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Abstract

A novel dynamical mechanism of elementary particle mass generation has recently been conjectured and
numerically demonstrated by lattice simulations in a simple SU(3) gauge model where a SU(2) doublet
of strongly interacting fermions is coupled to a complex scalar field doublet through a Yukawa and a
Wilson-like term. As a first step towards building a natural (à la ’t-Hooft) extension of the Standard
Model, we argue that in the presence of weak gauge interactions the mechanism above, acting as a kind of
non-perturbative anomaly, yields for both elementary fermions and weak gauge bosons effective masses
proportional to the Λ–parameter of the theory, with particle–specific gauge coupling dependent prefactors.

1 Introduction

The Standard Model (SM) of elementary particles, in spite of its very impressive successes, is widely

believed to be only an effective low energy theory because it can not account for quantum gravity and

dark matter and has not enough CP-violation for baryogenesis. Moreover, by construction the SM is

unable to shed light on the puzzling problems of EW scale naturalness 1) and fermion mass hierarchy 2).

Apart from these open problems, it has been noted 3) that, if a dynamical mechanism based on non-SM

interactions gives rise to the mass of the known elementary fermions, one also obtains massive W±, Z0

gauge bosons and a composite Higgs particle in the W+W−, Z0Z0, and/or tt̄ channel.

Here we consider a new non-perturbative (NP) mechanism for the dynamical generation of elemen-

tary fermion masses 4). This mechanism is conjectured to be at work in non-Abelian gauge models with

fermions and scalars where A) (as usual) chiral transformations acting on fermions and scalars are exact

symmetries, but B) (deviating from common assumptions) purely fermionic chiral symmetries are explic-

itly broken by the UV regularization. We focus on the “natural” model where the bare parameters are
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tuned so as to minimize the breaking of fermionic chiral symmetries. In its quantum effective Lagrangian

(EL) 5) operators of NP origin violating fermionic chiral symmetries, among which a fermion mass term,

are expected to appear, if the scalar potential is such that the theory lives in its Nambu–Goldstone (NG)

phase. Recently lattice simulations have provided good evidence in favor of this phenomenon, which (for

reasons we explain below) is referred to as a “NP anomaly” of fermionic chiral symmetries 6).

2 The simplest gauge model with NP fermion mass generation

We start by reviewing the renormalizable d = 4 toy (yet highly non-trivial) model where the mechanism of

interest has been numerically demonstrated – lacking analytical methods – by first principle simulations.

The classical Lagrangian is a gauge–invariant ultraviolet (UV) regularization of

Ltoy =Lk(Q,A,Φ)+V(Φ)+LWil(Q,A,Φ)+LY uk(Q,Φ) (1)

with Lk(Q,A,Φ) and V(Φ) standing for the standard kinetic terms and scalar potential (with quartic

coupling λ0 and subtracted scalar mass µ2
Φ). Ltoy includes an SU(3) gauge field, Aµ, with bare coupling

g0, a Dirac doublet, Q = (u, d)T , transforming as a triplet under SU(3) and a complex scalar doublet,

ϕ = (ϕ0 + iϕ3,−ϕ2 + iϕ1)T , invariant under SU(3). For the latter we use the 2 × 2 matrix notation

Φ = [ϕ |− iτ2ϕ∗]. The model has a hard UV cutoff ΛUV ∼ b−1 and its Lagrangian contains a Yukawa

term, LY uk(Q,Φ) = η
(
Q̄LΦQR + Q̄RΦ†QL

)
, as well as a non-standard (so called “Wilson–like”) term

LWil(Q,A,Φ)=
b2

2
ρ
(
Q̄L
←−DµΦDµQR + Q̄R

←−DµΦ†DµQL
)
. (2)

The latter is a Λ−2
UV × d = 6 operator that leaves the model power-counting renormalizable 4), like it

happens for the Wilson term in lattice QCD 7). Among other symmetries, the Lagrangian (1) is invariant

under the (global) chiral transformations involving fermions and scalars (ΩL/R ∈ SU(2))

χL × χR = [χ̃L × (Φ→ ΩLΦ)]× [χ̃R × (Φ→ ΦΩ†R)] , (3)

χ̃L/R : QL/R → ΩL/RQL/R , Q̄L/R → Q̄L/RΩ†L/R . (4)

No power divergent fermion mass can be generated by quantum corrections as a term like ΛUV (Q̄LQR +

Q̄RQL) is not χL×χR invariant. For generic non-zero values of the bare parameters ρ and η neither LWil

nor LY uk are invariant under the purely fermionic chiral SU(2) transformations, which we call χ̃L × χ̃R.

