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Abstract

We provide a simple abstract formalism of integration by parts under which we obtain
some regularization lemmas. These lemmas apply to any sequence of random variables
(Fn) which are smooth and non-degenerated in some sense and enable one to upgrade
the distance of convergence from smooth Wasserstein distances to total variation
in a quantitative way. This is a well studied topic and one can consult for instance
[3, 11, 14, 20] and the references therein for an overview of this issue. Each of the
aforementioned references share the fact that some non-degeneracy is required along
the whole sequence. We provide here the first result removing this costly assumption
as we require only non-degeneracy at the limit. The price to pay is to control the
smooth Wasserstein distance between the Malliavin matrix of the sequence and its
limit, which is particularly easy in the context of Gaussian limit as the Malliavin matrix
is deterministic. We then recover, in a slightly weaker form, the main findings of
[19]. Another application concerns the approximation of the semi-group of a diffusion
process by the Euler scheme in a quantitative way and under the Hörmander condition.
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1 Introduction

The main historical application of Malliavin calculus, introduced in 1975 by Paul
Malliavin, was a probabilistic proof of the Hörmander regularity criterion. But in the
40 last years it gave rise to a huge amount of various applications, and in particular
it has been developed as a branch of stochastic analysis on the Wiener space, see the
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Regularization lemmas and convergence in total variation

classical book of Nualart [22], as well as the more recent area of research pioneered
by Nourdin and Peccati, see [17]. There is a major philosophical difference between
the two aforementioned views of Malliavin calculus, as the so-called Malliavin-Stein’s
method (of Nourdin and Peccati), which has been intensively studied in a recent past,
mixes the formalism of integration by parts provided by Malliavin calculus operators
together with the Stein’s method. Let us recall that the quintessence of Stein’s method
consists of identifying a suitable functional operator which characterizes a specific target
and use it to prove convergence towards this target in a quantitative way. The most
emblematic example is certainly the univariate standard Gaussian distribution γ which
is characterized by the equation 〈f ′ − xf, γ〉 = 0 for every test function f . The link with
Malliavin calculus appears in the identity:

E (f ′(X)−Xf(X)) = E
(
f ′(X)

(
1− Γ[X,−L−1X]

))
where Γ is the square field operator on the Wiener space and L−1 is the pseudo-inverse
of the Ornstein-Uhlenbeck operator. The quantity of interest is then Γ[X,−L−1X] which
is different from the quantity Γ[X,X] which is standard in Malliavin calculus. Hence,
although these two points of view are rather close as they both employ the Malliavin
calculus to compute distances between distributions, they go towards different directions.
Malliavin-Stein methods focus on specific targets with specific operators in order to
provide rates of convergence whereas regularization lemmas focus on smoothness of
distribution and upgrading distances of convergence. The present article explores this
direction, namely we do not aim at proving limit theorems but instead of that, given a
limit theorem, we explore the strongest probabilistic distances and the smoothness of
the laws. In some sense, both approaches are complementary.

To do so, we introduce an abstract framework built on Dirichlet form theory in which
such properties may be obtained by using some integration by parts techniques. Those
techniques are very similar to the standard Malliavin calculus but are presented in a
more general framework which goes far beyond the sole case of the Wiener space. In
particular, we aim at providing a minimalist setting leading to our regularization lemma.
Our unified framework includes the standard Malliavin calculus and different known
versions: the calculus based on the splitting method developed and used in [3, 4, 6] as
well as the Γ calculus in [2]. We also mention that our approach applies in the case of
the Malliavin calculus for jump type processes as settled by Bichteler, Gravereaux and
Jacod [10] and in the “lent particle” approach for Poisson point measures developed by
Bouleau and Denis [12]. But we have to stress that in the framework of jump processes,
another type of Malliavin calculus, based on chaotic decomposition has been developed
(see [23, 24, 29, 26] and many others). In contrast with the framework presented in our
paper, in this type of Malliavin calculus, the derivative operator does not verify the chain
rule – so our approach does not apply.

The first aim of this paper is to present, in this unified framework, the following
regularization lemma (see Theorem 3.1):

|E(f(F ))− E(fδ(F ))| ≤ C ‖f‖∞
(
P(detσF ≤ η) +

δq

η2q
Cq(F )

)
. (1.1)

Here fδ = f ∗ φδ is the regularization by convolution by means of a super kernel φδ (see
(3.1)–(3.2) and (3.3)). We use Malliavin calculus (abstract version) for F : then σF is the
Malliavin covariance matrix and Cq(F ) is a quantity which involves the Malliavin-Sobolev
norms up to order q of F . This inequality holds for every δ > 0, η > 0 and every q ∈ N. So
one may play on these parameters according to the problem at hand. A more powerful
variant of the above lemma involves derivatives of the test function f :

|E((∂γf)(F ))− E((∂γfδ)(F ))| ≤ C
(
‖f‖m,∞P(detσF ≤ η) +

δq

η2(q+m)
‖f‖∞ Cq+m(F )

)
.
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Here ‖f‖m,∞ =
∑
|β|=m ‖∂βf‖∞ and m = |γ|. Such an inequality allows to handle

convergence in distribution norms for the law of Fn to the law of F . Applications of such
convergence results are given in [4, 6].

One important application of the regularization lemma consists in proving that, if
a sequence Fn → F in a distance involving smooth test functions (as for example for
the Wasserstein distance) then it converges also in total variation distance. Of course,
in order to get such a result, we need Fn to be smooth, in order to control Cq(Fn), and
(more or less) non degenerated, in order to control P(detσFn ≤ η). Actually, according to
the non degeneracy properties, several variants of the convergence result are obtained.

Let us give an informal version of these results. Assume first that we have the uniform
non degeneracy condition Qp := supnE((detσFn)−p) < ∞ for every p. Then we prove
(see Lemma 3.9 for a precise statement) that, for every given ε > 0

dTV (F, Fn) ≤ Cd1−εW (F, Fn) (1.2)

where dTV is the total variation distance and dW is the Wasserstein distance. Here C is a
constant which depends on the Sobolev norms and on the “non degeneracy” constant Qp
for some p large enough. Notice that we lose something, because we get the power 1− ε
instead of 1 for dW (F, Fn). This is somehow a technical drawback of our method which
is based on an optimization procedure. A more careful examination of this optimization
procedure is likely to provide logarithmic losses but this would result in highly technical
computations which fall beyond the scope of this paper. Let us emphasize that the
previous estimate requires non-degeneracy assumptions along the whole sequence (Fn)

which may be in general rather hard to check. Assumptions of non-degeneracy on the
sequence (Fn) may sometimes be provided by classic anti-concentration estimates. For
instance, when the underlying Gaussian functionals are polynomials, the Carbery-Wright
estimate gives a kind of non-degeneracy but in a much weaker way. The reader can
consult [11, 20] for results in this direction. Another reference of interest is [14] where
convergence of densities is explored when the limit is Gaussian and under the same
non-degeneracy assumption. Finally, let us mention the reference [25] which shows that
in the particular setting of quadratic forms of Gaussian vectors, the central convergence
automatically implies the required non-degeneracy assumptions and the previous results
apply under the sole assumption of Gaussian convergence.

