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Abstract: Carbon nanotubes (CNTs) are among the most exploited carbon allotropes in the
emerging technologies of molecular sensing and bioengineering. However, the advancement of algal
nanobiotechnology and nanobionics is hindered by the lack of methods for the straightforward
visualization of the CNTs inside the cell. Herein, we present a handy and label-free experimental
strategy based on visible Raman microscopy to assess the internalization of single-walled carbon
nanotubes (SWCNTs) using the model photosynthetic alga Chlamydomonas reinhardtii as a recipient.
The relationship between the properties of SWCNTs and their biological behavior was demonstrated,
along with the occurrence of excitation energy transfer from the excited chlorophyll molecules
to the SWCNTs. The non-radiative deactivation of the chlorophyll excitation promoted by the
SWCNTs enables the recording of Raman signals originating from cellular compounds located near
the nanotubes, such as carotenoids, polyphosphates, and starch. Furthermore, the outcome of this
study unveils the possibility to exploit SWCNTs as spectroscopic probes in photosynthetic and
non-photosynthetic systems where the fluorescence background hinders the acquisition of Raman
scattering signals.

Keywords: Raman spectroscopy; single-walled carbon nanotubes; Chlamydomonas reinhardtii;
fluorescence quenching; electron transfer; spectroscopic probes

1. Introduction

The latest advances in phyto-nanotechnology and plant nano-bionics brought to light the ability
of single-walled carbon nanotubes (SWCNTs) to deliver into plants small molecules, fertilizers,
or pesticides [1–5], to improve plant defense [6–8] or even to turn plant tissues into molecular
sensors [9,10]. Experimental strategies using SWCNTs may also bare a capacity to improve productivity
by increasing algal photosynthetic performance or their tolerance toward the unfavorable conditions
taking place in mass production [11]. Unlike the increasing number of biomedical and agricultural
applications of carbon nanotubes (CNTs), the use of nanomaterials in microalgal biotechnology is
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still in its nascent phase and very little is known about the mechanisms of cellular internalization
of CNTs in unicellular photosynthetic microorganisms and on the relationship between the CNT
physicochemical properties and their biological behavior in the cell. A key challenge, relevant to
risk-assessment studies in algal toxicology, is the lack of straightforward and affordable methods for
monitoring the cellular uptake of CNTs, which motivated the present study. So far, the detection of
SWCNTs in plant cells rely mainly on fluorescence microscopy and exploits either labeling of nanotubes
with fluorescent tags [12–14] or the intrinsic fluorescence of the SWCNTs in the near-infrared (NIR)
region [6,15]. These methods enabled both tracing the spatiotemporal behavior of SWCNTs and their
localization inside plant cells. However, their wide use remains limited by the need of sophisticated
instrumentation, labeling of the CNTs with fluorescence dyes or laborious sample preparation.

Confocal Raman spectroscopy allows for direct and label-free imaging of CNTs inside the cells
exploiting the strong Raman signal originating from the different vibrational modes of the nanotubes [16].
Raman scattering has been used for identification of CNTs in mammalian [17] and yeast cells [18],
while only limited attempts are reported in an intact photosynthetic sample [19]. The applications
of Raman spectroscopy and imaging to photosynthetic samples is generally limited by the strong
fluorescence emission of the cellular fluorophores (mainly chlorophylls) that significantly outdoes the
signal of vibrational Raman scattering spoiling its detection [20,21]. This problem may be bypassed by
using Raman spectroscopy with a long-wavelength-excitation laser [22], which bares the risk of loss
of sensitivity and thermal degradation of the biological specimen, or exploiting highly sophisticated
and technologically advanced methods, such as non-linear coherent anti-Stokes Raman scattering
(CARS), stimulated Raman scattering (SRS), and surface-enhanced Raman spectroscopy (SERS) [23].
A common experimental tactic used to drown the fluorescence of plant-type samples exploits strong
pre-illumination of the analyzed spot, which saturates and vanishes (photo bleach) the fluorescence
emission of the photosynthetic pigments [20,24]. Although the photobleaching is a suitable approach
to obtain a static snapshot of the cellular composition (in terms of lipids, pigments, etc.), this procedure
hinders all metabolic processes and does not allow us to analyze any photochemical reactions occurring
in the photosynthetic microorganisms.

