2), ε
(h)
kh

d∼ GED (ν, h).

We only report the computation of the second moment per unit of time of λ
(h)
(k+1)h− λ

(h)
(k)h. Weak existence,

uniqueness and the finiteness of the solution of the SDE on compact sets are guaranteed by Theorem 2.4.

We have:

h−1E
[(
λ

(h)
(k+1)h − λ

(h)
kh

)2

|F (h)
kh

]
= h−1ω2

h + h−1(βh − 1)2λ
(h),2
kh + α2

∗
4

1
ν Γ( 3

ν )

Γ( 1
ν )

+α2 4
1
ν Γ( 3

ν )

Γ( 1
ν )

+ α2 2
6
ν Γ( 1

2 + 1
ν )2

4π
+ 2h−1ωh(βh − 1)λ

(h)
kh

−2α2 2
6
ν Γ( 1

2 + 1
ν )2

4π
(D.8)

Under the assumptions of Theorem 3.3, we have:

h−1E
[(
λ

(h)
(k+1)h − λ

(h)
kh

)2

|F (h)
kh

]
= α2

∗
4

1
ν Γ( 3

ν )

Γ( 1
ν )

+ α2

(
4

1
ν Γ( 3

ν )

Γ( 1
ν )
−

2
6
ν Γ( 1

2 + 1
ν )2

4π

)
+ o(1) (D.9)

E Proofs of the results of Section 5.1

E.1 Proof of Theorem 5.2

Again, the notation in this proof is concise to avoid clutter. First, we compute ∇µ:

∇µ =
∂ log p (y|µ,Λ (λ) ,Θ)

∂µ
=

∂

∂µ

[
log

1√
Λ (λ)h

Ψ

(
y√

Λ (λ)h
,Θ

)]
= −

√
h

Λ (λ)

Ψ
′
(

y−hµ√
Λ(λ)h

,Θ

)
Ψ

(
y−hµ√
Λ(λ)h

,Θ

) .

Therefore, the `-th moment of the score ∇µ is given by:

E
[
∇`µ
]

=

∫ ∞
−∞
∇`µ p (y|µ,Λ(λ),Θ) dy

= (−1)
`
∫ ∞
−∞


√

h

Λ (λ)

Ψ
′
(

y−µh√
Λ(λ)h

,Θ

)
Ψ

(
y−µh√
Λ(λ)h

,Θ

)

`

1√
Λ (λ)h

Ψ

(
y − µh√
Λ (λ)h

,Θ

)
dy

= (−1)
`

(
h

Λ (λ)

)`/2 ∫
R

(
Ψ
′
(z,Θ)

Ψ (z,Θ)

)`
Ψ (z) dz.

E.2 Computation of (A1.1), (A1.2) and (A1.3) for dynamics location-

scale family models.

We show that under assumptions of Theorem 5.1 the conditional moments in (A1.1), (A1.2) and (A1.3)

converge, as the interval between observations shrinks to zero, to well defined limits. We first report the

9



increments of the processes x
(h)
kh , µ

(h)
kh and λ

(h)
kh :

x
(h)
kh − x

(h)
(k−1)h = µ

(h)
kh h+ Λ

(
λ

(h)
kh

)1/2

ε
(h)
kh

µ
(h)
(k+1)h − µ

(h)
kh = ch − (1− bh)µ

(h)
kh + ahsµ(µ

(h)
kh , λ

(h)
kh )∇(h)

kh,µ

λ
(h)
(k+1)h − λ

(h)
kh = ωh − (1− βh)λ

(h)
kh + αhsλ(µ

(h)
kh , λ

(h)
kh )∇(h)

kh,λ

Note that the expression for the increments of λ
(h)
kh coincides with that of the scale family models. For this

reason, some of the computations involving λ
(h)
kh are omitted.

Condition (A1.1)

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)
|F (h)
kh

]
= µ

(h)
kh + h−1Λ

(
λ

(h)
kh

)1/2

E
[
ε
(h)
kh |F

(h)
kh

]
= µ

(h)
kh (E.1)

h−1E
[(
µ

(h)
(k+1)h − µ

(h)
kh

)
|F (h)
kh

]
= h−1ch + h−1 (bh − 1)µ

(h)
kh (E.2)

h−1E
[(
λ

(h)
(k+1) − λ

(h)
kh

)
|F (h)
kh

]
= h−1ωh + h−1 (βh − 1)λ

(h)
kh , (E.3)

where in the last step of (E.2) we use the fact that E
[
∇(h)
kh,µ|F

(h)
kh

]
= 0. In particular, under the assumptions

of Theorem 5.1 the previous expressions are finite as h ↓ 0.