In order to bypass this major issue, we are able to obtain a variant of the above
estimate without assuming anything on the non degeneracy of Fn (so Qp may be infinite).
In Proposition 3.11 we prove that, for every ε > 0

dTV (F, Fn) ≤ C(d1−εW (F, Fn) + d1−εW (detσF ,detσFn)) (1.3)

where C depends on the Sobolev norms and ε only (and not on the non degeneracy
constant Qp). And in Proposition 3.12 we prove the same result with detσF replaced by
a general non degenerate positive random variable, so one just needs that σFn converges
(non necessarily to σF ).

In concrete examples it may be difficult to precisely estimate dW (detσF ,detσFn),
but then one may use the standard upper bound dW (detσF ,detσFn) ≤ C ‖DF −DFn‖1.
Doing this is not innocent, because we replace “weak distances” with “strong” ones
and this may induce a serious loss of accuracy: for example the weak distance is of
order 1

n while the strong distance is 1√
n

. However, the aforementioned result completely
covers the case of central convergence as in this case σF is a deterministic matrix and
the quantity dW (F, Fn) is easy to estimate. Using this strategy we recover a central
result of Nourdin-Peccati theory [19] establishing multivariate total variation estimates
for suitable sequences converging to Gaussian. Proofs are completely different as the
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proof of the aforementioned article employs tools of information theory and provides
stronger results such as convergence in entropy. On the other hand, our result is more
general and requires much less structural information on the sequence approximating
the Gaussian law.

We also illustrate the above results in the framework of the approximation of the semi-
group of a diffusion process by using the Euler scheme: if one assumes uniform ellipticity,
then one has uniform non degeneracy for the Euler scheme and may use (1.2). But if one
works under Hörmander condition, then the Euler scheme is degenerated so Qp =∞. In
[9] this problem has been discussed and the authors have been obliged to work with a
slightly regularized Euler scheme in order to bypass this difficulty. Now, one may use
(1.3) and to get the convergence for the real Euler scheme (without regularization). But
one loses accuracy: we pass from 1

n to 1√
n

, so the result is not optimal.
A last type of results concerns the distance between density functions. This issue has

already been discussed in [3]. Here, in Theorem 3.15 we prove the following: if F and G
are smooth and non degenerated then the density functions pF and pG exists and are
smooth. Moreover, for every multi index α and for every ε > 0

‖∂αpF − ∂αpG‖∞ ≤ Cd
1−ε
W (F,G). (1.4)

This is a striking improvement with respect to the estimate obtained in [3], see (2.53)
there.

2 Abstract framework

In this section we present an abstract framework which covers most of the known
variants of Malliavin calculus and which allows to obtain the integration by parts formula
that we need.

We consider a probability space (Ω,F ,P) and a subset E ⊂ ∩p>1L
p(Ω;R). The guiding

example is E = S or also, E = D∞ (the space of simple functionals respectively the
space of smooth functionals in the classical Malliavin calculus). We assume that for
every φ ∈ C∞p (Rd) (smooth functions with polynomial growth) and every F ∈ Ed, one
has φ(F ) ∈ E . In particular E is an algebra. In the sequel we will also use the following
consequence. For η > 0 we denote by Ψη : (0,∞)→ R a smooth function which is equal
to zero on (0, η/2) and to one on (η,∞). Then for every η > 0,

F ∈ E =⇒ 1

F
Ψη(F ) ∈ E (2.1)

Moreover we consider

♣ Γ : E × E → E which is a symmetric bilinear form such that Γ(F, F ) ≥ 0 and
Γ(F, F ) = 0 iff F = 0.

In the language of Dirichlet forms Γ is the carré du champ operator. Notice that,
since Γ(F,G) ∈ E and E is an algebra, if F,G,H ∈ E then Γ(F,G)H ∈ E . We also
may define Γ(F,Γ(G,H)).

♣ L : E → E which is a linear operator.

We assume:

� [Chain rule] For every φ ∈ C∞p (Rd) and F = (F1, ..., Fd) ∈ Ed

Γ(φ(F ), G) =

d∑
i=1

∂iφ(F )Γ(Fi, G) (2.2)
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In particular, taking φ(x, y) = xy we obtain

Γ(FH,G) = FΓ(H,G) +HΓ(F,G) (2.3)

� [Duality formula] For every F,G ∈ E ,

E(Γ(F,G)) = E(FLG) = E(GLF ). (2.4)

Notice that we also have the following extension of the duality formula: using
the duality first and the chain rule for the function φ(x, y) = xy we get for every
F,G,H ∈ E:

E(HFLG) = E(Γ(HF,G)) = E(HΓ(F,G) + FΓ(H,G))

so that
E(Γ(F,G)H) = E(F (HLG− Γ(H,G))) (2.5)

This gives the standard integration by parts formula that we present now.

Lemma 2.1. Let F = (F1, ..., Fd) ∈ Ed and let σi,jF = Γ(Fi, Fj), i, j = 1, ..., d be its Malli-
avin covariance matrix. We suppose that σF is invertible, we denote γF = σ−1F , and we
assume that

γk,iF ∈ E ∀i, k = 1, ..., d. (2.6)

Then for every φ ∈ C∞p (Rd) and G ∈ E

E(∂iφ(F )G) = E
(
φ(F )Hi(F,G)

)
(2.7)

with

Hi(F,G) =

d∑
k=1

G(γk,iF LFk − Γ(γk,iF , Fk))−
d∑
k=1

γk,iF Γ(G,Fk). (2.8)

Moreover, iterating this relation we get

E(∂αφ(F )G) = E
(
FHα(F,G)

)
(2.9)

with Hα(F,G) obtained by iterations: if α = (α1, ..., αm) ∈ {1, ..., d}m and α = (α1, ...,

αm−1) then we define Hα(F,G) = Hαm(F,Hα(F,G)).

Remark 2.2. If detσF is almost surely invertible and (detσF )−1 ∈ E then (2.6) is verified

Proof. We use the chain rule and we get

Γ(φ(F ), Fk) =

d∑
i=1

∂iφ(F )Γ(Fi, Fk) =

d∑
i=1

∂iφ(F )σi,kF .

This gives ∇φ(F ) = Γ(φ(F ), F )γF which, on components reads

∂iφ(F ) =

d∑
k=1

Γ(φ(F ), Fk)γk,iF .

Then, by (2.5)

E(∂iφ(F )G) =

d∑
k=1

E(Γ(φ(F ), Fk)γk,iF G)

=

d∑
k=1

E
(
φ(F )(γk,iF GLFk − Γ(γk,iF G,Fk))

)
.
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The non degeneracy hypothesis (2.6) considered in Lemma 2.1 is sometimes too
strong (this is the case in our framework). So we present now a localized version of the
previous integration by parts formula. We recall that Ψη(x) is a smooth function which
is null for x ≤ η/2 and equal to one for x > η. Notice that σF is invertible on the set
{Ψη(detσF ) > 0} so we are able to define

γi,jF,η := γi,jF Ψη(detσF ).

And, by (2.1) we know that γi,jF,η ∈ E .