The term LWil is a typical representative of the d > 4 terms in the UV regulated Lagrangian that

yield χ̃L× χ̃R breaking. Whatever their form, one expects that their effects at momentum scales� ΛUV

are equivalent to those of LWil with an appropriate value of ρ. This would end the discussion of χ̃L× χ̃R
breaking for a Lagrangian with no LY uk term. In the presence of a LY uk term, which has d = 4, its

coefficient η can be tuned to a critical value, ηcr = ηcr(ρ, g
2
0 , λ0), where the quantum EL has a vanishing

effective Yukawa term 4). In such a critical model we investigate whether the quantum EL contains any

χ̃L× χ̃R breaking operators with d ≤ 4, describing χ̃ breaking effects down to momentum scales� ΛUV .

The answer to this question is obviously negative only in the phase where the exact χL × χR
invariance is realized à la Wigner, i.e. when µ̂2

φ > 01. In the Wigner phase there is only one χ̃ breaking,

d ≤ 4 operator allowed by the field content and symmetries of the model: the Yukawa term, which by

definition of ηcr is absent in the EL of the critical model. Its d ≤ 4 sector is thus given by

ΓWig
4 ≡ Γµ̂2

Φ
>0 =

1

4
(FF )+Q̄LD/ QL+Q̄RD/ QR +

1

2
Tr
[
∂µΦ†∂µΦ

]
+ Veff

µ̂2
Φ
>0

(Φ) . (5)

1Due to the hard UV cutoff µ̂2
Φ = Zµ2

Φ
µ2

Φ = Zµ2
Φ

(m2
0,Φ − Λ2

UV τcr), with τcr a computable coefficient.
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For µ̂2
Φ < 0 the χL × χR invariance is realized à la NG already at the classical level and three

massless Goldstone bosons appear in the spectrum. Owing to the non-zero vacuum expectation value (v)

of the scalar field, in the quantum EL the (effective) Φ field can now be written in polar form

Φ = RU , R = (v + ζ0) , U = exp[iv−1τkζk] , 〈Φ〉 = v > 0 , (6)

in terms of Goldstone (ζ1,2,3) and massive (ζ0) scalars. The dimensionless field U transforms as U →
ΩLUΩ†R under χL × χR and only makes sense if v2 > 0, i.e. for µ̂2

Φ < 0. In the NG phase the existence

of U combined with the emergence (dimensional transmutation) of the intrinsic NP scale ΛS allows for

further χ̃ breaking operators to appear in the quantum EL. For the critical model its d ≤ 4 piece reads

ΓNG4 = c2Λ2
STr[∂µU

†∂µU ] + c1ΛS [Q̄LUQR + h.c.] + c̃ΛSRTr[∂µU
†∂µU ] + Γµ̂2

Φ
<0 + O(1/v2) , (7)

where Γµ̂2
Φ

is given in Eq. (5). The term ∝ c1 describes a kind of NP χ̃L × χ̃R anomaly in the quantum

EL, as it was conjectured few years ago 4). When U is expanded around the identity this terms yields

c1ΛS [Q̄LUQR + Q̄RU
†QL] = c1ΛSQ̄Q [1 + O(τkζk/v)] = Meff

Q Q̄Q [1 + O(τkζk/v)] , (8)

thus a fermion mass term, Meff
Q = c1ΛS , plus a host of complicated, non-polynomial Q̄−ζ1,2,3 ′s−Q

effective vertices. One can argue that in the critical model NP corrections on top of the χ̃ breaking terms

in the correlators, which arise from residual O(vΛ−2
UV momentum2) fermion bilinear Lagrangian terms,

are responsible for all the NP χ̃ breaking terms appearing in the quantum EL. In particular c1 = O(g4
0).

The critical model which we focused on is “natural” because it is defined by the criterion of maxi-

mally restoring at low energy the fermionic chiral symmetries (χ̃) that are anyway broken in the far UV.