Condition (A1.2)

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)2

|F (h)
kh

]
= h

(
µ

(h)
kh

)2

+ 2µ
(h)
kh

√
Λ
(
λ

(h)
kh

)
E
[
ε
(h)
kh |F

(h)
kh

]
+ h−1Λ

(
λ

(h)
kh

)
E
[(
ε
(h)
kh

)2

|F (h)
kh

]
= h

(
µ

(h)
kh

)2

+ Λ
(
λ

(h)
kh

)∫
R
z2Ψ (z) dz (E.4)

In particular, when h ↓ 0 we obtain that:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)2

|F (h)
kh

]
= Λ(λ

(h)
kh )ζ(2) + o (1) . (E.5)

Now, let us compute:

h−1E
[(
µ

(h)
(k+1)h − µ

(h)
kh

)2

|F (h)
kh

]
= h−1c2h + h−1 (bh − 1)

2
(
µ

(h)
kh

)2

+ h−1a2
hsµ(µ

(h)
kh , λ

(h)
kh )2E

[(
∇(h)
kh,µ

)2

|F (h)
kh

]
+ 2h−1ch (bh − 1)µ

(h)
kh

= h−1c2h + h−1 (bh − 1)
2
(
µ

(h)
kh

)2

+ h−1a2
hE
[(
∇(h)
kh,µ

)2

|F (h)
kh

]−1

+ 2h−1ch (bh − 1)µ
(h)
kh

= h−1c2h + h−1 (bh − 1)
2
(
µ

(h)
kh

)2

+ h−2a2
hΛ
(
λ

(h)
kh

)∫ ∞
−∞

(
Ψ
′
(z)

Ψ (z)

)2

Ψ (z) dz

−1

+ 2h−1ch (bh − 1)µ
(h)
kh

(E.6)

where in the last two lines we used the fact that sµ(µ
(h)
kh , λ

(h)
kh ) = E

[(
∇(h)
kh,µ

)2

|F (h)
kh

]−1

and the result of

Theorem 5.2. Using the assumptions of Theorem (5.1) and noting that the integral above coincides with
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the second moment of the score of Ψ with respect to z, χz = E
[
∇2
z

]
, we obtain:

h−1E
[(
µ

(h)
(k+1)h − µ

(h)
kh

)2

|F (h)
kh

]
= a2Λ

(
λ

(h)
kh

)
χ−1
z + o(1)

(E.7)

Now:

h−1E
[(
λ

(h)
(k+1)h − λ

(h)
kh

)2

|F (h)
kh

]
= α2sλ

(
µ

(h)
kh , λ

(h)
kh

)2

ξ
(2)
kh,λ + o (1) (E.8)

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)(
µ

(h)
(k+1)h − µ

(h)
kh

)
|F (h)
kh

]
= h−1E

[(
hµ

(h)
kh +

√
Λ(λ

(h)
kh )ε

(h)
kh

)(
ch + (bh − 1)µ

(h)
kh + ahsµ(µ

(h)
kh , λ

(h)
kh )∇(h)

kh,µ

)
|F (h)
kh

]
= µ

(h)
kh ch − (1− bh)

(
µ

(h)
kh

)2

+ h−1

√
Λ
(
λ

(h)
kh

)
ahsµ(µ

(h)
kh , λ

(h)
kh )E

[
ε
(h)
kh∇

(h)
kh,µ|F

(h)
kh

]
(E.9)

We now compute the expectation E
[
ε
(h)
kh∇

(h)
kh,µ|F

(h)
kh

]
integrating by parts and using the expression of ∇(h)

kh,µ

recovered in Theorem E.1 (we omit the dependence on the sampling grid to avoid clutter):

E [ε∇µ] = − h√
Λ (λ)

∫
R

Ψ
′
(z) zdz =

h√
Λ (λ)

Combining this equation with Eq. (E.9) and by using the assumptions of Theorem (5.1) we have:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)(
µ

(h)
(k+1)h − µ

(h)
kh

)
|F (h)
kh

]
= aΛ(λ

(h)
kh )χ−1

z + o(1) (E.10)