Lemma 2.3. Let F = (F1, ..., Fd) ∈ Ed. Then for every φ ∈ C∞p (Rd) and G ∈ E

E(∂iφ(F )GΨη(detσF )) = E(FHη,i(F,G)) (2.10)

with

Hη,i(F,G) =

d∑
k=1

G(γk,iF,ηLFk − Γ(γk,iF,ηG,Fk)). (2.11)

Moreover, iterating this relation we get

E(∂αφ(F )GΨη(detσF )) = E(FHη,α(F,G)) (2.12)

with Hη,α(F,G) obtained by iterations: if α = (α1, ..., αm) ∈ {1, ..., d}m and α = (α1, ...,

αm−1) then we define Hη,α(F,G) = Hη,αm(F,Hη,α(F,G)).

Proof. The proof is almost the same as above. The only change is that in the first step
we multiply with Ψη(detσF ) and we write

Γ(φ(F ), Fk)Ψη(detσF ) =

d∑
i=1

∂iφ(F )σi,kF Ψη(detσF ).

On the set Ψη(detσF ) > 0 the matrix σF is invertible so we get

∂iφ(F )Ψη(detσF ) =

d∑
k=1

Γ(φ(F ), Fk)Ψη(detσF )γk,iF =

d∑
k=1

Γ(φ(F ), Fk)γk,iF,η

and then, by (2.5)

E(∂iφ(F )GΨη(detσF )) =

d∑
k=1

E(Γ(φ(F ), Fk)γk,iF,νG)

=

d∑
k=1

E(φ(F )(γk,iF,ηGLFk − Γ(γk,iF,ηG,Fk))).

2.1 Norms

In order to be able to give estimates of Hα(F,G) we need to assume that Γ is given
by a derivative operator as follows (this is actually always true, see Mokobodzki [16]):

♣ We assume that there exists a separable Hilbert space H and a linear application
D : E → ∩p>1L

p(Ω;H) such that

i) Γ(F,G) = 〈DF,DG〉H
ii) DhF := 〈DF, h〉H ∈ E .

We also assume that we have the chain rule: for φ ∈ C∞(Rd) and F ∈ Ed we have

iii) Dφ(F ) =

d∑
i=1

∂iφ(F )DFi.
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Then we may define higher order derivatives in the following way. D2 : E →
∩p>1L

p(Ω;H⊗2) is defined by
〈
D2F, h1 ⊗ h2

〉
H⊗2 = Dh2

Dh1
F . So, if we denote D2

h1,h2
F =〈

D2F, h1 ⊗ h2
〉
H⊗2 then D2

h1,h2
F = Dh2Dh1F . In a similar way we define (by induction)

Dk
h1,...,hk

F = DhkD
k−1
h1,...,hk−1

F.

We introduce now the norms

|F |1,k =

k∑
i=1

∣∣DiF
∣∣
H⊗i , |F |k = |F |+ |F |1,k = |F |+

k∑
i=1

∣∣DiF
∣∣
H⊗i

For F = (F1, ..., Fd) ∈ Ed we define

|F |1,k =

d∑
i=1

|Fi|1,k , |F |k =

d∑
i=1

|Fi|k .

Notice that since H is separable we may take an orthonormal base (ei)i∈N and denote
DiF = DeiF = 〈DF, ei〉. Then DF =

∑∞
i=1DiF × ei and more generally

DkF =
∑

i1,...,ik

Di1,...,ikF ×⊗kj=1ej .

Moreover, on the set {detσF > 0} we denote

αk =
|F |2(d−1)1,k+1 (|F |1,k+1 + |LF |k)

detσF
, βk =

|F |2d1,k+1

detσF
(2.13)

and

Kn,k(F ) = (|F |1,k+n+1 + |LF |k+n)n(1 + |F |1,k+n+1)2d(2n+k), (2.14)

Cn(F ) = Kn,0(F ) = (|F |1,n+1 + |LF |n)n(1 + |F |1,n+1)4dn (2.15)

Cn,p(F ) = ‖Cn(F )‖p . (2.16)

Then, the following lemma is proved in the Appendix of [4]:

Lemma 2.4. A. Let F ∈ Ed. Suppose that detσF (ω) > 0. Then, for every k and n there
exists a constant C such that for every multi-index ρ with |ρ| ≤ n one has

|Hρ(F,G)|k ≤ Cα
n
k+n

∑
p1+p2≤k+n

|G|p2 (1 + βk+n)p1 . (2.17)

B. For every η > 0

|Hρ(F,Ψη(detσF )G)|k ≤
C

η2n+k
×Kn,k(F )× |G|k+n . (2.18)

As an immediate consequence of (2.18) and of (2.12) we get

Corollary 2.5. Let F ∈ Ed and η > 0. Then

|E(∂αf(F )Ψη(detσF ))| ≤ C

η2|α|
× C|α|,1(F )× ‖f‖∞ . (2.19)
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3 Regularization lemma

We go now on and we give the regularization lemma. We recall that a super kernel
φ : Rd → R is a function which belongs to the Schwartz space S (infinitely differentiable
functions with rapid decrease) and such that for every multi-indexes α and β, one has∫

φ(x)dx = 1 and

∫
yαφ(y)dy = 0 for |α| ≥ 1, (3.1)∫

|y|m |∂βφ(y)| dy <∞. (3.2)

As usual, for a multi-index α = (α1, ...., αm) ∈ {1, . . . , d}m then |α| = m and yα =
∏m
i=1 yαi .

Since super kernels play a crucial role in our approach we give here the construction
of such an object. We do it in dimension d = 1 and then we take tensor products. We
take ψ ∈ S which is symmetric and equal to one in a neighborhood of zero and we define
φ = F−1ψ, the inverse of the Fourier transform of ψ. Since F−1 sends S into S the
property (3.2) is verified. And we also have 0 = ψ(m)(0) = i−m

∫
xmφ(x)dx so (3.1) holds

as well. We finally normalize in order to obtain
∫
φ = 1.

We fix a super kernel φ. For δ ∈ (0, 1) and for a function f we define

φδ(y) =
1

δd
φ
(y
δ

)
and fδ = f ∗ φδ, (3.3)

the symbol ∗ denoting convolution. Moreover, for f ∈ C∞b (Rd) we denote

‖f‖k,∞ =
∑

0≤|α|≤k

‖∂αf‖∞ . (3.4)

Lemma 3.1. Let f ∈ C∞b (Rd) and F ∈ Ed. For every q,m ∈ N there exists a universal
constant C (depending on q and m only) such that for every multi-index γ with |γ| = m,
every δ > 0 and every η > 0

|E(∂γf(F ))− E(∂γfδ(F ))| ≤ C ‖∂γf‖∞P(detσF ≤ η) +
δq

η2(q+m)
‖f‖∞ Cq+m,1(F ) (3.5)

with Cq+m(F ) given in (2.15). In particular, taking m = 0

|E(f(F ))− E(fδ(F ))| ≤ C ‖f‖∞
(
P(detσF ≤ η) +

δq

η2q
Cq,1(F )

)
(3.6)

Remark 3.2. A similar estimate holds for |E(G∂γf(F ))− E(G∂γfδ(F ))| with G ∈ E . But
in this case one has to replace P(detσF ≤ η) with ‖G‖2P1/2(detσF ≤ η) and Cq+m,1(F )

by ‖ |G|q+m+1 ‖2 Cq+m,2(F ) in the right hand side of (3.5). The proof is the same.