The role of the other two terms involving ΛS in Eq.(7) is clarified in Sect. 4.2.

3 Lattice evidence for NP fermion mass in the Ltoy model

Omitting technical details, our lattice study 6) of the model with classical Lagrangian (1) can be summa-

rized as follows. In the Wigner phase by setting to zero a suitably chosen and normalized matrix element,

called rAWI , of the divergence of the Noether current J̃ iR − J̃ iL ≡ J̃ iA associated to the would-be χ̃L × χ̃R
symmetries we determine ηcr (at nearly fixed renormalization conditions) for three different values of the

UV cutoff b−1. Data for rAWI at different η are interpolated to find ηcr at each β = 6/g2
0 value, as shown

in Fig. 1a. Having made sure that the quantum EL can have no Yukawa term, we switch to the NG

phase, where we take the continuum limit of the critical model at fixed renormalization conditions – now

with a renormalized squared scalar mass µ̂2
Φ < 0. We study the pseudoscalar meson mass (MPS) and the

ratio (2mR
AWI) of the renormalized matrix elements of (∂ · J̃ iA) and P i = Q̄γ5

τ i

2 Q between the vacuum

and one pseudoscalar meson state. The results for MPS and 2mR
AWI (in a convenient hadronic scheme

R) are shown in Fig. 1b,c in units of the Sommer scale 8) r0 as a function of the squared lattice spacing2

b2. The continuum limit (b→ 0) results are non-zero within conservative error estimates.

This lattice investigation, involving simultaneously gauge, fermion and scalar fields, was numerically

quite challenging and thus carried out within the quenched (or valence fermion) approximation, which

has been widely used in lattice QCD and is known to preserve locality and renormalizability of the model.

Quenched results in the continuum limit are in fact enough to establish the presence of NP terms violating

the would-be χ̃L × χ̃R symmetries in the quantum EL (7), even if quenching is likely to obscure their

2No O(b2n+1) cutoff effects occur in our model, as it follows from standard symmetry arguments 6).
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Figure 1: a) rAWI at various values of η for the lattice resolutions corresponding to β = 6/g2
0 =

(5.75, 5.85, 5.95) and ρ = 1.96: straight lines show the linear interpolations in η; b) and c) MPSr0

and 2mR
AWIr0 (renormalized in an hadronic scheme) versus b2, with their linear extrapolation to b2 = 0.

universality properties (a point beyond the scope of the study). In particular, the non-vanishing result

for 2mR
AWI implies the occurrence in the quantum EL of the NP term c1ΛS [Q̄LUQR+ h.c.], plus possible

higher dimensional ones with equal quantum numbers. The non-zero result for the pseudoscalar meson

mass MPS nicely fits with 2mR
AWI 6= 0 in view of the (explicitly verified) spontaneous breaking of the

would-be χ̃L × χ̃R symmetries owing to strong interaction dynamics – just as it happens in QCD.

4 Fermion and weak gauge boson NP mass generation

The toy model discussed above can be extended to encompass weak interactions by gauging its exact

χL-symmetry. Besides a chiral weak SU(2)L gauge force, we consider two vector gauge interactions,

which we call strong (gauge group SU(3)S) and “Tera-strong” (gauge group SU(3)T ), together with two

sets of Dirac fermions: quarks qR ∈ (1T , 3S , 1L), qL ∈ (1T , 3S , 2L) and ”Tera-quarks” QR ∈ (3T , 3S , 1L),

QL ∈ (3T , 3S , 2L). Ignoring leptons, possible Tera-leptons and hypercharge effects, we consider here the

(yet unrealistic) model with basic classical Lagrangian

Lbasic(Q, q,G,A,Φ,W ) = Lkin(Q, q,G,A,Φ,W ) + V(Φ) + LWil(Q, q,G,A,Φ,W ) + LY uk(Q, q,Φ) , (9)

where Gµ, Aµ and Wµ denote SU(3)T , SU(3)S and the weak SU(2)L gauge bosons and we have

Lkin =
1

4
FG · FG +

1

4
FA · FA +

1

4
FW · FW + Q̄LγµDG,A,Wµ QL + Q̄RγµDG,Aµ QR +

+q̄LγµDA,Wµ qL + q̄RγµDAµ qR + κ
1

2
Tr
[
(DWµ Φ)†DWµ Φ

]
(10)

LWil =
b2

2
ρQ

(
Q̄L
←−D
G,A,W

µ ΦDG,Aµ QR + h.c.
)

+ ρq

(
q̄L
←−D
A,W

µ ΦDAµ qR + h.c.
)

(11)

LY uk = ηQ

(
Q̄LΦQR + h.c.