Herein, we present a single-cell Raman microscopy assay, which exploits conventional confocal
Raman in the visible wavelength-range and does not require any specific equipment or pre-treatment of
the bio-specimen. The possibility to track simultaneously Raman signals of both carbon nanotubes [16]
and chemical species inside the subcellular compartments [20,25–27] can bring noteworthy development
in in vivo methodologies to survey the entry of the nanotubes into plant type cells, and study the
interaction between the SWCNTs and surrounding cell components. To the best of our knowledge,
this is the first repost using Raman spectroscopy to track CNTs inside algae and to survey their
interaction with the photosynthetic machinery. This achievement could deepen the knowledge on the
relationship between the physicochemical properties of the nanotubes and their biological effects in
microalgae, supporting the development of biotechnological applications of SWCNTs. Furthermore,
the outcome of this study highlights the possibility to exploit SWCNTs as spectroscopic probes in
systems where the fluorescence background of the specimen obstructs the acquisition of Raman
scattering signals (Appendix A).

2. Materials and Methods

2.1. Preparation of SWCNTs

SWCNTs (SG76, CoMoCAT, Chasm Advanced Materials Inc., Canton, MA, USA, carbon content
>90%) with an average diameter of 0.9 ± 0.2 nm and an average length of 800 nm (range of 300–2300 nm)
were purchased from Sigma Aldrich, and were further purified by mild oxidative thermal treatment at
300 ◦C for 1 h, to eliminate amorphous carbon nano-powder, which was followed by an acidic treatment
with HCl solution (37%) at room temperature for 1 h in order to solubilize the metal catalyst [28].
After the purification step, the average length of the nanotubes was 800 nm, varying between 600 and
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1200 nm (the sample population was enriched with long-length nanotubes, Table 1, and Figure S1 in
the ESI). After purification, the nanotubes were shortened by tip sonication for 15, 30, or 60 min (3
mm probe, 50% amplitude, VibraCell VC130PB, Sonics&Materials Inc., Newtown, CT, USA) in milli-Q
water at 4 ◦C at a concentration of 20 mg mL−1. The shortening procedure improved the homogeneity
of sample size distribution with respect to the pristine (as provided by the producer) sample and
reduced the average length of the SWCNTs to approximately 600–800 nm (Table 1).

Table 1. Morphological characterization of SWCNTs after the individual steps of purification, shortening,
and functionalization with DNA. The data for pristine tubes refer to the SG76 sample (CoMoCAT,
Sigma Aldrich) provided by the producer. Mean values ±SD, derived from size distribution histograms
obtained by SEM (n > 200) are presented.

SWCNTs Length (±SD), nm

Pristine SWCNTs Average 800
(refer to product specifications) (range 300–2300)
Purified unshortened SWCNTs 800 ± 200

Purified shortened SWCNTs
tip sonication applied for 15 min 710 ± 100

tip sonication applied for 30 min 700 ± 110
tip sonication applied for 60 min 650 ± 150

The structural integrity of SWCNTs after the procedures of purification and shortening was
evaluated by Raman spectroscopy. While the 15 min shortening preserve the SWCNT structure,
the longer treatments of 30 min and 60 min produced nanotubes with compromised sp2 network
(increase of D band in Raman spectra, Figure S2 in the ESI), which were not included in the
further experiments.