Proof. The proof is given in [4] in a particular framework, but, for the convenience of
the reader, we recall it here. Using Taylor expansion of order q (with integral remainder)
and (3.1) we obtain

∂γf(x)− ∂γfδ(x) =

∫
(∂γf(x)− ∂γf(y))φδ(x− y)dy =

∫
Rγ,q(x, y)φδ(x− y)dy

with

Rγ,q(x, y) =
1

q!

∑
|α|=q

∫ 1

0

∂α∂γf(x+ λ(y − x))(x− y)α(1− λ)qdλ.

By a change of variable we get∫
Rγ,q(x, y)φδ(x− y)dy =

1

q!

∑
|α|=q

∫ 1

0

∫
dzφδ(z)∂α∂γf(x+ λz)zα(1− λ)qdλ.
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So, we have

E(Ψη(detσF )∂γf(F ))− E(Ψη(detσF )∂γfδ(F )) (3.7)

= E
(∫

Ψη(detσF )Rγ,q(F, y)φδ(F − y)dy
)

=
1

q!

∑
|α|=q

∫ 1

0

∫
dzφδ(z)E

(
Ψη(detσF )∂α∂γf(F + λz)

)
zα(1− λ)qdλ.

As a consequence of (2.19)

|E(Ψη(detσF )∂α∂γf(F + λz))| ≤ C

η2(q+m)
Cq+m,1(F ) ‖f‖∞ .

We also have, if |α| = q, ∫
dz |φδ(z)zα| ≤ δq

∫
|φ(z)| |z||α| dz (3.8)

so we conclude that

I1 = |E(Ψη(detσF )∂γf(F ))− E(Ψη(detσF )∂γfδ(F ))| ≤ Cδq

η2(q+m)
Cq+m,1(F ) ‖f‖∞ .

We write now

I2 = |E((1−Ψη(detσF ))∂γf(F ))| ≤ ‖∂γf‖∞P(detσF < η)

and similarly,

I3 = |E((1−Ψη(detσF ))∂γfδ(F ))| ≤ ‖∂γfδ‖∞P(detσF < η) ≤ ‖∂γf‖∞P(detσF < η).

Since |E(∂γf(F ))− E(∂γfδ(F ))| ≤ I1 + I2 + I3, (3.5) follows.

Remark 3.3. The main contribution of Lemma 3.1 is to separate the quantities concern-
ing the non degeneracy (that is, P(detσF ≥ η)) and the regularity (the Malliavin Sobolev
norms contained in Cm,1(F )): on one hand we localize on the set {detσF ≥ η} where
we have non degeneracy and there we can use the integration by parts formula which
involves the Sobolev norms (multiplyed by 1/η). This is I1. On the other hand, on the set
where detσF ≤ η we are not able to use integration by parts so we upper bound ∂γf by
the infinite norm (put it otherwise, we do nothing). These are I2 and I3.

Under a weak non degeneracy condition for F , we get the following immediate
consequence.

Corollary 3.4. Let F ∈ Ed. Suppose that for some κ > 0 there exists a positive constant
θκ(F ) (so, possibly depending on F ) such that

P(detσF ≤ η) ≤ θκ(F )ηκ ∀η > 0. (3.9)

Then for every, q ∈ N and δ > 0

|E(f(F ))− E(fδ(F ))| ≤ C ‖f‖∞ C
κ

κ+2q

q,1 (F )θ
2q
κ+2q
κ (F )× δ

κq
κ+2q . (3.10)

Proof. One plugs (3.9) into (3.6). This gives

|E(f(F ))− E(f(G))| ≤ C‖f‖∞
(
θκ(F )ηκ +

δq

η2q
Cq,1(F )

)
.

Then we optimize over η and δ, that is, we choose η in order that the addenda in the

above r.h.s. are equal. So, η =
(
δqCq,1(F )/θκ(F )

) 1
κ+2q and by inserting, (3.10) follows.

EJP 25 (2020), paper 74.
Page 9/20

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP481
http://www.imstat.org/ejp/


Regularization lemmas and convergence in total variation

Example. Let F = ∆2 with ∆ a standard normal random variable. We use standard
Malliavin calculus to see what (3.10) gives in this case. We have DF = 2∆ so that
σF = 4∆2 and then (3.9) reads

P(4∆2 ≤ η) = P
(
|∆| ≤ 1

2

√
η
)
≤ η1/2.

So κ = 1
2 here and for every ε > 0, (3.10) gives (one takes q large enough)

|E(f(F ))− E(fδ(F ))| ≤ Cε ‖f‖∞ × δ
κ
2−ε = Cε ‖f‖∞ × δ

1
4−ε.

But some informal computations give

|E(f(F ))− E(fδ(F ))| ∼ C ‖f‖∞ × δ
1
2 .

So our calculus is not sharp: we get 1
4 instead of 1

2 .
In the regularization Lemma 3.1 we have not assumed that σF is invertible but we

preferred to keep P(detσF ≤ η). We give now a variant under a strong non degeneracy
assumption for F : for every p ≥ 1

E
(
(detσF )−p

)
≤ Cp <∞. (3.11)

Denote
Ql(F ) = Cl,2(F )

(
E(detσF )−2l

)1/2
(3.12)

and Cl,2(F ) is given in (2.16).

Lemma 3.5. Let f ∈ C∞b (Rd) and F ∈ Ed such that (3.11) holds. For every q,m ∈ N
there exists a universal constant C (depending on q and m only) such that for every
multi-index γ with |γ| ≤ m, every δ > 0 and every η > 0

|E(∂γf(F ))− E(∂γfδ(F ))| ≤ Cδq ‖f‖∞Qq+m(F ). (3.13)

Proof. We follow the same reasoning as in the previous proof and we come back to (3.7),
but we do not multiply with Ψη(detσF ) anymore:

E(∂γf(F ))− E(∂γfδ(F ))

=
1

q!

∑
|α|=q

∫ 1

0

∫
dzφδ(z)E

(
∂α∂γf(F + λz)

)
zα(1− λ)qdλ.

Using the standard integration by parts formula (2.9) we obtain, for some p ≥ 1

|E(∂α∂γf(F + λz))| ≤ (E(detσF )−2(q+m))1/2Cq+m,2(F ) ‖f‖∞ .

And by (3.8) we conclude that

|E(∂γf(F ))− E(∂γfδ(F ))| ≤ Qq+m(F ) ‖f‖∞ δq.

In [4] one gives the following more sophisticated version of the regularization lemma
for smooth functions with polynomial growth. More precisely we denote by C∞p (Rd) the
space of smooth functions such that for every q ∈ N there exists Lq(f) and lq(f) such
that, for every multi index with |α| ≤ q and every x ∈ Rd

|∂αf(x)| ≤ Lq(f)(1 + |x|)lq(f).