)
+ ηq

(
q̄LΦR+ h.c.

)
, (12)

with standard gauge covariant derivatives, e.g. Q̄L
←−D
G,A,W

µ = Q̄L(
←−
∂ µ+ igTλ

aGaµ+ igSλ
cAcµ+ igw

τ i

2 W
i
µ).

As both quarks and Tera-quarks couple to gluons, while only Tera-quarks are coupled to Tera-

gluons, the Tera-strong coupling gT will have a significantly faster running than the strong coupling

gS . For three quark generations the ratio of the LO coefficients of the β functions is βT0 /β
S
0 = 7/3,

while for the “toy” case of just one quark generation, which for simplicity is considered here, one has

βT0 /β
S
0 = 21/17. The renormalization group invariant (RGI) dynamical scale of the theory is denoted by

ΛT , with the idea that if the two gauge couplings are similarly small at energy scales close to the UV

cutoff, moving towards low energy gT gets O(1) at a scale of order ΛT where still gS � 1.
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The model, among other symmetries, such as the UV regulated version of translation and Lorentz

invariance, CP, time-reversal and the SU(3)T × SU(3)S vector gauge symmetry, is invariant under a

global SU(2)L × SU(2)R symmetry group, which we call χL × χR, with χL,R ≡ χ̃L,R × χΦ
L,R and

χ̃L : Q[q]L → ΩLQ[q]L, Q̄[q]L → Q̄[q]LΩ†L, Wµ → ΩLWµΩ†L, χΦ
L : Φ→ ΩLΦ, ΩL ∈ SU(2)L , (13)

χ̃R : Q[q]R → ΩRQ[q]R, Q̄[q]R → Q̄[q]RΩ†R, χΦ
R : Φ→ ΦΩ†R, ΩR ∈ SU(2)R , (14)

as well as under the corresponding local SU(2)L gauge subgroup. The global χL×χR invariance is realized

à la NG, i.e. spontaneously broken, already at the classical level if µ̂2
Φ < 0 in the scalar potential V(Φ).

4.1 The critical model for gw > 0

The critical model is again defined as the one where the χ̃L × χ̃R symmetries, which are explicitly

broken in the generic UV regulated model (9), are maximally restored in the quantum EL. Noting that

Wµ transforms in the adjoint representation of the SU(2)L group, maximal restoring χ̃L at low energy

corresponds to eliminating from the d = 4 sector of the quantum EL the effective χ̃ breaking terms, i.e.

Γ
Wig /NG
4, χ̃ breaking = κeff

1

2
Tr
[
(DWµ Φ)†DWµ Φ

]
+ yQ,eff

(
Q̄LΦQR + h.c.

)
+ yq,eff

(
q̄LΦqR + h.c.

)
. (15)

Taking into account the mixing of the Wilson–like terms with coefficients ρQ,q in the Lagrangian (9) –

which are the typical representatives for all d > 4 χ̃ breaking operators – with the d = 4 Yukawa and

scalar kinetic terms, one proves that critical values of the bare coefficients of the latter, namely ηQ,cr,

ηq,cr and κcr, exist for which the criticality conditions 3) on the effective χ̃–violating couplings, v.i.z.

κeff → 0+ , yQ,eff = 0 , yq,eff = 0 , (16)

are realized for each gT , gS , gw, λ0, ρQ and ρq independently of the squared scalar mass (µ2
Φ) value.