Finally, shorten nanotubes were dried in oven at 60 ◦C for 24 h and the powder was treated as
described below. The SWCNTs were dispersed by non-covalent functionalization with single strand
DNA (ssDNA), a well-known dispersing agent, which facilitates the stable mono-dispersion of CNTs
and enhances their compatibility with biological samples [29,30]. A previously described procedure
was adopted[31] using autoclaved (20 min, 121 ◦C, 1 bar) powder of nanotubes. Briefly, 1 mg of
purified SWCNTs (shortened or un-shortened) were dispersed with 2 mg of ssDNA (ss(AT)15, Bio-Fab
research s.r.l., Rome, Italy) in 1 ml of 0.1 M NaCl by 30 min bath sonication, which was followed by
20 min tip sonication (3 mm tip, at 40% of amplitude) at 4 ◦C. The mixture was centrifuged at 16,000× g
for 90 min at 4 ◦C to remove the big aggregates of nanotubes. The supernatant was further filtered
through Amicon® Ultra 100K device (Millipore Sigma, Burlington, MA, USA) to remove free DNA
from solution and obtain DNA-wrapped nanotubes dispersed in 10 mM PBS (Phosphate-Buffered
Saline, pH 7.4). All procedures were performed under sterile conditions. The concentration of SWCNTs
after the filtration was between 40–70 µg mL−1 (calculated according to Reference [31]). At each step of
the SWCNT manipulation (purification, shortening, and functionalization with DNA), their quality
has been controlled by Raman spectroscopy.

2.2. Algal Growth and Treatment

The cell-wall deficient mutant (cc400 cw15 mt +) [32,33] of the motile unicellular green alga
Chlamydomonas reinhardtii was purchased from the Chlamydomonas Resource Center (CRC, University
of Minnesota, MN, USA). Axenic cultures of cc400 strain were grown in Tris-Acetate-Phosphate (TAP,
pH 7.2) media at 24 ◦C under continuous illumination of 50 µmol m−2 s−1 and 150 rpm shaking.
All experiments were performed on cultures in the initial-exponential growth phase, characterized
with cells density of (3.1 ± 0.17) × 106 cells mL−1 and total chlorophyll content of 4.0 ± 0.3 µg mL−1.
Small aliquots of algae were supplied with DNA-wrapped SWCNTs (unshortened or shortened by
15 min tip sonication) to reach final SWCNT concentration of 1 µg mL−1 or 2 µg mL−1 and were
cultivated under standard conditions for 72 h. Culture growth was monitored by counting cell number
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per mL by an Automated Cell Counter (TC20, Bio-Rad Laboratories, Inc., Hercules, CA, USA). In each
experiment, three separate flasks were set for each concentration treatment. At the end of each trial,
50 µL aliquots from the control and SWCNT-containing cultures were spread on TAP agar medium and
colonies were grown for a period of 30 days. The absence of extraneous colonies growing on the agar
confirmed the lack of contaminations introduced to the algal cultures via the addition of nanotubes.
This point is of critical importance when cell count is used for estimating the growth of algal cultures
and CNT phytotoxicity.

2.3. Raman Microscopy

For the Raman microscopy assay, (1.5 ± 0.15) × 104 cells (with and without nanotubes) were
deposited on Si single crystal wafers. The drops on the Si-wafers containing the algal cells were
dried at room temperature until no free water was detected and then the samples were immediately
analyzed. Single cells or a group of cells were examined by Horiba eXplora device using a 532 nm
laser source and holographic grating of 1200 T with 1 cm−1 spectral resolution. In order to avoid
cellular damage, the laser power was adjusted by a set of density filters to not exceed 10 mW at the
sample surface. 2D positioning of the sample was assured by high-precision-computer-controlled
motorized microscope stage with a lateral resolution of 1 × 1 µm when the 100× objective (NA 0.9)
was used. The detector was a 1024 × 256 air-cooled CCD. Two-dimensional Raman map of the whole
specimen area was obtained by acquiring individual spectra at distinct points of 1 × 1 µm, reducing
the overlapping information from adjacent pixels. The acquisition time of each Raman spectrum in the
map was 1 s depending on the explored area the acquisition time of a single map was in the range
of 100–400 s. First order Raman signal of Si substrate at 520.7 cm−1 was used for the calibration of
the spectra. The acquisition, processing, analysis, and display of raw data were done via HORIBA
Scientific’s LabSpec 6 software (Kyoto, Japan). Principal component analysis (PCA) was performed
using a fully integrated Multivariate Analysis (MVA) module powered by Eigenvector Research Inc.
(Manson, WA, US) within HORIBA Scientific’s LabSpec 6 software platform. Further analyses and
processing of the data including baseline correction, and fitting, etc., were completed using Origin 8.5
(OriginLab, Northampton, MA, USA).