Then we have the following result (see [4] Lemma 5.3)
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Regularization lemmas and convergence in total variation

Lemma 3.6. Let F ∈ Ed and q,m ∈ N. There exists some constant C ≥ 1, depending on
d,m and q only, such that for every f ∈ Cq+mpol (Rd), every multi-index γ with |γ| = m and
every η, δ > 0 and p > 1

|E(∂γf(x+ F ))− E(∂γfδ(x+ F ))| ≤ C(1 + ‖F‖pl0(f))
l0(f)(1 + |x|)lm(f)

×
(
Lm(f)clm(f)2

lm(f)P(p−1)/p(detσF ≤ η) + 2l0(f)cl0(f)+q L0(f)
δq

η2(q+m)
Cq+m,1(F )

)
.

(3.14)

3.1 Convergence in total variation distance

Let us introduce the following distances:

dk(F,G) = sup{|E(f(F ))− E(f(G))| :
∑
|α|=k

‖∂αf‖∞ ≤ 1} (3.15)

In the case k = 0 this means that the test functions f are just measurable and bounded
and in this case d0 is the so called “total variation distance” that we will denote by dTV .
Another interesting distance is the “Wasserstein distance”

dW (F,G) = d1(F,G) = sup{|E(f(F ))− E(f(G))| : ‖∇f‖∞ ≤ 1}.

In many problems the estimate of the error involves some Taylor type expansions and
then the test functions have to be differentiable and the norms of the derivatives come
on. So we are able to estimate dk for some k. And then one asks about the possibility to
obtain estimates for measurable test functions, as in total variation distance. And one
may use the regularization lemma presented before in order to do it. We give several
forms of such a result. But as we will show, the regularization lemma can be applied to
other distances. As an example, in the sequel we consider also the following distance
between random vectors in Rd: we set

dCF (F,G) = sup{
∣∣E(ei〈ϑ,F 〉)− E(ei〈ϑ,G〉)

∣∣ : ϑ ∈ Rd}. (3.16)

So, dCF is the maximum distance between the characteristic functions of F and G. There
are many situations where it is easier to obtain bounds on the difference of characteristic
functions, especially when the targets in consideration are infinitely divisible. One may
for instance consult [1] for an introduction to Stein’s method theory for this kind of
distribution. Again, the regularization lemma allows one to pass from such distance to
the distance in total variation.

The key remark which allows to use the regularization lemma is the following.

Lemma 3.7. Let φδ be the super-kernel introduced in (3.1)–(3.2) and let F,G denote
random vectors in Rd. We also fix a multi-index β with |β| = r (including the void multi-
index, in which case r = 0). Then for every k ∈ N there exists a constant C depending
on k and r only such that for every f ∈ Cb(Rd)∣∣E(∂β(f ∗ φδ)(F )

)
− E

(
∂β(f ∗ φδ)(G)

)∣∣ ≤ Cδ−(k+r)dk(F,G)× ‖f‖∞ . (3.17)

We also have, for a constant C > 0 depending on r only,∣∣E(∂β(f ∗ φδ)(F )
)
− E

(
∂β(f ∗ φδ)(G)

)∣∣ ≤ Cδ−(2d+r)dCF (F,G)× ‖f‖1 . (3.18)

And moreover, for every ε > 0 one may find C (depending on ε and r) such that∣∣E(∂β(f ∗ φδ)(F )
)
− E

(
∂β(f ∗ φδ)(G)

)∣∣ ≤ Cδ−(2d+r)dCF (F,G)1−ε × ‖f‖∞ . (3.19)
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Proof. (3.17) is an immediate consequence of the definition of dk and of ‖∂α(f ∗ φδ)‖∞ ≤
Cδ−|α| × ‖f‖∞.

Let us prove (3.18). Take first f ∈ S (Schwartz space). Let Ff(ξ) =
∫
f(x)e−2πi〈x,ξ〉dx

denote the Fourier transform of f and FF (ξ) = E(ei〈F,ξ〉) be the characteristic function
of F . Then, using the inverse F−1 of F

E(f(F )) = E(FF−1f(F )) = E

∫
F−1f(ξ)e−2πi〈F,ξ〉dξ =

∫
F−1f(ξ)FF (−2πξ)dξ.

Take α such that ∂α = ∂21 · · · ∂2d and notice that, by using integration by parts, one obtains

F−1∂αf(ξ) = (2πi)2d
∏d
i=1 ξ

2
iF−1f(ξ). Setting B(0, 1) the ball of radius 1 centered at 0 in

Rd, we can write

E(f(F )) =

∫
B(0,1)

F−1f(ξ)FF (−2πiξ)dξ +
1

(2πi)2d

∫
B(0,1)c

d∏
i=1

ξ−2i F
−1∂αf(ξ)FF (−2πiξ)dξ.

It follows that

|E(f(F ))− E(f(G))| ≤ C‖FF −FG‖∞
(
‖F−1f‖∞ + ‖F−1∂αf‖∞

)
= C dCF (F,G)

(
‖F−1f‖∞ + ‖F−1∂αf‖∞

)
.

We will use this formula with f ∗ φδ instead of f . One has∥∥F−1∂γ(f ∗ φδ)
∥∥
∞ =δ−|γ|‖F−1(f ∗ ∂α∂βφ)‖∞ ≤ δ−|γ| ‖f ∗ ∂γφ‖1
≤δ−|γ| ‖f‖1 ‖∂

γφ‖1 ≤ Cδ
−|γ| ‖f‖1 .

So, by inserting above, (3.18) is proved. In order to prove (3.19) we take a truncation
function ΨM ∈ C∞(Rd) such that 1BM (0) ≤ ΨM ≤ 1BM+1(0) and we use (3.18) for fΨM .
Since ‖fΨM‖1 ≤ CMd ‖f‖∞ we obtain∣∣E((fΨM ) ∗ ∂βφδ(F ))− E((fΨM ) ∗ ∂βφδ(G))

∣∣ ≤ Cδ−(2d+r)Md ‖f‖∞ dCF (F,G).

Notice that for q one has∫
|y|q

∣∣∂βφδ(y)
∣∣ dy = δq−r

∫
|y|q

∣∣∂βφ(y)
∣∣ dy.

Moreover, since F has finite moments of any order, one has,

P(|F − y| ≥M + 1) ≤M−qE(|F − y|q) ≤ CM−q(1 + |y|q).

So, for every q,

|E((f(1−ΨM )) ∗ ∂βφδ(F ))| ≤ ‖f‖∞
∫
P(|F − y| ≥M + 1)|∂βφδ(y)|dy

≤ Cδ−r ‖f‖∞M−q.

The same is true for G and then, combining the two previous estimates we obtain, for
every q ∈ N∣∣E(f ∗ ∂βφδ(F ))− E(f ∗ ∂βφδ(G))

∣∣ ≤ Cδ−(2d+r) ‖f‖∞ (dCF (F,G)Md +M−q).

We optimize over M : we choose M such that dCF (F,G)Md = M−q. We get M =

d
− 1
q+d

CF (F,G) and by inserting, we obtain (3.19).
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We first consider the case in which both F and G satisfy the weak non degeneracy
condition in (3.9).