4.2 χ̃ violating universal NP terms in the quantum EL (NG phase)

In the NG phase of the critical model defined above NP corrections to χ̃ breaking effects (due to LWil,Y uk)

are expected to produce a number of χ̃–violating terms in the quantum EL, according to a mechanism

closely analogous to the one we discussed in Sections 2 and 3. The quantum EL should thus read

ΓNG = Γd≤4, µ̂2
Φ

+ ∆ΓNG
d≤4, µ̂2

Φ
+ Γd>4, µ̂2

Φ
, where, with U as in Eq. (6), the d ≤ 4 sector is given by

Γd≤4, µ̂2
Φ

=
1

4

∑
X=G,A,W

(FX ·FX)+Q̄LD/WQL+Q̄RD/ QR+ q̄LD/W qL+ q̄RD/ qR+
µ̂2

Φ

2
Tr/
[
Φ†Φ

]
+
λ̂

4
Tr/
[
Φ†Φ

]2
(17)

plus, noting that ζ0 decoupling implies (C 2Λ2
T +C̃ΛTR)→ C 2Λ2

T as κeff → 0+, the NP terms

∆ΓNGd≤4, µ̂2
Φ

= θ(−µ̂2
Φ)
[ ∑
ψ=Q,q

C1,ψΛT (ψ̄LUψR + h.c.) + C 2Λ2
T

1

2
Tr[(DWµ U)†DWµ U ]

]
. (18)

At quantum level the would-be χ̃ symmetries are thus broken by fermion and weak boson mass terms and

further χ̃ violating NP vertices that involve U but are independent of v2 ∼ µ̂2
Φ/λ̂. The W boson mass is

Meff
W = gw

√
C2ΛT , while the Tera-quark and quark masses read Meff

Q = C1,QΛT and Meff
q = C1,qΛT .

One can show 9) that
√
C2 = O(g4

T ), C1,Q = O(g4
T ), C1,q = O(g4

S) and, owing to renormalizability of the

basic Lagrangian (9), ratios of masses (such as W boson, Tera-hadron or hadron masses) are expected to

be independent of UV regularization details (universality). Elementary fermion and weak gauge boson

masses hence arise as a kind of NP anomaly. Based on dynamical properties of the basic model one can

also argue, and check by numerical simulations, that C2 � 1, i.e. Meff
W � ΛT (little hierarchy).
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4.3 Mass interpretation of the χ̃ violating NP terms

To make contact with the standard phenomenological description of elementary particle mass effects, one

can imagine to describe the physics of the critical model (9) with NP-ly anomalous χ̃ symmetries in terms

of an effective Lagrangian where the UV regularization preserves the χ̃ symmetries and explicit terms

mQQ̄LUQR, mq q̄LUqR and F 2

2 Tr[(DWµ U)†DWµ U ] are explicitly included. Owing to ζ0 decoupling, the

dimensionless Goldstone boson field U = exp(iF−1τkζk) is necessary to guarantee χL × χR invariance,

which makes this effective Lagrangian description renormalizable only order by order in a 1/F expansion.

The many finite low energy parameters associated with all the necessary UV counterterms are in principle

fixed by using the info coming from ΓNG of the basic model. Among these effective parameters we now

find the running masses m̂Q(µ), m̂q(µ) and m̂W (µ), which at leading order are just mQ, mq and gwF

and whose RG evolution is given by the anomalous dimension of the associated Lagrangian densities. It

should also be noted that for particles (like q and possibly W ) with effective mass much smaller than

ΛT the d = 4 soft mass terms are sufficient to describe the dominant effects of χ̃ breaking, whereas for

particles (like Q) with mass of order ΛT all the d ≥ 4 operators violating χ̃ are equally important.

5 Outlook and conclusions

To proceed towards realistic models with “natural” elementary particle mass one must of course introduce

hypercharge effects, leptons and possibly Tera-leptons (which can play a key role in gauge coupling

unification 10)), while keeping the (gauged) SU(2)L × U(1)Y symmetry exact and maximally restoring

the would-be fermionic chiral symmetries. From the discussion above it is clear that, if the observed top,

W± and Z0 masses have to be reproduced, a realistic model must include a new strong interaction with

an intrinsic RGI scale ΛT in the few TeV range and Tera-hadrons having masses of the same order, which

is also crucial to pass electroweak precision tests. Owing to unitarity one can expect the low energy

description that is valid for momenta well below ΛT to be, even quantitatively, very similar to the SM if

(as it is suggested by non-relativistic arguments 9)) the Higgs particle is given by a single bound state in

the WW + ZZ channel arising from the new strong interaction.
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