2.4. Scanning Electron Microscopy

Scanning electron microscopy (SEM) analyses were performed by using a Hitachi S-4000 Scanning
Electron Microscope (Tokyo, Japan). A few microliters of sample dispersion of SWCNTs were deposited
on Silicon substrate and an ultra-thin coating of gold was applied to increase the signal-to-noise ratio.
SEM images were analyzed by ImageJ [34,35].

2.5. Transmission Electron Microscopy

For Transmission electron microscopy (TEM), (1.35 ± 0.15) × 107 cells were collected by weak
centrifugation, washed with nanotubes-free TAP medium, and re-suspended in a 2% low melting point
agar dissolved in TAP at 37 ◦C. The cells in agar were high-speed centrifuged (15,500× g for 5 min) in
conical tubes and then cooled to 20 ◦C to allow agar curing. The small tip of the agar block containing
algae was excised, cut in pieces, and processed as previously reported [36] with some modifications.
The blocks were fixed for 1 h at room temperature with a solution of 2% glutaraldehyde in 0.1 M
cacodylate buffer (pH 7.4), post-fixed in 1% osmium tetroxide in 0.1 M cacodylate buffer for 30 min at
room temperature, and dehydration in acetone series and embedded in epoxy resin (Epon 812, Hexion
Inc., Columbus, OH, USA, Sigma Aldrich). Ultrathin (40 nm) sections with no further counterstaining
were visualized by Philips CM12 TEM (Philips, Eindhoven, Netherlands) at 100 KV. Defocus was set
in order to have the first zero of the microscope transfer function occurring approximately at 10 nm.
More than 30 images were analyzed for every sample prepared.
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3. Results and Discussion

Mono-dispersed or small bundles of SWCNTs easily overcome the cell wall and the membrane
of plant type cells (plant, algae, and cyanobacteria) [8,11]. The exact mechanism of SWCNT passage
through the cellular barriers is still under debate. However, it seems that the dimensions and surface
charge of the nanotubes are among the main determinant factors [8,11]. In the case of the cc400
Chlamydomonas mutant, the entry of SWCNTs into the cell could be further facilitated due to the minute
amount of the cell wall produced by this strain [32,33]. The low concentrations, 1 or 2 µg mL−1 of
well-dispersed and purified SWCNTs used in this study did not provoke the formation of visible
cell agglomerates and, in the case of shortened nanotubes, did not influence cell proliferation for the
72 h of exposure (Figure S3 in the ESI). A similar lack of toxicity of CNTs when the nanotubes were
introduced into the growth medium at a low concentration and high dispersion state has already been
observed. The phytotoxic effects of CNTs on algae are mainly ascribed to the ability of nanotubes to
initiate cell agglomeration, hinder nutrient uptake, leach metal catalyst residues, or cause oxidative
stress damage [11]. The extent to which these effects are pronounced depends on multiple factors such
as dimensions, functionalization, dispersion state, and purity level of the nanotubes in addition to
their concentration in the medium. We have exploited stably dispersed SWCNTs with a high purity
level and small diameter in order to minimize the possible phytotoxicity of the nanomaterials [11].
The unshortened SWCNTs tends to hinder the culture growth and induce a transient slowdown
in cell proliferation at 48 h of exposure, which disappeared in the following 24 h (Figure S3 in the
ESI). In bacteria, it was demonstrated that long-length SWCNTs (length between 1000 and 5000 nm)
were more prone to form aggregates with the cells and had a higher antimicrobial activity that the
short-length nanotubes (length <1000 nm) [37]. The population of unshortened SWCNTs was enriched
with long-length nanotubes (length > 1000 nm, Figure S1) that most likely promoted the formation of
microaggregates with the algal cells hindering their proliferation.