Lemma 3.8. Let F,G ∈ Ed be such that (3.9) holds true for some fixed κ > 0. Then for
every k, q ∈ N

dTV (F,G) ≤ C × (Cκ,q(F ) + Cκ,q(G))
k
k+a dk(F,G)

a
k+a (3.20)

with
Cκ,q(F ) = θκ(F )

2q
κ+2q Cq,2(F )

κ
κ+2q , a =

κq

κ+ 2q
. (3.21)

Moreover, for every ε > 0

dTV (F,G) ≤ C × (Cκ,q(F ) + Cκ,q(G))
2d

2d+a dCF (F,G)
a(1−ε)
2d+a (3.22)

Proof. By (3.17) (with r = 0)

|E(f ∗ φδ(F ))− E(f ∗ φδ(G))| ≤ ‖f‖∞ dk(F,G)δ−k,

so, using (3.10) we get

|E(f(F ))− E(f(G))| ≤ C ‖f‖∞
(
(Cκ,q(F ) + Cκ,q(G))δ

κq
κ+2q + dk(F,G)δ−k

)
.

We optimize over δ: we choose δ such that (Cκ,q(F ) + Cκ,q(G))δ
κq
κ+2q = dk(F,G)δ−k. We

get δ =
(
(Cκ,q(F ) + Cκ,q(G))/dk(F,G)

) 1
a+κ , a being given in (3.21), and by inserting,

(3.20) follows. The proof of (3.22) is the same, but one employs (3.19).

We give now a result under the strong non degeneracy condition both for F and G:
(detσF )−1, (detσG)−1 ∈ ∩p≥1Lp.
Lemma 3.9. Let F,G ∈ E be such that Qq(F ) +Qq(G) <∞ for every q ∈ N (see (3.12)).
Then, for every q, k ∈ N there exists a constant C (depending on q and k only) such that

dTV (F,G) ≤ C(Qq(F ) +Qq(G))
k
q+k × d

q
q+k

k (F,G). (3.23)

In particular, for every ε > 0

dTV (F,G) ≤ C(Qq(ε)(F ) +Qq(ε)(G))ε × d1−εk (F,G) (3.24)

with q(ε) = k( 1
ε − 1). Moreover, with q(ε) = 2d( 1

ε − 1),

dTV (F,G) ≤ C(Qq(ε)(F ) +Qq(ε)(G))ε × d(1−ε)
2

CF (F,G) (3.25)

Proof. Let f ∈ C∞b (R) and δ > 0. Using (3.13)

|E(f(F ))− E(f ∗ φδ(F ))| ≤ Cδq ‖f‖∞Qq(F )

and a similar estimate holds for G. Moreover by (3.17)

|E(fδ(F ))− E(f ∗ φδ(G))| ≤ C

δk
‖f‖∞ dk(F,G)

so that

|E(f(F ))− E(f(G))| ≤ C ‖f‖∞
(
δq(Qq(F ) +Qq(G)) +

1

δk
dk(F,G)

)
.

We choose δ such that δq(Qq(F ) +Qq(G)) = 1
δk
dk(F,G), that is, δ =

(
dk(F,G)/(Qq(F ) +

Qq(G))
) 1
q+k and we get (3.23). Using (3.19), we obtain, in the same way, (3.25).
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Remark 3.10. Compare with Corollary 2.8 pg 11/33 in [3] – there we have d1/(k+1)
k (F, Fn).

So it is much less good there. The reason is that we have now a much stronger
regularization lemma. Compare the estimate (2.29) pg 8/33 in [3] with (3.6) here:
here we have “for every q” and this is what gives the much better result.

We finish this section with a variant of the previous Lemma: now we assume the
strong non degeneracy condition (detσF )−1 ∈ ∩p≥1Lp for F but we assume no non
degeneracy condition on G. Then we get the following:

Proposition 3.11. Let F,G ∈ E be such that Qq(F ) + Cq,1(G) <∞ for every q ∈ N (see
(3.12)). Then, for every p, p′ ∈ N and every ε > 0 there exists a constant C (depending
on ε, p, p′) such that

dTV (F,G) ≤ C × Cε(F,G)×
(
dp(F,G) + dp′(detσF ,detσG)

)1−ε
(3.26)

with

Cε(F,G) = 1 +Qq(ε)(F ) + Cq(ε),1(G), q(ε) = max{[4p/ε] + 1, [p′/2ε] + 1}. (3.27)

Moreover, with q(ε) = max{[8d/ε] + 1, [p′/2ε] + 1} one has

dTV (F,G) ≤ C × Cε(F,G)×
(
dCF (F,G) + dp′(detσF ,detσG)

)1−ε
. (3.28)

Proof. We denote

dp,p′ = dp(F,G) + dp′(detσF ,detσG).

Take η > 0 and take Φη ∈ C∞b (R+) such that 1(0,η) ≤ Φη ≤ 1(0,2η) and ‖Φ(k)
η ‖∞ ≤ Cη−k.

We recall that σG is the Malliavin covariance matrix of G and we write

P(detσG ≤ η)

≤ E(Φη(detσG)) ≤ E(Φη(detσF )) + |E(Φη(detσG))− E(Φη(detσF ))| (3.29)

≤ P(σF ≤ 2η) + Cη−p
′
dp′(detσF ,detσG)

≤ C
(
Qρ(F )ηρ + η−p

′
dp,p′

)
the last inequality being true for every ρ. Then, using the regularization lemma, we get
for every δ > 0 and every q ∈ N

|E(f(G))− E(fδ(G))| ≤ C ‖f‖∞
(
P(detσG ≤ η) +

δq

η2q
Cq,1(G)

)
≤ C ‖f‖∞

(
Qρ(F ) + Cq(G)

)(
ηρ + η−p

′
dp,p′ +

δq

η2q

)
.

We also have P(σF ≤ η) ≤ Qρ(F )ηρ for every ρ so that the regularization lemma for F
gives

|E(f(F ))− E(fδ(F ))| ≤ C ‖f‖∞Qρ(F )
(
ηρ +

δq

η2q

)
.

On the other hand

|E(fδ(F ))− E(fδ(G))| ≤ C ‖f‖∞ δ−pdp(F,G).

Putting these together

|E(f(F ))− E(f(G))| ≤ C ‖f‖∞
(
1 +Qρ(F ) + Cq(G)

)(
δ−pdp,p′ + ηρ + η−p

′
dp,p′ +

δq

η2q

)
.
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We fix now ε > 0 and we choose δ and η. First take δ = d2εp,p′ so that

δ−pdp,p′ = d1−2pεp,p′ .

Take η = d
ε/2
p,p′ so that dεp,p′ × η−2 = 1 and consequently

δq

η2q
=
d2qεp,p′

η2q
= dqεp,p′ ×

dqεp,p′

η2q
= dqεp,p′ .

We also have
η−p

′
dp,p′ = d

1−p′ε/2
p,p′ and ηρ = d

ρε/2
p;p′ .

Choose q = 1/ε and ρ = 2/ε in order to obtain

ηρ +
δq

η2q
≤ 2dp,p′ .

Then

|E(f(F ))− E(f(G))| ≤ C ‖f‖∞
(
1+Qb2/εc+1(F )+Cb1/εc+1,1(G)

)(
d1−2pεp,p′ +d

1−p′ε/2
p,p′ +dp,p′

)
.

Take now ε = max{2pε, p′ε/2} and q(ε) = max{[4p/ε] + 1, [p′/2ε] + 1}. The above estimate
reads

|E(f(F ))− E(f(G))| ≤ C ‖f‖∞ (1 +Qq(ε)(F ) + Cq(ε),1(G))× d1−εp,p′

so (3.30) is proved. In order to prove (3.28), we proceed as before but we use (3.19)
instead of (3.17).