Then:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)(
λ

(h)
(k+1) − λ

(h)
kh

)
|F (h)
kh

]
= h−1E

[(
hµ

(h)
kh +

√
Λ
(
λ

(h)
kh

)
ε
(h)
kh

)(
ωh + (βh − 1)λ

(h)
kh + αhsλ

(
µ

(h)
kh , λ

(h)
kh

)
∇(h)
kh,λ

)
|F (h)
kh

]
= µ

(h)
kh ωh + µ

(h)
kh (βh − 1)λ

(h)
kh ,

which is an o(1) under assumptions of Theorem (5.1). Finally we compute:

h−1E
[(
λ

(h)
kh − λ

(h)
(k−1)

)(
µ

(h)
(k+1)h − µ

(h)
kh

)
|F (h)
kh

]
= h−1ωhch + h−1ωh (bh − 1)µ

(h)
kh + (βh − 1) chλ

(h)
kh + (βh − 1) (bh − 1)λ

(h)
kh µ

(h)
kh

+ αhahsλ

(
µ

(h)
kh , λ

(h)
kh

)
sµ

(
µ

(h)
kh , λ

(h)
kh

)
E
[
∇(h)
kh,λ∇

(h)
kh,µ|F

(h)
kh

]
(E.11)

It is straightforward to check that the last conditional expectation is zero. Indeed:

E [∇λ∇µ] =
1

2

Λ
′
(λ)

Λ (λ)

√
h

Λ (λ)

∫
R

(
1 +

Ψ
′
(z)

Ψ (z)
z

)(
Ψ
′
(z)

Ψ (z)

)
Ψ (z) dz

=

∫
R

Ψ
′
(z) dz +

∫
R

Ψ
′
(z)

2

Ψ (z)
z dz = 0,
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since the p.d.f. Ψ (·) is symmetric by assumption. So, under assumptions of Theorem (5.1) we have:

h−1E
[(
λ

(h)
kh − λ

(h)
(k−1)

)(
µ

(h)
(k+1)h − µ

(h)
kh

)
|F (h)
kh

]
= o (1) .

Condition (A1.3)

By straightforward computation as in Nelson (1990), by setting ωh = hω, αh = h1/2α, βh = 1 − hθ,

bh = 1− hϑ and ah = ha and by using Theorems 2.2 - 2.3, condition (A1.3) holds for δ = 2. Indeed:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)4

|F (h)
kh

]
= hΛ2

(
λ

(h)
kh

)
ζ(4) (E.12)

h−1E
[(
µ

(h)
kh − µ

(h)
(k−1)h

)4

|F (h)
kh

]
= O(hς), ς ≥ 4 (E.13)

h−1E
[(
λ

(h)
kh − λ

(h)
(k−1)h

)4

|F (h)
kh

]
= hα4sλ

(
µ

(h)
kh , λ

(h)
kh

)4

ξ
(4)
kh,λ +O (h%) , % ≥ 3/2. (E.14)

which converges to zero as h ↓ 0.

F Proof of results of Section 5.2

We start by showing that for the class of multivariate conditional distributions the moments of the score are

independent of h. We suppress, again, the dependence on t and we denote, for sake of simplicity, Σ = Σ (f).

We remind that J is the matrix defined implicitly as Σ−1 = J ′J . In addition, we set z = (J y)/
√
h. By

using the latter notations, the matrix calculus of Abadir and Magnus (2005) we first compute

∂
(
y
′
Σ−1y
h

)
∂vec (Σ)

′ = − 1

h

(
Σ−1y ⊗ Σ−1y

)′
= −

(
y
′J ′J√
h
⊗ y

′J ′J√
h

)
= −

(
z
′
J ⊗ z

′
J
)
.

At this point we have (note that in what follow Ψ
′
(·) denotes the derivative of Ψ (·) with respect its

argument):

∂ log p (y|Σ; Θ)

∂f ′
=

∂

∂f ′

(
−1

2
log |Σ|+ log Ψ

(
y′Σ−1y

h
,Θ

))

=

−1

2

1

|Σ|
∂ |Σ|

∂vec (Σ)
′ −

Ψ
′
(
z
′
z,Θ

)
Ψ (z′z,Θ)

(
z
′
J ⊗ z

′
J
) ∂vec (Σ)

∂vech (Σ)
′
∂vech (Σ)

∂f ′

=

−1

2
vec
(
Σ−1

)′
−

Ψ
′
(
z
′
z,Θ

)
Ψ (z′z,Θ)

z
′

⊗J⊗

DnΥ where Υ = Υ (f) =
∂vech (Σ)

∂f ′
.