The cellular internalization and spatial distribution of the SWCNTs were first proven by TEM
using an optimized protocol to promote the visualization of nano-sized carbon-based materials inside
the algal cell. TEM images showed a well-conserved morphology of algal chloroplasts with starch
granules and thylakoid membranes [38,39] (Figure 1) that were not altered by the treatment with
nanotubes. TEM images of Chlamydomonas whole cell and details of the chloroplast compartment
are shown in Figure S4 in the ESI. The SWCNTs (electron dense formations approximately 10 nm in
diameter) were observed in both granal and stromal compartments of the chloroplast of algae grown
in the presence of nanotubes, while no similar optically-dense formations were found in the control
samples (Figure 1 in the bottom panel and Figure S4 in the ESI).

2D Raman mapping was performed on cells deposited on Si single-crystal-wafers.
These hyperspectral images, in which each x and y spatial coordinate (a pixel) corresponded to
a single Raman spectrum, were subjected to PCA to distinguish the spatial distribution of the chemical
composition of the specimen [40]. In the case of samples without SWCNTs, the PCA maps displayed
two main components (Figure 2a), characterized by the highest degree of variability that can be
attributed to the Raman signal of silicon substrate (green region) and the cell fluorescence (yellow
region), respectively. Whereas, in the case of algal cells with SWCNTs (Figure 2b), the PCA indicated
an additional component whose spectral characteristics belong to the Raman signal of SWCNTs (red
spots inside the cell).
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Figure 1. Top panel: TEM image of DNA-wrapped SWCNTs (white arrows) located in the 
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Figure 1. Top panel: TEM image of DNA-wrapped SWCNTs (white arrows) located in the stroma
and thylakoid membranes of algal chloroplast. Bottom panel: chloroplast compartment of cells not
exposed to SWCNTs. G–starch grain, TM–thylakoid membranes, Ps-plastoglobules.

Figure 2c–d presents the main signals identified in the Raman maps of cells hosting SWCNTs.
Among them, the most intense was the fluorescence emission, centered at approximately 682 nm
(Figure 2c), and originating mainly from the chlorophyll pigments of photosynthetic antenna complexes
of Photosystem II (PSII) [41]. The SWCNTs were easily distinguishable by their characteristic resonance
G band at 1590 cm−1 and second order band at 2646 cm−1 (Figure 2d) [19]. The Raman spectra of cellular
carotenoids (two main peaks centered at 1159 cm−1 and 1526 cm−1, Figure 2e, and signals of other
cellular components (e.g., polyphosphates and starch, Figure S5 in the ESI) were also identified [20–23].



Materials 2020, 13, 5121 7 of 14

Materials 2020, 13, x FOR PEER REVIEW 7 of 14 

 

Figure 2c–d presents the main signals identified in the Raman maps of cells hosting SWCNTs. 
Among them, the most intense was the fluorescence emission, centered at approximately 682 nm 
(Figure 2c), and originating mainly from the chlorophyll pigments of photosynthetic antenna 
complexes of Photosystem II (PSII) [41]. The SWCNTs were easily distinguishable by their 
characteristic resonance G band at 1590 cm−1 and second order band at 2646 cm−1 (Figure 2d) [19]. The 
Raman spectra of cellular carotenoids (two main peaks centered at 1159 cm−1 and 1526 cm−1, Figure 
2e, and signals of other cellular components (e.g., polyphosphates and starch, Figure S5 in the ESI) 
were also identified [20–23]. 