In inequality (3.29) one can replace detσF with any other random variable H ≥ 0

such that P(H ≤ η) ≤ cκη
κ for every κ and η > 0, that is, H−1 ∈ ∩pLp. So, Proposition

3.11 can be reformulated as follows:

Proposition 3.12. Let F,G ∈ E be such that Qq(F ) + Cq,1(G) <∞ for every q ∈ N (see
(3.12)). Let H ≥ 0 be a r.v. such that H−1 ∈ ∩pLp. Then, for every p, p′ ∈ N and every
ε > 0 there exists a constant C (depending on ε, p, p′) such that

dTV (F,G) ≤ C × Cε(F,G,H)×
(
dp(F,G) + dp′(detσF , H)

)1−ε
, (3.30)

with Cε(F,G,H) = Cε(F,G) + ‖H−1‖2/ε with Cε(F,G) given in (3.27). Moreover,

dTV (F,G) ≤ C × Cε(F,G,H)×
(
dCF (F,G) + dp′(detσF , H)

)1−ε
. (3.31)

Remark 3.13. Proposition 3.11 essentially says that if (Fn,detσFn) → (F,detσF ) in
some “smooth distance” dp (for example in the Wasserstein distance dW ) then Fn → F

in total variation distance. And Proposition 3.12 says that it is not necessary that σFn
converges to σF : one can also have (Fn,detσFn)→ (F,H). In any case one obtains the
estimate of the speed of convergence: one loses a little bit because we have the power
1− ε. The striking fact is the we do not need the non degeneracy condition for Fn but
only for F .

Remark 3.14. For the use of Proposition 3.11, in concrete applications it may be difficult
to compute dp′(detσF ,detσG). Then we are obliged to come back to “strong distances”:

we have d1(detσF ,detσG) ≤ (‖DF‖d−1 + ‖DG‖d−1) ‖DF −DG‖ so we take p′ = 1 and
we get

dTV (F,G) ≤ C × Cε(F,G)× (dp(F,G) + ‖DF −DG‖)1−ε (3.32)

Notice however that here we lose the right order of convergence. For example, in
the case of the convergence of the Euler scheme Xn

t to the diffusion process Xt we
have d1(Xn

t , Xt) ≤ C
n but ‖DXn

t −DXt‖ ∼ C
n1/2 . This is because we deal with the weak

convergence in the first case and with the strong convergence in the second one. So we
pass from 1

n to 1
n1/2 . If we have an ellipticity property, then we do no need to estimate

‖DXn
t −DXt‖ so we are at level 1

n .
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3.2 The distance between density functions

We give here an immediate application of the regularization lemma under the strong
non degeneracy condition (Lemma 3.5): we estimate the distance between density
functions.

Proposition 3.15. Let F,G ∈ Ed be such that Qq(F ) +Qq(G) <∞ for every q ∈ N (see
(3.12)). Then for every k ∈ N, every multi index α = (α1, ..., αm) and every ε > 0 there
exists some constants C and q (depending on ε, k and on m) such that

|E(∂αf(F ))− E(∂αf(G))| ≤ Cd1−εk (F,G) ‖f‖∞
(
Qq(F ) +Qq(G)

)ε
(3.33)

In particular if pF and pG are the density functions for F and G respectively, then for
every x ∈ Rd

|∂αpF (x)− ∂αpG(x)| ≤ Cd1−εk (F,G)
(
Qq(F ) +Qq(G)

)ε
(3.34)

The same estimates hold with d1−εk (F,G) replaced by d1−εCF (F,G).

Remark 3.16. Compare with the estimate (2.53) pg 14/33 in [3]: here the estimate is
much better because, using d1 for example, we have just d1−ε1 (F,G) ≤ E(|F −G|)1−ε and
the Sobolev norms of F −G are not involved (as it is the case in [3]).

Proof. We will prove just (3.33) because (3.34) follows by standard regularization meth-
ods. To begin we use (3.13) and we get

|E(∂αf(F ))− E(∂α(f ∗ φδ)(F ))| ≤ Cδq ‖f‖∞Qq+m(F )

and a similar estimate for G. Moreover, using (3.17)

|E(∂α(f ∗ φδ)(F ))− E(∂α(f ∗ φδ)(G))| ≤ Cδ−(k+m)dk(F,G)× ‖f‖∞

so that

|E(∂αf(F ))− E(∂αf(G))| ≤ C
(
δ−(k+m)dk(F,G) + δq(Qq+m(F ) +Qq+m(G))

)
‖f‖∞ .

We choose δ such that δ−(k+m)dk(F,G) = δq(Qq+m(F )+Qq+m(G)), that is, δ =
(
dk(F,G)/

(Qq+m(F ) +Qq+m(G))
) 1
k+m+q , so that

|E(∂αf(F ))− E(∂αf(G))| ≤ C d
q

k+m+q

k (F,G)
(
Qq+m(F ) +Qq+m(G)

) k+m
k+m+q ‖f‖∞ .

Then we choose q large in order that k+m
k+m+q < ε, and we get (3.33).

4 Examples

4.1 Euler scheme

In this section we discuss the convergence in total variation distance of the Euler
scheme.

We consider the d dimensional diffusion process

Xt = x+

m∑
j=1

∫ t

0

σj(Xs)dB
j
s +

∫ t

0

b(Xs)ds

where σj ∈ C∞b (Rd,Rd), j = 1, ...,m and b ∈ C∞b (Rd,Rd). We are concerned with the
Euler scheme defined in the following way. We fix n ∈ N, we define τn(t) = k

n for
k
n ≤ t <

k+1
n and then the Euler scheme is given by

Xn
t = x+

m∑
j=1

∫ t

0

σj(X
n
τn(s)

)dBjs +

∫ t

0

b(Xn
τn(s)

)ds.
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In this framework there are two types of errors which are of interest: first, the “strong
error” is ‖Xt −Xn

t ‖p ≤
C√
n

. And moreover, the weak error: for f ∈ C6
b (Rd), Talay and

Tubaro proved in [28] that

|E(f(Xt))− E(f(Xn
t ))| ≤ C ‖f‖6,∞ ×

1

n
. (4.1)

Then one is interested to obtain the above estimate for measurable and bounded func-
tions, so to replace ‖f‖6,∞ by ‖f‖∞ in the above estimate (this means to obtain the
estimate of the error in total variation distance). This has been done by Bally and Talay
in [9] and by Guyon in [13] by using Malliavin calculus (another approach, based on the
parametrix method has been given by Konackov and Memen [15], in the elliptic case). In
order to do this one has to assume a non degeneracy hypothesis. We construct the Lie
algebra associated to the coefficients of the above SDE:

A0 = {σ1, ..., σm},
Ak = {[σ1, ψ], ..., [σm, ψ], [b, ψ] : ψ ∈ Ak−1}

where [φ, ψ] = 〈φ,∇ψ〉 − 〈ψ,∇φ〉 is the Lie bracket. We also denote Ak(x) = {φ(x), φ ∈
Ak}. Then we have two types of non degeneracy conditions: the ellipticity condition in x
means that σ1(x), ..., σm(x) span Rd. This is also equivalent with the fact that σσ∗(x) is
invertible The second condition, much less strong, is that ∪k∈NAk(x) span Rd. This is
the so called Hörmander’s condition. And Hörmander’s theorem (proved by Malliavin
by a probabilistic approach) say that under this condition the law of Xt(x) is absolutely
continuous and has a smooth density.