Therefore:

∇ =
∂ log p (y|Σ (f) ; Θ′)

∂f
= −1

2
Υ
′
D
′

n

vec
(
Σ−1

)
− J

′

⊗z
′

⊗

Ψ
′
(
z
′
z,Θ

)
Ψ (z′z,Θ)

 . (F.1)

Whence the moments of the score do not depend on h.
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F.1 Proof of Theorem 5.3

We start by reporting the increments of the processes x
(h)
kh and f

(h)
kh :

x
(h)
kh − x

(h)
(k−1)h = η

(h)
kh (F.2)

f
(h)
(k+1)h − f

(h)
kh = ch − (Ik −Bh) +AhS(f

(h)
kh )∇(h)

kh .

Now, we show that under assumptions of Theorem 5.3 the conditional moments in (A1.1), (A1.2) and

(A1.3) converge, as the interval between observations shrinks to zero, to well defined limits. We start from:

Condition (A1.1)

h−1E
[
x

(h)
kh − x

(h)
(k−1)h|F

(h)
kh

]
= h−1E

[
η

(h)
kh |F

(h)
kh

]
= 0N .

h−1E
[
f

(h)
(k+1)h − f

(h)
kh |F

(h)
kh

]
= h−1ch − h−1 (Ik −Bh) + h−1E

[
∇(h)
kh |F

(h)
kh

]
= h−1ch − h−1 (Ik −Bh) ,

since the conditional moment of the score is 0K . Under the assumptions in Theorem 5.3 the previous

expressions are finite as h ↓ 0.

Condition (A1.2)

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)(
x

(h)
kh − x

(h)
(k−1)h

)′
|F (h)
kh

]
= h−1E

[
η

(h)
kh η

(h),′

kh

]
= Σ

(
f

(h)
kh

)
.

h−1E
[(
f

(h)
(k+1)h − f

(h)
kh

)(
f

(h)
(k+1)h − f

(h)
kh

)′]
= h−1chc

′

h + h−1chE
[
∇(h),′

kh |F
(h)
kh

]
S
(
f

(h)
kh

)′
A
′

h

−h−1chf
(h),′

kh (Ik −Bh) + h−1AhS
(
f

(h)
kh

)
E
[
∇(h)
kh |F

(h)
kh

]
c
′

h + h−1AhS
(
f

(h)
kh

)
E
[
∇(h)
kh∇

(h),′

kh |F
(h)
kh

]
·

·S
(
f

(h)
kh

)′
A
′

h − h−1AhS
(
f

(h)
kh

)
E
[
∇(h)
kh |F

(h)
kh

]
f

(h),′

kh (Ik −Bh)− h−1 (Ik −Bh) f
(h)
kh c

′

h

−h−1 (Ik −Bh) f
(h)
kh E

[
∇(h),′

kh |F
(h)
kh

]
S(f

(h)
kh )

′
A
′

h + h−1 (Ik −Bh) f
(h)
kh f

(h),′

kh (Ik −Bh) . (F.3)

At this point, we use the fact that the first moment of the score is equal to zero together with the Assumptions

of Theorem 5.3 to conclude that:

h−1E
[(
f

(h)
(k+1)h − f

(h)
kh

)(
f

(h)
(k+1)h − f

(h)
kh

)′]
= A ξ̄

(2)
kh A

′
+ o(1).

Finally, we have:

h−1E
[(
x

(h)
kh − x

(h)
(k−1)h

)(
f

(h)
(k+1)h − f

(h)
kh

)′
|F (h)
kh

]
= h−1chE

[
η

(h)
kh |F

(h)
kh

]
+h−1E

[
η

(h)
kh ∇

(h),′

kh |F
(h)
kh

]
S
(
f

(h)
kh

)′
A
′

h − h−1E
[
η

(h)
kh |F

(h)
kh

]
f

(h),′

kh (Ik −Bh)
′

= 0(N×K),

where we use that E
[
η

(h)
kh |F

(h)
kh

]
= 0 and the fact the score is odd.

Condition (A1.3)

By straightforward computation as in Nelson (1990), under the Assumptions of Theorem 5.3, condition

(A1.3) holds for δ = 2 and by setting ch = ch, (Ik −Bh) = hΛ and Ah =
√
hA.
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