 
Figure 2. A bright field microscopy images and the corresponding PCA-false-color pictures 
of Raman maps of control Chlamydomonas cell (a) and cell from the culture enriched with 
2 μg of SWCNTs mL−1 (b). The main signals found in Raman maps of cells hosting SWCNTs: 
(c) chlorophyll fluorescence emission, the spectral interval corresponds to 2140-5100 cm−1 
in the Raman spectra, (d) second-order Raman spectrum of silicon (967 cm−1) and G band 
(1590 cm−1) and G’ band (2646 cm−1) of SWCNTs. (e) Raman spectrum with the resonance 
peaks of carotenoids (numbers in red) and SWCNTs (numbers in blue), and chlorophyll 
fluorescence background. 

The unambiguously distinguishable pattern of the SWCNT-Raman signal endorsed quantitative 
analyses of the internalization dynamics of SWCNTs into Chlamydomonas cells during the 72 h-
incubation period. The cellular internalization capacity of the unshortened SWCNTs was very low. 
In these experiments, most of the nanotubes were localized in the extracellular space and cells hosting 
one or more SWCNTs were only sporadically found. The shortening procedure enhanced the ability 
of the SWCMNTs to enter the cells and allowed the collection of statistically meaningful data. In this 
case, in more than 60% of the mapped cells, the G and G’ Raman bands of at least one nanotube were 
detected. The maximum number of cells hosting nanotubes was reached after 24 h and 48 h of 
incubation with 1 μg mL−1 and 2 μg mL−1 SWCNTs, respectively (Figure 3). The difference between 
the two treatments was attenuated after 72 h of incubation when the number of cells containing 
nanotubes was reduced by approximately 50%. So far, it is difficult to argue about the effect of 
SWCNT concentration on their internalization and/or accumulation in the cells. Nonetheless, it is 
reasonable to associate the reduction of SWCNTs-containing cells with the cell proliferation over 
time. Although we acknowledge the need for further and more comprehensive analyses of this 
phenomenon, the obtained results pointed out an important aspect to be considered in the 
development of material-based applications in algal biotechnology. Among others, the maintenance 

Figure 2. A bright field microscopy images and the corresponding PCA-false-color pictures of Raman
maps of control Chlamydomonas cell (a) and cell from the culture enriched with 2 µg of SWCNTs mL−1

(b). The main signals found in Raman maps of cells hosting SWCNTs: (c) chlorophyll fluorescence
emission, the spectral interval corresponds to 2140-5100 cm−1 in the Raman spectra, (d) second-order
Raman spectrum of silicon (967 cm−1) and G band (1590 cm−1) and G’ band (2646 cm−1) of SWCNTs.
(e) Raman spectrum with the resonance peaks of carotenoids (numbers in red) and SWCNTs (numbers
in blue), and chlorophyll fluorescence background.

The unambiguously distinguishable pattern of the SWCNT-Raman signal endorsed quantitative
analyses of the internalization dynamics of SWCNTs into Chlamydomonas cells during the 72 h-incubation
period. The cellular internalization capacity of the unshortened SWCNTs was very low. In these
experiments, most of the nanotubes were localized in the extracellular space and cells hosting one or
more SWCNTs were only sporadically found. The shortening procedure enhanced the ability of the
SWCMNTs to enter the cells and allowed the collection of statistically meaningful data. In this case,
in more than 60% of the mapped cells, the G and G’ Raman bands of at least one nanotube were detected.
The maximum number of cells hosting nanotubes was reached after 24 h and 48 h of incubation with
1 µg mL−1 and 2 µg mL−1 SWCNTs, respectively (Figure 3). The difference between the two treatments
was attenuated after 72 h of incubation when the number of cells containing nanotubes was reduced
by approximately 50%. So far, it is difficult to argue about the effect of SWCNT concentration on their
internalization and/or accumulation in the cells. Nonetheless, it is reasonable to associate the reduction
of SWCNTs-containing cells with the cell proliferation over time. Although we acknowledge the
need for further and more comprehensive analyses of this phenomenon, the obtained results pointed
out an important aspect to be considered in the development of material-based applications in algal
biotechnology. Among others, the maintenance of stable effective concentration of the nanomaterials
in continuously growing microalgal cultures stands out.