Let us come back to the estimate of the weak error in total variation distance. J.
Guyon proved in [13] that if the uniform ellipticity condition holds that is σσ∗(x) ≥ λ > 0

for every x, then

|E(f(Xt(x)))− E(f(Xn
t (x)))| ≤ C ‖f‖∞ ×

1

n
. (4.2)

The estimate of the weak error in total variation distance, under the Hörmander condition,
has been done in [9] under the “uniform Hörmander condition”: there is a k ∈ N and
some λ > 0 such that

Λ(x) := inf
|ξ|=1

∑
ψ∈Ak

〈ψ(x), ξ〉2 ≥ λ.

But here a supplementary difficulty appears: the Hörmander assumption is not
sufficient in order to guarantee that the Malliavin covariance matrix σXnt (x) of the
Euler scheme Xn

t (x) is invertible (and this was a crucial ingredient in the proof). In
[9] this difficulty has been bypassed by replacing Xn

t (x) by the “regularized version”
X
n

t (x) = Xn
t (x) + εn∆ where ∆ is a standard normal random variable independent of the

Brownian motion B. From a simulation point of view this is really not a problem because
this just means to simulate one more random variable ∆. And one proves that∣∣∣E(f(Xt(x)))− E(f(X

n

t (x)))
∣∣∣ ≤ C ‖f‖∞ × 1

n
. (4.3)

Although from a practical point of view this has not big interest, the following theoretical
question remained open: is it possible to prove (4.3) for the real Euler scheme Xn

t (x)

(without the regularization factor εn∆) under the Hörmander condition?
Let us see what we may obtain using the results from the previous sections. We use

the standard Malliavin calculus so now E = D∞ (see the notation in Nualart [22]). And
under our assumptions on the coefficients (σj , b ∈ C∞b (Rd,Rd)) standard estimates yield,
for every q ∈ N

Cq(Xt(x)) + sup
n
Cq(Xn

t (x)) = Cq <∞.
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Moreover, if the ellipticity condition holds, one proves that detσXt(x) ≥ λ(x) > 0 and
detσXnt (x) ≥ λ(x) > 0 with λ(x) independent of n. It follows that

Qq(Xt(x)) + sup
n
Qq(Xn

t (x)) = Qq <∞.

So, using (3.24) first and (4.1) then, we obtain for every ε > 0

dTV (Xt, X
n
t ) ≤ C × d1−ε6 (Xt, X

n
t ) ≤ C

n1−ε
. (4.4)

Comparing with the result of Guyon (4.2) we see that we have lost a little bit because we
have the power 1− ε instead of 1. This is a structural drawback of our method which is
based on optimization. However there is a slight gain because we need just ellipticity in
the starting point x and not uniform ellipticity.

Let us see now what we are able to say under Hörmander’s condition. We stress
that we do not need the uniform Hörmander condition but only the condition in the
starting point x: we just assume that Span{∪k∈NAk(x)} = Rd. This is sufficient in order
to guarantee that detσXt(x) > 0 and this is all we need. As we mentioned above, we are
no more able to prove that detσXnt (x) ≥ λ(x) > 0 so we have to use (3.26) (together with
(4.1)):

dTV (Xt, X
n
t ) ≤ C × (d6(Xt, X

n
t ) + dp(detσXt ,detσXnt ))1−ε

≤ C ×
( 1

n
+ dp(detσXt ,detσXnt )

)1−ε
.

Now we have to estimate dp(detσXt ,detσXnt ). If we were able to prove that for some
p ∈ N one would have dp(detσXt ,detσXnt ) ≤ C

n , then we come back to the same estimate
as in the elliptic case. At a first glance this seems reasonable, but taking things seriously
this is not so clear – we give up to answer this question here, and we just notice that easy
standard arguments give ‖ detσXt − detσXnt ‖1 ≤

C√
n

which yields d1(detσXt ,detσXnt ) ≤
C
n1/2 . Finally we obtain:

dTV (Xt, X
n
t ) ≤ C

n
1
2−ε

. (4.5)

We conclude that we are still able to prove that limn dTV (Xt(x), Xn
t (x)) = 0 but we lose

much on the speed of convergence.

Remark 4.1. We guess that one could obtain the rate (lnn)α/n instead of 1/n1−ε. But
this would require hard work and we are not able to do it at this time. However we
believe that the method presented in our paper always loses a little bit and never gives
1/n.

4.2 Central Limit Theorem for Wiener chaoses

Let us fix 1 ≤ q1 ≤ q2 ≤ · · · ≤ qd a sequence of d positive integers. Let us consider
here Fn = (F1,n, · · · , Fd,n) a sequence of random vectors such that for all i ∈ {1, · · · , d}
and all n ≥ 1, the random variable Fi,n belongs to the qi–th Wiener chaos. We will further
assume that the covariance matrix of Fn is the identity matrix for every n ≥ 1. A central
result of Nourdin-Peccati theory established in [19] provides an explicit bound in total
variation between the distribution Fn and the distribution of a standard Gaussian vector,
say N = (N1, · · · , Nd):

dTV (F,N) ≤ CΦ
(
E
(
|Fn|4

)
− E

(
|N |4

))
, Φ(x) = | log(x)|

√
x. (4.6)

Let us mention that an entropic result is actually proved in [19] and the previous bound
is the corresponding total variation estimate which is derived from Pinsker inequality.
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The proof of (4.6) uses clever arguments from information theory which are never-
theless rather specific to Gaussian targets. Our goal here is to apply Proposition 3.12 to
this situation and to compare the bounds. First, from [18] one has the following result
regarding the Wasserstein distance:

dW (F,N) ≤ C
[ d∑
i,j=1

E
((
δi,j −

1

qi
Γ[Fi,n, Fj,n]

)2)] 1
2

, (4.7)

while from [21] one gets the bound

d∑
i,j=1

E
((
δi,j −

1

qi
Γ[Fi,n, Fj,n]

)2)
≤ E

(
|Fn|4

)
− E

(
|N |4

)
. (4.8)

Finally it is obvious that for some constant C only depending on d we get

dW (detσFn ,detD) ≤ C
[ d∑
i,j=1

E
((
δi,j −

1

qi
Γ[Fi,n, Fj,n]

)2)] 1
2

, (4.9)

with D = Diag(q1, q2, · · · , qd). Since D is a deterministic invertible matrix and Fn is
uniformly bounded in D∞, one can apply Proposition 3.12 with H = detD. For every
ε > 0, gathering the bounds (4.7), then inequalities (4.8) and (4.9) lead to

dTV (F,N) ≤ Cε
(
E
(
|Fn|4

)
− E

(
|N |4

)) 1
2−ε (4.10)

which, up to an arbitrarily small loss, retrieves the correct order of magnitude in the
total variation estimate of the so-called fourth moment Theorem.
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