The confocal Raman microscopy allowed the reconstruction of a map of the spectral signals
of an individual algal cell. In cells free of nanotubes, the maps were exclusively populated by a
single and very strong signal attributed to the fluorescence of the chlorophyll pigments (Figure S6
in the ESI). The picture was very different when SWCNTs were localized inside the cells. Figure 4a
shows the Raman signal of the SWCNTs inside an algal cell (green spots), the chlorophyll fluorescence
signal (red region), and the Raman signal originating from carotenoids (blue region). The detection of
SWCNT-Raman-fingerprints inside the cell was accompanied by quenching of the fluorescence emission
in a proximity to the nanotubes, which allowed the recording of Raman scattering of the underlying
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chemical constituents of the cell (Figure 4b, Figure S5 in the ESI) [42]. The pseudo-enhancement of
the Raman signals observed in these circumstances can be rationalized by hypothesizing electron or
excitation energy transfer between the excited chlorophyll molecules and the SWCNTs. This interaction
seems to occur in a manner very similar to the mechanism that causes the chemical effects in SERS
(Surface-enhanced Raman spectroscopy). The origin of SERS effects in general is explained by at least
two mechanisms of electromagnetic and chemical origin [43]. The electromagnetic effect is due to
an increase of the electrostatic field in the vicinity of metal nanoparticles or rough surfaces, caused
by excitation of surface plasmon-polaritons from the incoming electromagnetic waves. The chemical
effects may result from an increase in polarizability of an adsorbate due to charge-transfer (or bond
formation) between the fluorescence species and a species acting as an electron acceptor (in our case,
carbon nanotubes). The chlorophyll fluorescence quenching mediated by the SWCNTs observed in our
study might be explained by the chemical SERS mechanism, i.e., SWCNTs can promote an alternative,
non-radiative pathway for deactivation of the chlorophyll singlet excited states, whose functioning
allows the detection of Raman scattering of the chemical species close to the nanotubes.
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Figure 3. Dynamics of the nanotubes internalization in Chlamydomonas cells exposed to low
concentrations of shorten SWCNTs. The histogram reports the number of cells, whose Raman
map reported at least one point with a typical nanotube-fingerprint (G and G’ band), presented as
a percentage of the total number of counted cells. More than 80 cells per single point were scanned.
Representative data from a single experiment with three technical repetitions are shown.

This mechanism of amplification of the Raman signal has a neglected history. It was already
highlighted in 1994 by Kagan and McCreery demonstrating that Raman spectra of normally fluorescent
materials were obtained by quenching of their fluorescence emission through an adsorption on carbon
surfaces [44]. To date, this methodology has been successfully reproduced using graphene-based
substrates [45] and our results provided evidence that this mechanism is also valid in bio-hybrid
systems containing carbon nanotubes. SWCNTs are known as very effective fluorescence quenchers [46].
Damping of a fluorescence signal induced by SWCNTs has been reported for a variety of fluorophores,
such as porphyrins [47], different chemical chromophores [48–50], quantum dots [51], and conducting
polymers [52]. These mechanistic studies underline mainly an excitation energy transfer or an electron
transfer as possible mechanisms that govern the high quenching efficiency of the SWCNTs. It should
be pointed out that, in the photoinduced charge transfer between an excited fluorophore and CNTs,
the nanotubes may act as both an electron acceptor and donor. The effective behavior depends, among
others, on the intrinsic properties of the fluorophore, the conjugation mode of “donor-acceptor” pair,
and the local environment [50,53,54].
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Figure 4. Image reconstruction of a single Chlamydomonas cell hosting SWCNTs based Raman
spectroscopy signals. (a) The left panel (in green) reports the occurrence of G and G’ Raman signal of the
SWCNTs inside the algal cell (the reported spectral region, 2600–2700 cm−1, is from G’ band), the central
panel (in red) presents chlorophyll fluorescence signal (spectral region 3200–4800 cm−1), and the right
panel (in blue) shows Raman signal originating from carotenoids (spectral region 1000–1530 cm−1).
(b) 3D reconstruction of a cell combining fluorescence emission (red) with Raman signals of SWCNTs
(green) and carotenoids (blue).

The scientific literature offers a limited number of studies dealing with CNT interaction
with isolated chlorophyll molecules [55], photosynthetic reaction centers (RCs) [56,57], thylakoid
membranes [6,58], or isolated light-harvesting complexes [58]. Due to the different experimental
conditions exploited in these studies, various possible interaction mechanisms have been identified,
including both energy or charge transfer forward and from the nanotubes. In other studies, the reduction
of fluorescence emission originating from photosynthetic complexes has been attributed to the
occurrence of charge transfer [58] or excitation energy transfer [59] toward the nanotubes. In the latter
case [59], the deposition on SWCNT-films of isolated peridinin-chlorophyll-protein complexes, that are
energy-harvesting complexes not capable of performing charge-separation, resulted in almost 90%
quenching of the fluorescence signal. Taking into account that the Raman measurements in the present
study have been done on air-dried cells deposited on Si-wafers, we may assume a significant reduction
of the functional PSII RCs able to perform charge separation [60–62]. Under these conditions, it is
reasonable to hypothesize that the majority of light-harvesting antennae (where most chlorophylls
are concentrated) are not functionally coupled to RCs, and promptly transfer their excitation energy
from one antenna complex to another and, finally, to the nearby SWCNTs, which serve as energy
sinks. This results in vanishing of the chlorophyll fluorescence background in close proximity of the
nanotubes. However, the contribution of electron transfer between the PSII RC photoactive pigment
(P680) and the SWCNTs to the induction of non-radiative relaxation of the excitation could not be
completely ruled out. This mechanism assumes accumulation of P680

+, which is a strong fluorescence
quencher [63] and generated due to electron leakage toward the SWCNTs, hindered reduction of
P680

+ due to the deactivation of water splitting at the PSII donor side during dehydration [62].
Most likely, both mechanisms conferred for the observed fluorescence quenching, even though,
under our conditions, the contribution of the energy transfer significantly outdid the electron transfer.

4. Conclusions

We provided a novel experimental approach suitable to support nanomaterial-based applications
promoting algal and plant biotechnology, and risk assessment studies on CNT phytotoxicity.
The strategy we considered in this case employs the robust and cost-affordable conventional Raman
to track the cellular internalization of SWCNTs. This approach also bears the potential to advance
the understanding of the relationships among physicochemical features of CNTs and their cellular
internalization capacity and ability to interact with the adjacent cell components in vivo. Furthermore,
it represents a handy and label-free tool to track the delivery of genes, therapeutics, pesticides,
or fertilizers loaded on carbon nanotubes. We demonstrated SWCNTs supported non-radiative
deactivation of excited chlorophyll molecules, resulting in an efficient quenching of their fluorescence
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emission and enabling the recording of Raman signals of different chemical constituents of the cell using
simple spectroscopy and experimental set-up. Thus, SWCNTs may be proposed as effective in vivo
spectroscopic probes, able to vanish the fluorescence background of the photosynthetic specimen
usually affecting visible spectroscopic analyses. This finding opens new opportunities for exploiting
the visible Raman spectroscopy in the biochemical-composition analysis and imaging of living algal
cells. This approach may be expanded to all systems where the fluorescence background hinders the
acquisition of Raman scattering signals.

Electronic Supplementary Information available (SWCNT length, TEM of control samples, growth
curves of Chlamydomonas in presence of SWCNTs, Raman signals of cellular components, Raman map
of control samples).

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/22/5121/s1.
Figure S1: SEM characterization of SWCNT length. Figure S2: Raman spectra of purified and shortened SWCNTs.
Figure S3: Growth curves of algal cultures exposed to different concentrations of SWCNs. Figure S4: TEM images
of control algal cells. Figure S5: Raman spectra detected in algal cells hosting SWCNTs. Figure S6: A bright field
microscopy image and the corresponding Raman map of an algal cell free of nanotubes.
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